
Applicant's Environmental Report – Operating License Renewal Stage Prairie Island Nuclear Generating Plant Nuclear Management Company, LLC

Units 1 and 2 Docket Nos. 50-282 and 50-306 License Nos. DPR-42 and DPR-60

April 2008

TABLE OF CONTENTS

Section Page ACRONYMS AND ABBREVIATIONS xi PURPOSE OF AND NEED FOR ACTION 1.0 1-1 1.1 Introduction and Background..... 1-1 Statement of Purpose and Need 1.2 1-2 1.3 Environmental Report Scope and Methodology 1 - 3Prairie Island Nuclear Generating Plant Licensee and Ownership 1.4 1-4 1.5 References 1-7 SITE AND ENVIRONMENTAL INTERFACES 2.0 2-1 2.1 General Site Description..... 2-1 Regional Features and General Features in the 6-Mile 2.1.1 Vicinity..... 2-2 2.1.2PINGP Site Features 2-2 2.2 Hydrology 2 - 32.2.1 Upper Mississippi River Basin 2-3 2.2.1.1 United States Geological Survey Gaging Stations 2 - 32.2.1.2 Mississippi River Flow Statistics at USGS Stations...... 2-4 2.2.1.3 Lock and Dam 3 Discharge Statistics 2-42.2.1.4 Consumptive Surface Water Use 2-4 2.2.2 Alluvial Aguifers..... 2-4 2.2.3Deep Aguifers 2-52.2.4 Groundwater Level 2-52.2.5Consumptive Groundwater Use 2-6Biological Resources 2.3 2-7 2.3.1 Aquatic and Riparian Ecological Communities..... 2-7 2.3.1.1 Aguatic Communities..... 2-7 2.3.1.2 Critical and Important Terrestrial Habitats 2-12 2.3.2 2.3.2.1 2322 2.3.2.3 2.3.3 2.3.3.1 Fauna 2-14 2.3.3.2 2.4 2.5 Demography 2-19 2.5.12.5.22.5.3 Minority and Low-Income Populations 2-22 2.5.3.1 2.5.3.2

TABLE OF CONTENTS (CONTINUED)

Section

<u>Page</u>

2.6				2-25	
	2.6.1 Labor Force and Employment Opportunities 2				
	2.6.2 Potential for Economic Growth				
2.7	Taxes			2-27	
2.8			and Public Facilities	2-29	
	2.8.1		/ater Supply	2-29	
	2.8.2 Transportation			2-30	
2.9	Land Us		-	2-32	
	2.9.1		e County	2-32	
	2.9.2		County	2-33	
	2.9.3		ounty	2-34	
2.10			aeological Resources	2-36	
2.11			nably Foreseeable Projects in Site Vicinity	2-39	
2.12	Referer	nces		2-72	
3.0	THE PF	ROPOSEI	D ACTION	3-1	
3.1	Genera	l Plant Inf	ormation	3-2	
••••	3.1.1		and Containment Systems	3-2	
	3.1.2		Fuel	3-3	
	3.1.3		and Auxiliary Water Systems	3-3	
	01110	3.1.3.1	Water Use Overview	3-3	
		3.1.3.2	Circulating Water System	3-4	
		3.1.3.3	Circulating Water System Operating Modes	3-5	
		3.1.3.4	Biofouling and Scale Control	3-6	
		3.1.3.5	Domestic Water Supply and Sanitary Wastewater		
			Treatment	3-7	
	3.1.4	Radioac	tive Waste Treatment Systems	3-7	
		3.1.4.1	Liquid Radioactive Waste Treatment Systems	3-7	
		3.1.4.2	Gaseous Radioactive Waste Systems	3-8	
		3.1.4.3	Solid Radioactive Waste Systems	3-8	
	3.1.5		dioactive Waste Management	3-9	
	3.1.6	Transmi	ssion Facilities	3-10	
		3.1.6.1	History/Background	3-10	
		3.1.6.2	Current System Configuration	3-11	
		3.1.6.3	Avian Mortality Resulting from Collisions with Transmissio		
				3-13	
	3.1.7		ance, Operation and Inspection	3-14	
3.2	Refurbishment Activities				
3.3	Programs and Activities for Managing the Effects of Aging				
3.4	Employment				
	3.4.1	Current	Workforce	3-18	

TABLE OF CONTENTS (CONTINUED)

<u>Sectic</u>	<u>on</u>		<u>Page</u>
	3.4.2	Refurbishment Increment	3-18
	3.4.3	License Renewal Increment	3-19
3.5	Referer		
4.0		ONMENTAL CONSEQUENCES OF THE PROPOSED ACTION	4-1
4.1	Backgro	ound	4-1
	4.1.1	Category 1 License Renewal Issues	
	4.1.2	Category 2 License Renewal Issues	4-2
	4.1.3	"NA" License Renewal Issues	
4.2	Surface	Water and Groundwater Use Conflicts	
	4.2.1	Impact on Mississippi River Flows and Water Levels	4-5
	4.2.2	Indirect Impacts from Surface Water Use	4-6
	4.2.3	Groundwater Use Conflicts (Plants Using >100 GPM of	
		Groundwater)	4-7
	4.2.4	Groundwater Use Conflicts (Plants Using Ranney Wells)	4-9
	4.2.5	Degradation of Groundwater Quality	4-10
	4.2.6	Conclusions	4-11
4.3		ment of Fish and Shellfish in Early Life Stages	4-12
4.4		ement of Fish and Shellfish	4-16
4.5		nock	4-19
4.6		s of Refurbishment on Terrestrial Resources	4-22
4.7		ened and Endangered Species	
4.8		lity During Refurbishment (Non-Attainment or Maintenance Areas).	
4.9		on Public Health of Microbiological Organisms	4-31
4.10		magnetic Field – Acute Effects	4-34
4.11	Housin		
		Housing - Refurbishment	
4.12		Housing - License Renewal Term Jtilities: Public Water Supply Availability	
4.12	4.12.1	Public Water Supply - Refurbishment	
		Public Water Supply – License Renewal Term	
4.13		on Impacts from Refurbishment	4-45
4.14		Land Use	4-46
7.17	4.14.1	Offsite Land Use - Refurbishment	4-46
	4.14.2	Offsite Land Use - License Renewal Term	4-48
4.15		ortation	4-51
1.10	4.15.1	Transportation - Refurbishment	4-51
	4.15.2	Transportation - License Renewal Term	4-53
4.16		and Archaeological Resources	4-54
	4.16.1	Historic and Archeological Resources - Refurbishment	4-54
	4.16.2	Historic and Archeological Resources – License Renewal Term	4-56

			ABLE OF CONTENTS (CONTINUED)	
Sectio	<u>on</u>			<u>Page</u>
4.17	Severe	Accident	Mitigation Alternatives	4-57
	4.17.1		blogy Overview	4-58
	4.17.2		e Risk Monetization	4-59
	4.17.3		dentification and Screening	4-59
	4.17.4		nefit Results	4-60
4.18	Referer			4-63
5.0	ASSES	SMENT	OF NEW AND SIGNIFICANT INFORMATION	5-1
				-
5.1	Referer	nces		5-4
6.0	SUMM	ARY OF I	LICENSE RENEWAL IMPACTS AND MITIGATING	
010				6-1
6.1	License	Renewa	I Impacts	6-1
6.2	Mitigati		'	6-2
6.3			verse Impacts	6-3
6.4	Irrevers	ible and I	rretrievable Resource Commitments	6-4
6.5	Short-te	erm Use v	versus Long-term Productivity of the Environment	6-5
6.6	Referer	nces		6-9
7.0	ALTER	NATIVES	S TO THE PROPOSED ACTION	7-1
7.1	No-Acti	on Altern	ative	7-3
	7.1.1		ting Operations and Decommissioning	7-3
	7.1.2		ment Capacity	7-6
7.2	Alternat		Meet System Generating Needs	7-7
	7.2.1		Considerations	7-7
		7.2.1.1	Current and Projected Generating Capability and	
			Utilization	7-7
		7.2.1.2	Effects of Electric Power Industry Restructuring	7-9
		7.2.1.3	Mixture of Generating Sources	7-11
	7.2.2	Reasona	able Alternatives	7-11
		7.2.2.1	Purchased Power	7-12
		7.2.2.2	Gas-Fired Generation	7-13
		7.2.2.3	Coal-Fired Generation	7-14
		7.2.2.4	Siting Considerations	7-16
	7.2.3		ternatives	7-17
		7.2.3.1	Demand Side Management	7-17
		7.2.3.2	Wind	7-18
		7.2.3.3	Solar	7-19
		7.2.3.4	Hydropower	7-20
		7.2.3.5	Geothermal	7-20
		7.2.3.6	Wood Energy	7-20

TABLE OF CONTENTS (CONTINUED)

Section 7.2.3.7 7.2.3.8 7.2.3.9 73 7.3.1 7.3.2 7.3.2.1 7.3.2.2 7.3.2.3 Waste Management 7-27 7.3.2.4 Ecological Resources 7-27 7.3.2.5 7.3.2.6 7.3.2.7 7.3.3 7.3.3.1 7.3.3.2 7.3.3.3 Waste Management 7-31 7.3.3.4 7.3.3.5 Aesthetics 7-32 7.3.3.6 7.3.3.7 74 References 8.0 COMPARISON OF ENVIRONMENTAL IMPACTS OF LICENSE RENEWAL WITH THE ALTERNATIVES..... 8.1 References 9.0 STATUS OF COMPLIANCE

9.1		sed Action General	
		Threatened or Endangered Species	9-1
		Historic Preservation	
	9.1.4	Water Quality (401) Certification	9-2
		State of Minnesota Environmental Review Program	
9.2		atives	
		nces	

7-36

8-1

8-11

9-1

TABLE OF CONTENTS (CONTINUED)

List of Attachments

- Attachment A NRC NEPA Issues for License Renewal of Nuclear Power Plants
- Attachment B NPDES Permit
- Attachment C Special-Status Species Correspondence
- Attachment D State Historic Preservation Officer
 - Correspondence
- Attachment E Public Health Agency Correspondence
- Attachment F Severe Accident Mitigation Alternatives

TABLE OF CONTENTS (CONTINUED) List of Tables

<u>Table</u>		<u>Page</u>
1-1	Environmental Report Responses to License Renewal Environmental Regulatory Requirements	1-5
2.2-1	USGS Gaging Stations	2-42
2.2-2	Mississippi River Flow Statistics at USGS Gaging Stations	2-42
2.2-3	Discharge Flow at Lock and Dam No. 3	2-42
2.2-4	PINGP Groundwater Use Table	2-43
2.3-1	Threatened and Endangered Species Potentially Affected by Operation of PINGP and Associated Transmission Lines	2-44
2.5-1	Decennial Populations, Projections, and Growth Rate	2-47
2.5-2	Block Groups Within 50 Miles of PINGP With Minority or Low-Income Popul More Than 20% Greater Than the State Percentage	lations 2-48
2.6-1	Goodhue County Major Employers	2-50
2.6-2	Dakota County Major Employers	2-51
2.6-3	Pierce County Major Employers	2-53
2.7-1	PINGP Tax Information 2001-2006	2-54
2.8-1	State-Regulated Municipal Water Systems in the Three-County Area	2-55
2.8-2	Traffic Statistics for Most Likely Routes to the PINGP Site	2-57
2.10-1	1 Sites Listed in the National Register of Historic Places That Fall Within a 6-Mile Radius of PINGP	2-58
3.1-1	Transmission Lines from PINGP Substation	3-21
3.4-1	PINGP Employees by County	3-22
4.2-1	PINGP Surface Water Withdrawals from the Mississippi River at Sturgeon Lake	4-61
4.10-1	1 Results of Induced Current Analysis	4-62
6-1	Environmental Impacts Related to License Renewal at PINGP	6-6
7.2-1	Gas-Fired Alternative	7-34
7.2-2	Coal-Fired Alternative	7-35
8-1	Impacts Comparison Summary	8-2
8-2	Impacts Comparison Detail	8-3

TABLE OF CONTENTS (CONTINUED)

Table	,	,	<u>Page</u>

TABLE OF CONTENTS (CONTINUED) List of Figures

<u>Figure</u>

<u>Page</u>

2.1-1	50-Mile Vicinity	2-60
2.1-2	6-Mile Vicinity	2-61
2.1-3	Exclusion Area Boundary	2-62
2.5-1	Black Minority Population	2-63
2.5-2	American Indian or Alaskan Native Minority Population	2-64
2.5-3	Asian Minority Population	2-65
2.5-4	Other Minority Population	2-66
2.5-5	Multi-Racial Minority Population	2-67
2.5-6	Aggregate Minority Population	2-68
2.5-7	Hispanic Ethnicity Population	2-69
2.5-8	Low-Income Population	2-70
2.8-1	Transportation System in Goodhue County	2-71
3.1-1	Station and Transmission Line Layout	3-23
3.1-2	PINGP Transmission System	3-24
7.2-1	2005 Minnesota Generating Capacity by Fuel Type	7-7
7.2-2	2005 Minnesota Generation by Fuel Type	7-7

ACRONYMS AND ABBREVIATIONS

AADT AEC AMC AQCR AWEA BMP Btu CAIR CDS CEQ CFR cfs CIP CON CRT CSA	annual average daily traffic U.S. Atomic Energy Commission Association of Minnesota Counties Air Quality Control Region American Wind Energy Association Best management practices British thermal unit Clean Air Interstate Rule Comprehensive Demonstration Study Council on Environmental Quality Code of Federal Regulations cubic feet per second Conservation Improvement Plan Certificate of Need cathode ray tube Combined Statistical Area
CSFCC	California Stationary Fuel Cell Collaborative combustion turbine
CT CWA	Clean Water Act
CWA	
DAW	Cooling Water Intake System dry active waste
DECON	decontamination and dismantlement
DOE	U.S. Department of Energy
DOT	Department of Transportation
DSM	demand-side management
EA	Environmental Assessment
EPA	U.S. Environmental Protection Agency
EIA	Energy Information Administration
EIS	Environmental Impact Statement
ER	Environmental Report
ESWQD	Environmental Services Water Quality Department
°F	degrees Fahrenheit
FERC	Federal Energy Regulatory Commission
FES	Final Environmental Statement
FWS	U.S. Fish and Wildlife Service
GEIS	Generic Environmental Impact Statement for License Renewal of Nuclear Plants
GIS	Geographic Information System
GPD	gallon per day

gpm	gallon per minute
GWh	gigawatt-hours
IEEE	Institute of Electrical and Electronics Engineers
HAZCOM	Hazard Communication
HAZWOPER	Hazardous Waste Operations and Emergency Response
HDR	Henningson, Durham, and Richardson, Inc.
HRSG	heat recovery steam generator
IGCC	integrated gasification combined-cycle
IPA	Integrated Plant Assessment
ISFSI	Independent Spent Fuel Storage Installation
IVM	integrated vegetation management
JPM	John P. Madgett Station
kV	kilovolt
LOCA	loss-of-coolant accident
LOS	level of service
MAPP	Mid-Continent Area Power Pool
MDA	Minnesota Department of Administration
MDC	Minnesota Department of Commerce
MEQB	Minnesota Environmental Quality Board
mg/L	milligram per liter
MGY	million gallons per year
MISO	Midwest Independent System Operators
MiSA	Micropolitan Statistical Area
MN DNR	Minnesota Department of Natural Resources
Mn/DOT	Minnesota Department of Transportation
MOU	Memorandum of Understanding
MOU	Minnesota Ornithologists' Union
MPCA	Minnesota Pollution Control Agency
MPUC	Minnesota Public Utilities Commission
MSA	Metropolitan Statistical Area
msl	mean sea level
MTU	metric ton of uranium
MW	megawatt
MWd	megawatt-days
MWe	megawatts-electrical
MWt	megawatts-thermal
NAAQS	National Ambient Air Quality Standards
NEPA	National Environmental Policy Act
NERC	North American Electric Reliability Council
NESC®	National Electrical Safety Code®

NMC	Nuclear Management Company
NMFS	National Marine Fisheries Service
NO _x	oxides of nitrogen
NPDES	National Pollutant Discharge Elimination System
NPS	National Park Service
NRC	U.S. Nuclear Regulatory Commission
NREL	National Renewable Energy Laboratory
NSP	Northern States Power
NSPCM	Northern States Power Company-Minnesota
OLER	Environmental Report – Operating License Stage
OSHA	Occupational Safety and Health Administration
PCB	polychlorinated biphenyl
PIIC	Prairie Island Indian Community
PINGP	Prairie Island Nuclear Generating Plant
PM	Particulate Matter
psi	pound per square inch
RCRA	Resource Conservation and Recovery Act of 1976
RDF	refuse-derived fuel
ROI	Region of Influence
ROW	right-of-way
SAFSTOR	Safe storage of the stabilized and defueled facility
SAMA	Severe Accident Mitigation Alternatives
SHPO	State Historic Preservation Officer
SIP	State Implementation Plan
SMITTR	surveillance, monitoring, inspections, testing, trending, and recordkeeping
SO ₂	sulfur dioxide
SO _x	oxides of sulfur
TtNUS	Tetra Tech NUS, Inc.
UM	University of Minnesota
USACE	U.S. Army Corps of Engineers
USAR	Updated Safety Analysis Report
USCB	U.S. Census Bureau
USDOI	U.S. Department of Interior
USDOJ	U.S. Department of Justice
USAR	Updated Safety Analysis Report
USGS	U.S. Geological Survey
WDA	Wisconsin Department of Administration
WIDNR	Wisconsin Department of Natural Resources
WIPSC	Wisconsin Public Service Commission

1.0 PURPOSE OF AND NEED FOR ACTION

1.1 INTRODUCTION AND BACKGROUND

NRC

"Each application must include a supplement to the environmental report that complies with the requirements of Subpart A of 10 CFR 51." 10 CFR 54.23

"...The purpose and need for the proposed action (renewal of an operating license) is to provide an option that allows for power generation capability beyond the term of a current nuclear power plant operating license to meet future system generating needs, as such needs may be determined by State, utility, and, where authorized, Federal (other than NRC) decisionmakers..." (NRC 1996a, Section 1.3; NRC 1996b, Page 28472).

"...The NRC's NEPA decision standard for license renewal would require the NRC to determine whether the environmental impacts of license renewal are so great that preserving the option of license renewal for future decisionmakers would be unreasonable." (NRC 1996b, Page 28471)

The U.S. Nuclear Regulatory Commission (NRC) licenses the operation of domestic nuclear power plants in accordance with the Atomic Energy Act of 1954, as amended, and NRC implementing regulations. Nuclear Management Company (NMC) operates Prairie Island Nuclear Generating Plant (PINGP) Units 1 and 2, pursuant to NRC Operating Licenses DPR-42 and DPR-60. The license for PINGP Unit 1 will expire August 9, 2013, and the license for PINGP Unit 2 will expire October 29, 2014 (NRC 2000a).

NMC has prepared this environmental report (ER) in conjunction with its application to NRC to renew the PINGP operating licenses, in accordance with the following NRC regulations:

- Title 10, Energy, Code of Federal Regulations (CFR), Part 51, Environmental Protection Regulations for Domestic Licensing and Related Regulatory Functions, Section 51.53, Postconstruction Environmental Reports, Subsection 51.53(c), Operating License Renewal Stage [10 CFR 51.53(c)].
- Title 10, Energy, CFR, Part 54, Requirements for Renewal of Operating Licenses for Nuclear Power Plants, Section 54.23, Contents of Application-Environmental Information (10 CFR 54.23).

1.2 STATEMENT OF PURPOSE AND NEED

NMC adopts for this ER the following NRC general definition of purpose and need for the proposed action, as stated in NRC's *Generic Environmental Impact Statement for License Renewal of Nuclear Plants* (GEIS), NUREG-1437 (NRC 1996a, Section 1.3; NRC 1996b, page 28472):

The purpose and need for the proposed action (renewal of an operating license) is to provide an option that allows for power generation capability beyond the term of a current nuclear power plant operating license to meet future system generating needs, as such needs may be determined by State, utility, and, where authorized, Federal (other than NRC) decision makers.

The proposed action would provide the option to operate PINGP Unit 1 and PINGP Unit 2 for an additional 20 years.

1.3 ENVIRONMENTAL REPORT SCOPE AND METHODOLOGY

NRC regulations for domestic licensing of nuclear power plants require environmental review of applications to renew operating licenses. The NRC regulation 10 CFR 51.53(c) requires that an applicant for license renewal submit with its application a separate document entitled *Applicant's Environmental Report - Operating License Renewal Stage*. In determining what information to include in the PINGP ER, NMC has relied on NRC regulations and the following supporting documents that provide additional insight into the regulatory requirements:

- NRC supplemental information in the *Federal Register* (NRC 1996b, NRC 1996c, NRC 1996d, and NRC 1999a)
- Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) (NRC 1996a and 1999b)
- Regulatory Analysis for Amendments to Regulations for the Environmental Review for Renewal of Nuclear Power Plant Operating Licenses (NRC 1996e)
- Public Comments on the Proposed 10 CFR Part 51 Rule for Renewal of Nuclear Power Plant Operating Licenses and Supporting Documents: Review of Concerns and NRC Staff Response (NRC 1996f)

NMC also obtained general guidance regarding format and content of the ER from the following NRC documents:

- Supplement 1 to NRC Regulatory Guide 4.2, *Preparation of Supplemental Environmental Reports for Applications to Renew Nuclear Power Plant Operating Licenses* (NRC 2000b)
- Supplement 1 to NUREG-1555, Standard Review Plans for Environmental Reviews for Nuclear Power Plants (Operating License Renewal) (NRC 1999c)

Table 1-1 indicates where the ER responds to each requirement of 10 CFR 51.53(c). In subsequent chapters of this ER, each section is prefaced by a boxed quote of the regulatory language and applicable supporting document language.

1.4 PRAIRIE ISLAND NUCLEAR GENERATING PLANT LICENSEE AND OWNERSHIP

PINGP is owned by Northern States Power Company (NSP), which is a wholly owned utility operating subsidiary of Xcel Energy Inc. (Xcel Energy). As the plant's owner, NSP has the exclusive right to the energy generated by PINGP. NMC, which is wholly owned subsidiary of Xcel Energy, operates and maintains PINGP on behalf of NSP. NSP is licensed by NRC to own PINGP, while NMC is licensed to use and operate the facility (65 FR 98, pp. 31935-36).

The Nuclear Power Plant Operating Service Agreement (NPPOSA) between NSP and NMC established NMC as the sole operator of PINGP and defines the owner-operator relationship. The NPPOSA provides for owner services and assistance to NMC for safe, economic, and efficient operation of PINGP. Implementation of the NPPOSA is achieved by continuance of functional relationships among owner/operator organizations regarding environmental matters. These functional relationships provide for close coordination among corporate and plant staff for efficient and effective environmental management (NSP 1999). NMC and its employees are obligated to comply with all corporate policies listed in Exhibit D of the NPPOSA, including Xcel Energy's Code of Conduct and Environmental Policy (Xcel Energy 2006).

