Project Summary Presentation

Conversion of Biomass into Electrical Energy and Compost through Sequential Batch Anaerobic Composting

Dr. Pratap Pullammanappallil
Ms. Kristen Riley

University of Florida

May 12, 2009
Project Partners

* Project funding provided by customers of Xcel Energy through a grant from the Renewable Development Fund
Project Focus

To convert biomass into electrical energy and compost with a highly improved anaerobic digestion technology.

– Feedstock: renewable biomass of sugarbeet tailings and other byproducts generated in the refining process at the American Crystal Sugar Company

– Technology: University of Florida anaerobic digestion technology (SEBAC II) originally developed for space applications
Project Goals

• To convert a renewable biomass of sugarbeet tailings and other sugar refining byproducts into usable electrical energy and compost by utilizing the SEBAC II technology.

• Conduct laboratory analysis on the quality and quantity of methane generated with expected conversion rates to electrical energy

• Design and construct a demonstration facility for processing 10 – 100 tons of tailings per
Project Goals

• Perform a study on the demonstration facility to determine the economic feasibility of bringing the system to full-scale commercial use at the American Crystal Sugar Company East Grand Forks Facility

• Develop a list of target companies in or near the Xcel Energy service area that are potential users of a SEBAC II system and introduce them to the technology. Offer an opportunity to visit the American Crystal Sugar Company facility to see a real-time demonstration.
Sugarbeet Tailings
From
American Crystal Sugar Company
Project Approach

• Laboratory scale analysis to determine:
 – biochemical methane potential of tailings and other byproducts
 – extent of degradation of these feedstocks
 – amount of residue remaining after anaerobic digestion

• Test the applicability of SEBAC II process to biogasify sugarbeet tailings in a laboratory scale system.

• Improve or modify process if required and validate it at the laboratory scale.

• Develop a process design for the demonstration facility.

• Construct, start up and operate the demonstration facility.
Project Results

• Project Goals have all been met
• Production Results
 – Tailings degraded very rapidly
 – 10 tons/week processed
 – Biogas yield was 2400 cu ft/ton wet weight of which 55% was methane
 – Energy equivalence of 1.32 MMBtu/ton wet weight
 – 80-90% of the dry weight of tailings was degraded
Project Results

• Technology Enhancements
 – New system design that is a Hybrid Two Stage entitled “System for Semi-Continuously Fed Anaerobic Digestion of Solid and Soluble Organic Wastes by Products and Residues”
 – System kinetics increased
 • Maximum biogas produced in shorter timeframe
 • Feedstock broken down in shorter timeframe (< 10 days)
 – Demonstration system can process 50% more than the design capacity
 – Compost/residue is free of plant pathogens and active weed seeds (collaboration with the University of Minnesota)
 – Commercial system will only require 2 tanks versus 20
Project Results

• Economic Analysis for Full-Scale System at East Grand Forks
 – Biogas to power generation
 – 390 tons/day of tailings
 – Power potential: 2.1 MW (50,000 kWh/day)
 – Capital cost estimate: $4.9 M
 – Simple payback: 5.8 years
 – Power produced at 1.2 /kWh
Project Results

• Commercialization Potential
 – System can be scaled, ie. 10 tons per week to 400 tons per day
 – System footprint is small, even for large endeavors
 – System can handle multiple feedstocks at one time
 – Biogas can be used directly in boilers, cleaned for pipeline use, or converted to electrical energy
 • At full-scale estimate a 2MW system
 – System can be applied to a variety of industries producing biomass waste and/or by-products
Benefits to XCEL

• Viable renewable technology to convert biomass to electrical energy
• Technology can support a variety of feedstocks at the same time
• Technology is scalable and can support users at all levels
• Return on investment between 2 – 5 years, depending on system size
• Increased supply of electricity available to customer base
• Rural area economic development
 – Industry growth
Commercial Interest

• Many end-users interested in implementing technology
• Four entities have expressed interested in further discussions to potentially acquire the technology through a license agreement and/or partnership agreement
 – Equipment/System Manufacturers
 – Engineering Consulting Firms
 – Venture Capital
Technology Promotion

- **News Media**
 - Minnesota Public Radio (May 6, 2008)
 - Grand Forks Herald (June 8, 2008)
 - Biomass Magazine (August 2008)

- **High Solids Anaerobic Digestion Workshop**
 - Held in Fargo on December 11, 2008
 - 75 people in attendance
 - Technical sessions and tour of demonstration facility
Technology Promotion (cont)

• Students Participating on Project
 – 2 Ph.D.
 – 2 Master
 – 1 Undergraduate

• Conference Presentations/Papers
 – 5 Presentations at International Conferences

