Product: Heating Efficiency

Prescriptive rebates will be offered for Hot Water Boilers (Condensing and non-condensing), Commercial Water Heaters and various heating system improvements.

Algorithms:

Algorithms.	
BTUH_upgraded	= Input BTUH for the upgraded boiler or water heater to generate the same output as existing boiler or water heater that is being retrofitted = BTUH_existing x EFFb/EFFh
BTUH_base	= Input BTUH for the baseline boiler or water heater to generate the same output as the new high efficient boiler or water heater = BTUH_new x EFFh/EFFb
New Boiler Savings (Dth)	= (BTUH_base - BTUH_new) x Hrs / 1,000,000
Furnace Savings (Gross Dth)	= Alt x ((BTUH_new x EFFh/EFFb) - BTUH_new) x Hrs / 1,000,000
Boiler Tune Up savings (Gross Dth)	= ((BTUH x EFFh/EFFb) - BTUH) x Hrs / 1,000,000
Outdoor Air Reset savings (Gross Dth)	= (BTUH - (BTUH x EFFb/EFFh)) x Hrs / 1,000,000
Stack Dampers savings (Gross Dth)	= (BTUH - (BTUH x EFFb/EFFh)) x Hrs / 1,000,000
Modulating Burner Controls savings (Gross Dth)	= (BTUH - (BTUH x EFFb/EFFh)) x Hrs / 1,000,000
O2 Trim Control savings (Gross Dth)	= (BTUH - (BTUH x EFFb/EFFh)) x Hrs / 1,000,000
Steam Traps savings (Gross Dth)	= Leak_Rate x Leak_Hours x BTU_per_Pound / EFFb/1,000,000
New Water Heater Savings (Dth) Pipe Insulation Savings (Dth)	= ((BTUH_base - BTUH_new) x - Hrs / 1,000,000) + ((SL_base - SL_new) X SL_Hrs / 1,000,000) = ((Quantity * Input_btuh)/(Quantity * Input_btuh + Other_Water_Heater btuh)* (8.33 * Gallons_per_1000_ft2_per_day * Days_per_Year * SqFt_Served / 1000 * (T_setpoint-T_supply) + Quantity * Standby_Loss_Base) / Baseline_Efficiency - ((Quantity * Input_btuh)/(Quantity * Input_btuh + Other_Water_Heater btuh)* (8.33 * Gallons_per_1000_ft2_per_day * Days_per_Year * Building_Square_Feet / 1000 * (T_Stepoint-T_Supply) + Quantity * Standby_Loss_New)) / Efficiency)/ 100 = LF x Hrs x (BTU_per_foot_U - BTU_per_foot_I) x Existing / EFFb
DeltaT	= (Tfluid - Tambient)
BTU_per_Foot	= [Coef0 + (Coef1 x DeltaT) + (Coef2 x DeltaT^2) + (Coef3 x DeltaT^3)] / EFFb The U or I designation after the name indicates Uninsulated or Insulated.
Custom Boiler savings (Dth)	Gas energy savings and any associated savings or increase in electrical energy will be calculated based on the project specific details. Each project will undergo an engineering review in accordance with standard engineering practices. The review will be in accordance with the calculation methodologies detailed in the prescriptive products where applicable.

Variables:

BTUH new	= Rated boiler or water heater Input BTUH nameplate data for the new boiler or water heater.
DIUT_IIEW	· · · · · · · · · · · · · · · · · · ·
BTUH_existing	= Rated boiler or water heater Input BTUH nameplate data for the existing boiler or water heater that is being replaced or retrofitted with OA Reset dampers, Modulating Burner Controls, Tabulators or O2 Trim Controls.
Hrs	 = 659 hrs/yr for space heating only boilers = 2,190 hrs/yr for domestic hot water only boilers = 1,443 hrs/yr for space heating & domestic hot water boilers Pipe insulation hours are given in Table 2. = 1,092 hrs/yr for commercial water heaters = 950 hrs/yr for commercial furnaces
SL_Hrs	= Standby loss hours for commercial water heaters = 8,760 hrs/yr
EFFb	= Efficiency of Baseline equipment. Refer Table 1 below
EFFh	= Efficiency for higher efficiency equipment. Refer Table 1 below.
SL_base	= Standby Losses for baseline storage water heater = 1,200 BTUH (Reference 4) 13.21 BTUH per gallon of storage (Ref 2)
SL_new	= Standby Losses for efficient water heater = 1,200 BTUH 8.90 BTUH per gallon of storage (ref 2) for storage models and 0 BTUH for tankless models (Reference 4)
Leak_Hours	
Leak_Rate	=Leakage rate, pounds of steam per hour. High Pressure = 11, Low Pressure = 5 (Reference 5)
BTU_Per_Pound	Low Pressure Applications: = 1164 BTU per pound for lost to atmosphere, 964 BTU per pound lost to condensate. Assume 50/50 mix = 1064 BTU per pound. (Reference 5) High Pressure Applications: = 1181 BTU per pound for lost to atmosphere, 981 BTU per pound lost to condensate. Assume 50/50 mix = 1081 BTU per pound. (Reference 5)
LF	= Linear feet of insulation installed, provided by the customer.
Coef	= Heat loss polynomial equation coefficient. The number represents the power to which DeltaT is raised. Values for insulation/pipe combinations allowed in the product are listed in Table 7. Coefficients will be selected based on the pipe diameter, R (or k) value and insulation thickness provided by the customer.
k	= Thermal conductivity, btu-in/hr-ft ² -F
R-Value	= Thermal Resistance, (1/k)*thickness(inches)
T_{fluid}	= Average temperature of the fluid in the pipe receiving insulation in degrees F, provided by the customer.
T _{ambient}	= Average temperature of the space surrounding the pipe. We will ask the customer if the pipe is in a conditioned space or outside. We will use 70 degrees for conditioned spaces and 51 degrees for outside domestic hot water (full year average) and 44 degrees for outside space heating (average excluding June-September) which are the average TMY3 temperatures for Colorado.

Existing	= Pipe insulation savings multiplier to determine credit if existing deteriorated insulation is being replaced. We will use 1 if no existing insulation is present and 0.25 if existing insulation is being replaced.				
1,000,000	= Conversion from BTU to Dth				
Measure Life	Length of time the boiler equipment will be operational = See table 8.				
Incremental Cost	= Refer to Tables 3 to 6				
NTG	Net-to-gross = 86% for all measures. Reference Tetra Tech Program Evaluation Report				
ALT	Altitude Adjustment factor = 0.8 The output of the furnace is derated to 80% of sea level output				
density	Density of water = 8.33 lbs/gal				
C_p	Specific heat of water = 1 Btu / lb - F				
Other_Water_Heater btuh	Capacity of other water heaters instaled in the building, provided by the customer				
Volume_Daily_SqFt_Usage	Average daily hot water consumption, use values from Table 9 [gallons / 1,000 ft2 / day].				
Days_Year	Applicable days per year of building operation, if unknown use values from Table 9.				
SqFt_Served	Number of Square feet served by water heater in thousands of square feet, site specific.				
T_setpoint	Water heater setpoint = 140 deg F (1).				
T_supply	Supply temperature of water heater = 58 deg F (1).				
Eff_Rating_Standard	Efficiency Rating of standard replacement water heater, Thermal Efficiency = 80%				
Eff_Rating_High	Efficiency Rating of high efficiency replacement water heater, Thermal Efficiency, provided by customer				
Incremental Cost	Cost of the higher efficiency option over the baseline option for the end-use customer. (Table 11,12)				
	Operating and Maintenance Cost is for tankless units only; annual cost = \$100 trip charge + \$300 per unit for a				
O&M Cost	coil flush				
Baseline new construction water heater	= a 100 gallon non-condensing storage water heater				
Gallons_per_1000_ft2_per_day	Volume of hot water per SF of building as determined from Table 9.				

Needed from Customer/Vendor/Administrator for Calculations:

For boilers:

Boiler size rated at sea level (BTUH)

New boiler type (Non-Condensing or Condensing)

Boiler Use (Space heating and/or water heating)

Additional Information for Plan B boilers:

Efficiency of boiler being replaced

Current State of Colorado Inspection certificate indicating the age and active status of the boiler

For steam traps:

High or low pressure

Incremental cost

For all but boilers, steam traps, and pipe insulation:

Boiler size (BTUH)

Implemented measure

Incremental cost

For Insulation:

Linear feet of insulation added Nominal diameter of pipe Thickness of insulation Insulation R-Value or thermal conductivity (k) Average fluid temperature

Pipe location (conditioned space or not)

Pipe use (Space heating and/or water heating)

Was existing insulation replaced

For Water Heaters:

Water heater type (Non-condensing or Condensing)
Water heater storage capacity (Gallons) i.e. 0 if tankless
Water Heater size rated at sea level (BTUH)
Incremental cost
Building type
Square footage served by water heater
BTUH input capacity of existing water heaters
Thermal efficiency rating

For Furnaces:

New furnace size (BTUH) New furnace efficiency

References:

- 1. Arkansas Deemed Savings Quick Start Program Draft Report Commercial Measures Final Report, Nexant.
- 2. AHRI Directory of Certified Product Performance; average of Standby Loss in BTUH

Assumptions:

- Each boiler is replaced with the same size on a 1 for 1 basis.
- Only boilers used for space and/or domestic water heating can receive prescriptive rebates; other boilers must go through Custom Efficiency.
- Climate zone assumed to be Denver for all boilers and water heaters
- Thermal Efficiency as defined in ASHRAE 90.1-2007 indicates the total efficiency of the boiler equal to 100% fuel energy minus all losses.
- -The full load efficiency of condensing boiler is assumed to be 92%. For savings calculations, part load efficiency of 94% was used.
- -The full load efficiency of the baseline Plan B boiler is assumed to be 78%. For savings calculations, the actual nameplate efficiency provided by the customer will be
- Standby losses are from the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) database based on a 100 gallon tank.
- Standby losses are equal for the baseline and efficient storage type water heaters and cancel out.
- Each furnace is replaced with the same size on a 1 for 1 basis.
- Prescriptive rebates are only given for furnaces put into service, rebates are not given for backup furnaces.
- Service life of typical furnace is 20 years (per FEMP), 15 years used in the calculations. Reference 10
- Furnaces must have a minimum efficiency of 92% AFUE for a rebate, and 94% AFUE or higher efficiency will receive a larger rebate.
- The baseline efficiency for the furnace is based on 2006 IECC, minimum of 78%.
- Efficiency of all furnaces is Annual Fuel Utilization Efficiency ("AFUE")
- For 175,000 Btu/h hot water boilers: 100% of capacity used for space heating. For 500,000-4,000,000 Btu/h boilers: 50% of capacity used for space heating, 50% of capacity used for hot water.
- *Condensing boiler efficiencies at part loads were taken from Tetra Tech's final report "Comprehensive Process and Impact Evaluation of the Business Heating Efficiency Program Colorado" to Xcel Energy dated December 14, 2011
- Prescriptive rebates are only given for boilers put into service, rebates are not given for backup boilers. Even though we do not rebate backup boilers, our assumed hours have been conservatively reduced to 65% of the predicted hours to account for boiler redundancy.
- Steam boiler has condensate return.
- Assumed savings for boiler tune-up = 2% for non condensing boiler. This is an average value of the two years, 4% initial to no savings at the end of the two years. Life of product is 2 years. DOE states up to 5%.
- Assumed savings for outdoor air reset on non condensing boilers = 3%. Life of product is 20 years. The Natural Gas consortium states up to 5% savings
- Assumed savings for installing Stack dampers on non condensing boilers = 1%. Life of product is 12 years. Canada energy council, up to 4%
- Assumed savings for modulating burner controls on non condensing boilers = 3%. Life of product is 20 years. The Natural Gas consortium states up to 4% savings
- Assumed savings for O2 trim controls on non condensing boilers = 2%. Life of product is 20 years. The Natural Gas consortium states of 2 to 4% savings
- For boilers: Though the BTU input and output are affected by altitude, the efficiency stays the same, so the elevation effect is not considered.

Colorado

Table 1: Heating Equipment Efficiencies					
	Baseline Efficiency (EFFb)	Efficient Efficiency (EFFh)			
New Boilers (Non-Condensing)	80.00%	85.00%			
New Boilers (Condensing)	80.00%	94.00%			
Replacement Boilers (Condensing)	78.00%	94.00%			
Boiler Tune Up	78.00%	80.00%			
Outdoor Air Reset	80.00%	83.00%			
Stack Dampers	80.00%	81.00%			
Modulating Burner Controls	80.00%	83.00%			
O2 Trim Control	80.00%	82.00%			
Steam Traps	80.00%	N/A			
Commercial Furnaces	78.00%	From Customer			
Water Heaters	80.00%	96.00%			
Pipe Insulation	80.00%	N/A			