TABLE 1-1

ENVIRONMENTAL REPORT RESPONSES TO LICENSE RENEWAL ENVIRONMENTAL REGULATORY REQUIREMENTS

Regulatory Requirement		Responsive ER Section(s)
10 CFR 51.53(c)(1)		Entire Document
10 CFR 51.53(c)(2), Sentences 1 and 2	3.0	The Proposed Action
	3.2	Refurbishment Activities
	3.3	Programs and Activities for Managing the Effects of Aging
10 CFR 51.53(c)(2), Sentence 3	7.3	Environmental Impacts of Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(1)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(2)	6.3	Unavoidable Adverse Impacts
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(3)	7.0	Alternatives to the Proposed Action
	8.0	Comparison of Environmental Impacts of License Renewal with the Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(4)	6.5	Short-Term Use Versus Long-Term Productivity of the Environment
10 CFR 51.53(c)(2) and 10 CFR 51.45(b)(5)	6.4	Irreversible and Irretrievable Resource Commitments
10 CFR 51.53(c)(2) and 10 CFR 51.45(c)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
	6.2	Mitigation
	7.3	Environmental Impacts of Alternatives
	8.0	Comparison of Environmental Impacts of License Renewal with the Alternatives
10 CFR 51.53(c)(2) and 10 CFR 51.45(d)	9.0	Status of Compliance
10 CFR 51.53(c)(2) and 10 CFR 51.45(e)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
	6.3	Unavoidable Adverse Impacts
10 CFR 51.53(c)(3)(ii)(A)	4.2	Surface Water and Groundwater Use Conflicts
	4.2.1	Impact on Mississippi River Flows and Water Levels
	4.2.2	Indirect Impacts from Surface Water Use
10 CFR 51.53(c)(3)(ii)(B)	4.3	Entrainment of Fish and Shellfish in Early Life Stages
	4.4	Impingement of Fish and Shellfish
	4.5	Heat Shock
10 CFR 51.53(c)(3)(ii)(C)	4.2.3	Groundwater Use Conflicts (Plants Using >100 gpm of Groundwater)
	4.2.4	Groundwater Use Conflicts (Plants Using Ranney Wells)
10 CFR 51.53(c)(3)(ii)(D)	4.2.5	Degradation of Groundwater Quality

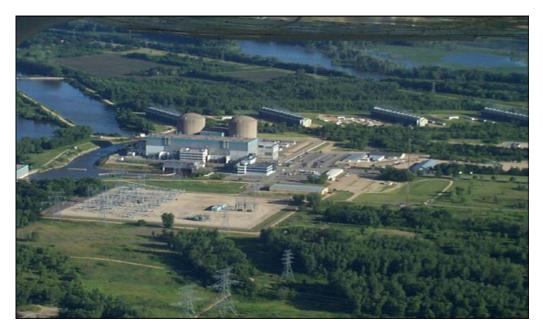
TABLE 1-1 (CONTINUED) ENVIRONMENTAL REPORT RESPONSES TO LICENSE RENEWAL ENVIRONMENTAL REGULATORY REQUIREMENTS

Regulatory Requirement		Responsive ER Section(s)
10 CFR 51.53(c)(3)(ii)(E)	4.6	Impacts of Refurbishment on Terrestrial Resources
	4.7	Threatened and Endangered Species
10 CFR 51.53(c)(3)(ii)(F)	4.8	Air Quality During Refurbishment (Non-Attainment or Maintenance Areas)
10 CFR 51.53(c)(3)(ii)(G)	4.9	Impact on Public Health of Microbiological Organisms
10 CFR 51.53(c)(3)(ii)(H)	4.10	Electromagnetic Field – Acute Effects
10 CFR 51.53(c)(3)(ii)(I)	4.11	Housing
	4.12	Public Utilities: Public Water Supply Availability
	4.13	Education Impacts from Refurbishment
	4.14	Offsite Land Use
10 CFR 51.53(c)(3)(ii)(J)	4.15	Transportation
10 CFR 51.53(c)(3)(ii)(K)	4.16	Historic and Archaeological Resources
10 CFR 51.53(c)(3)(ii)(L)	4.17	Severe Accident Mitigation Alternatives
10 CFR 51.53(c)(3)(iii)	4.0	Environmental Consequences of the Proposed Action and Mitigating Actions
	6.2	Mitigation
10 CFR 51.53(c)(3)(iv)	5.0	Assessment of New and Significant Information
10 CFR 51, Appendix B, Table B-1, Footnote 6	2.5.3	Minority and Low-Income Populations

CFR = Code Of Federal Regulations

1.5 REFERENCES

- NRC (U.S. Nuclear Regulatory Commission). 1996a. *Generic Environmental Impact Statement for License Renewal of Nuclear Plants*. NUREG-1437, Volumes 1 and 2, Office of Nuclear Regulatory Research. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1996b. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses." *Federal Register.* Vol. 61, No. 109. (June 5, 1996): 28467-97.
- NRC (U.S. Nuclear Regulatory Commission). 1996c. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Correction." *Federal Register.* Vol. 61, No. 147. (July 30, 1996): 39555-6.
- NRC (U.S. Nuclear Regulatory Commission). 1996d. "Environmental Review for Renewal of Nuclear Power Plant Operating Licenses." *Federal Register*. Vol. 61, No. 244. (December 18, 1996): 66537-54.
- NRC (U.S. Nuclear Regulatory Commission). 1996e. *Regulatory Analysis for Amendments to Regulations for the Environmental Review for Renewal of Nuclear Power Plant Operating Licenses.* NUREG-1440. Office of Nuclear Regulatory Research. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1996f. Public Comments on the Proposed 10 CFR Part 51 Rule for Renewal of Nuclear Power Plant Operating Licenses and Supporting Documents: Review of Concerns and NRC Staff Response. Volumes 1 and 2. NUREG-1529. Office of Nuclear Regulatory Research. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 1999a. "Changes to Requirements for Environmental Review for Renewal of Nuclear Power Plant Operating Licenses; Final Rule." *Federal Register.* Vol. 64, No. 171. (September 3, 1999): 48496-507.
- NRC (U.S. Nuclear Regulatory Commission). 1999b. Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS). Section 6.3, "Transportation" and Table 9-1, "Summary of Findings on NEPA Issues for License Renewal of Nuclear Power Plants." NUREG-1437. Volume 1, Addendum 1. Office of Nuclear Reactor Regulation. Washington, DC. August.
- NRC (U.S. Nuclear Regulatory Commission). 1999c. *Standard Review Plans for Environmental Reviews for Nuclear Power Plants, Supplement 1: Operating License Renewal.* NUREG-1555, Supplement 1. Washington, D.C. October.
- NRC (U.S. Nuclear Regulatory Commission). 2000a. Northern States Power Company and Nuclear Management Company, LLC; Docket No. 50-263; Prairie Island Nuclear Generating Plant, Units No. 1 and 2; Facility Operating License, Amendments 153 and 144. August.


- NRC (U.S. Nuclear Regulatory Commission). 2000b. Supplement 1 to NRC Regulatory Guide 4.2, Preparation of Supplemental Environmental Reports for Applications to Renew Nuclear Power Plant Operating Licenses. Office of Regulatory Research. Washington D.C. September.
- NSP (Northern States Power Company). 1999. "Nuclear Power Plant Operating Service Agreement Between Northern States Power Company and Nuclear Management Company for the Prairie Island Nuclear Generating Plant." November.

Xcel Energy. 2006. "Xcel Energy Code of Conduct." August 22.

2.0 SITE AND ENVIRONMENTAL INTERFACES

2.1 GENERAL SITE DESCRIPTION

Prairie Island Nuclear Generating Plant (PINGP) is located on the west bank of the Mississippi River in Section 4 and 5, T113N, R15W, in Goodhue County within the city limits of Red Wing, Minnesota, at 92° 37.9' west longitude and 44° 37.3' north latitude (Figure 2.1-1). The City of Hastings is located approximately 13 miles northwest (upstream) of the plant. Minneapolis is located approximately 39 miles northwest and St. Paul is located approximately 32 miles northwest of the plant. At the plant location, the Mississippi River serves as the state boundary between Minnesota and Wisconsin. PINGP is located on the western shore of Sturgeon Lake, a backwater area located one mile upstream from the U.S. Army Corps of Engineers (USACE) Lock and Dam 3 (Figure 2.1-2). The Vermillion River lies just west of PINGP and flows into the Mississippi River approximately two miles downstream of Lock and Dam 3. Several federally-owned recreation areas and wildlife refuges are located within 50 miles of PINGP (Figure 2.1-1). The Winona District of the Upper Mississippi River Wildlife and Fish Refuge begins at the mouth of the Chippewa River and ends approximately 50 river miles downstream (FWS 2006a). The Mississippi National River and Recreation Area stretches 72 miles from the southern border of Dakota County up the Mississippi River, through Minneapolis-St. Paul, ending at the western border of Anoka County (NPS 2006a). The Minnesota Valley National Wildlife Refuge stretches 34 miles along the Minnesota River (FWS 2006b). The St. Croix National Scenic Riverway includes 154 miles of the St. Croix River from Gordon, Wisconsin to its confluence with the Mississippi River (NPS 2006b).

Prairie Island Nuclear Generating Plant

2.1.1 REGIONAL FEATURES AND GENERAL FEATURES IN THE 6-MILE VICINITY

Goodhue County, in which the site is located, and the adjacent counties of Dakota and Pierce (in Wisconsin) are predominantly rural. Principal crops include soybeans, corn, oats, hay, and some cannery crops. The nearest dairy farm is located more than two miles southwest of the site. Beyond the site boundary and within a one-mile radius of the plant, there are approximately 20 to 30 residences or summer cottages. The closest occupied offsite residence is approximately 3,000 feet north-northwest of the plant (NMC 2007).

2.1.2 PINGP SITE FEATURES

The PINGP site comprises approximately 578 acres of land, owned in fee by Northern States Power (NMC 2007). Prior to construction of PINGP, the land was agricultural (AEC 1973). Figure 2.1-3 shows the property boundary and exclusion zone. On Prairie Island, access to the exclusion zone is restricted by a perimeter fence with "No Trespassing" signs. East of the plant the exclusion zone boundary extends to the main channel of the Mississippi River. Islands within this boundary as well as a small strip of land northeast of the plant are owned by USACE (NMC 2007). An agreement has been made with USACE such that no residences will be built on that strip of land or islands within the exclusion zone for the life of the plant (Welk 1972, Cox 1972).

Directly north of NSP property lies the Prairie Island Indian Reservation. The Prairie Island Indian Community is a Federally Recognized Indian Tribe organized under the Indian Reorganization Act (25 USC 476). The Prairie Island Indian Community owns and operates the Treasure Island Resort and Casino, which includes a 250-room hotel and convention center that is currently being expanded to include an additional 230 rooms (Treasure Island Resort and Casino undated). The expansion includes a 24-lane bowling center and a multi-use event center with a maximum seating capacity of 2,800. Treasure Island Resort and Casino offers gaming, dining, live entertainment, a 95-space RV park, a 137-slip marina to accommodate visitors arriving by the Mississippi River, and sightseeing and dinner cruises on their river boat (Minnesota Indian Affairs Council 2006).

The plant's Emergency Plan and the State of Minnesota Local Government Emergency Response Plans for Nuclear Power Plants include notification plans for the Treasure Island Resort and Casino, and the Tribal Community, in the event of a nuclear plant radiological emergency (NMC 2007).

Section 3.1 describes key features of the plant, including reactor and containment systems, cooling water systems, and transmission facilities.

2.2 HYDROLOGY

2.2.1 UPPER MISSISSIPPI RIVER BASIN

The Mississippi River, with its headwaters located in the north woods of Minnesota, is the longest and largest river in North America. The River flows 3,705 kilometers (2,302 miles) from its source, Lake Itasca, to the Gulf of Mexico and drains all or parts of 31 states. The River and the forests and wetlands along its banks support various diverse ecosystems. For reference purposes, the United States Geological Survey (USGS) has broken the Mississippi River into six sub-basins known as the Upper Mississippi River, Lower Mississippi River, Arkansas Red-White River, Ohio River, Missouri River, and Tennessee River Subbasins (EPA 2006a).

The Upper Mississippi River Basin drains approximately 189,000 square miles including large portions of Minnesota, Wisconsin, Iowa, Illinois, and Missouri. Small portions of Indiana, Michigan, and South Dakota are also within the basin. The basin is drained by 30,700 miles of streams. The average annual discharge of the Upper Mississippi River increases from 9,180 cubic feet per second (cfs) near St. Paul, Minnesota to 204,800 cfs at Thebes, Illinois. There are 12 major tributaries to the Upper Mississippi River Basin, including the Missouri, Illinois, Wisconsin, and Iowa Rivers. There are more than 3,000 reservoirs within the basin. More than 30 million people live within the basin, with nearly 30 percent of the population living in urban areas such as Minneapolis-St. Paul, Minnesota; St. Louis, Missouri; Chicago, Illinois; the Quad Cities, Illinois and Iowa; Des Moines, Iowa; La Crosse, Wisconsin; and Peoria, Illinois (EPA 2006a).

PINGP is located in the Rush-Vermillion Watershed, which includes portions of Dakota, Goodhue, Scott, Wabasha, and Washington counties in Minnesota and Buffalo, Pepin, Pierce, and St. Croix counties in Wisconsin (EPA 2008). The character of the Mississippi River in the vicinity of the PINGP site is shaped by the USACE lock and dam system (BALMM 2001). The Mississippi River is dammed at a point about one mile downstream from the PINGP site by Lock and Dam 3 (NMC 2007). Lock and Dam 3 is located at river mile 796.9 (USACE 2004a). The Vermillion River and the Cannon River enter the main stream of the Mississippi River below Lock and Dam 3 (NMC 2007). Lock and Dam 2 and Lock and Dam 4 are located upstream and downstream of Lock and Dam 3 at river miles 815.2 and 752.8, respectively (USACE 2004a). The locks and dams create slack-water pools for navigation during periods of low and moderate water levels. For each pool there is a primary control point where a predetermined or normal water elevation is maintained for navigation (USACE 2004a). Normal pool level upstream from Lock and Dam 3 is 674.5 feet (NMC 2007). There are no withdrawals of river water for city water supply for at least 300 miles downstream from the site (NMC 2007). Minor withdrawals of river water for irrigation purposes occur, the nearest being the City of Red Wing which withdraws water for landscaping (MN DNR 2005a).

2.2.1.1 United States Geological Survey Gaging Stations

The closest U.S. Geological Survey (USGS) gaging stations located upstream and downstream of the PINGP site are listed in Table 2.2-1. The USGS operates gaging

stations at Prescott (13 miles upstream of the PINGP site) and Winona (73 miles downstream of the site). These stations provide a continuous record of stream flow since 1928 (USGS 2006).

2.2.1.2 Mississippi River Flow Statistics at USGS Stations

Based on data from Water Years 1928 to 2005, the annual mean flow values of the Mississippi River at the nearest USGS upstream and downstream gaging stations (Prescott and Winona stations) are shown in Table 2.2-2.

2.2.1.3 Lock and Dam 3 Discharge Statistics

Flow in the PINGP section of the Mississippi is controlled by the USACE Lock and Dam 3, which creates a pool level extending upstream to Lock and Dam 2. During the initial rise in pool level, Sturgeon Lake was created by the backwater flooding of low lying areas in the flood plain adjacent to the Mississippi River. The lock and dam was created by the USACE as part of a navigation project (AEC 1973, pp. II-32 to II- 42). The river discharge through Lock and Dam 3 is indicated in Table 2.2-3. Discharge from Lock and Dam 3 is typically highest in spring and early summer.

2.2.1.4 Consumptive Surface Water Use

Over seven billion gallons of water are withdrawn from surface water sources each day in the 60 counties that border the navigable Upper Mississippi River (EPA 2006a). Over 80 percent of this water is used as cooling water for energy production and thus returned to rivers and streams. There are 29 power plants that use water from the 1,300-mile long Upper Mississippi River. The Upper Mississippi River provides water to 23 public water suppliers serving a combined population of approximately 2.8 million people. Approximately 278 facilities discharge wastewater to the Upper Mississippi River, including industrial facilities and municipal sewage treatment plants (EPA 2006a).

2.2.2 ALLUVIAL AQUIFERS

PINGP is located on Prairie Island, an island terrace associated with the Mississippi River flood plain. The Mississippi River flood plain in this area is confined within a valley approximately three miles wide. Rocky bluffs and heavily forested slopes rise abruptly from both sides of the valley some 300 feet. The bluffs are deeply trenched by numerous streams emptying into the Mississippi River. The site is located on the western limb of the Red Wing anticline. The aquifers in the vicinity of the site include the alluvial aquifer (water table) and the underlying bedrock (confined) aquifers. Generally, wells in the alluvial material in the vicinity of the site are less than 100 feet in depth (NMC 2007, Appendix E).

The Prairie Island alluvial aquifer receives recharge from and discharges to surface waters. The aquifer is also recharged through direct precipitation, flood waters, snowmelt, and from underlying aquifers. A USGS study performed in 1997 stated that the amount of water discharged to wells in the Prairie Island study area from the alluvial

aquifer was less than one-third of the water that was discharged from the alluvial aquifer to surface waters or to the atmosphere (Cowdery 1999, p. 9).

2.2.3 DEEP AQUIFERS

Important aquifers in the vicinity of the PINGP site include the Jordan Sandstone and the Dresbach formation of which the primary water producing unit is the Mount Simon formation. Separating the Jordon Sandstone aquifer from the Dresbach formation are the St. Lawrence and Franconia formations (NMC 2007, Appendix E).

The Jordan Sandstone, which is an important aquifer in areas away from the river, outcrops on the bluffs adjacent to the Mississippi River. Underlying the Jordan Sandstone are the St. Lawrence and Franconia formations, which are not considered important water-producing formations (NSP 1972). The Franconia sandstone formation is the uppermost bedrock underlying the alluvial overburden (alluvial aquifer) at the site. The Franconia formation's thickness at the site is believed to be much less than 180 feet which is the formation's total measured thickness. The Dresbach formation is believed to be over 100 feet in thickness, and consists of sandstone, siltstone, and shale. Test borings at the site revealed the following formations (NMC 2007, Appendix E):

Elevation in feet	Description
690-665	Predominantly loose granular soils which exhibit relatively low strength and moderately high compressibility characteristics. These soils consist of loose to fine-grained medium-grained sands.
665-645	Predominantly medium-dense to dense granular soils exhibiting moderate strength and compressibility characteristics. The soils consist of brown fine to medium sands containing varying amounts of coarse sand and gravel. This zone contains interspersed, discontinuous layers of loose granular soils. These soils are located below the groundwater table and are denser than the overlying sands.
645-515	Predominantly dense to very dense, fine- to medium-grained granular soils containing interspersed discontinuous zones of coarse-grained sands, gravels and cobbles. Generally, the lower 10 to 30 feet of this zone contains many cobbles and boulders. These soils exhibit moderately high strength and relatively low compressibility characteristics. These soils are saturated and are somewhat denser than the overlying sands.
515 to the depths penetrated by the borings	Paleozoic sandstone of the Franconia formation. The sandstone encountered in the borings consist predominantly of a gray fine- and medium-grained quartz sandstone containing loose and cemented zones.

2.2.4 GROUNDWATER LEVEL

The groundwater table in the vicinity of PINGP is generally within 5 to 20 feet of ground surface and slopes to the southwest (NMC 2007). Under normal flow conditions the head of the Mississippi River is higher than the Vermillion River maintaining a flow from

the Mississippi River/Pool 3 toward the Vermillion River, which enters the Mississippi River below Lock and Dam 3. However, during high rainfall events, the groundwater flow across the site to the southwest can flatten and result in a mounding situation where the alluvial aquifer flows radially from Prairie Island (Cowdery 1999).

2.2.5 CONSUMPTIVE GROUNDWATER USE

The wells at PINGP are installed within the overburden materials (alluvial aquifer) consisting of sand and gravel alluvial soils which range from 158 to 185 feet thick. Groundwater levels in the alluvial aquifer are directly influenced by the Mississippi River and vary with river fluctuations. The depth to groundwater varies from 5 to 20 feet across the island (NMC 2007, Appendix E).

The Prairie Island Indian Reservation public water supply withdraws water from the Eau Claire/Mount Simon aquifer (part of the Dresbach formation) and has replaced most of the once-used individual wells on the reservation (Cowdery 1999, p. 8). One of the closest wells to PINGP is a deep well (595 feet deep) located in the bedrock aquifers at Lock and Dam 3. The nearest groundwater consumption of important magnitude is in the Town of Red Wing six miles downstream (NMC 2007, Section 2.4.4). The Dresbach formation, which underlies the Franconia formation, produces water primarily from its basal member, the Mount Simon formation, carries large amounts of water, and is the source for several of the wells in the Red Wing area. The community derives its water from four deep wells (400 to 730 feet deep) which penetrate sandstone aquifers of the Mount Simon and into the underlying Hinkley formation and yield approximately 1,400 gallons per minute (gpm) (NMC 2007, Appendix E). Neither of these aquifer units is directly fed by the Mississippi River (NSP 1972).

Several industries in the Red Wing area also use groundwater and derive their supplies principally from the bedrock aquifers. Total well production from the bedrock at Red Wing probably exceeds 3,000 gpm, and fairly large quantities may also be extracted from the alluvium for certain industrial uses. Communities further downstream from the plant site that obtain their water from wells in bedrock are Lake City, 25 river miles downstream, and Wabasha, 37 miles downstream (NMC 2007, Section 2.4.4).

PINGP withdraws groundwater for potable and industrial use from six wells installed within the alluvial aquifer (Figure 3.1-1). Five of these wells have permits from the Minnesota Department of Natural Resources (MN DNR) (NSP 2006). A permit is not required for the sixth well because its flows are below the 10,000 gallons per day (GPD) or 1,000,000 gallons per year thresholds set by MN DNR. The 5 permitted wells (Table 2.2-4) produced an average of 91 gpm, over the 2000 - 2005 period. The production rate for the unpermitted well was 1 gpm based on PINGP's site data for 2005 (Bergland 2006). Therefore, the total average groundwater pumping rate for the six site wells for the period from 2000 through 2005 was 92 gpm. However, during this period, the highest average pumping rate for the six wells was 118 gpm which occurred during 2005. The lowest average pumping rate for the six wells was 77 gpm, which occurred in 2000 and 2002.

2.3 BIOLOGICAL RESOURCES

2.3.1 AQUATIC AND RIPARIAN ECOLOGICAL COMMUNITIES

Until the early 1970s, when the Clean Water Act and its implementing regulations produced significant improvement in water quality across the U.S., the Mississippi River below the Twin Cities was a degraded ecosystem. The Twin Cities area was the source of many pollutants, ranging from inadequately treated sewage to animal wastes (from area stockyards and slaughterhouses) to industrial pollutants to urban stormwater runoff. The Minnesota River, which joins the Mississippi River at Fort Snelling, also contributed to the Mississippi River's water quality problems. The Minnesota River flows through an agricultural region, and has carried sediment and animal wastes downstream into the Mississippi since the native prairie was converted into cropland. In more recent times, nutrients (nitrogen and phosphorus from fertilizers) from the Minnesota River have created severe water quality problems downstream in the Mississippi River (MRBDC 2001).

2.3.1.1 Aquatic Communities

2.3.1.1.1 Preoperational Monitoring (1969-1971)

During the pre-operational monitoring period (1969-1971), the aquatic communities of the Mississippi River (Pool 3) and Sturgeon Lake reflected the river's degraded condition. Although reasonably diverse, aquatic communities from top (fish) to bottom (phytoplankton) of the food chain were dominated by pollution-tolerant groups associated with polluted and eutrophic (nutrient-enriched) waters. These included well-known bioindicators of pollution such as blue-green algae (now generally referred to as blue-green "cyanobacteria"), tubificid worms, and common carp.

Mississippi River phytoplankton in the Prairie Island area were monitored in 1970 and 1971 by Northern States Power (NSP) to determine pre-operational species composition, densities, and distribution (AEC 1973). Phytoplankton densities were high immediately above Lock and Dam 3 and in Sturgeon Lake. Diatom production peaked in spring and fall, with genera associated with eutrophic waters dominating collections. In early summer, green algae were prevalent, and eutrophic species dominated. In late summer, Cyanophytes (blue-green algae) were prevalent, and intense blue-green algae blooms were sometimes observed. Pollution-tolerant Cyanophytes such as Anabena were common in late summer.

Zooplankton collections in 1970-1971 were dominated by rotifers and microcrustaceans (cladocerans and copepods). Rotifers were common from July through November, with members of the genera Keratella (July-November), Branchionus (July-October), and Trichocerca (July, August, October) predominant (AEC 1973). The cladocerans Daphnia and Bosmina and the copepod Cyclops were the most important microcrustaceans in summer. Daphnia became more prevalent in the fall, and was the most abundant genus in October. Zooplankton were not monitored from December through June.