• Educational Seminars
 – Minnesota State Community & Technical College
 – Bemidji State University
Technology Promotion

• University Symposia
 – 4 Symposia given at the University of Florida

• Peer-Reviewed Papers and International Journals
 – 4 Published
 – 5 Pending

• One-on-one meetings with various groups
 – Industrial (16) - City (4) - County (4)
 - Federal (4) - University (4)
Additional Funded Contract Work

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Crystal Sugar Company</td>
<td>Provide laboratory analysis on pressed sugarbeet pulp and CSB rafinate to determine biochemical methane potential and degradation time</td>
<td>$21,468</td>
</tr>
<tr>
<td>NASA – Johnson Space Center</td>
<td>Phase I: Provide laboratory analysis and preliminary designs for two systems, the first being an on-site system for Center municipal waste, and the second for a lunar base waste application</td>
<td>$225,000</td>
</tr>
<tr>
<td>American Crystal Sugar Company</td>
<td>Charge and operate the demonstration system with a new feedstock of pressed pulp and tailings combined, and analyze the results</td>
<td>$24,605</td>
</tr>
<tr>
<td>Nordic Sugar</td>
<td>Provide laboratory analysis on whole sugarbeets to determine biochemical methane potential and degradation time from anaerobic digestion</td>
<td>$27,588</td>
</tr>
</tbody>
</table>
Pending Projects

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottertail Ag Enterprises</td>
<td>Provide laboratory analysis on thin stillage to determine biochemical methane potential and degradation time from anaerobic digestion</td>
<td>$36,488</td>
</tr>
<tr>
<td>Ottertail Ag Enterprises</td>
<td>Analyze the thin stillage and anaerobic digestion effluent to determine if the fluids can be remediated for reuse applications within the facility, and determine the appropriate technology</td>
<td>$92,500</td>
</tr>
<tr>
<td>Hennepin County</td>
<td>Provide laboratory analysis on municipal biomass feedstocks and an economic analysis for anaerobic digestion operations for different sized systems</td>
<td>TBD</td>
</tr>
<tr>
<td>American Crystal Sugar Company/Nordic Sugar Company/Ottertail Enterprises</td>
<td>Charge and operate the demonstration system with whole sugar beets and obtain analytical results.</td>
<td>TBD</td>
</tr>
<tr>
<td>American Crystal Sugar Company/Ottertail Enterprises</td>
<td>Charge and operate the demonstration system with thin stillage as the feedstock and analyze the results.</td>
<td>TBD</td>
</tr>
<tr>
<td>NASA Enterprises on Space Center</td>
<td>Phase II: Provide final designs and construction estimates for both an on-site system and a lunar-based system.</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Potential Opportunities/Collaborations

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Minnesota – Crookston</td>
<td>To customize and build an anaerobic digestion system for on-campus use to handle biomass waste products from municipal and agricultural sources, and to use the biogas for infrastructure support.</td>
</tr>
<tr>
<td>Hennepin County/Linden Hills Power and Light</td>
<td>To develop and build an anaerobic digestion system for neighborhood biomass waste and to use the biogas directly or convert it to electrical energy to support local area needs.</td>
</tr>
<tr>
<td>Hennepin/Ramsey/Washington Counties</td>
<td>To develop an anaerobic digestion demonstration system at one of the Minneapolis/St. Paul metro area composting sites to compliment the biomass collection and use program already in place and to generate energy.</td>
</tr>
<tr>
<td>Ryan Potato</td>
<td>To develop and build a full scale commercial system to handle potato culls from their facility operations. Two proposals already submitted.</td>
</tr>
<tr>
<td>American Crystal Sugar Company</td>
<td>To develop and build a 60 – 100 ton per day anaerobic digestion system based on and scaled up from the 10 ton per week demonstration system currently housed at their Moorhead facility.</td>
</tr>
</tbody>
</table>
Questions?
LEGAL NOTICE

THIS REPORT WAS PREPARED AS A RESULT OF WORK SPONSORED BY NSP. IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF NSP, ITS EMPLOYEES, OR THE RENEWABLE DEVELOPMENT FUND BOARD. NSP, ITS EMPLOYEES, CONTRACTORS, AND SUBCONTRACTORS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AND ASSUME NO LEGAL LIABILITY FOR THE INFORMATION IN THIS REPORT; NOR DOES ANY PARTY REPRESENT THAT THE USE OF THIS INFORMATION WILL NOT INFRINGE UPON PRIVATELY OWNED RIGHTS. THIS REPORT HAS NOT BEEN APPROVED OR DISAPPROVED BY NSP NOR HAS NSP PASSED UPON THE ACCURACY OR ADEQUACY OF THE INFORMATION IN THIS REPORT.