Table 2: Hours for Pipe Insulation							
Use of Pipe	Location	Pipe Insulation Hours	Explanation				
Domestic Hot Water	Inside	5,584	Hours when outside temp is above building balance point. Heat loss from pipe is wasted				
Domestic Hot Water	Outside	8,760	Domestic hot water available year round, outside temp is always less than 120 F.				
Space Heating	Inside	2,622	Hours when boiler is running but outdoor temp is above building balance point				
Space Heating	Outside	6,000	Hours that boiler is running				

Table 3: Hot water boiler costs, Vendor supplied, Engineered Products								
	Non-c	ondensing	Condensing	Incremental	Incremental	Incremental		
Boiler Nameplate Capacity	Non Condensing		High Efficient - Condensing	Efficient - Non	Baseline to High Efficient - Condensing	Plan B Replacement High Efficient - Condensing		
175,000 Btuh	\$3,000	\$3,500	\$4,600	\$500	\$1,600	\$6,613		
500,000 Btuh	\$5,000	\$9,000	\$11,200	\$4,000	\$6,200	\$16,951		
1,000,000 Btuh	\$7,300	\$11,700	\$15,000	\$4,400	\$7,700	\$26,502		
2,000,000 Btuh	\$12,000	\$17,000	\$26,500	\$5,000	\$14,500	\$49,504		
4,000,000 Btuh	\$24,000	\$34,000	\$53,000	\$10,000	\$29,000	\$99,008		
6,000,000 Btuh	\$36,000	\$51,000	\$79,500	\$15,000	\$43,500	\$148,512		
8,000,000 Btuh	\$48,000	\$68,000	\$106,000	\$20,000	\$58,000	\$198,016		

Table 4: Commercial Water Heater Costs, Vendor supplied							
Water Heater Nameplate Capacity	Baseline	High Efficient	Incremental				
Commercial Water Heater - Condensing; 125							
MBTUH	\$3,105	\$4,006	\$901				
Commercial Water Heater - Condensing; 160							
MBTUH	\$3,512	\$4,530	\$1,018				
Commercial Water Heater - Condensing; 199							
MBTUH	\$3,450	\$4,450	\$1,000				
Commercial Water Heater - Condensing; 300							
MBTUH	\$5,959	\$7,687	\$1,728				
Commercial Tankless Water Heater -							
Condensing; 150 MBTUH	\$4,284	\$5,526	\$1,242				
Commercial Tankless Water Heater -							
Condensing; 199.9 MBTUH	\$3,450	\$4,450	\$1,000				

Table 5: Other Heating System Improvements					
Boiler Tune Up	Actual costs will be provided by customer				
Outdoor Air Reset	Actual costs will be provided by customer				
Stack Dampers > 750 Mbtuh	Actual costs will be provided by customer				
Stack Dampers > 750 Mbtuh	Actual costs will be provided by customer				
Modulating Burner Controls < 750 Mbtuh	Actual costs will be provided by customer				
Modulating Burner Controls > 750 Mbtuh	Actual costs will be provided by customer				
O2 Trim Control	Actual costs will be provided by customer				
Steam Traps	Actual costs will be provided by customer				
Pipe Insulation	Actual costs will be provided by customer				

Table 6: Commercial Furnaces (Reference 3)				
	Incremental			
Btu Input	Cost			
60,000	\$804.95			
70,000	\$782.26			
80,000	\$775.83			
90,000	\$785.68			
100,000	\$811.80			
115,000	\$893.02			
120,000	\$912.86			
125,000	\$948.29			
140,000	\$1,079.00			