The benthic macroinvertebrates of the Prairie Island area in 1970 and 1971 were mostly pollution-tolerant forms, indicative of degraded water quality (AEC 1973). Midges and oligochaetes dominated benthos collections. Tubificid worms, often associated with organic pollution, were common across the study area. Several caddisfly and mayfly species, generally regarded as pollution-intolerant, were found just above Lock and Dam 3, reflecting the fact that "most of the Twin Cities' effluvia are decomposed and diluted by the time they reach the general region of the Plant" (AEC 1973, page II-67). The combination of organic pollution and high silt levels had reduced shellfish to a "few small beds" in the area. The FES (AEC 1973) did not identify these shellfish, referring to them only as "clams."

In 1970 and 1971, the lower Pool 3 fish community was composed primarily of "rough fish" [e.g., common carp (*Cyprinus carpio*), freshwater drum (*Aplodinotus grunniens*), redhorse (*Moxostoma* spp.), and gizzard shad (*Dorosoma cepedianum*)] (AEC 1973). Two-thirds of fish collected in 1970 and 1971 were rough fish. Black crappie (*Pomoxis nigromaculatus*), white crappie (*Pomoxis annularis*), white bass (*Morone americana*), and sunfish were the most important game fish. Walleye (*Stizostedion vitreum*) and sauger (*Stizostedion canadense*) were uncommon in lower Pool 3 in 1970 and 1971, but the "swift-water habitat" immediately below Lock and Dam 3 held larger concentrations of walleye, sauger, and white bass. The area below Lock and Dam 3 was also identified as a major spawning and rearing area for sauger and walleye (AEC 1973).

2.3.1.1.2 Operational Monitoring (1970s)

The Prairie Island Nuclear Generating Plant 316(a) Demonstration (HDR 1978) contains useful information on the water quality and fish populations of the Mississippi River immediately up-river of Lock and Dam 3 in the early years of PINGP operation. The 316(a) demonstration describes Pool 3 as "more of a lacustrine than a riverine habitat, characterized by low turbidity throughout most of the year" (HDR 1978, page III-27). It notes that this section of the Mississippi River is slightly eutrophic, with higher-thanbackground levels of metals and relatively high levels of toxicants including phenols and cyanide. The 316(a) demonstration observes that water quality in Pool 3 is greatly influenced by upstream inputs. Large quantities of treated sewage enter the river from the Metropolitan Wastewater Treatment Plant (MWTP) near St. Paul, and the Minnesota River contributes sediments and agricultural-related constituents (fertilizer, pesticides, herbicides). Flow from the St. Croix River, which is relatively pristine, tends to dilute the inputs from the St. Paul area and the Minnesota River. The authors of the 316(a) study conclude that the reach of the river adjacent to PINGP is a "recovery zone" where the biota benefit, to some degree, from upstream nutrient inputs and dissolved oxygen levels are high enough to support a variety of aquatic organisms.

The 316(a) demonstration summarizes fish sampling over the 1973-1976 period. Areas sampled were North Lake, Sturgeon Lake, and the main river channel. A total of 45,005 fish were collected over the 1973-1976 period using a variety of collection methods. Collections were dominated by a relatively small number of species. Four species – gizzard shad (20.8 percent of total), white bass (15.6 percent of total), freshwater drum

(12.8 percent of total), and common carp (11.1 percent of total) - made up 60 percent of all fish collected. Other species commonly collected were emerald shiner (*Notropis atherinoides*; 5.3 percent), sauger (3.9 percent), shorthead redhorse (*Moxostoma macrolepidotum*; 3.8 percent), bluegill (*Lepomis macrochirus*; 3.6 percent), black crappie (2.8 percent), channel catfish (*Ictalurus punctatus*; 2.2 percent), and white crappie (2.1 percent).

2.3.1.1.3 Operational Monitoring (1980s to present)

Xcel Energy continued to monitor fish populations in the vicinity of PINGP after the plant's 316(a) and 316(b) studies were completed to gauge the effectiveness of the intake and discharge modifications (see Sections 3.1.3 and 4.3) in reducing entrainment, impingement, and cold shock impacts. In recent years, the objective of fisheries monitoring has shifted from identifying impacts of PINGP operation to more generally assessing the status of the fishery in the vicinity of PINGP (Xcel Energy 2007). Fish were originally monitored using a variety of gear types: electrofishing, seining, gill-netting, trap-netting, and trawling. After 1988, electrofishing was the only sampling method employed for monitoring fish populations. Monitoring occurs monthly from May through October of each year in accordance with the NPDES permit. Four established sampling areas are located within a section of the Mississippi River that extends from 3.6 miles upstream of PINGP to 10.8 miles below the plant.

The total number of species caught each year over the 1988-2006 period has remained relatively constant, ranging from 34 – 41 species. Relative abundance of eight representative (common) species is monitored. These species are carp, white bass, freshwater drum, sauger, black crappie, shorthead redhorse, walleye, and gizzard shad. These eight species make up 69 to 82 percent of all fish caught each year. Relative abundance of most species has been consistent over the 17-year period. For example, white bass relative abundance ranged from 10 to 20 percent over the 1988-2004 period; freshwater drum ranged from 8 to 19 percent, shorthead redhorse ranged from 8 to 17 percent. Carp and gizzard shad abundance were more variable, presumably because reproductive success in these species depends on adequate water levels in backwater areas. The species with more consistent measures of abundance between years tend to be species that spawn in deeper water (main channel) habitats or tributary streams.

2.3.1.1.4 Water Quality and Fish Consumption Advisories

The Minnesota Pollution Control Agency (MPCA) is required, under Section 303(d) of the Clean Water Act, to identify waterbodies for which effluent limitations are not stringent enough to satisfy water quality standards (MPCA 2006). Every two years, in even-numbered years, MPCA publishes its List of Impaired Waters, identifying streams, lakes, and impoundments that are impaired for one or more pollutants and therefore do not meet one or more water quality standards. The segment of the Mississippi River to which PINGP discharges (St. Croix River to Chippewa River) appears on the 2006 list as impaired in four categories: Aquatic Consumption – Mercury (Fish Consumption Advisory), Aquatic Consumption – Mercury (in Water Column), Aquatic Consumption – PCB (Fish Consumption Advisory), and Aquatic Life – Turbidity (MPCA 2006). Based on contaminant concentrations in fish collected by the Minnesota Department of Natural Resources, the Minnesota Department of Health (MDH) in 2006 published Site-Specific Fish Consumption Guidelines for the General Public and for Children (under age 15) and Women Who Are or May Become Pregnant. For Pool 3 of the Mississippi River, MDH recommends limiting consumption of common game fish (e.g., bluegill, white and black crappie, largemouth bass, smallmouth bass, walleye, sauger) and most rough fish (e.g., carp, freshwater drum, smallmouth buffalo) (MDH 2006). MDH lists 13 fish species with mercury levels, 9 fish species with PCB levels, and 5 fish species with perfluoro-octane sulfonate levels high enough to warrant limiting consumption.

2.3.1.1.5 Conclusions

Mississippi River aquatic communities upstream of Lock and Dam 3 have been monitored since 1970 to determine if PINGP operation was having an effect on distribution, abundance, and overall health of aquatic biota. Since the mid-1970s, fish have been the focus of monitoring and study. Although big river ecosystems show a high degree of natural variability and aquatic populations in these rivers can experience dramatic changes between years, fish populations in the area of PINGP show a high degree of stability. Fish populations in the vicinity of PINGP today look similar to fish populations in the 1970s. A relatively small number of native species (carp, planted in the Mississippi River in the 19th century are the exception) has dominated collections for 35 years. All indications are that these populations are healthy, composed of fish in good condition, and are reproducing successfully year after year. The MPCA findings and MDH fish consumption guidelines suggest that although Upper Mississippi River fish populations appear to be stable, fish are carrying substantial body burdens of pollutants.

2.3.1.2 Riparian Communities

Riparian habitats are areas adjacent to rivers and streams that contain elements of both terrestrial and aquatic habitats. The riparian zone begins at the high water line and extends to those portions of the terrestrial landscape that directly influence aquatic communities (by stabilizing the streambank, by providing shade or organic/inorganic inputs to the stream, by providing habitat for semi-aquatic animals or terrestrial stages of animals, such as insects, that may live near the stream as adults and in the stream as larvae). Normally the entire floodplain is considered "riparian" because it may be partially inundated when river flows are high and completely inundated during floods (Knutson and Naef 1997).

Although they generally represent a small percentage of the total land area in a given region, riparian habitats are extremely productive and provide a high degree of plant and animal diversity because they support both wetland and upland species. In the western plains and many parts of the Midwest, where forested areas are uncommon, riparian zones provide cover and travel corridors for many important game species, such as white-tailed deer and wild turkey. In intensively farmed areas of the Midwest, riparian zones are important migration corridors for migratory songbirds. Riparian zones are critical to protecting water quality, as they function as the "last line of

defense" in intercepting surface runoff that contains eroded soil, nutrients (from fertilizers), and contaminants that could degrade water quality and aquatic habitats.

Riparian zones along small streams are normally narrow strips of brush or forestland, while riparian zones along larger streams and rivers may encompass bottomland forests, swamps, marshes, and lakes. Pool 3 of the Upper Mississippi River, on which PINGP is located, is associated with a broad floodplain that ranges from 0.75 mile wide (immediately downstream of Lock and Dam 2) to 3 miles wide (in the area of PINGP). For the most part, the Wisconsin side of the river (in the area of Pool 3) is characterized by steep bluffs, and the riparian zone is limited. The Minnesota side of the river is characterized by a broad floodplain that offers a mosaic of aquatic and terrestrial habitats, ranging from lakes to sloughs to marshes to forestland to grassland. Virtually the entire Pool 3 floodplain and associated riparian habitats lie in Minnesota. The discussion that follows therefore focuses on the Minnesota side of the river and Pool 3.

Pool 3 is approximately 18 miles long, stretching from Lock and Dam 2 to Lock and Dam 3, and has an area of approximately 22,500 acres. The Pool 3 floodplain encompasses developed areas, forested areas, agricultural areas, wetland areas, and a number of ponds and lakes. It also includes the floodplain of the Vermillion River, which parallels the Mississippi River for almost the entire length of Pool 3. Developed areas include part of the town of Hastings, Minnesota, which occupies a portion of the floodplain immediately downstream of Lock and Dam 2, the Prairie Island Indian Community, and PINGP, which are approximately 1.5 mile and 1 mile, respectively, upstream of Lock and Dam 3.

Downstream of Hastings to the headwaters of North Lake, a distance of approximately 10 miles, the floodplain is mostly floodplain forest and shallow marshes, with some pockets of agricultural land. From the headwaters of North Lake south to PINGP, the higher ground of the floodplain is dominated by agricultural land and upland forest. Lower-lying areas around North Lake include shallow marshes, areas with rooted aquatic plants, and wet meadows. Populus (predominantly cottonwood, *Populus deltoides*) communities are found in many places along the north shores of North Lake and Sturgeon Lake. The long strip of land that serves as the north shores of North Lake and Sturgeon Lake is actually the west bank of the Mississippi River.

The area north (upriver) of PINGP (between PINGP and the Prairie Island Indian Community) is primarily upland forest. The area immediately south and west of PINGP is lowland forest. Beyond the strip of lowland forest west of the PINGP lie several lakes, Goose Lake being the most notable, and the Vermillion River bottoms. The area immediately downriver of PINGP, west of the discharge canal, is mostly wooded (cottonwoods and willows), but there is also a small parcel of agricultural land in this area. The area across the river from PINGP is the only significant part of the Pool 3 floodplain that lies in Wisconsin. A complex of deep-water marshes and lakes, Marsh Lake being the largest, occupies this portion of Pool 3. The U.S. Army Corps of Engineers published an EIS in late 2006 that dealt, in part, with plans to rehabilitate the embankments that separate Marsh Lake from Pool 3 (USACE 2006a). In the EIS, the Corps proposed strengthening the Marsh Lake embankments to prevent a possible failure that could create a scour channel around Lock and Dam 3 and cause a rapid, accidental drawdown of Pool 3.

2.3.2 CRITICAL AND IMPORTANT TERRESTRIAL HABITATS

2.3.2.1 Regional Setting

The PINGP site is located on the west bank of the Mississippi River (Figure 2.1-3). Prior to purchase of the site, most of the property was used for farming (AEC 1973). Prairie Island, upon which PINGP is located, is a low island terrace in the Mississippi River floodplain. The island is separated from other parts of the lowland by the Vermillion River on the west and by the Mississippi River on the east. Land use surrounding PINGP is mixture of farmlands, wooded areas, water bodies, and rural communities. The Prairie Island Indian Community is located immediately north of the PINGP site. The Treasure Island Resort and Casino is located within the Prairie Island Indian Community approximately one mile from the plant.

2.3.2.2 PINGP Site

The topography of the PINGP site is level to slightly rolling, and elevations range from about 690 to 700 feet above mean sea level (msl). The PINGP site encompasses approximately 578 acres (NMC 2007). Approximately 240 acres of the PINGP site were disturbed and modified by plant construction activities in the early 1970s. Approximately 60 acres of the 240 disturbed acres support the generating facility and associated buildings, maintenance facilities, parking lots, and roads (AEC 1973). After plant construction was completed, the remaining 180 acres of disturbed land were landscaped (AEC 1973) and today most of this is mowed grass or unmowed prairie-like grassland. The remainder of the site (approximately 338 acres) consists primarily of scattered wooded areas (Figure 2.1-3). Upland areas tend to be dominated by burr oak (Quercus macrocarpa), red oak (Q. rubra), and Eastern red cedar (Juniperus virginiana). Common trees in lower areas along the Mississippi River, Sturgeon Lake, the Vermillion River, and river sloughs include silver maple (Acer saccharinum), cottonwood, green ash (Fraxinus pennsylvanica), American elm (Ulmus americana), box elder (Acer negundo), river birch (Betula nigra), and willows (Salix spp.) (AEC 1973).

Wooded areas in the northern portion of the site consist of small isolated tracts (Figure 2.1-3). These areas provide habitat for small mammals such as raccoons (*Procyon lotor*) and gray squirrels (*Sciurus carolinensis*), and especially for birds such as wood warblers, thrushes, woodpeckers, kinglets, and hawks (AEC 1973). The southern portion of the site provides more contiguous wooded habitat, where wooded areas extend to the edges of sloughs along the Mississippi and Vermillion Rivers. These areas provide habitat for the same wildlife as do the upland areas, plus species that are more associated with floodplains and wetlands. Wildlife that use the sloughs and lakes include amphibians such as salamanders and frogs, ducks such as the mallard (*Anas platyrhynchos*), American wigeon (*A. americana*), common goldeneye (*Bucephala clangula*), bufflehead (*B. albeola*), ruddy duck (*Oxyura jamaicensis*), and

Northern pintail (*Anas acuta*), and wading birds such as the great egret (*Ardea alba*), great blue heron (*A. herodias*), and green heron (*Butorides virescens*) (AEC 1973). Wildlife species found in the forested and the open grassy portions of the PINGP site are those typically found in similar habitats of southeastern Minnesota.

2.3.2.3 Transmission Corridors

Section 3.1.6 describes the routes of the transmission lines that were built to connect PINGP to the transmission system. The principal land-use types traversed by the transmission corridors are agriculture, forest, and residential. The transmission corridors are maintained to keep vegetation heights low enough to prevent interference with the transmission lines in accordance with established procedures described in Section 3.1.6.

Near PINGP, the PINGP-to-Red Rock transmission corridor crosses the Vermillion River Bottoms Gores Pool Wildlife Management Area (a portion of the Mississippi National River and Recreation Area) and the Lost Valley Scientific and Natural Area, and may cross the Cottage Grove Ravine Regional Park in Washington County. The PINGP-to-Blue Lake transmission corridor crosses the Minnesota Valley National Wildlife Refuge in northwestern Dakota County and the Savage Fen Scientific and Natural Area. There are other wildlife refuges along the Mississippi River in the vicinity of PINGP but the transmission corridors do not cross these or any other state or federal wildlife refuges, wildlife management areas, or parks. There are no areas designated by the U.S. Fish and Wildlife Service as "critical habitat" at PINGP or in the associated transmission corridors.

2.3.3 THREATENED OR ENDANGERED SPECIES

Table 2.3-1 indicates protected animal and plant species that are known to occur in Minnesota counties within which PINGP and associated transmission lines are located. These include species that are federally-listed or state-listed as endangered or threatened, species proposed for federal listing, candidates for federal listing, and species state-listed as species of special concern. The transmission lines are located in Goodhue, Dakota, Washington, and Scott counties. Special-status species shown in Table 2.3-1 as occurring in these counties were taken from county records maintained by the U.S. Fish and Wildlife Service (FWS 2007a) and the Natural Heritage and Nongame Research Program of the Minnesota Department of Natural Resources (MN DNR 2007a; 2007b).

Because operation of PINGP could potentially affect aquatic populations in the Mississippi River up and downstream of the plant, NMC has also included special-status aquatic species known or believed to occur in Pierce County, Wisconsin, which extends upstream and downstream of the PINGP site. These include species designated Endangered, Threatened, and Species of Concern by the Wisconsin Department of Natural Resources (WDNR 2007). Since operation of PINGP and its transmission system is not likely to affect terrestrial species in Wisconsin, these species were not included in Table 2.3-1.

Most of the species shown in Table 2.3-1 have been recorded as "known to occur" by the MN DNR within one mile of either PINGP (MN DNR 2007a) or the transmission lines (MN DNR 2007b).

Four species (two mussels and two plants) in Table 2.3-1 are federally-listed as endangered or threatened and two mussels are candidates for federal listing. These are discussed below. The peregrine falcon (*Falco peregrinus*), paddlefish (*Polyodon spathula*), and Higgins eye pearlymussel (*Lampsilis higginsii*) are the only state- or federally-listed species known to occur at or in the vicinity of PINGP; these are also discussed below.

2.3.3.1 Fauna

A nest box designed for peregrine falcons, state-listed as threatened, was placed on the Unit 1 containment dome at PINGP in 1994. A pair of peregrine falcons has nested in the nest box annually since 1997, and 31 falcons have fledged from the nest since 1997. Peregrine falcons at PINGP typically arrive in the vicinity in March, the eggs hatch in May, and the young fledge in July.

The PINGP FES (AEC 1973) stated that the only known endangered species near the site was the bald eagle (Haliaeetus leucocephalus). The bald eagle was removed from the federal list of threatened and endangered species effective August 8, 2007 (FWS 2007b). At the federal level, the bald eagle is still protected under the Bald and Golden Eagle Protection Act and the Migratory Bird Treaty Act (FWS 2007b). Bald eagles occur in a wide variety of habitats, but proximity of their nests to water (as foraging habitat) is important, and preferred nesting habitat consists of a high amount of waterto-land edge where their aquatic prey is concentrated. Thus, bald eagles are generally restricted to coastal areas, lakes, and rivers. They prey on fish and other aquatic prey near the surface but will eat dead fish or other carrion, as well as birds, mammals, and occasionally reptiles (Stalmaster 1987). Bald eagles are year-round residents along the Mississippi River in southeastern Minnesota. No eagle nests are known to exist on PINGP property, but there are at least two nests nearby. One nest is located in the Vermillion River bottoms just south of the PINGP site, and one nest is located approximately two miles upstream of Lock and Dam 3 on the eastern side of the Mississippi River (USACE 2006a) At least two studies have documented bald eagle use of the Mississippi River near PINGP as a wintering area. Faanes (1975) and Kühl (1981) found the PINGP area to be used by up to five eagles concurrently, with highest use when other portions of the river were frozen over. Bald eagles are regularly observed in lower Pool 3 and upper Pool 4 during winter when open water is present due to thermal discharge from PINGP (USACE 2006a).

The PINGP FES (AEC 1973) stated that trumpeter swans (*Cygnus buccinator*), which are state-listed as threatened, might migrate through the PINGP area. The MN DNR (2007b) database shows this species in Dakota County and records maintained by the Minnesota Ornithologists' Union indicate that trumpeter swans are occasionally observed in Goodhue County (MOU 2006).

The state-threatened paddlefish was once common in the Mississippi River from Lake Pepin downstream, and was found occasionally as far upstream as St. Anthony Falls, near Minneapolis (Schmidt 2005). The species' numbers and range were reduced by water pollution, stream alteration (dredging, dam construction), and overfishing in the early part of the 20th century (Phillips, Schmid, and Underhill 1982). Paddlefish spend most of their time in large rivers and river lakes, but ascend tributary streams to spawn in the spring of the year, when water is high. They grow rapidly, feeding mostly on zooplankton, and reach 5 feet in length and up to 200 pounds in weight. Paddlefish are still found in Lake Pepin and the Chippewa River, which flows into Lake Pepin from Wisconsin. Biologists have speculated that the Lock and Dam 3 downstream of PINGP serves to isolate paddlefish populations in the St. Croix River and Lake Pepin/Chippewa River. This "population bottleneck" restricts gene flow in the river and could (indirectly) limit growth and reproductive success, and even reduce resistance to disease of paddlefish in the Upper Mississippi. Paddlefish were once common in Sturgeon Lake, adjacent to PINGP, but sedimentation from channel maintenance activities reduced the lake's depth, rendering it less suitable for the species (Schmidt 2004, 2005). Northern States Power and Xcel Energy biologists conducting fish population studies in the PINGP vicinity over the last several decades have occasionally collected individual paddlefish, most recently on July 17, 2007 (Giese 2007).

Two federally endangered mollusks and two mollusks that are candidates for federal listing have been recorded in counties crossed by PINGP-associated transmission lines (Table 2.3-1). Threats to these mollusks include river impoundment, dredging/ channelization, contaminants and more recently, the invasion of their habitats by exotic zebra mussels (*Dreissena polymorpha*). Impoundments limit movements of mussels, often resulting in small geographically and genetically isolated populations. With the exception of the Higgins eye pearlymussel (see below), none of these has been recorded in the area adjacent to PINGP.

The Higgins eye pearlymussel is listed as endangered by FWS and MN DNR. It is a small to medium-sized freshwater mussel with a rounded to slightly elongate smooth shell, up to 4 inches in length. It is found in larger rivers in areas of deep water and moderate currents. It has lost approximately 50 percent of its historical range (FWS 2004a). It is currently found in the upper Mississippi River between LaCrosse, Wisconsin, and Muscatine, Iowa and in two Mississippi River tributaries, the St. Croix and the Wisconsin rivers (Miller and Payne 2007). Of those counties containing PINGP facilities and transmission lines, it has been recorded in Dakota and Goodhue counties (FWS 2007a). Mussel surveys conducted in Pools 3 and 4 in 1986, 1999, 2000, and 2003 did not reveal any Higgins' eye pearlymussels in the area around Lock and Dam 3 (USACE 2006a). However, this species has been cultured (reared in cages) and recently re-introduced into lower Pool 4 and both upper and lower Pool 3 (Sturgeon Lake) of the Mississippi River (USACE 2004b; USACE 2006a). The Sturgeon Lake relocation site, where 195 sub-adult L. higginsii were placed in July 2003 (Mussel Coordination Team 2005), is approximately 0.5 mile up-river of the PINGP Intake Screenhouse. Critical habitat has not been designated for the Higgins eye pearlymussel.

The winged mapleleaf (*Quadrula fragosa*) is listed as endangered by FWS and MN DNR. It is a medium-sized mussel with an ovate shell reaching 4 inches in length, and is found in stream/river riffles with clean gravel, sand or rubble in clear high water quality (FWS 2004b). Previously found in 13 states, it is now limited to the St. Croix River between Minnesota and Wisconsin and three rivers in Missouri and Arkansas. A 20-km stretch of the St. Croix River between Minnesota and Wisconsin contains the only winged mapleleaf population known to be reproducing (Vaughn 1997, FWS 2004b). Of those counties containing PINGP facilities and transmission lines, it is found only in Washington County (FWS 2007a). Critical habitat has not been designated for the winged mapleleaf.

The spectaclecase (*Cumberlandia monodonta*) is listed as a candidate species by FWS and threatened by MN DNR. It is a large mussel whose greatly elongated shell can reach 9 inches in length. The spectaclecase tends to be found in aggregations. It is a habitat specialist, found in riverine microhabitats that are sheltered from the main force of the current. It is currently found in 20 streams in 10 states. In Minnesota, it is located in the Mississippi and St. Croix rivers and Rush Creek (Butler 2002a). Of those counties containing PINGP facilities and transmission lines, it is found only in Washington County (FWS 2007a).

The sheepnose (*Plethobasus cyphyus*) is listed as a candidate species by FWS and endangered by MN DNR. It is a medium-sized mussel with an elongate ovate shell reaching 5.5 inches in length. It inhabits large streams and rivers, especially shallow shoal habitat with moderate to swift current. However, it is sometimes found in deep runs in larger rivers. Although still found in 14 states, it is no longer found in two-thirds of its historical range (Butler 2002b). Of those counties containing PINGP facilities and transmission lines, it is found only in Washington County (FWS 2007a).

2.3.3.2 Flora

The dwarf trout lily (*Erythronium propullans*) is listed as endangered by both FWS and MN DNR. This forest wildflower is found only in three southeastern Minnesota counties (Goodhue, Rice, and Steele). It is most commonly found on north-facing wooded slopes and floodplains of drainages of the Straight, Cannon, Little Cannon and North Fork rivers and Prairie Creek. It is a spring ephemeral, adapted to flower and grow before the deciduous trees develop their leaves and is distinguishable from other trout lilies by its underground vegetative runner (FWS 2006c).

The prairie bush clover (*Lespedeza leptostachya*) is classified as threatened by FWS and MN DNR. This legume occurs only in the tallgrass prairie region of Minnesota, Wisconsin, Iowa, and Illinois and is currently found today at fewer than 40 sites (FWS 2000). Within Minnesota, it is known to occur in 12 counties (FWS 2007a), two of which (Dakota and Goodhue) are crossed by PINGP-associated transmission lines.

2.4 METEOROLOGY AND AIR QUALITY

The climate of the site region is basically continental and influenced by the general storms which move eastward along the northern tier of the United States. The geographical location results in frequent changes in weather systems as polar and tropical air masses alternate. Rainfall averages about 25 inches per year, with 65 percent falling in the months of May through September. Maximum rainfall during 24 hours was 10.0 inches in July 1987. Snowfall averages about 44 inches per year, with a maximum of 19.9 inches in 24 hours in January 1982 (NMC 2007).

The U. S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for six common pollutants: nitrogen dioxide, sulfur dioxide, carbon monoxide, lead, ozone, and particulate matter (PM_{10} and $PM_{2.5}$). The EPA has designated all areas of the United States as having air quality better ("attainment") or worse ("non-attainment") than the NAAQS. Areas that have been re-designated to attainment from nonattainment are called maintenance areas. To be re-designated, an area must both meet air quality standards and have a 10-year plan for continuing to meet and maintain air quality standards and other requirements of the Clean Air Act.

PINGP is located in Goodhue County, Minnesota, which is part of the Southeast Minnesota-La Crosse (Wisconsin) Interstate Air Quality Control Region (AQCR) (40 CFR 81.66). The AQCR is in attainment or maintenance for all criteria pollutants, as are all counties in Minnesota. The only maintenance area within the Southeast Minnesota-La Crosse (Wisconsin) AQCR is Olmsted County, which is a maintenance area for sulfur dioxide and PM10 (40 CFR 81.324).

Other maintenance areas within Minnesota include multiple counties in the Minneapolis-St. Paul Intrastate AQCR (for carbon monoxide and sulfur dioxide), Dakota County (also in the Minneapolis St.-Paul Intrastate AQCR (for lead), Ramsey County (Minneapolis-St. Paul Intrastate AQCR) for PM₁₀, and St. Louis County in the Duluth (Minnesota)-Superior (Wisconsin) Interstate Air AQCR (for carbon monoxide) (40 CFR 81.324). The closest nonattainment areas (for ozone) are in eastern Wisconsin, bordering Lake Michigan (40 CFR 81.350).

Minnesota is one of the states covered by the Clean Air Interstate Rule (CAIR), designed to reduce air pollution that moves across state boundaries. The CAIR, issued March 10, 2005, will permanently cap emissions of sulfur dioxide and nitrogen oxides in the eastern United States when fully implemented (EPA 2006b). The CAIR is projected to reduce Minnesota's sulfur dioxide and nitrogen oxide emissions by 36 and 59 percent, respectively, by 2015. Currently, Minnesota sources significantly contribute to fine particle pollution in Illinois and Indiana (EPA 2006c).

EPA has also established the Regional Haze Rule, which calls for state and federal agencies to work together to improve visibility in 156 national parks and wilderness areas (EPA 2006d). Two of these areas, referred to as Class I Federal Areas, are located in Minnesota and include the Boundary Waters Canoe Area (U.S. Forest Service) and Voyageurs National Park (National Park Service). Both are located on the

northern border of Minnesota. However, the closest Class I Federal Area to PINGP is Rainbow Lake, located within Chequamegon-Nicolet National Forest (U.S. Forest Service) in Bayfield County, Wisconsin, approximately 140 miles north-northeast of PINGP (EPA 2006e).

2.5 DEMOGRAPHY

2.5.1 GENERAL DEMOGRAPHY

The Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) presents a population characterization method that is based on two factors: "sparseness" and "proximity" (NRC 1996). "Sparseness" measures population density and city size within 20 miles of a site and categorizes the demographic information as follows:

		Demographic Categories Based on Sparseness
Sparseness		Category
Most sparse	1.	Less than 40 persons per square mile and no community with 25,000 or more persons within 20 miles
	2.	40 to 60 persons per square mile and no community with 25,000 or more persons within 20 miles
	3.	60 to 120 persons per square mile or less than 60 persons per square mile with at least one community with 25,000 or more persons within 20 miles
Least sparse	4.	Greater than or equal to 120 persons per square mile within 20 miles
Source: NRC 199	96.	

"Proximity" measures population density and city size within 50 miles and categorizes the demographic information as follows:

	Demographic Categories Based on Proximity								
Proximity		Category							
Not in close proximity	1.	No city with 100,000 or more persons and less than 50 persons per square mile within 50 miles							
	2.	No city with 100,000 or more persons and between 50 and 190 persons per square mile within 50 miles							
	3.	One or more cities with 100,000 or more persons and less than 190 persons per square mile within 50 miles							
In close proximity	4.	Greater than or equal to 190 persons per square mile within 50 miles							
Source: NRC 199	6.								

	GEIS Sparseness and Proximity Matrix								
			Prox	imity					
		1	2	3	4				
s	1	1.1	1.2	1.3	1.4				
Sparseness	2	2.1	2.2	2.3	2.4				
arso	3	3.1	3.2	3.3	3.4				
S	4	4.1	4.2	4.3	4.4				
	P	Low opulation Area	Medium Populatior Area						
Sour	Source: NRC 1996.								

The GEIS then uses the following matrix to rank the population category as low, medium, or high.

NMC used 2000 census data from the U.S. Census Bureau (USCB) with geographic information system software (ArcGIS®) to determine most demographic characteristics in the PINGP vicinity. The calculations determined that 107,131 people live within 20 miles of PINGP, producing a population density of 85 persons per square mile (TtNUS 2006a). Applying the GEIS sparseness measures, results in the less sparse category, Category 3 (60 to 120 persons per square mile or less than 60 persons per square mile with at least one community with 25,000 or more persons within 20 miles).

To determine the proximity category, NMC determined that 2,733,326 people live within 50 miles of PINGP, which equates to a population density of 349 persons per square mile (TtNUS 2006a). Applying the GEIS proximity measures, PINGP is classified as Category 4 (greater than or equal to 190 persons per square mile within 50 miles). Therefore, according to the GEIS sparseness and proximity matrix, PINGP ranks of sparseness, Category 3, and proximity, Category 4, result in the conclusion that PINGP is located in a high population area.

All or parts of 25 counties and a number of Metropolitan Statistical Areas (MSAs) and Micropolitan Statistical Areas (MiSAs) are located within 50 miles of PINGP (Figure 2.1-1). PINGP is located in the Red Wing, MN MiSA, which is part of the Minneapolis-St. Paul-St. Cloud, MN-WI Combined Statistical Area (CSA). The Red Wing, MN MiSA and the Minneapolis-St. Paul-St. Cloud, MN-WI CSA had 2000 populations of 44,127 and 3,271,888, respectively (USCB 2003).

Red Wing (approximately 3 miles southeast) is the population center nearest PINGP, with a 2000 population of 16,116 (USCB 2000a). Minneapolis (approximately 39 miles northwest), St. Paul (approximately 32 miles northwest), and Rochester (approximately 50 miles southeast) are the largest population centers within the 50-mile radius, with 2000 populations of 382,618; 287,151; and 85,806, respectively (USCB 2000a).

From 1990 to 2000, the population of the Red Wing, MN MiSA increased from 40,690 to 44,127, an increase of 8.4 percent. The population of the Minneapolis-St. Paul-St. Cloud, MN-WI CSA increased from 2,809,713 to 3,271,888, an increase of 16.4 percent (USCB 2003).

Because approximately 83 percent of employees at PINGP reside in Goodhue and Dakota Counties, MN and Pierce County, WI, they are the counties with the greatest potential to be socioeconomically affected by license renewal at PINGP (see Section 3.4). Table 2.5-1 shows population counts and growth rates for these three counties. Values for the States of Minnesota and Wisconsin are provided for comparison. The table is based on USCB data for 1980 through 2000 and Minnesota and Wisconsin Department of Administration data for 2010 through 2030.

Over the last couple of decades, all three counties and both states have experienced positive growth rates and are projected to continue to grow. By far, Dakota County experienced the greatest growth from 1980 to 2000. While Dakota County's growth rates are somewhat larger than those of the other counties and states, Minnesota demographers project that growth to slow as 2030 approaches.

2.5.2 TRANSIENT POPULATIONS

Small daily and seasonal fluctuations in the regional population occur due to the number of recreational facilities within the 50-mile region as described in Section 2.1.1. The Twin Cities Metro Region received over 18 million person-visits during a one year period (June 2005 through May 2006). Within the Twin Cities Metro Region, there are 3,153 campground sites in 39 campgrounds available for public use (Davidson Peterson-Associates 2007a). Several counties within the 50-mile region are located in Minnesota's southern region, which received 7.7 million person-visits from June 2005 through May 2006. There are 10,561 campground sites in 158 campgrounds throughout the southern region (Davidson-Peterson Associates 2007b). In general, Wisconsin counties within the 50-mile radius ranked in the bottom half of all Wisconsin counties in 2006 tourism expenditures. Pierce and Pepin counties were two of the least visited counties in Wisconsin (Davidson-Peterson Associates 2007c).

Temporary housing for seasonal, recreational, or occasional use in the region of influence (ROI) is low compared with state percentages. Temporary housing in Dakota and Goodhue counties accounts for 0.3 and 1.8 percent of total housing, compared with the Minnesota percentage of 5.1. Temporary housing in Pierce County accounts for 1.3 percent of total housing compared with Wisconsin's temporary housing percentage of 6.1 (USCB 2000b).

Migrant farm workers also represent a portion of the transient population within the 50-mile radius. Within the ROI, nine farms in Dakota County, 12 farms in Goodhue County, and 10 farms in Pierce County employ migrant labor (USDA 2004a, 2004b).

2.5.3 MINORITY AND LOW-INCOME POPULATIONS

NRC performed environmental justice analyses for previous license renewal applications and concluded that a 50-mile radius could reasonably be expected to contain potential environmental impact sites and that the state was appropriate as the geographic area for comparative analysis. NMC has adopted this approach for identifying the PINGP minority and low-income populations that could be affected by PINGP operations.

NMC used 2000 census data from the USCB with geographic information system software (ArcGIS®) to determine the minority characteristics by block group. NMC included a block group if any part of its area lay within 50 miles of PINGP. The 50-mile radius includes 2,197 block groups (TtNUS 2006a) (Table 2.5-2).

2.5.3.1 Minority Populations

The NRC Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues defines a "minority" population as: American Indian or Alaskan Native; Asian; Native Hawaiian or other Pacific Islander; Black Races, and Hispanic Ethnicity (NRC 2004). Additionally, NRC's guidance requires that (1) all other single minorities are to be treated as one population and analyzed, (2) multi-racial populations are to be analyzed, and (3) the aggregate of all minority populations are to be treated as one population and analyzed. The guidance indicates that a minority population exists if either of the following two conditions exists:

- The minority population in the census block group or environmental impact site exceeds 50 percent.
- The minority population percentage of the environmental impact area is significantly greater (typically at least 20 percentage points) than the minority population percentage in the geographic area chosen for comparative analysis.

For each of the 2,197 block groups within the 50-mile radius, NMC calculated the percent of the block group's population represented by each minority. If any block group minority percentage exceeded 50 percent, then the block group was identified as containing a minority population. NMC selected the entire State of Minnesota as the geographic area for comparative analysis for block groups located within Minnesota, and calculated the percentages of each minority category in the State. NMC selected the entire State of Wisconsin as the geographic area for comparative analysis for block groups located within Wisconsin, and calculated the percentages of each minority category in the State. If any block group percentage exceeded the corresponding State percentage by more than 20 percentage points, then a minority population was determined to exist (TtNUS 2006a).

Census data for Minnesota characterizes 1.14 percent of the population as American Indian or Alaskan Native; 2.94 percent Asian; 0.04 percent Native Hawaiian or other Pacific Islander; 3.55 percent Black races; 1.36 percent all other single minorities; 1.71 percent multi-racial; 10.73 percent aggregate of minority races; and 2.96 percent Hispanic ethnicity. Census data for Wisconsin characterizes 0.89 percent of the population as American Indian or Alaskan Native; 1.68 percent Asian; 0.03 percent Native Hawaiian or other Pacific Islander; 5.75 percent Black races; 1.60 percent all other single minorities; 1.26 percent multi-racial; 11.21 percent aggregate of minority races; and 3.64 percent Hispanic ethnicity (TtNUS 2006a).

Table 2.5-2 presents the numbers of block groups in each county in the 50-mile radius that exceed the threshold for minority populations. Figures 2.5-1 through 2.5-7 locate the minority block groups within the 50-mile radius. As seen in the table and figures, there were no block groups identified in Wisconsin with significant minority populations.

- One hundred and thirty-one census block groups within the 50-mile radius have Black races populations that meet the NRC criteria for a minority population (Figure 2.5-1).
- Three census block groups within the 50-mile radius have American Indian or Alaska Native populations that meet the NRC criteria for a minority population. All three block groups are located in Hennepin County.
- Fifty-four census block groups within the 50-mile radius have Asian populations that meet the NRC criteria for a minority population.
- Eleven census block groups within the 50-mile radius have Other Race populations that meet the NRC criteria for a minority population.
- One census block group within the 50-mile radius has a Multi-Racial population that meets the NRC criteria for a minority population.
- Three-hundred and twelve census block groups within the 50-mile radius have Aggregate populations that meet the NRC criteria for a minority population.
- Fifty census block groups within the 50-mile radius have Hispanic populations that meet the NRC criteria for a minority population.

Adjacent to the PINGP site is the Prairie Island Indian Community, home to the descendants of the Mdewakanton Band of the Eastern Dakota, also known as the Mississippi or Minnesota Sioux (PIIC Undated). The Shakopee-Mdewakanton Sioux (Dakota) Indian Reservation, located in Scott County, also lies within the 50-mile radius. The locations of these reservations are shown on Figure 2.5-2. Except for the Prairie Island Indian Community, the census block groups containing minority populations are predominantly in the Minneapolis area and more than thirty miles from PINGP.

2.5.3.2 Low-Income Populations

NRC guidance defines low-income populations based on statistical poverty thresholds (NRC 2004) if either of the following two conditions are met:

- The low-income population in the census block group or the environmental impact site exceeds 50 percent.
- The percentage of households below the poverty level in an environmental impact area is significantly greater (typically at least 20 percentage points) than the low-income population percentage in the geographic area chosen for comparative analysis.

NMC divided USCB low-income households in each census block group by the total households for that block group to obtain the percentage of low-income households per block group. Using the State of Minnesota as the geographical area chosen for comparative analysis for block groups within Minnesota, NMC identified 7.91 percent of Minnesota as low-income households (TtNUS 2006a). Using the State of Wisconsin as the geographical area chosen for comparative analysis for block groups within Wisconsin, NMC identified 8.38 percent of Wisconsin as low-income households (TtNUS 2006a). Table 2.5-2 identifies the low-income block groups in the region of interest, based on NRC's two criteria. Figure 2.5-8 locates the low-income block groups.

Eighty-nine census block groups within the 50-mile radius have low-income households that meet the NRC criteria for a low-income population. The census block groups containing low-income populations are predominantly in the Minneapolis/St. Paul area and are all over thirty miles from PINGP.

2.6 AREA ECONOMIC BASE

To discuss economic information pertinent to the License Renewal process, NMC will focus on Goodhue and Dakota counties, Minnesota and Pierce County, Wisconsin. Approximately 83 percent of PINGP's workforce resides in these counties (see Section 3.4), which lie within the Minneapolis-St. Paul-St. Cloud, MN-WI CSA. With a year 2000 population of 3,271,888, this CSA experienced an increase in population of 16.4 percent between 1990 and 2000 (USCB 2003).

2.6.1 LABOR FORCE AND EMPLOYMENT OPPORTUNITIES

In 2006, Goodhue and Dakota counties had estimated labor forces of 25,217 and 232,232 persons, respectively. Since 2000, the labor force in Goodhue County has remained essentially unchanged, increasing by less than one percent. However, Dakota County, which is closer to the Minneapolis-St. Paul metropolitan area, has experienced an increase of seven percent in the labor force since 2000. Pierce County, Wisconsin had an estimated labor force of 23,809 in 2006, an increase of 3.9 percent from the labor force of 22,909 in 2000 (U.S. Department of Labor 2006).

Local government was the largest employer in Goodhue County in 2005, followed by manufacturing and retail trade. Dakota County's largest employment sectors were retail trade, manufacturing, and health care and social assistance, in that order. In Pierce County, Wisconsin, state and local government was the county's largest industry sector in 2005, with retail trade ranking second, and health care and social assistance ranking third (BEA 2007). Major employers (greater than 300 employees) for Goodhue, Dakota, and Pierce counties are listed in Tables 2.6-1 through 2.6-3.

2.6.2 POTENTIAL FOR ECONOMIC GROWTH

Goodhue County is growing, particularly cities and townships along the two highway corridors, US Highways 61 and 52. The growth experienced along Highway 52 is not unique to Goodhue County; Dakota and Olmsted counties are experiencing similar growth. The three county area acts as a corridor between the Twin Cities Metro Area and Rochester. As the Twin Cities Metro Area continues to expand and commuting distances increase, more growth is expected in this region (Goodhue County Land Use Management 2004).

Dakota County has grown in the same manner as other areas surrounding Minneapolis and St. Paul, with areas closer to the urban core developing earlier and more densely; and areas further out developing more slowly and at lower densities. In general, the northwestern section of the county holds the overwhelming majority of dwelling units and businesses, with the southeastern portion still mainly open and agricultural in nature (Market Research Partners, Inc. 2002).

Pierce County population is projected to increase, but because a greater share of the population will be over 50 years old, total labor force growth will stall. The aging population will also impact the economy as the elderly demand changes in types of

goods and services provided in local communities (Wisconsin Department of Workforce Development 2004).

2.7 TAXES

This subsection focuses on Goodhue County because, other than a State General Tax, the property taxes for the PINGP site are paid only to taxing jurisdictions within Goodhue County.

NSP is assessed annual property taxes for the PINGP site by Goodhue County, the City of Red Wing, and School District 256. The Minnesota Department of Revenue (DOR) is in the process of possibly revising its current utility company valuation rule. According to a fiscal impact study prepared by the DOR and based on the latest draft of the revised rule, the amount of property tax revenue received by the city of Red Wing and Goodhue County would decrease by approximately \$1.4 million and \$1.2 million annually, respectively. In order to stabilize these communities for their anticipated loss of property tax revenue from NSP due to a rule change, NSP executed revenue stabilization agreements with Red Wing and Goodhue County representatives in November 2006 (City of Red Wing, Minnesota and NSP 2006). NSP is also assessed the State General Tax, however, it will not be analyzed here because the state's revenues are very large and NSP's payments represent an extremely small percentage of those revenues. Nuclear fuel is not taxed in the State of Minnesota and therefore is not included in the site's property tax assessment. Property taxes are paid directly to Goodhue County, which in turn distributes the money to the aforementioned taxing jurisdictions. Property taxes are the chief source of revenue for Minnesota counties, generally providing between 30 and 50 percent of their revenues (AMC 2002).

From 2001 through 2005, Goodhue County collected between \$20.6 and \$22.3 million annually in property tax revenues (see Table 2.7-1). Goodhue County property tax revenues fund, among other things, county operations, public safety, public works, cultural and recreational programs, human services, health services, roadway maintenance, economic development, and conservation programs (Hove 2006). Table 2.7-1 details the property tax payments made by the owners of PINGP for the same years. From 2001 to 2005, PINGP property tax payments represented 16.6 to 27.5 percent of Goodhue County's total property tax revenues.

From 2001 through 2006, the City of Red Wing collected between \$8.9 and \$11.6 million annually in property tax revenues (see Table 2.7-1). The City of Red Wing's property tax revenues fund city operations. Table 2.7-1 details the property tax payments made by the owners of PINGP for the same years. From 2001 to 2006, NSP property tax payments represented 52.3 to 36.4 percent of the City of Red Wing's total property tax revenues. Due to small PINGP payment decreases and increases in the City's total revenues collected, NSP's payment percentages are trending downward.

From 2002 through 2006, the School District 256 collected between \$6.5 and \$6.9 million annually in property tax revenues (see Table 2.7-1). From 2002 to 2006, PINGP property tax payments represented 28.5 to 38.0 percent of the School District 256's total property tax revenues. Prior to 2002, PINGP tax payments to School District 256 were significantly larger because the state-determined local school tax was included in School District 256 payments prior to year 2002. The 2001 Tax Law provided for major

changes in the source of school funding in Minnesota and replaced the statedetermined local school tax with the State General Tax, a statewide property tax levied for taxes payable on commercial, industrial and seasonal properties. Taxes under the State General Tax are paid into the State General Fund and redistributed by a statedetermined formula to school districts state-wide, in part, based on student numbers. The State General Tax is levied at a uniform rate within each county, and the levy rate is determined by the Commissioner of Revenue (Fredrikson & Byron 2001).

In Minnesota, public utilities are valued using cost and income approaches. Jurisdictional budgets are developed and taxes are levied to meet those budgets. Historically, annual property taxes have been gradually decreasing due to depreciation and the growth in Minnesota's residential and commercial tax bases. On the current facilities, NMC expects that trend to continue through the license renewal period. Additionally, state lawmakers are conducting hearings for a rule change that could possibly affect the way commercial entities depreciate their facilities. Currently, NSP is unable to depreciate PINGP to the fullest extent. Should the rule be changed, NSP may be able to employ the new depreciation methods to further reduce the plant's value. Offsetting this trend, however, would be any increase in PINGP's value caused by expansions or improvements to PINGP's facilities. For License Renewal, NMC plans refurbishment activities that will likely increase the plant's assessed value, resulting in a corresponding increase in the amount of NSP's property taxes to its taxing jurisdictions. Since PINGP tax impacts are already of large significance to taxing jurisdictions, as discussed in Section 4.14.2, the potential increase in the plant's assessed value would not alter the analysis of socioeconomic impacts in this report.