Table 7: Pipe Insulation polynomial equation coefficients and incremental cost

Pipe Nominal	Insulation								
Diameter	Thickness								
(inches)	(Inches)	Po	Ivnomial Coeffic	cients, Uninsula	ted	P	olvnomial Coe	fficients, Insula	ted
()	()	Coef0	Coef1	Coef2	Coef3	Coef0	Coef1	Coef2	Coef3
0.50	1.0	-3.0374E+00	4.5690E-01	8.6645E-04	4.0333E-07	-1.4187E-01	9.4515E-02	9.5675E-05	2.0500E-07
0.50	1.5	-3.0374E+00	4.5690E-01	8.6645E-04	4.0333E-07	-9.3332E-02	7.8916E-02	7.4175E-05	1.7167E-07
0.75	1.0	-3.6084E+00	5.5068E-01	1.0738E-03	4.9833E-07	-1.8348E-01	1.1210E-01	1.1840E-04	2.4000E-07
0.75	1.5	-3.6084E+00	5.5068E-01	1.0738E-03	4.9833E-07	-1.1155E-01	9.0618E-02	8.7550E-05	1.9667E-07
1.00	1.0	-4.4355E+00	6.6986E-01	1.3218E-03	6.3167E-07	-1.9200E-01	1.1754E-01	1.2070E-04	2.5333E-07
1.00	1.5	-4.4355E+00	6.6986E-01	1.3218E-03	6.3167E-07	-1.1202E-01	9.8294E-02	9.6075E-05	2.1167E-07
1.25	1.0	-5.7434E+00	8.3004E-01	1.5980E-03	8.8500E-07	-2.9272E-01	1.4849E-01	1.5975E-04	3.1667E-07
1.25	1.5	-5.7434E+00	8.3004E-01	1.5980E-03	8.8500E-07	-1.3118E-01	1.0982E-01	1.0618E-04	2.3833E-07
1.50	1.0	-6.3813E+00	9.3332E-01	1.8326E-03	9.9000E-07	-2.7700E-01	1.5147E-01	1.5938E-04	3.2500E-07
1.50	1.5	-6.3813E+00	9.3332E-01	1.8326E-03	9.9000E-07	-1.6005E-01	1.2339E-01	1.2200E-04	2.6667E-07
2.00	1.0	-7.7082E+00	1.1384E+00	2.2752E-03	1.2350E-06	-3.3948E-01	1.7646E-01	1.8525E-04	3.8333E-07
2.00	1.5	-7.7082E+00	1.1384E+00	2.2752E-03	1.2350E-06	-2.0389E-01	1.4083E-01	1.3790E-04	3.0667E-07
2.50	1.5	-9.3690E+00	1.3590E+00	2.6993E-03	1.5500E-06	-1.7869E-01	1.4528E-01	1.4075E-04	3.1667E-07
2.50	2.0	-9.3690E+00	1.3590E+00	2.6993E-03	1.5500E-06	-1.3498E-01	1.2739E-01	1.1985E-04	2.7667E-07
3.00	1.5	-1.1275E+01	1.6288E+00	3.2514E-03	1.9067E-06	-2.6414E-01	1.8400E-01	1.8783E-04	3.9500E-07
3.00	2.0	-1.1275E+01	1.6288E+00	3.2514E-03	1.9067E-06	-1.7765E-01	1.5601E-01	1.5245E-04	3.3667E-07
4.00	1.5	-1.4044E+01	2.0490E+00	4.1818E-03	2.3833E-06	-3.3314E-01	2.2060E-01	2.2868E-04	4.7167E-07
4.00	2.0	-1.4044E+01	2.0490E+00	4.1818E-03	2.3833E-06	-2.3785E-01	1.8565E-01	1.8200E-04	4.0000E-07
5.00	1.5	-1.6652E+01	2.4856E+00	5.2152E-03	2.8167E-06	-4.5046E-01	2.6745E-01	2.7580E-04	5.8000E-07
5.00	2.0	-1.6652E+01	2.4856E+00	5.2152E-03	2.8167E-06	-2.9805E-01	2.2138E-01	2.1908E-04	4.7833E-07
6.00	1.5	-2.0439E+01	2.9514E+00	6.0177E-03	3.6500E-06	-6.1558E-01	3.1278E-01	3.1310E-04	6.9333E-07
6.00	2.0	-2.0439E+01	2.9514E+00	6.0177E-03	3.6500E-06	-3.4456E-01	2.4953E-01	2.4818E-04	5.3833E-07
8.00	1.5	-2.6767E+01	3.8025E+00	7.6705E-03	4.9667E-06	-6.9016E-01	3.7481E-01	3.9035E-04	8.1000E-07
8.00	2.0	-2.6767E+01	3.8025E+00	7.6705E-03	4.9667E-06	-1.4066E+00	3.3454E-01	9.9850E-05	1.1100E-06
10.00	1.5	-3.1882E+01	4.6589E+00	9.7102E-03	5.8167E-06	-8.7637E-01	4.4116E-01	4.4313E-04	9.7500E-07
10.00	2.0	-3.1882E+01	4.6589E+00	9.7102E-03	5.8167E-06	-5.2419E-01	3.5989E-01	3.6058E-04	7.7833E-07
12.00	2.0	-3.8751E+01	5.5187E+00	1.1240E-02	7.3333E-06	-1.0195E+00	5.1188E-01	5.2188E-04	1.1250E-06
12.00	2.0	-3.8751E+01	5.5187E+00	1.1240E-02	7.3333E-06	-5.6113E-01	4.1443E-01	4.3003E-04	8.8167E-07