With respect to utility deregulation, the State of Minnesota has taken no steps in recent years. Therefore, the potential effects of deregulation are currently unknown. Should deregulation ever be enacted in Minnesota, this could affect utilities' tax payments to counties. However, any changes to PINGP property tax rates due to deregulation would be independent of license renewal.

2.8 SOCIAL SERVICES AND PUBLIC FACILITIES

2.8.1 PUBLIC WATER SUPPLY

As discussed in Section 3.4, 83 percent of employees at PINGP reside in Goodhue and Dakota Counties, MN and Pierce County, WI. Consequently, the discussion of public water supply systems will be limited to those three counties.

As discussed in Section 2.2.5, from 2000 through 2005 PINGP used an average of 92 gallons per minute (gpm) [48.4 million gallons per year] of groundwater from six onsite groundwater wells. The highest average production rate for this period was 118 gpm (62 million gallons per year) in 2005. Five of the site wells require permits from the MN DNR. The well that supplies domestic water to the administration building does not require a permit due to its low production rates (Table 2.2-4). The well that supplies water to the Training Center for domestic use (256074) is also used for the lawn irrigation system at the facility. Domestic use from 2000 through 2005 for the Training Center well was at a rate of 3 gpm (TtNUS 2006b). Two of the wells (Wells 256120 and 256121) have a combined maximum permitted yield of 50 million gallons per year (95 gpm) for power plant operations (MN DNR 2005a). For the period from 2000 through 2005, the wells' average production rates were 32 gpm (Well 256120) and 28 gpm (Well 256121). Two wells (402599 and 611076) supply industrial cooling water for the plant operations and average a total of 27 gpm for the period (TtNUS 2006b).

In the vicinity of PINGP and the surrounding region, the primary source of potable water is groundwater. Water sources also include surface water, such as rivers, lakes, and streams. Table 2.8-1 details municipal water suppliers in the three counties, their permitted capacities or maximum design yields, and their average daily production. As presented in Table 2.8-1, the reported total annual average withdrawal [17,742 million gallons per year (48.6 million gallons per day)] for Dakota, Goodhue, and Pierce Counties represents 8.4 percent of the total permitted/pump design capacity [210,570 million gallons per year (577 million gallons per day)] for wells that supply municipal water supplies in these three counties.

According to the Dakota County Environmental and Natural Resources Policy Plan (Dakota County 2005, p. 5), county planners are concerned about the impact projected population growth through 2025 in the county will have on the availability of groundwater as a water source and the possible impacts that over use of the resource could have on surface water resources (trout streams, fens) which are dependent on groundwater. The Dakota County planners are also concerned about the availability of an adequate water supply due to the potential impact of pollutants from agricultural and domestic sources on water resources (Dakota County 2005). Goodhue County's Comprehensive Local Water Management Plan attempts to balance the county's natural resources, environmental habits, and growth to obtain a long-term economic and ecological sustainability. The plan addresses erosion control and stormwater issues as the greatest concern to watershed impacts. Also, of considerable concern are how to balance growing cities, outdated structures, increasing impervious surfaces and unsustainable farming practices (Goodhue County 2005, p.2). Planning officials are also concerned with contaminants getting into the groundwater systems because of the county's reliance on groundwater as a source of drinking water and its potential impact on surface water. Planning officials are concerned, as well, with agricultural and household contaminants getting into the groundwater systems because of the county's reliance on groundwater as a source of drinking water and its potential impact on surface water (Goodhue County 2004).

Approximately 70 percent of Wisconsin's private residents and most public water systems use groundwater for their water source. Approximately two billion gallons of water are estimated to be stored underground in Wisconsin. Because of this, Wisconsin implemented a program approved by the EPA in 1999 designed to develop capacity for these water systems. A capacity evaluation is required for all new water systems (State of Wisconsin 2000, p.12-14). Pierce County is currently developing data to prepare a comprehensive plan for the county.

2.8.2 TRANSPORTATION

Figure 2.8-1 presents the transportation system in Goodhue County within the vicinity of PINGP. Workers commuting to PINGP take one of the following routes. Workers living in southern and central portion of Dakota County take U.S. Highway (US) 61 east to the intersection of County Road 19, or continue to County Road 31 which connects with County Road 18, or simply continue east on US 61 to County Road 18. In either case, employees would proceed north on County Road 18 until the intersection of Sturgeon Lake Road. Once on Sturgeon Lake Road the directions are the same for all employees. Employees proceed east approximately ½ mile on Sturgeon Lake Road and then turn south on the plant access road and proceed to the PINGP entrance just past the intersection with Wakonade Drive. Wakonade Drive previously provided two way traffic from Sturgeon Lake Road to Lock and Dam 3. The road is currently limited to north-bound traffic only (out going) from the PINGP site. The PINGP access road provides two-way traffic access to Lock and Dam 3 via Wakonade Drive.

Employees living in the northeastern portion of Dakota County could travel southeast on County Road 18 into Goodhue County and then turn east onto Sturgeon Lake Road. Employees then would proceed as above. Employees living in the south and eastern portion of Dakota County could travel US 61 until the intersection of County Road 18. Once on County Road 18, employees could travel north until they turn east at the intersection of Sturgeon Lake Road. Once on Sturgeon Lake Road, employees would proceed as discussed above.

Pierce County, Wisconsin can be reached via US 63, which enters Goodhue County at Red Wing and then intersects with US 61. Commuters would proceed northwest until the intersection with County Road 18 and proceed as above. Pierce County employees can also cross the Mississippi River in the Prescott/Hastings vicinity via US 10 from Prescott through the southern portion of Washington County, Minnesota and connect with US 61 and proceed south through Hastings and then connect to State Road 316 southeast until the intersection with Goodhue County Road 68. Traffic would then proceed northeast to County Road 18 and proceed southeast until the intersection with

Sturgeon Lake Road. Potential employees could also travel on County Road 54 from its intersection with US 61 in Hastings and follow County Road 54 until its intersection with County Road 68. Employees would then proceed on County Road 68 east until the intersection with County Road 18 and proceed south as discussed above. Employees from Pierce County or from the Hastings area could also travel south and east from Hastings on US 61 until the intersection of County Road 18 and proceed north to Sturgeon Lake Road.

In determining the significance levels of transportation impacts for license renewal, NRC uses the Transportation Research Board's level of service (LOS) definitions (NRC 1996). The Minnesota Department of Transportation makes LOS determinations for roadways involved in specific projects. However, there are no current LOS determinations for the roadways analyzed in this document (Bjornstad 2006). As LOS data is unavailable, annual average daily traffic (AADT) volumes are substituted along with Road/Highway capacity data. Table 2.8-2 lists the roadways PINGP workers would use, their Minnesota Department of Transportation (Mn/DOT) road classifications, the number of lanes, and traffic data. Table 2.8-2 data indicate that current AADTs are well below maximum capacities for the roads leading to PINGP.

2.9 LAND USE

2.9.1 GOODHUE COUNTY

Historical and Existing Land Use

Goodhue County is located southeast of the Minneapolis-St. Paul metropolitan area along the Minnesota-Wisconsin border, and northwest of the Rochester metropolitan area. The County covers approximately 499,369 acres of land. Existing land use in the County is as follows: agricultural land - 64 percent, deciduous forests – 20 percent, grassland – 10 percent, farmsteads and other rural developments - 2 percent, areas that are urbanized or industrialized - 1 percent, wetlands – 1 percent, and other – 2 percent (Goodhue County 2004).

Although Goodhue County remains largely undeveloped, the County's population has experienced some growth (Section 2.5.1) and state and local planning officials expect the county to grow another seven percent by 2010. The majority of residential, commercial, and industrial development has occurred along two highway corridors, US Highway 61 and US Highway 52. The majority of that growth has been attributed to the US Highway 52 corridor, which connects the Minneapolis-St. Paul metropolitan area with the Rochester metropolitan area. Regional planners estimate that, as the Minneapolis-St. Paul area continues to expand and commuting distances increase, more growth is expected in this region (Goodhue County 2004).

Goodhue County uses a comprehensive land use plan and zoning and subdivision ordinances to guide development. The ordinances promote the public health, safety, and general welfare of residents; protect agricultural land from urban sprawl; and provide a basis for the orderly development. The ordinances require building permits, conditional use permits, plat development, zoning district controls, and variance requests; however, the county has no formal growth control measures.

Future Land Use

In the Goodhue County Comprehensive Plan (Goodhue County Land Use Management 2004), planners have identified the following goals for future development in the County.

Land use, urban expansion, and growth zones goals:

- to preserve the natural environment
- to preserve agricultural land
- to promote growth in cities and rural multiple housing development
- to promote compatible land uses
- to recognize and respond proactively to internal and external growth pressures

- to promote balanced growth
- to preserve aggregate deposits (mining resources)

Housing and "livable communities" goals:

- to provide adequate housing for all life stages
- to provide a range of housing types for all income levels
- to maintain existing homes
- to build safe and supportive communities
- to offer a variety of transportation options to provide mobility for all citizens
- to provide citizens access to county and local services
- to create and preserve parkland and open space

2.9.2 DAKOTA COUNTY

Existing Land Use

Dakota County is located south of Minneapolis and St. Paul and covers approximately 371,200 acres. The Minnesota and Mississippi Rivers form its northern border and freeway bridges span the rivers to link Dakota County commuters to Minneapolis and St. Paul. Land use categories in Dakota County are as follows: agriculture and vacant (65 percent), single-family residential (9 percent), rural estate (2 percent), multi-family (1 percent), commercial (1 percent), industrial (1 percent), airport (1 percent), open water (5 percent), parks and recreation (4 percent), public (4 percent), and road right-of-ways (7 percent) (Dakota County 1999). The majority of the population is concentrated in the northern third of the County (Dakota County 1999). This once agricultural land has been transformed from farms to bedroom communities to a more diversified form of suburbia characterized by an increase in commercial and industrial development. The other two-thirds remain largely agricultural (Dakota County 1999).

Most of the population growth in Dakota County has taken place since World War II. County planners state that the majority of land use changes since then have been driven by advancements in transportation. As the cities of Minneapolis and St. Paul have grown, residential development has expanded to neighboring counties, such as Dakota County, and residents commute to the cities for employment (Dakota County 1999).

In the 1950s and 1960s, the County's development was dominated by large tract suburban developers. Suburban communities developed at this time were the River Hills subdivision in Burnsville, Cedar Grove subdivision in Eagan, South Grove subdivision in Inver Grove Heights, Apple Valley subdivision in Apple Valley, and Valley Park subdivision in Lakeville (Dakota County 1999).

The 1970s and 1980s were characterized by infill development. Also, transportation improvements like the completion of Interstate 494, Interstate 35 East, and the Cedar Avenue Bridge accelerated the suburbanization process. Industrial parks were developed and large multi-family residential projects were constructed along Interstate 35 West, State Highway 13, and other transportation corridors (Dakota County 2005).

In the 1990s, Dakota County evolved from a bedroom community to a county with more diverse land use patterns. Employment rate growth surpassed the residential growth rate. Commercial and industrial land uses continued to expand. Employers moving to the area included West Publishing, Cray Research, Northwest Airlines, and Blue Cross Blue Shield (Dakota County 2005).

Currently, the northern cities in Dakota County are extensions of St. Paul's early suburbs. The suburban areas are where development has been more recent and include: Apple Valley, Burnsville, Eagan, Inver Grove Heights, Mendota Heights, Lillydale, Lakeville, Farmington, and Rosemont. Dakota County's townships have lower population densities, are dominated by agriculture, and most have zoning restrictions of one housing unit per 40 acres (Dakota County 2005).

Future Land Use

In general, land use decision-making occurs at the city and township level through zoning and the influence of land use planning at the regional level. County goals and policies include (Dakota County 2005):

- Measuring and evaluating development trends in Dakota County and the region.
- Preserving agricultural land and farming.
- Promoting land use patterns that value and sustain the natural environment.
- Supporting and encouraging orderly development.
- Encouraging land use patterns and community design that support pedestrian and transient-oriented development.

2.9.3 PIERCE COUNTY

Historic and Existing Land Use

Pierce County, covering 378,240 acres, is currently in the first phase (data collection) of developing a county-wide comprehensive plan (Pierce County Undated). Land development activities are guided by the County's municipalities through the use of local zoning and subdivision regulations until the County plan is complete.

Future Land Use

Pierce County planners report that, between 2002 and 2005, approximately 8 percent of the county's farmland was converted from agricultural to other uses. Planners estimate that, by 2025, the county may need to accommodate over 7,000 acres of new residential, commercial, and industrial land along with additional acreage needed for infrastructure, parks, community facilities, and similar uses (Pierce County Undated).

2.10 HISTORIC AND ARCHAEOLOGICAL RESOURCES

The Mississippi River and its tributaries have played an important role in the history of the region, both during prehistoric times and after the arrival of European explorers and settlers. Until the coming of the railroads in the 1860s, the Mississippi River was the main travel thoroughfare and the way most goods moved in and out of the region. This explains the high density of prehistoric and historic sites along the Upper Mississippi River and in the Red Wing and Prairie Island areas.

Prehistory

The first Indians moved into southern Minnesota 10,000 to 12,000 years ago when the glaciers receded and the forests and prairies reappeared. There is evidence of four major prehistoric cultural periods: Paleo-Indian (to 8,000 BC), Archaic (8,000 BC to 500 BC), Woodland (500 BC to 900 AD), and Mississippian (900 AD to arrival of Europeans) (Scullin 1996). When the French explorers and Voyageurs arrived in the 17th century, the area now known as Minnesota was dominated by two Indian tribes, the Dakota (later called Sioux by the French) and the Ojibway (sometimes referred to as Chippewa) (Willis 1914, State of Minnesota 2001).

History

The first European to explore the Upper Mississippi River region was Father Louis Hennepin, who was captured in 1680 near Milles Lacs by a Dakota war party and "discovered" Lake Pepin and St. Anthony Falls while a captive (Willis 1910). Another Frenchman, Nicholas Perrot, established a trading post in 1685 at Trempealau on the east bank of the Mississippi River, and a second trading post (Fort Saint-Antoine) in 1686 on Lake Pepin (Kneisler 1999). Frenchman Pierre Charles LeSeuer explored the region at the confluence of the Mississippi and Minnesota rivers, where Ft. Snelling was later established, and also built a trading post on Prairie Island around 1695 (AEC 1973).

The French under Rene Boucher established a fort (Fort Beauharnois) and mission on the Mississippi River at Frontenac around 1727 to trade furs with the Dakota people (MN DNR 2005b). The chapel at Fort Beauharnois, named the Mission of St. Michael the Archangel, may have been the first church in Minnesota. Fort Beauharnois and the Frontenac settlement were abandoned in 1763, when the Treaty of Paris ended the Seven Years' War (French and Indian War) and most of France's lands in the New World were divided between England and Spain. The Louisiana Purchase in 1803 largely ended the French presence in the U.S.

In 1819, a U.S. Army contingent began building Fort Snelling, which they completed in 1825 (Minnesota Historical Society 2006). For 30 years, Fort Snelling was the most important American outpost in the region, and a meeting place for officials of the U.S. government and representatives of the Dakota and Ojibway peoples. The American and Columbia fur companies built headquarters in the area, and their employees settled

at nearby Mendota with their families. Emigrants from the east and from Europe arrived, and formed the settlement that became the city of St. Paul.

Under a treaty signed at Mendota in 1851, Europeans were allowed to make their homes on the west bank of the Mississippi River (City of Red Wing 2003). Red Wing was incorporated as a city in 1857. The territory of Minnesota became the 32nd state in 1858.

Initial Construction and Operation of PINGP

The Final Environmental Statement related to the Prairie Island Nuclear Generating Plant (AEC 1973) identifies three sites with historical significance within a 6-mile radius of PINGP and lists five more historical sites in the "plant region" (within 35 miles). The three sites in the six-mile radius were the Bartron Site (less than one mile from PINGP), the Silvernale Site (4.5 miles from PINGP), and the Fort Sweeney site (6 miles from PINGP).

The Bartron Site is particularly noteworthy. As discussed in the Final Environmental Statement related to the Prairie Island Nuclear Generating Plant (AEC 1973, p. II-28), the AEC consulted with the State Archaeologist in the course of reviewing the NSP application for a construction permit. The AEC did so because previous archaeological surveys in the Mississippi River valley near Red Wing demonstrated that a large number of prehistoric sites were present, and that undisturbed portions of Prairie Island, in particular, contained "many undisturbed burial mounds and a large village habitation occupied by late prehistoric (Mississippian) peoples" (AEC 1973, p. II-28). The State Archaeologist subsequently uncovered parts of this village on the Prairie Island site. This village, later named the Bartron Site, was added to the National Register of Historic Places in 1970. Evidence suggests that the site was occupied for a relatively short time by people of the Oneota culture, who fished and hunted small game and were more reliant on wild plants (wild rice, acorns, plums) than cultivated plants (corn). The site was first surveyed by T.H. Lewis in 1885, but little formal archaeology has been undertaken at the Bartron Site. Archaeological excavation has uncovered various subsurface features, such as fire hearths, storage/refuse pits, and postmolds. Parts of two houses were found, and possibly a portion of a palisade. The Bartron Site is much like other 11th century villages in the Red Wing locality in the types of artifacts recovered, but with far less evidence of Middle Mississippian influence (Institute for Minnesota Archaeology 1999a). An Institute for Minnesota Archaeology report notes that the site is "not adequately dated" but probably dates to the period 1050-1300 A.D. (Institute for Minnesota Archaeology 1999b).

Current Status

As of September 2006, the National Register of Historic Places listed 60 properties in Goodhue County (NPS 2006c). Thirty four of these are in Red Wing and may fall within a 6 mile radius of PINGP. The National Register also listed seven properties in Pierce County, Wisconsin, across the Mississippi River from PINGP. Two of these appear to fall within a 6-mile radius of PINGP.

As of September 2006, the Department of the Interior also listed five sites that have been determined eligible for listing (NPS 2006c) on the National Register of Historic Places in Goodhue County and two sites in Pierce County. At least three of the Goodhue County sites appear to lie within a 6-mile radius of PINGP.

Table 2.10-1 lists the National Register of Historic Places sites within the 6-mile radius of PINGP.

NMC conducted a cultural resource assessment in September 2007 to identify all previously recorded archaeological sites and architectural history properties, as well as previously conducted cultural resource investigations within the boundaries of PINGP. Reviews of records from the Minnesota State Historic Preservation Office and the Wisconsin Historic Preservation Database were performed to locate previously-identified archeological sites within one mile of PINGP.

According to the records on file at SHPO, four professional archaeological surveys and one testing project have been conducted within the study area to date. Within the boundaries of the PINGP, seven archaeological sites have been recorded (confirmed) (The 106 Group 2008).

Although not recorded as a professional investigation, Elden Johnson conducted salvage data recovery operations at three precontact sites in the PINGP study area in the late 1960s. Elden Johnson is considered the first investigator to apply scientifically based methods to the archaeological study of the region. Johnson did not always publish reports of his findings; however, his work is recorded on archaeological site forms with the SHPO office. After NSP purchased the land on Prairie Island, they sponsored data recovery operations directed by Johnson for the Bartron Site and two mound sites. Johnson nominated the Bartron site to the National Register of Historic Places in 1970. This site is the only property within the study area that is listed on the National Register of Historic Places. Three compliance surveys have been conducted within the study area since Elden Johnson's salvage work. None of these yielded any findings (The 106 Group 2008).

2.11 KNOWN OR REASONABLY FORESEEABLE PROJECTS IN SITE VICINITY

EPA-Permitted Dischargers to Air, Water, and Soil

In its "Envirofacts Warehouse" online database, the U.S. Environmental Protection Agency identifies dischargers to air, water, and soil. A search on Goodhue County, Minnesota determined that 42 industries produce and release air pollutants; 16 facilities have reported toxic releases; 300 facilities have reported hazardous waste activities; and 35 facilities are permitted to discharge to the waters of the United States. There are no Superfund sites in Goodhue County (EPA 2006g).

A search of Dakota County, Minnesota determined that 117 industries produce and release air pollutants; 61 facilities have reported toxic releases; 500 facilities have reported hazardous waste activities; 5 potential hazardous waste sites are part of the Superfund program; and 41 facilities are permitted to discharge to the waters of the United States (EPA 2006g).

An Envirofacts search for Pierce County industries determined that 17 industries produce and release air pollutants; 6 facilities have reported toxic releases; 190 facilities have reported hazardous waste activities; and 11 facilities are permitted to discharge to the waters of the United States. There are no Superfund sites in Pierce County, Wisconsin (EPA 2006g).

Federal Facilities in the Vicinity of PINGP

USACE owns and operates five dams (with locks) within a 50-mile radius of PINGP (Figure 2.1-1). To achieve a 9-foot channel in the Upper Mississippi River, the construction of a system of navigation locks and dams was authorized in 1930. Upper St. Anthony Falls Lock and Dam began operation in 1963. Lower St. Anthony Falls Lock and Dam began operation in 1956. The dams are located at river mile 853.9 and portions of both are owned by Xcel Energy Center (USACE 2006b). Lock and Dam 1 is also located in the Minneapolis/St. Paul area at river mile 847.9. In operation since 1917, the dam contains a hydroelectric power station owned and operated by Ford Motor Company (USACE 2006b).

Lock and Dam 2, near Hastings, is approximately 16 miles upstream of PINGP. It was completed in 1930 and includes a small hydroelectric power plant owned and operated by the City of Hastings. Lock and Dam 3, completed in 1938, is located approximately one mile downstream of PINGP (USACE 2006b).

Two long-standing and related problems at Lock and Dam 3 involve navigation safety and the Wisconsin embankments. Because the dam was constructed on a bend in the river with the lock on the outside of the bend, an outdraft current sweeps across the upper lock approach toward the gated part of the dam. This outdraft current makes navigation difficult and has caused many navigation accidents. Since 1963, 11 accidents have occurred when tows collided with the gated part of the dam. Navigation accidents can result in barges blocking one of the four roller gates in the gated part of the dam, resulting in a rise in water level in navigation Pool 3 and increased flow over the Wisconsin embankments when there is head at the dam, creating a highly erosive situation. Corps planners have evidenced concern that the Wisconsin embankments could fail rapidly because of the weak soil conditions in that area, opening up a scour channel around Lock and Dam 3 that would cause an accidental drawdown of Pool 3 (USACE 2006a).

USACE recently published the Final Integrated General Reevaluation Report and Environmental Impact Statement for Lock and Dam 3 Mississippi River Navigation Safety and Embankments. The report offers a plan to improve navigation safety and strengthen the Wisconsin embankments at Lock and Dam 3 and assesses the environmental impacts of the proposed modifications. The improvements are intended to reduce the risk of accidental drawdown of Pool 3 (USACE 2006a).

Industries in the Vicinity of PINGP

The area within five miles of PINGP is devoted almost exclusively to agricultural pursuits. Outside of the City of Red Wing, very few industrial facilities exist.

The Treasure Island Resort and Casino owned by the Prairie Island Indian Community is located approximately one mile from the plant. In addition to a hotel, casino, and marina, Prairie Island Indian Community also operates a wastewater treatment facility. A gasoline station/convenience store is located approximately one-mile west-northwest from PINGP. Several factories, textile mills, and laboratories in Red Wing lie within 5 miles of PINGP (NMC 2007).

Other Generating Facilities in the Vicinity of PINGP

Two small hydroelectric facilities are located upstream of PINGP at Lock and Dam 1 and 2. The Ford Motor Company operates a hydroelectric plant at Lock and Dam 1. The City of Hastings operates another hydroelectric facility at Lock and Dam 2 (USACE 2006b).

Several Xcel Energy plants are located within 50 miles of PINGP. The closest plant to PINGP is Red Wing Steam Plant, a two-unit 20 MW plant in Red Wing that burns processed municipal solid waste, called refuse-derived fuel (RDF). Other Xcel plants within 50 miles include Hennepin Island, Inver Hills, West Faribault, Blue Lake, Black Dog, High Bridge, Riverside, and Allen S. King Generating Plants (Xcel Energy 2006). All run on coal, natural gas, or distillate fuel oil (Xcel Energy 2003), with the exception of Hennepin Island, which is a five-unit hydroelectric plant located at St. Anthony's falls in Minneapolis.

Dairyland Power Cooperative operates two coal-fired plants on the Mississippi River in Alma, Wisconsin, approximately 45 miles downstream of PINGP. The Alma Station is a five-unit plant with a capacity of 210 MW. The John P. Madgett Station (JPM), a single unit station, is just south of the Alma Station and has a generating capacity of 400 MW (Dairyland 2006).

CONCLUSIONS

Having evaluated environmental conditions in the vicinity of the PINGP site in this section and assessed potential impacts of license renewal in Chapter 4, NMC has not identified any obvious cumulative impacts and has not extended the discussion of potential cumulative impacts into Chapter 4, "Environmental Consequences of the Proposed Action and Mitigating Actions."

TABLE 2.2-1 USGS GAGING STATIONS

USGS Station	River Mile	Drainage Area (mi ²)	Available Record
Prescott (#5344500)	811.4	44,800	1928-2005
Winona (#5378500)	725.7	59,200	1928-2005

TABLE 2.2-2MISSISSIPPI RIVER FLOW STATISTICS AT USGS GAGING STATIONS

U.S.G.S. Station	Annual Mean	Highest Annual Mean	Lowest Annual Mean	Lowest Daily Mean
Prescott (#5344500)	18,380 cfs	38,540 cfs	4,367 cfs	1,380 cfs
Winona (#5378500)	29,590 cfs	56,850 cfs	9,742 cfs	2,250 cfs

cfs - cubic feet per second

TABLE 2.2-3DISCHARGE FLOW AT LOCK AND DAM 3

	Discharge Flow at Lock and Dam 3 (cubic feet per second)											
	1999	2000	2001	2002	2003	2004	2005	2006	Monthly Average			
January	10,790	8,974	9,110	10,932	9,229	6,661	9,913	17,790	10,425			
February	12,589	9,548	8,364	10,104	7,871	6,728	11,575	18,186	10,621			
March	17,897	22,219	9,910	11,497	13,210	15,055	14,668	20,774	15,654			
April	42,013	15,570	112,400	40,657	25,613	24,673	44,730	51,413	44,634			
May	47,426	18,839	82,655	33,974	42,194	19,432	30,977	40,997	39,562			
June	34,423	22,070	53,177	26,323	27,413	45,987	39,157	21,510	33,758			
July	27,548	21,052	23,981	34,597	32,739	19,510	21,897	7,800	23,641			
August	24,432	10,026	12,165	29,065	10,084	10,606	9,761	7,648	14,223			
September	18,013	6,687	9,193	24,513	7,087	19,227	15,180	6,453	13,294			
October	14,200	6,790	9,577	28,600	6,771	19,532	35,948	7,252	16,084			
November	13,243	17,463	11,040	18,467	8,167	21,943	19,170	7,133	14,578			
December	9,671	9,558	13,813	12,135	8,310	12,258	19,123	6,771	11,455			
Total/Year	272,245	168,796	355,385	280,864	198,688	221,612	272,099	213,727	247,927			
Annual Ave	erage for 19	99-2006	247,927									
Annual Ave	erage for 20	00-2005	249,574									

TABLE 2.2-4 PINGP GROUNDWATER USE TABLE

	Administration	Permit 690171 ^ª	Permit 690171 ^ª	Permit 785153ª Well 611076 -	Permit 865114 ^ª	Permit 96504 cente (Gallo	er ^a	Total Annual		
Year	Building Non Permitted Well ^b *	Well 256120 - Installation 121 (Gallons)	Well 256121 - Installation 122 (Gallons)	Steam Power CT Well (Gallons)	CT Well Screen House		Irrigation	Gallons	Gallons per Minute	
2005	563,100	20,833,300	19,933,600	6,830,210	12,055,695	1,128,000	818,200	61,599,005	117	
2004		18,576,900	13,336,200	5,280,430	15,517,800	846,800	978,100	54,536,230	104	
2003		10,648,800	14,248,900	4,163,190	10,969,500	647,000	1,237,000	41,914,390	80	
2002		18,958,300	11,609,300	3,550,800	4,280,700	1,674,100		40,073,200	76	
2001		16,974,300	16,372,060	3,663,190	7,267,700	2,971,700		47,248,950	90	
2000		13,676,800	12,812,800	3,745,780	7,474,900	2,242,900		39,953,180	76	
Total 2000- 2005	563,100	99,668,400	88,312,860	27,233,600	57,566,295	9,510,500	3,033,300	285,324,955		
Ave/yr		16,611,400	14,718,810	4,538,933	9,594,383	1,585,083	505,550	47,554,159	91	
gpm	1.07	32 gpm	28 gpm	9 gpm	18 gpm	3 gpm	1 gpm		91	

References: a. NSP 2001, NSP 2002, NSP 2003, NSP 2004, NSP 2005, NSP 2006 b. Bergland 2006 * Not included in Total Annual column due to lack of data.

TABLE 2.3-1

THREATENED AND ENDANGERED SPECIES POTENTIALLY AFFECTED BY OPERATION OF PINGP AND ASSOCIATED TRANSMISSION LINES¹

Scientific Name	Common Name	Federal Status ²	State Status ² (Minnesota)	State Status ² (Wisconsin)	
Mammals					
Perognathus flavescens	Plains Pocket Mouse	-	SSC	NA	
Birds					
Buteo lineatus	Red-shouldered Hawk	-	SSC	NA	
Cygnus buccinator	Trumpeter Swan	-	Т	NA	
Dendroica cerulea	Cerulean Warbler	-	SSC	NA	
Falco peregrinus	Peregrine Falcon	-	Т	NA	
Haliaeetus leucocephalus	Bald Eagle ³	-	SSC	NA	
Lanius Iudovicianus	Loggerhead Shrike	-	Т	NA	
Sterna forsteri	Forster's Tern	-	SSC	NA	
Wilsonia citrina	Hooded Warbler	-	SSC	NA	
Amphibians and Reptiles					
Acris crepitans	Northern Cricket Frog	-	E	NA	
Apalone mutica	Smooth Softshell Turtle	-	SSC	NA	
Clemmys insculpta	Wood Turtle ³	-	Т	NA	
Coluber constrictor	Eastern Racer	-	SSC	NA	
Crotalus horridus	Timber Rattlesnake	-	Т	NA	
Emydoidea blandingii	Blanding's Turtle ³	-	Т	NA	
Pituophis catenifer	Gopher Snake	-	SSC	NA	
Fish					
Acipenser fulvescens	Lake Sturgeon	-	SSC	SC	
Alosa chrysochloris	Skipjack Herring	-	SSC	Е	
Ammocrypta asprella	Crystal Darter	-	SSC	Е	
Anguilla rostrata	American Eel	-	-	SC	
Clinostomus elongatus	Redside Dace	-	-	SC	
Cycleptus elongatus	Blue Sucker	-	SSC	Т	
Etheostoma asprigene	Mud Darter	-	-	SC	
Etheostoma clarum	Western Sand Darter	-	-	SC	
Fundulus diaphanus	Banded Killifish	-	-	SC	
, Hiodon alosoides	Goldeye	-	-	E	
lctiobus niger	Black Buffalo	-	SSC	Т	
Macrhybopsis aestivalis	Shoal Chub	-	-	Т	
Macrhybopsi storeiana	Silver Chub	-	-	SC	
Moxostoma carinatum	River Redhorse	-	-	Т	
Notropis amnis	Pallid Shiner	-	SSC	E	
Notropis texanus	Weed Shiner	-		SC	
Opsopoeodus emiliae	Pugnose Minnow	-	-	SC	
Polyodon spathula	Paddlefish	-	Т	Т	
Mussels			-		
Actinonaias ligamentina	Mucket	_	Т		
Alasmidonta marginata	Elktoe	_	Ť	SC	
Arcidens confragosus	Rock Pocketbook	_	Ē	Т	
Cumberlandia monodonta	Spectaclecase	С	T	Ē	

TABLE 2.3-1 (CONTINUED) THREATENED AND ENDANGERED SPECIES POTENTIALLY AFFECTED BY OPERATION OF PINGP AND ASSOCIATED TRANSMISSION LINES¹

Scientific Name	Common Name	Federal Status ²	State Status ² (Minnesota)	State Status (Wisconsin)
Mussels (continued)				
Cyclonaias tuberculata	Purple Wartyback	-	Т	Е
Ellipsaria lineolata	Butterfly	-	Т	Е
Elliptio crassidens	Elephant-ear	-	Е	E
Elliptio dilatata	Spike	-	SSC	-
Epioblasma triquetra	Snuffbox	-	Т	Е
Fusconaia ebena	Ebonyshell	-	Е	E
Lampsilis higginsi	Higgins Eye ³	Е	Е	Е
Lampsilis teres	Yellow/Slough Sandshell	-	E	Е
Lasmigona costata	Fluted-shell	-	SSC	-
Ligumia recta	Black Sandshell	-	SSC	-
Megalonaias nervosa	Washboard	-	Т	SC
Obovaria olivaria	Hickory nut	-	SSC	-
Plethobasus cyphyus	Sheepnose (bullhead)	С	E	Е
Pleurobema sintoxia fka P. coccineum	Round Pigtoe	-	T	SC
Quadrula fragosa	Winged Mapleleaf	Е	Е	Е
Quadrula metanevra	Monkeyface	-	Т	Т
Quadrula nodulata	Wartyback	_	E	-
Tritogonia verrucosa	Pistolgrip (buckhorn)	-	T T	Т
Insects			·	
Aflexia rubranura	Red Tailed Prairie Leafhopper	-	SSC	-
Gompherus externus	Plains clubtail		-	SC
Ophiogomphus smithi	Sand snaketail	-	-	SC
Neurocordulia molesta	Smoky shadowfly	-	-	SC
Speyeria idalia	Regal Fritillary	-	SSC	-
Stylurus plagiatus	Russet-tipped clubtail	-	-	SC
Plants				
Agalinis auriculata	Eared False Foxglove	-	Е	NA
Aristida tuberculosa	Sea-beach Needlegrass	_	SSC	NA
Arnoglossum plantagineum	Tuberous Indian-plantain	-	Т	NA
Asclepias amplexicaulis	Clasping Milkweed	-	SSC	NA
Asclepias sullivantii	Sullivant's Milkweed	-	Т	NA
Besseya bullii	Kitten-tails	-	Ť	NA
Botrychium oneidense	Blunt-lobed Grapefern	-	Ē	NA
Botrychium rugulosum	St. Lawerence Grapefern	_	T	NA
Carex sterilis	Sterile Sedge	-	Ť	NA
Cirsium hillii	Hill's Thistle	_	SSC	NA
Cladium mariscoides	Twig-rush	-	SSC	NA
	James' Polanisia	-	E	NA
Cristatella jamesii	Small White Lady's-	-		
Cypripedium candidum	slipper	-	SSC	NA

TABLE 2.3-1 (CONTINUED) THREATENED AND ENDANGERED SPECIES POTENTIALLY AFFECTED BY OPERATION OF PINGP AND ASSOCIATED TRANSMISSION LINES¹

Scientific Name	Common Name	Federal Status ²	State Status ² (Minnesota)	State Status ² (Wisconsin)
Plants (continued)				
Eleocharis rostellata	Beaked Spike-rush	-	Т	NA
Eryngium yuccifolium	Rattlesnake-master	-	SSC	NA
Erythronium propullans	Dwarf trout lily ³	Е	E	NA
Hudsonia tomentosa	Beach-heather	-	SSC	NA
Juniperus horizontalis	Creeping Juniper	-	SSC	NA
Lespedeza leptostachya	Prairie bush-clover ³	Т	Т	NA
Lesquerella ludoviciana	Bladder Pod	-	E	NA
Minuartia dawsonensis	Rock Sandwort	-	SSC	NA
Oenothera rhombipetala	Rhombic-petaled Evening Primrose	-	SSC	NA
Opuntia macrorhiza	Plains Prickly Pear	-	SSC	NA
Orobanche fasciculata	Clustered Broomrape	-	SSC	NA
Panax quinquefolius	American Ginseng	-	SSC	NA
Rhynchospora capillacea	Hair-like Beak-rush	-	Т	NA
Scleria verticillata	Whorled Nut-Rush	-	Т	NA
Trillium nivale	Snow Trillium	-	SSC	NA
Valeriana edulis ciliata	Valerian	-	Т	NA

Source of County Occurrence: FWS 2007a, MDNR 2007a, MDNR 2007b, WDNR 2007 E = Endangered, T = threatened, C = Candidate for federal listing, SSC = Minnesota Species of Special Concern, SC = Wisconsin Species of Concern, - = not listed, NA – Not applicable because only those Wisconsin state-listed 2 species present in the Mississippi River were identified in this analysis.

³ Identified as species of concern by the Prairie Island Indian Community (PIIC 2008).

TABLE 2.5-1
DECENNIAL POPULATIONS, PROJECTIONS, AND GROWTH RATES

	Goodhue	Goodhue County		Dakota County		Minnesota		Pierce County		onsin
Year	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
1980 ^a	38,749	N/A	194,279	N/A	4,075,970	N/A	31,149	N/A	4,705,767	N/A
1990 ^a	40,690	5.01%	275,227	41.67%	4,375,099	7.34%	32,765	5.19%	4,891,769	3.95%
2000 ^b	44,127	8.45%	355,904	29.31%	4,919,479	12.44%	36,804	12.33%	5,363,675	9.65%
2010 ^{c,d}	47,140	6.83%	422,990	18.85%	5,452,500	10.83%	39,818	8.19%	5,751,470	7.23%
2020 ^{c,d}	50,430	6.98%	470,460	11.22%	5,909,400	8.38%	42,655	7.12%	6,110,878	6.25%
2030 ^{c,d}	52,890	4.88%	501,020	6.50%	6,268,200	6.07%	45,850	7.49%	6,415,923	4.99%

a. USCB 1995a, 1995b
b. USCB 2000b
c. MDA 2002
d. WDA 2004

County Name	State Name	Number of Block Groups	Black	American Indian or Alaskan Native	Asian	Native Hawaiian or Other Pacific Islander	Some Other Race	Multi- Racial	Aggregate	Hispanic	Low- Income Households	Total Population*
Anoka	Minnesota	127	0	0	0	0	0	0	0	0	0	142066
Carver	Minnesota	17	1	0	0	0	0	0	1	1	0	28911
Chisago	Minnesota	4	0	0	0	0	0	0	0	0	0	1334
Dakota	Minnesota	194	0	0	0	0	0	0	0	0	0	355904
Dodge	Minnesota	15	0	0	0	0	0	0	0	0	0	15482
Goodhue	Minnesota	37	0	0	0	0	0	0	0	0	0	44127
Hennepin	Minnesota	892	111	3	11	0	5	1	196	32	61	956280
Le Sueur	Minnesota	6	0	0	0	0	0	0	0	0	0	6607
Olmsted	Minnesota	109	1	0	0	0	0	0	3	0	2	114388
Ramsey	Minnesota	401	16	0	43	0	5	0	109	14	23	511035
Rice	Minnesota	43	0	0	0	0	0	0	0	2	0	56455
Scott	Minnesota	50	0	0	0	0	1	0	1	1	0	83621
Steele	Minnesota	21	0	0	0	0	0	0	0	0	0	27123
Wabasha	Minnesota	19	0	0	0	0	0	0	0	0	0	21610
Waseca	Minnesota	1	0	0	0	0	0	0	0	0	0	84
Washington	Minnesota	117	2	0	0	0	0	0	2	0	0	201020
Winona	Minnesota	3	0	0	0	0	0	0	0	0	0	1579
Barron	Wisconsin	1	0	0	0	0	0	0	0	0	0	193
Buffalo	Wisconsin	12	0	0	0	0	0	0	0	0	0	8867
Dunn	Wisconsin	31	0	0	0	0	0	0	0	0	3	34979

TABLE 2.5-2BLOCK GROUPS WITHIN 50 MILES OF PINGP WITH MINORITY OR LOW-INCOME POPULATIONS MORE THAN20% GREATER THAN THE STATE PERCENTAGE

Page 2-48

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

TABLE 2.5-2 (CONTINUED) BLOCK GROUPS WITHIN 50 MILES OF PINGP WITH MINORITY OR LOW-INCOME POPULATIONS MORE THAN 20% GREATER THAN THE STATE PERCENTAGE.

County Name	State Name	Number of Block Groups	Black	American Indian or Alaskan Native	Asian	Native Hawaiian or Other Pacific Islander	Some Other Race	Multi- Racial	Aggregate	Hispanic	Low- Income Households	Total Populatio n*
Eau Claire	Wisconsin	3	0	0	0	0	0	0	0	0	0	4745
Pepin	Wisconsin	7	0	0	0	0	0	0	0	0	0	7213
Pierce	Wisconsin	26	0	0	0	0	0	0	0	0	0	36804
Polk	Wisconsin	16	0	0	0	0	0	0	0	0	0	14015
St. Croix	Wisconsin	45	0	0	0	0	0	0	0	0	0	63155
	TOTALS	2197	131	3	54	0	11	1	312	50	89	2733326
	Minnesota Percentages Wisconsin Percentages		3.55	1.14	2.94	0.04	1.36	1.71	10.73	2.96	7.91	
			5.75	0.89	1.68	0.03	1.60	1.26	11.21	3.64	8.38	

Shading indicates that the county is completely contained within the 50-mile radius.

*The total population listed for each county is the population for the portion of the county that falls within the 50-mile radius.

TABLE 2.6-1GOODHUE COUNTY MAJOR EMPLOYERS

Employer	Community	Products/Services	Employee Count
Treasure Island Casino	Red Wing	Gambling Industries	1,500
Red Wing Shoe Company	Red Wing	Footwear Manufacturing	724
Xcel Energy	Red Wing	Nuclear Electric Power Generation	611
Fairview Red Wing Medical Center	Red Wing	General Medical and Surgical Hospitals	585
Independent School District #256	Red Wing	Elementary and Secondary Schools	500
Norwood	Red Wing	Other Miscellaneous Manufacturing	380
MDEED 2008	¥		

TABLE 2.6-2DAKOTA COUNTY MAJOR EMPLOYERS

Employer	Community	Products/Services	Employee Count	
West Information Publishing Group	Eagan	Newspaper, Periodical, Book, & Directory Publishers	6,000	
Rosemount School District #196	Rosemount	Elementary and Secondary Schools	4,000	
Blue Cross and Blue Shield	Eagan	Insurance Carriers	3,300	
Northwest Airlines	Eagan	Scheduled Air Transportation	2,300	
Apple Valley Schools-ISD #196	Apple Valley	Elementary and Secondary Schools	1,913	
Dakota County	Hastings	Executive and Legislative Offices, Combined	1,849	
Burnsville Public Schools-ISD #191	Burnsville	Elementary and Secondary Schools	1,600	
Lockheed-Martin Tactical Defense Sys	Eagan	Computer and Peripheral Equipment Manufacturing	1,600	
Lakeville Public School District #194	Lakeville	Elementary and Secondary Schools	1,596	
US Postal Service	Eagan	Postal Service	1,570	
United Parcel Service	Eagan	Couriers	1,435	
Fairview Ridges Hospital	Burnsville	General Medical and Surgical Hospitals	1,400	
Goodrich Sensor Systems	Burnsville	Computer and Peripheral Equipment Manufacturing	1,150	
CHS Cooperatives	Inver Grove Heights	Pesticide & Other Agricultural Chemical Mfg.	1,000	
Coca-Cola Bottling Company	Eagan	Beverage Manufacturing	900	
Flint Hills	Rosemount	Petroleum and Coal Products Manufacturing	850	
Sportsman's Guide	South St. Paul	Mail-Order Houses	800	
Regina Medical Complex	Hastings	General Medical and Surgical Hospitals	730	
Ecolab Research Facility	Eagan	Soap and Other Detergent Mfg.	700	
Wells Fargo Mortgage	Eagan	Electronics and Other Appliance Stores	700	
Ryt-Way Industries, Inc.	Lakeville	Food Service Contractors	688	
West St. Paul, Mendota Heights, Egan – ISD #197	West St. Paul	Elementary and Secondary Schools	651	
Northern Hydraulics, Inc.	Burnsville	Industrial Machinery Manufacturing	600	
School District 200	Hastings	Elementary and Secondary Schools	600	
Dakota County	West St. Paul	Admin. Of Human Resource Programs	577	
Smead Manufacturing Co	Hastings	Office Supplies and Stationary Stores	575	
Pepsi-Cola Bottling Company	Burnsville	Beverage Manufacturing	550	
Prime Therapeutics	Eagan	Management, Scientific, & Technical Consulting Services	550	
Farmington Public Schools-ISD #192	Farmington	Elementary and Secondary Schools	540	
Inver Grove Hts School District #199	Inver Grove Heights	Elementary and Secondary Schools	525	
Northland Insurance Company	Mendota Heights	Insurance Carriers	456	

TABLE 2.6-2 (CONT)DAKOTA COUNTY MAJOR EMPLOYERS

Employer	Community	Products/Services	Employee Count
Federal Aviation Administration	Farmington	Admin. Of Economic Programs	450
South St. Paul School District #6	South St. Paul	Elementary and Secondary Schools	450
Travel Tags	Inver Grove Heights	Comm. Flexographic Printing	430
Inver Hills Community College	Inver Grove Heights	Colleges, Universities, and Prof. Schools	425
ConAgra Store Brands	Lakeville	Breakfast Cereal Mfg.	400
Freightmasters, Inc.	Eagan	General Freight Trucking	400
Yellow Freight System, Inc.	Burnsville	Support Activities for Road Transportation	400
Skyline	Eagan	Specialized Design Services	400
Target	West St. Paul	Department Stores	400
Southview Acres Health Care	West St. Paul	Nursing Care Facilities	375
Waterous Co.	South St. Paul	Pump and Pumping Equip. Man.	375
Intek Plastics, Inc.	Hastings	Plastics Material and Resin Mfg.	350
Transport Corp of America	Eagan	General Freight Trucking	350
Dakota County	Apple Valley	Executive, Legislative, & Other Gen. Govt. Support	349
Best Brands	Eagan	Other Food Manufacturing	330
Delta Dental	Eagan	Insurance Carriers	330
CUB Foods	Burnsville	Department Stores	300
Evergreen Industries	Inver Grove Heights	Nursery and Tree Prod.	300
Frontier Communications of MN	Burnsville	Wired Telecommunications Carriers	300
Genz-Ryan	Burnsville	Plumbing, Heating, & Air Conditioning Contractors	300
Wal-Mart	West St. Paul	Department Stores	300

MDEED 2008

TABLE 2.6-3 PIERCE COUNTY MAJOR EMPLOYERS

Employer	Products/Services	Employee Count
University of Wisconsin-River Fall	Colleges and Universities	500-999
School District of River Falls	Elementary and Secondary Schools	500-999
Pierce County	Executive and Legislative Offices, Combined	250-499
Mentor Management, Inc.	Residential Mental Retardation Facilities	250-499
Ellsworth Community School District	Elementary and Secondary Schools	250-499

State of Wisconsin 2006

Year	Goodhue County Tax Revenues ^a (\$)	PINGP Property Tax Paid to Goodhue County (\$)	Percent of Goodhue County Revenues	City of Red Wing Tax Revenues ^b (\$)	PINGP Property Tax Paid to City of Red Wing (\$)	Percent of City of Red Wing Revenues	School District 256 Tax Revenues ^c (\$)	PINGP Property Tax Paid to School District 256 (\$)	Percent of School District 256 Revenues
2001	21,047,515	5,780,345	27.5	8,897,957	4,654,701	52.3	14,781,300	6,611,339	44.7
2002	20,582,802	4,591,222	22.3	10,898,020	4,812,822	44.2	6,511,963	2,475,453	38.0
2003	21,069,501	4,358,238	20.7	11,418,308	4,764,870	41.7	5,688,503	2,024,973	35.6
2004	21,680,726	4,043,443	18.6	11,519,238	4,515,593	39.2	6,902,380	2,110,570	30.6
2005	22,266,086 ^d	3,702,828	16.6	10,919,238	3,968,674	36.4	6,691,909	1,840,068	27.5
2006	Not yet published	3,747,250		11,603,151	4,318,291	37.2	6,943,346	1,979,347	28.5

TABLE 2.7-1 PINGP TAX INFORMATION 2001-2006

Hove 2006 a.