Note:

The updated coefficients were developed using the NAIMA 3E Plus 4.0 Software. The following assumptions were used:

Base metal - Steel

Insulation - 650F min. Fiber Pipe and Tank, Type II, C1393-00a

Jacket Material - 0.13 Stainless Steel, new, cleaned

Ambient Temperature -45F

Wind Speed - 0mph

Max Surface Temp - 140F

System Application - Pipe Horizontal

System Units - ASTM C585

Table 8: Measure Lives		
Measure	Product Life (yrs)	Source of Information
Hot Water Boilers (Non-condensing)		
Hot Water Boiler - Non-condensing 175 MBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 500 MBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 1MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 2 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 4 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 6 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Non-condensing 8, MMBTUH	20	Federal Energy Management Program
Hot Water Boilers (Condensing)		
Hot Water Boiler - Condensing 175 MBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 500 MBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 1 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 2 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 4 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 6 MMBTUH	20	Federal Energy Management Program
Hot Water Boiler - Condensing 8 MMBTUH	20	Federal Energy Management Program
Commercial Furnaces	15	Federal Energy Management Program
Commercial Water Heaters		
Commercial Hot Water Heater - Condensing; 125 MBTUH	15	Federal Energy Management Program
Commercial Hot Water Heater - Condensing; 160 MBTUH	15	Federal Energy Management Program
Commercial Hot Water Heater - Condensing; 199 MBTUH	15	Federal Energy Management Program
Commercial Hot Water Heater - Condensing; 300 MBTUH	15	Federal Energy Management Program
Commercial Tankless Hot Water Heater - Non-condensing; 150 MBTUH	15	Federal Energy Management Program
Commercial Tankless Hot Water Heater - Non-condensing; 199 MBTUH	15	Federal Energy Management Program
Commercial Tankless Hot Water Heater - Non-condensing; 399 MBTUH	15	Federal Energy Management Program
Commercial Tankless Hot Water Heater - Non-condensing; 500 MBTUH	15	Federal Energy Management Program
Steam Traps		
Gas Boiler - Steam Traps - Low Pressure - average of 10 and 15 PSI	5	Internet
Gas Boiler - Steam Traps - High Pressure - average of 50 PSI and 65 PSI		
Boiler Tune Ups	2	Federal Energy Management Program
Pipe Insulation		
Insulation - Hot Water System	15	Federal Energy Management Program
Insulation - Steam System	15	Federal Energy Management Program

Heating Efficiency

Table 9: Annual Hot Water Use Data (Ref 3)

·	•	Gallons / 1,000 ft2 /
Building Type	Applicable Days/Year	day
Small Office	250	2.3
Large Office	250	2.3
Fast Food Restaurant	365	549.2
Sit-Down Restaurant	365	816.0
Retail	365	2.0
Grocery	365	2.2
Warehouse	250	1.0
Elementary School	200	5.7
Jr. High/High School/College	200	17.1
Health	365	342.0
Motel	365	100.0
Hotel	365	30.8
Other Commercial	250	0.7
Industrial	Site Specific	Site Specific

Table 10: Baseline Equipment Sizing compared to New Construction Tankless

Customer Segment	Sizing multiplier for equivalent Storage System with 100 gallons of storage
Fast Food Restaurant	48%
Sit-Down Restaurant	54%
Elementary School	52%
Junior High School	88%
Motel	98%
Apartment Building	51%
Fitness Center	65%
Other	65%

Table 11: Incremental Cost per Nameplate Input BTUH for Storage Water Heater per 100 gallons of storage

Customer Segment	\$/BTUH
Fast Food Restaurant	0.0326
Sit-Down Restaurant	0.0056
Elementary School	0.0056
Junior High School	0.0085
Motel	0.0056
Apartment Building	0.0340
Fitness Center	0.0085
Other	0.0144

Table 12: Incremental Cost per Nameplate Input BTUH for Tankless Water Heater

Customer Segment	\$/BTUH
Fast Food Restaurant	0.0105
Sit-Down Restaurant	0.0044
Elementary School	0.0044
Junior High School	-0.0049
Motel	-0.0080
Apartment Building	0.0105
Fitness Center	0.0037
Other	0.0029

References:

3. Minnesota DER Deemed Values