Schlichting 2007 MDE 2007 b.

c.

State of Minnesota 2006 d.

TABLE 2.8-1
STATE-REGULATED MUNICIPAL WATER SYSTEMS IN THE THREE-COUNTY
AREA

System Name	Permitted Annual Average Withdrawal (MGY) ^b	Reported Annual Average Withdrawal 2000 – 2004 (MGY) ^b	Population Served – Groundwater and Surface Water ^{b, c}		
Groundwater					
Dakota County, MN					
Apple Valley	30,000	1,834 – 2,331	48,000		
Burnsville	51,200	2,317 – 3,018	62,200		
Eagan	51,000	2,335 - 3,289	67,051		
Empire Township	104	39 – 53	1,300		
Farmington	2,650	374 – 551	13,000		
Hampton	44	15 – 25	650		
Hastings	6,000	790 – 963	21,631		
Inver Grove Heights	6,250	973 – 1,116	33,000		
Lakeville	37,380	1,698 – 2,183	51,000		
New Trier	10	3.1 – 3.6	115		
Randolph	17.4	11.3 – 15.8	351		
Rosemont	4,728	537 – 765	21,000		
South Saint Paul	8,400	1,064 – 1,234	20,303		
Vermillion	50	20.5 – 27.8	442		
Dakota County Municipal Total	197,833 MGY (542 MGD)	12,011 - 15,575 MGY (32.9 – 42.7 MGD)			
Dakota County excess o	apacity (542 MGD – 42.7	MGD) is 499.3 MGD			
Goodhue County, MN ^a					
Bellechester	14.6	4.1 – 8	172		
Cannon Falls	1,040	194 – 253	3,700		
Dennison	13	5 – 8.3	168		
Goodhue	80	29 – 33	778		
Kenyon	144	54 – 68	1,661		
Pine Island	332	94 – 110	2,337		
Red Wing	4,725	643 – 710	16,100		
Wanamingo	120	32 – 43	1,007		
Zumbrota	660	168 – 189	3,004		
Goodhue County Municipal Total	7,129 MGY (19.5 MGD)	1,223 – 1,422 MGY (3.4 – 3.9 MGD)			
Goodhue County excess	s capacity (19.5 MGD – 3.	9 MGD) is 15.6 MGD.			

TABLE 2.8-1 (CONTINUED) STATE-REGULATED MUNICIPAL WATER SYSTEMS IN THE THREE-COUNTY AREA

System Name	Total Pump Design Yield (MGY) ^d	Reported Annual Average Withdrawal 2005 (MGY) ^d	Population Served Groundwater and Surface Water ^c	
Pierce County, WI ^c				
Bay City	135	15	571	
Ellsworth	368	101	2,844	
Elmwood	752	22	841	
Maiden Rock	184	4	121	
Prescott	1,314	171	3,645	
River Falls	2,597	396	12,560	
Spring Valley	258	38	1,271	
Pierce County Municipal Total	5,608 MGY (15.4 MGD)	747 MGY (2 MGD)		
Pierce County excess ca	apacity (15.4 MGD – 2 M	IGD) is 13.4 MGD.		
Total For Dakota, Goodhue and Pierce Counties	210,570 MGY (577 MGD)	17,742 MGY ¹ (48.6 MGD)		

Sources: a. EPA 2006f; b. MN DNR 2005a, c. WDNR 2006, d. WIPSC 2006

Note 1) Maximum withdrawal data value for Dakota and Goodhue Counties used to obtain the total for Dakota,

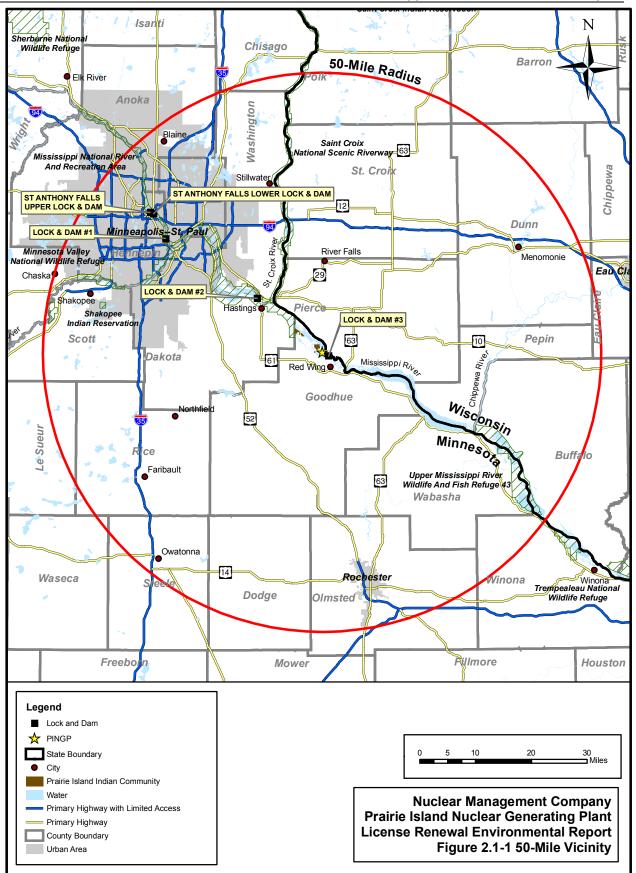
Goodhue, and Pierce Counties.

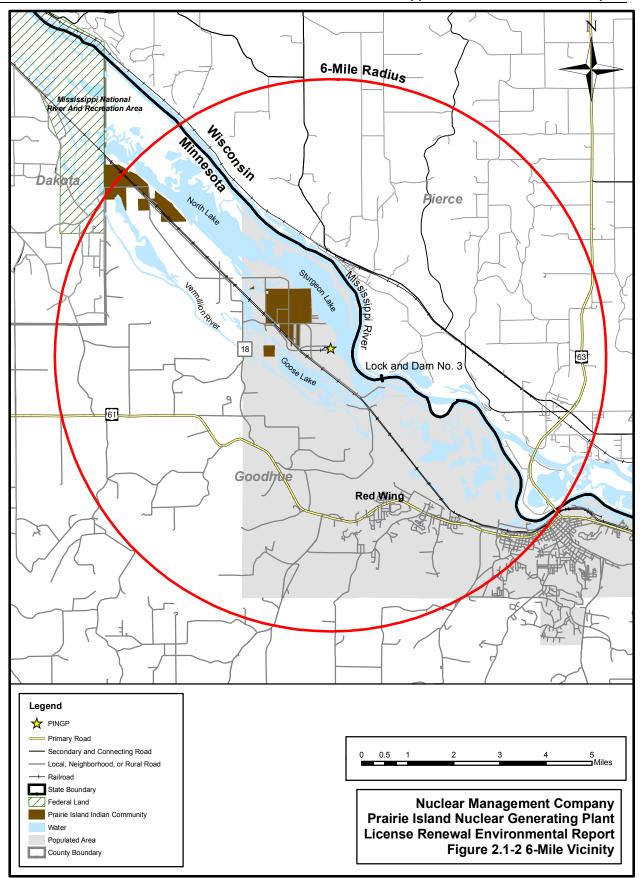
MGY = Million gallons per year

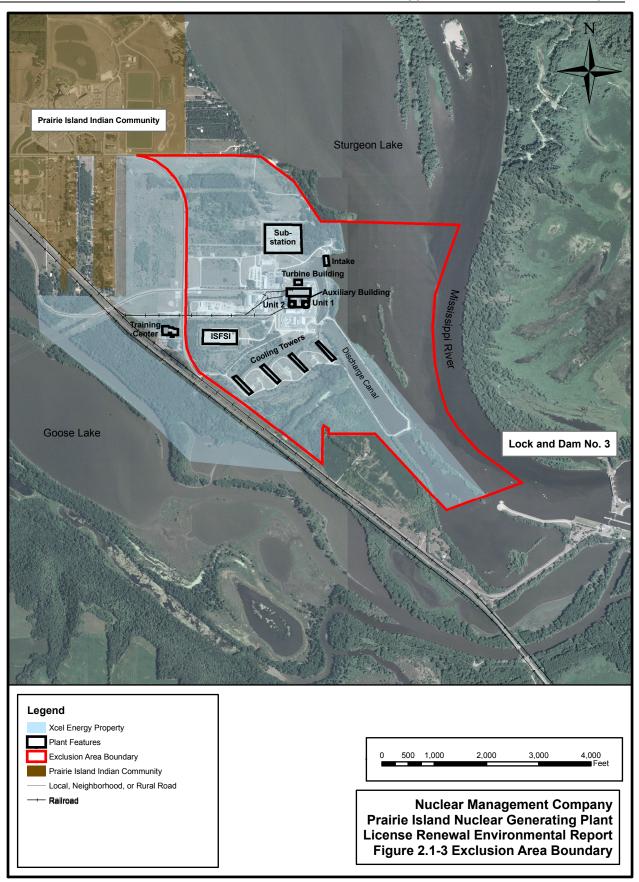
MGD = Million gallons per day

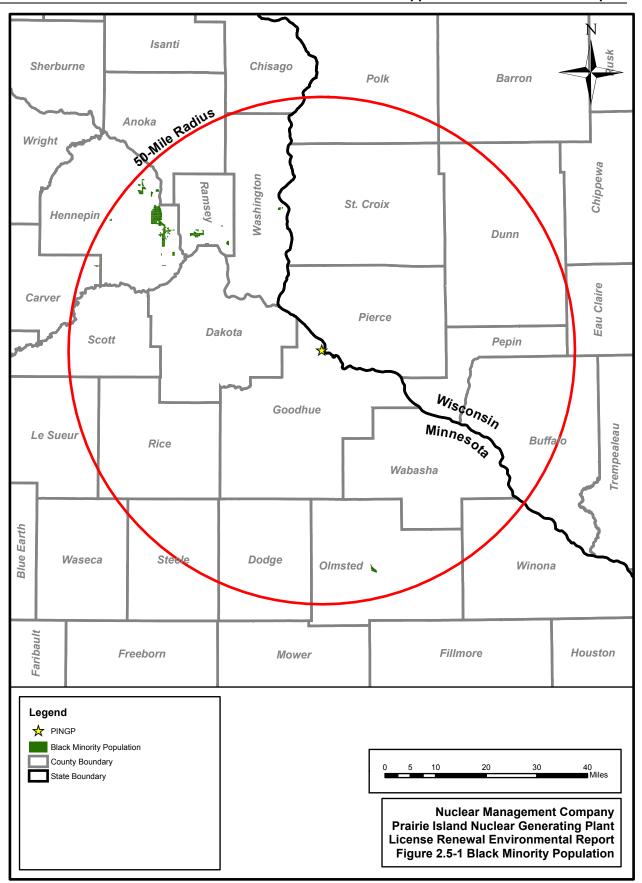
TABLE 2.8-2TRAFFIC STATISTICS FOR MOST LIKELY ROUTES TO THE PINGP SITE

Figure 2.8-1 Locations	Goodhue County Road Segments	Number of Lanes ^a	Mn DOT Road Classification ^a	LOS for Road/Highway Segment ^a	Road/Highway Capacity (vehicles per day) ^a	Average Annual Daily Traffic (AADT) for 2002/2003 ^a
1	County Road 18 (just north of intersection with Sturgeon Lake Road)	2	Rural County Road	N/A	12,000	6,200
2	County Road 18 Segment (south of intersection with Sturgeon Lake Road and north of County Road 19)	2	Rural County Road	N/A	12,000	7,400
3	County Road 18 (between County Road 19 and County Road 46, Mt. Carmel Rd.)	2 plus climbing lane	Rural County Road	N/A	12,000 +	6,000
4	Sturgeon Lake Road	4	Urban Undivided County Road	N/A	20,000	11,500
5	County Road 19 (between County Road 18 and U.S. Highway 61)	2	Rural County Road	N/A	5,000	360
6	County Road 31 (between County Road 18 and U.S. Highway 61)	2	Rural County Road	N/A	10,000	490
7	County Road 7 (just south of intersection with U.S. Highway 61)	2	County Road	N/A	N/A	445
8	U.S. Highway 61 (between County Road 18 and State Road 19)	4	Rural Divided U.S Highway	N/A	40,000	14,400
9	U.S. Highway 61 (between State Road 316 and County Road 19)	4	Rural Divided U.S Highway	N/A	40,000	10,800

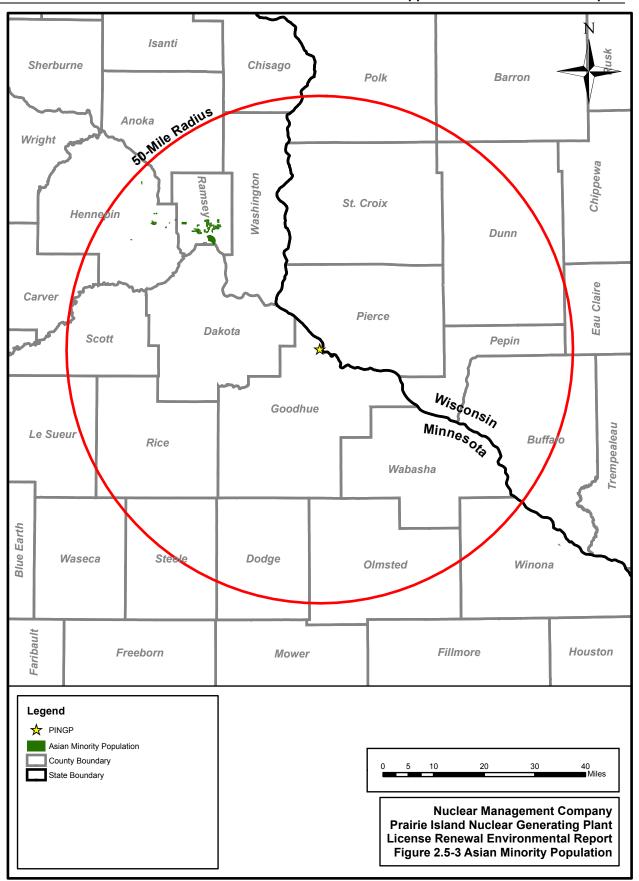

N/A = Not available or not provided

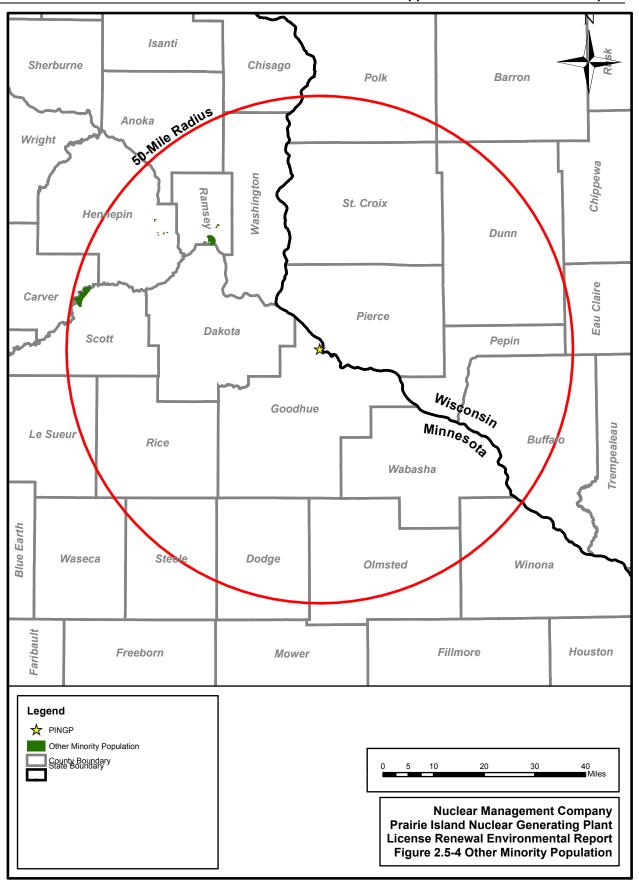

TABLE 2.10-1 SITES LISTED IN THE NATIONAL REGISTER OF HISTORIC PLACES THAT FALL WITHIN A 6-MILE RADIUS OF PINGP

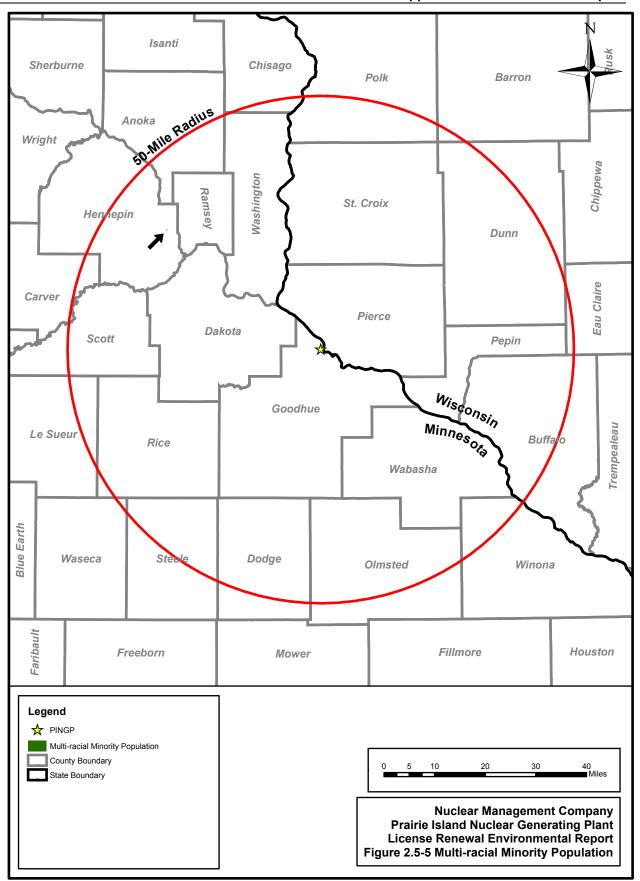

Site Name	Location			
Goodhue County, Minnesota				
Alexander Anderson Estate Tower View	West of Red Wing on U.S. 61, Red Wing			
Barn Bluff	Junction of U.S. 61 and U.S. 63, Red Wing			
Bartron Site	Address restricted, Red Wing			
Bridge No. 12 (Bullard Cr. Bridge)	Twp. Road 43 over Bullard Cr., Red Wing			
Carlson Lime Kiln	E. 5th Street, Red Wing			
Chicago Great Western Depot	W. Main and Fulton Streets, Red Wing			
Cross of Christ Lutheran Church	MN 61, Red Wing			
Diamond Round Barn	MN 61, Red Wing			
District No. 20 School	MN 58, Red Wing			
Fort Sweeney Site	Address restricted, Red Wing			
Fryk (E.J.) Barn	Off MN 61, Red Wing			
Gladstone Building	309 Bush Street, Red Wing			
Hewitt (Dr. Charles) Laboratory	216 Dakota Street, Red Wing			
Hoyt (E.S.) House	300 Hill Street, Red Wing			
Immanuel Lutheran Church	Off MN 58, Red Wing			
Kappel Wagon Works	221 W. 3rd Street, Red Wing			
Keystone Building	409 Main Street, Red Wing			
Lawther (James L.) House	927 W. 3rd Street, Red Wing			
Mandata to Wabasha Military Road, Cannon River Section	Cannon Bottom Road, Red Wing			
Minnesota State Training School	E. 7th Street, Red Wing			
Minnesota Stonewear Company	1997 W. Main Street, Red Wing			
Nelson (Julia B.) House	219 5th Street, Red Wing			
Pratt – Talbott House	706 W. 4th Street, Red Wing			
Red Wing City Hall	W. 4th Street, Red Wing			
Red Wing Iron Works	401 Levee Street, Red Wing			
Red Wing Mall Historic District	Along East and West Avenues and Broadway between 6th St. and levee			
Sheldon Memorial Auditorium	443 W. 3rd St., Red Wing			
Sheldon (T. B.) House	805 W. 4th Street, Red Wing			
Spring Creek Petroglyphs	Address restricted, Red Wing			
St. James Hotel	Bush and Main Streets, Red Wing			
St. James Hotel and Buildings (boundary increase)	Bush and Main Streets, Red Wing			

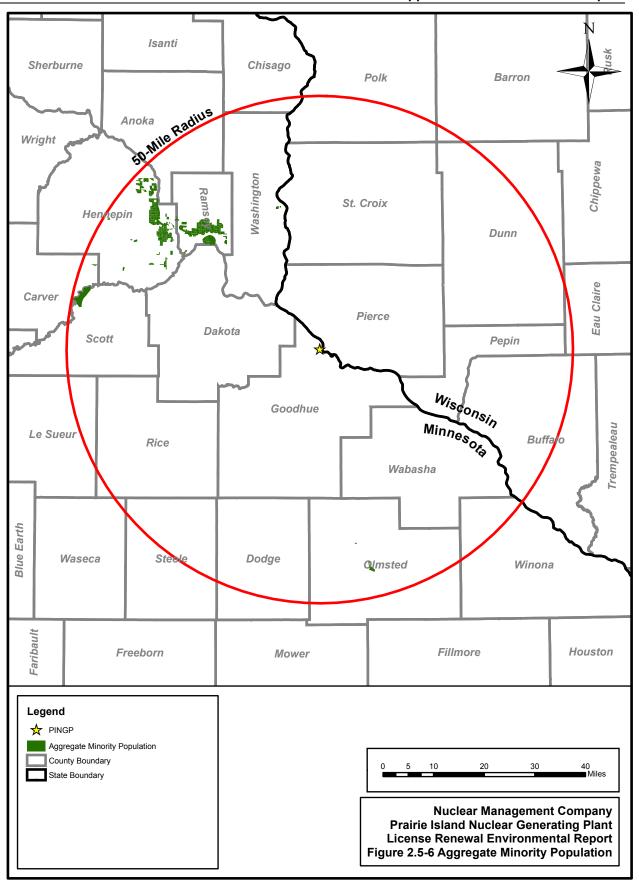

TABLE 2.10-1 (CONTINUED) SITES LISTED IN THE NATIONAL REGISTER OF HISTORIC PLACES THAT FALL WITHIN A 6-MILE RADIUS OF PINGP

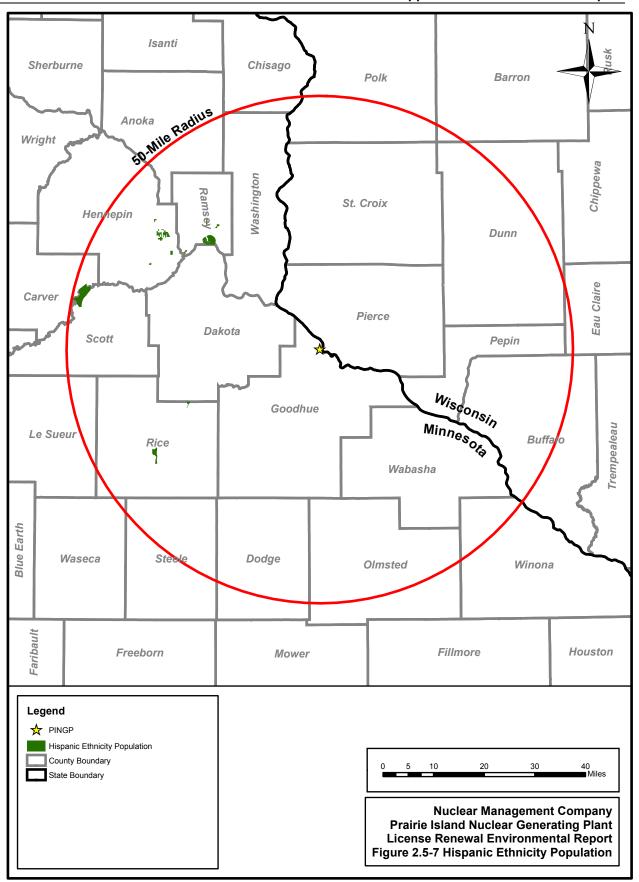

Site Name	Location				
Towne-Akenson House	1121 W. 3rd St., Red Wing				
Vasa Historic District	Off MN 19, Red Wing				
Wallauer Farmhouse	MN 58, Red Wing				
Pierce County, Wisconsin					
Diamond Bluff – Mero Mound Site	Address restricted, Diamond Bluff				
Mero Archaeological District	Address restricted, Diamond Bluff				
Source: NPS 2006c.					

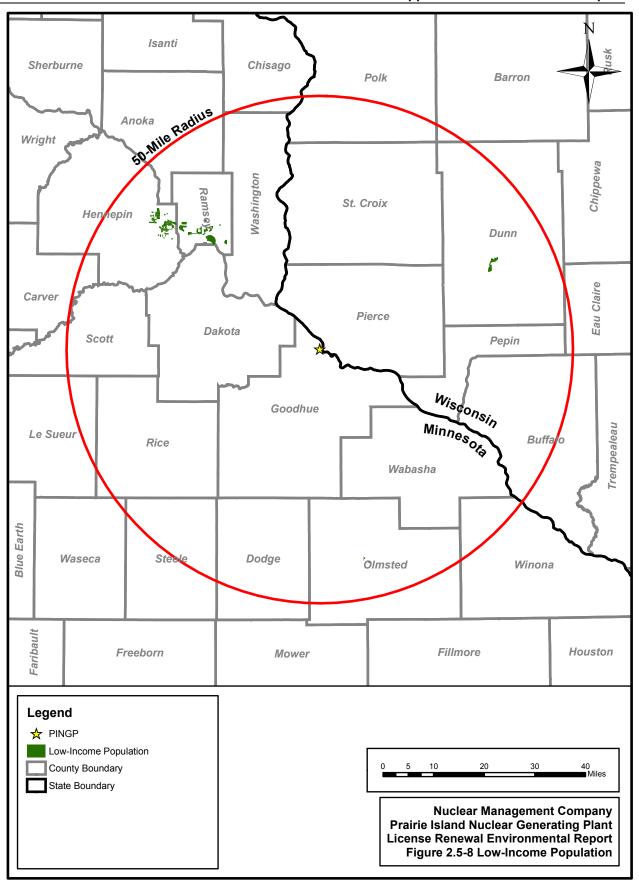


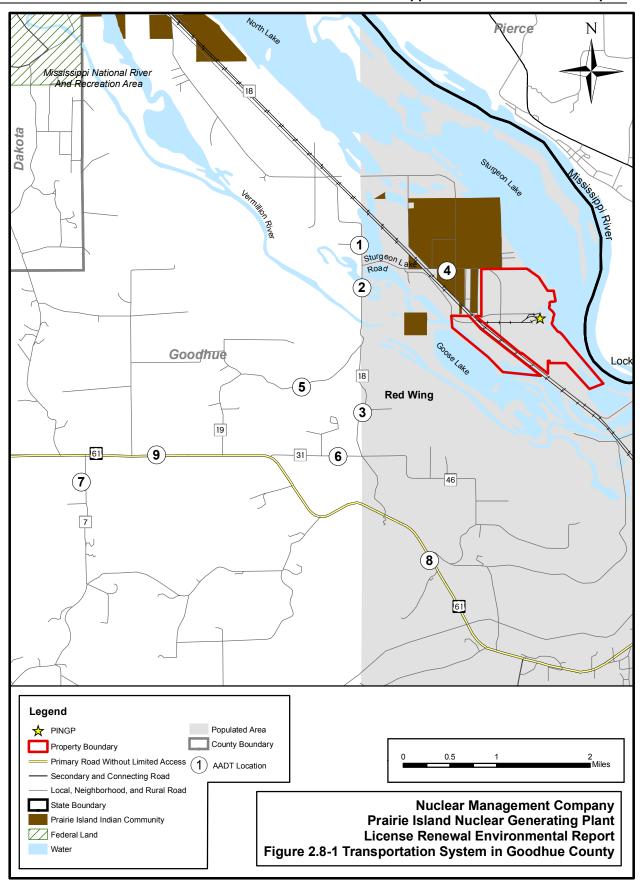












2.12 REFERENCES

<u>Note to reader</u>: This list of references identifies web pages and associated URLs where reference data was obtained. Some of these web pages may no longer be available or their URL addresses may have changed. NMC has maintained hard copies of the information and data obtained from the referenced web pages.

AEC (United States Atomic Energy Commission). 1973. *Final Environmental Statement related to the Prairie Island Nuclear Generating Plant.* Directorate of Licensing, Washington, D.C. May.

- AMC (Association of Minnesota Counties). 2002. "For Your Information. County Revenue." Available online at http://www.mncounties.org/Publications/fyis.htm. Accessed September 25, 2006.
- BALMM (Basin Alliance for the Lower Mississippi in Minnesota). 2001. Lower Mississippi River 2001 Basin Plan Scoping Document. June.
- BEA (Bureau of Economic Analysis). 2007 . CA25N Total full-time and part-time employment by NAICS industry. April.
- Bergland, Britta. 2006 . "Additional Water Data for 2005 for Unpermitted Well." E-mail from Britta Bergland (NMC) to Emily McRee (TtNUS), August 24.
- Bjornstad, Ken. 2006. "Red Wing area LOS Data." E-mail from Ken Bjornstad (Goodhue County) to Gary Gunter (TtNUS). October 5.
- Butler, Robert S. 2002a. Status Assessment Report for the Spectaclecase, Cumberlandia monodonta, occurring in the Mississippi River system (U.S. Fish and Wildlife Service Regions 3, 4, 5, and 6). Ohio River Valley Ecosystem Team, Mollusk Subgroup. December.
- Butler, Robert S. 2002b. *Status Assessment Report for the Sheepnose, Plethobasus cyphyus, occurring in the Mississippi River system (U.S. Fish and Wildlife Service Regions 3, 4, 5, and 6).* Ohio River Valley Ecosystem Team, Mollusk Subgroup. September.

City of Red Wing. 2003. "City History." Available on line http://www.red-wing.org/.

- City of Red Wing, Minnesota and NSP (Northern States Power Company). 2006. Revenue Stabilization Agreement by and between the City of Red Wing, Minnesota and Northern States Power Company d/b/a Xcel Energy. November 27.
- Cowdery, Timothy K. 1999. *Water Resources of the Prairie Island Indian Reservation, Minnesota, 1994-1997, Water-Resources Investigations Report 99-4069.* U.S. Geological Survey in cooperation with the Prairie Island Dakota Community.

- Cox, R.E. (U.S. Army Corps of Engineers). 1972. "Authorization to Evacuate Area." Letter to G. V. Welk (NSP). September 18.
- Dairyland (Dairyland Power Cooperative). 2006. "Alma Site." Available online at http://www.dairynet.com/about/alma.html.
- Dakota County. 1999. *Dakota County 2020 Land Use Policy Plan*. Available online at http://www.co.dakota.mn.us/planning/comprehensive_plan.htm. Accessed September 27, 2006.
- Dakota County. 2005. Dakota County 2020 Environmental and Natural Resource Management Policy Plan, Dakota County Comprehensive Plan. October.
- Davidson-Peterson Associates. 2007a. *The Economic Impact of Expenditures by Travelers on Minnesota's Metro Region and The Profile of Travelers: June 2005 – May 2006*. Kennebunk, Maine.
- Davidson-Peterson Associates. 2007b. *The Economic Impact of Expenditures by Travelers on Minnesota's Southern Region and The Profile of Travelers: June 2005* – *May 2006*. Kennebunk, Maine.
- Davidson-Peterson Associates. 2007c. The Economic Impact of Expenditures by Travelers on Wisconsin Calendar Year 2006: County by County Report. Kennebunk, Maine. April.
- EPA (U.S Environmental Protection Agency). 2006a. "Mississippi River Basin & Gulf of Mexico Hypoxia Upper Mississippi, Background on Upper Mississippi River Basin." Available at www.epa.gov/msbasin/subbasins/upper/index.htm. Accessed on March 27, 2007.
- EPA (U.S. Environmental Protection Agency). 2006b. "Clean Air Interstate Rule." Available at http://www.epa.gov/cair/index.html. May 17.
- EPA (U.S. Environmental Protection Agency). 2006c. "Clean Air Interstate Rule: Minnesota." Available at http://www.epa.gov/cair/mn.html. April 21.
- EPA (U.S. Environmental Protection Agency). 2006d. "Visibility: EPA's Regional Haze Program." Available at http://www.epa.gov/oar/visibility/program.html. August 10.
- EPA (U.S. Environmental Protection Agency). 2006e. "Visibility: List of 156 Mandatory Class 1 Federal Areas." Available at http://www.epa.gov/air/visibility/class1.html. August 11.
- EPA (Environmental Protection Agency). 2006f. "Safe Drinking Water Information System, List of Water Systems in SDWIS for Goodhue and Dakota Counties." July. Available at http://www.oaspub.epa.gov/enviro/sdw_query_v2.get_list. Accessed on September 22, 2006

- EPA (U.S. Environmental Protection Agency). 2006g. "Envirofacts Data Warehouse." Available online at http://www.epa.gov/enviro/. October 12.
- EPA (U.S. Environmental Protection Agency). 2008. "Rush-Vermillion Watershed 07040001." Available at http://www.cfpub1.epa.gov/surf/huc.cfm?huc_code=07040001. Accessed January 17, 2008.
- Faanes, C. 1975. *Ecology of Wintering Bald Eagles Near the Prairie island Nuclear Generating Plant*. Prepared for Northern States Power Company, Minneapolis.

Fredrikson & Byron. 2001. "Significant Law Changes in Minnesota Affecting Real Estate." Available online at http://www.fredlaw.com/articles/realestate/real_01su_msr.html. Accessed September 25, 2006.

- FWS (U.S. Fish and Wildlife Service). 2000. Endangered Species Fact Sheet: Prairie Bush Clover (*Lespedeza leptostachya*). Region 3, Division of Endangered Species, Fort Snelling, Minnesota, April. Available at http://www.fws.gov/midwest/endangered/plants/prairieb.html. Accessed October 19, 2006.
- FWS (U.S. Fish and Wildlife Service). 2004a. Endangered Species Facts: Higgins Eye Pearlymussel. Available at http://www.fws.gov/Midwest/endangered/clams/higginseye/Higgins_fs.html. Accessed January 11, 2007.
- FWS (U.S. Fish and Wildlife Service). 2004b. Endangered Species: Winged Mapleleaf (Quadrula fragosa). Available at http://www.fws.gov/Midwest/endangered/clams/winge_fc.html. Accessed January 10, 2007.
- FWS (U.S. Fish and Wildlife Service). 2006a. "Winona District, Upper Mississippi River National Wildlife and Fish Refuge." Available at http://www.fws.gov/midwest/winona/.
- FWS (U.S. Fish and Wildlife Service). 2006b. "Minnesota Valley National Wildlife Refuge, Refuge Lands." Available at http://www.fws.gov/midwest/minnesotavalley/lands.html.
- FWS (U.S. Fish and Wildlife Service). 2006c. Endangered Species Fact Sheet: Minnesota Dwarf Trout Lily (*Erythronium propullans*). Region 3, Division of Endangered Species, Fort Snelling, Minnesota. Available at http://www.fws.gov/midwest/endangered/plants/dwarftro.html. Accessed October 19, 2006.

- FWS (U.S. Fish and Wildlife Service). 2007a. "Endangered Species in Minnesota, County Distribution of Federally-Listed Threatened, Endangered, Proposed, and Candidate Species." Ecological Services, Fort Snelling, Minnesota. May. Available at http://www.fws.gov/midwest/endangered/lists/minnesot-cty.html. Accessed August 13, 2007.
- FWS (U.S. Fish and Wildlife Service). 2007b. "Endangered and Threatened Wildlife and Plants: Removing the Bald Eagle in the Lower 48 States From the List of Endangered and Threatened Wildlife, Final Rule." *Federal Register, Vol. 72, No. 130, pp. 37346-377372, July 9.* Washington, DC.
- Giese, Brad. 2007. "Re: License Renewal Environmental Review Peer Review." Email from Brad Giese to RaeLynn Jones-Loss. October 11.
- Goodhue County. 2004. 2004 Inventory Document Goodhue County Comprehensive Plan.
- Goodhue County. 2005. *Comprehensive Local Water Management Plan, Goodhue County Minnesota 2005-2010*. Goodhue County Soil and Water Conservation Commission. May 31.
- Goodhue County Land Use Management. 2004. *Goodhue County Comprehensive Plan*. Available online at http://www.co.goodhue.mn.us/otherlinks/compplan/CompPlan_2004.pdf. Accessed October 5, 2006.
- HDR (Henningson, Durham, and Richardson, Inc.). 1978. Section 316(a) Demonstration for the Prairie Island Generating Plant on the Mississippi River near Red Wing, Minnesota. Prepared for Northern States Power Company, Minneapolis. August.
- Hove, A. (Goodhue County Auditor/Treasurer's Office). 2006. "Property Tax Revenue Information for Goodhue County." E-mail to E. N. Hill (TtNUS). Goodhue County Auditor/Treasurer's Office, Goodhue County, Minnesota. September 26.
- Institute for Minnesota Archaeology. 1999a. "The Bartron Site." From Site to Story: the Upper Mississippi's Buried Past. Available on line at http://www.fromsitetostory.org/rwl/rwl.asp.
- Institute for Minnesota Archaeology. 1999b. "Red Wing Locality." From Site to Story: the Upper Mississippi's Buried Past. Available on line at http://www.fromsitetostory.org/rwl/rwlintro.asp.
- Kneisler, J. 1999. "Nicholas Perrot; early Wisconsinite." University of Wisconsin-LaCrosse, International Studies. Available on line at http://www.uwgb.edu/wisfrench/study/research/perrot.htm.

- Knutson, K.L. and V. L. Naef. 1997. *Management Recommendations for Washington Priority Habitats: Riparian*. Washington Department of Fish and Wildlife, Olympia, Washington.
- Kuhl, G. M. 1981. Bald Eagle Observations in the Vicinity of Northern States Power Company's Prairie island Nuclear Generating Plant, October 14, 1980 - January 26, 1981. Northern States Power Company, Environmental Regulatory Activities Department.
- Market Research Partners, Inc. 2002. *Analysis of the Demand for Tax-Credit Family Rental Housing: Dakota County, Minnesota*. Prepared for Dakota County Community Development Agency. December.
- MDEED (Minnesota Department of Employment and Economic Development). 2008. "Community Profiles for Goodhue and Dakota Counties." Available at http://www.mnpro.com. Accessed January 17, 2008.
- MDA (Minnesota Department of Administration). 2002. "Minnesota Population Projections 2000-2030." Minnesota State Demographic Center. Available online at http://www.demography.state.mn.us/index.html. Accessed September 21, 2006.
- MDE (Minnesota Department of Education). 2007. "Levy Limitation and Certification Reports." Available online at http://app.education.state.mn.us/MFRSystem/reportcategory.do?districtNumber=025 6&districtType=01&districtName=RED%20WING%20PUBLIC%20SCHOOL%20DIS TRICT. Accessed July 31, 2007.
- MDH (Minnesota Department of Health). 2006. "Site-Specific Meal Advice for Tested Lakes and Rivers." Available on line at http://www.health.state.mn.us/divs/eh/fish/eating/sitespecific.html.
- Miller, Andrew C. and Barry Payne. 2007. *A Re-examination of the endangered Higgins eye pearlymussel Lampsilis higginsii in the upper Mississippi River, USA.* Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. September 4.
- Minnesota Historical Society. 2006. "Historic Fort Snelling: A Brief History of Fort Snelling." Available on line at http://www.mnhs.org/places/sites/hfs/history.html.
- Minnesota House of Representatives. 2003. Nuclear Energy and Xcel Energy's 2002 Resource Plan. Research Department. January.

Minnesota Indian Affairs Council. 2006. "Prairie Island Community."

Minnesota Legislative Reference Library. 2006. Resources on Minnesota Issues, Nuclear Waste Storage in Minnesota. Available online at http://www.leg.state.mn.us/Irl/issues/prairieisland.asp. October.

- MN DNR (Minnesota Department of Natural Resources). 2005a. "DNR Water Appropriation Permits, Active Permits by County." June 23. Available at www.dnr.state.mn.us/waters/watermgmt_section/appropriations/wateruse.html. Accessed September 25, 2006.
- MN DNR (Minnesota Department of Natural Resources). 2005b. "Frontenac State Park." Available online at http://files.dnr.state.mn.us/maps/state_parks/spk00160_winter.pdf.
- MN DNR (Minnesota Department of Natural Resources). 2007a. "Letter from L.A. Joyal (MN DNR Natural Heritage and Nongame Research Program) to J. Holthaus (NMC) responding to request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant (license renewal) T113N R15W Sections 4 & 5, Goodhue County." June 15.
- MN DNR (Minnesota Department of Natural Resources). 2007b. "Letter from L. Joyal (MN DNR Natural Heritage and Nongame Research Program) to J. Holthaus (NMC) responding to request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant – Transmission Lines (license renewal) Scott, Dakota, Goodhue, and Washington Counties." August 9.
- MOU (The Minnesota Ornithologists' Union). 2006. University of Minnesota, Minneapolis, Minnesota. Species Occurrence Maps; All Seasons; Ducks, Geese, Swans. Available at http://moumn.org/cgibin/occurrence.pl?group=ducks&season=all. Accessed October 15, 2006.

MPCA (Minnesota Pollution Control Agency). 2006. *303d List of Impaired Waters*. Available at www.pca.state.mn.us/water/tmdl/tmdl-303dlist.html. Accessed on August 15, 2007.

- MRBDC (Minnesota River Basin Data Center. 2001. "State of the Minnesota River" (Executive Summary). Minnesota River Basin Data Center, Minnesota State University, Mankato, MN.
- Mussel Coordination Team. 2005. Status of Implementation of Higgins Eye Pearlymussel (Lampsilis higginsii) Reasonable and Prudent Alternatives and Reasonable and Prudent Measures and Winged Mapleleaf Reasonable and Prudent Measures. Prepared by Mussel Coordination Team (U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, National Park Service, Minnesota Dept. of Natural Resources, Wisconsin Dept. of Natural Resources, and Illinois Dept. of Natural Resources). November.
- NMC (Nuclear Management Company). 2007. Prairie Island Nuclear Generating Plant Updated Safety Analysis Report. Revision 29. May 4.
- NPS (National Park Service). 2006a. "Mississippi National River and Recreation Area, Plan Your Visit." Available at http://www.nps.gov/miss/planyourvisit/index.htm.

NPS (National Park Service). 2006b. "Saint Croix National Scenic Riverway, Plan Your Visit." Available at http://www.nps.gov/sacn/planyourvisit/index.htm.

NPS (National Park Service). 2006c. "National Register Information System (NRIS) database: index by state and county." Accessed September 28, 2006.

- NRC (U.S. Nuclear Regulatory Commission). 1996. Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS). Volumes 1 and 2. NUREG-1437. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 2004. "Procedural Guidance for Preparing Environmental Assessments and Considering Environmental Issues." Appendix D. NRR Office Instruction No. LIC-203, Revision 1. May 24.
- NSP (Northern States Power Company). 1972. Prairie Island Nuclear Generating Plant Units 1 and 2 Environmental Report Supplement Number 1. June 7.
- NSP (Northern States Power Company). 2001. 2000 DNR Annual Report of Water Use. January 30.
- NSP (Northern States Power Company). 2002. 2001 DNR Annual Report of Water Use. January 28.
- NSP (Northern States Power Company). 2003. 2002 DNR Annual Report of Water Use. January 28.
- NSP (Northern States Power Company). 2004. 2003 DNR Annual Report of Water Use. January 16.
- NSP (Northern States Power Company). 2005. 2004 DNR Annual Report of Water Use. January 31.
- NSP (Northern States Power Company). 2006. 2005 DNR Annual Report of Water Use. February 15.
- Phillips, Schmid, and Underhill. 1982. *Fishes of the Minnesota Region.* University of Minnesota Press. Minneapolis.
- PIIC (Prairie Island Indian Community). Undated. Brochure titled, "Transformation of an Island." Prairie Island Indian Community. Welch, Minnesota.
- PIIC (Prairie Island Indian Community). 2008. Letter from PIIC Tribal Council to M. Wadley responding to request for New and Significant Information regarding license renewal of the Prairie Island Nuclear Generating Plant. February 7.

- Pierce County. Undated. *Pierce County "Smart Growth" Comprehensive Plan.* Phase 1: Data Collection. Available online at http://www.co.pierce.wi.us/Land%20Management/Comprehensive%20Plan/Compre hensive plan 1.html. Accessed September 28, 2006.
- Schlichting, K. (City of Red Wing). 2007. "Property Tax Revenue Information for the City of Red Wing." E-mail to E. N. Hill (Tetra Tech NUS). City of Red Wing Finance Office, City of Red Wing, Minnesota. March 28.
- Schmidt, Konrad. 2004. "Paddlefish (*Polyodon spathula*) Survey Results in the Mississippi River from St. Paul to Red Wing." Minnesota Department of Natural Resources, Division of Ecological Services. April 26.
- Schmidt, Konrad. 2005. "The Distribution and Status of Paddlefish (*Polyodon spathula*) in Minnesota." Available online at http://nativefish.org/articles/PallidfishDistrobution.php. Accessed January 9, 2008.
- Scullin, Michael. 1996. Southern Minnesota Prehistory. Cahokia State Agricultural Extension Office, Occasional Paper No. 1. Available on line at http://www.mnsu.edu/emuseum/offices/scullin/S._MN_Prehistory_980219.html.
- Stalmaster, M. 1987. The Bald Eagle. Universe Books. New York.
- State of Minnesota. 2001. "Indian Culture, Dakota, Ojibwa." From State of Minnesota Yellow Pages Directory. Available on line at http://www.yellowpages.state.mn.us/is/yellowpages.nsf/58ff101d11e1f3d786256b29 00205e6a/8be05ad74e86816886256b1f005a0013?OpenDocument.
- State of Minnesota. 2006. "Goodhue County. Red Wing, Minnesota." Available online at http://www.osa.state.mn.us/default.aspx?page=rptaud05goodhuecountyfsml. Accessed August 16, 2007.
- State of Wisconsin. 2000. *Wisconsin's Capacity Development Strategy*. Wisconsin Department of Natural Resources, Bureau of Drinking Water and Groundwater. August.
- State of Wisconsin. 2006. *Pierce County Workforce Profile*. Department of Workforce Development, Office of Economic Advisors. December.
- The 106 Group. 2008. *Cultural Resources Assessment for the Prairie Island Nuclear Generating Plant, Goodhue County, Minnesota.* Submitted to Nuclear Management Company. January.
- Treasure Island Resort and Casino. Undated. "History: Offers Expansion." Available online at http://www.treasureislandcasino.com/offers-expansion. Accessed December 13, 2007.

- TtNUS (Tetra Tech NUS, Inc.). 2006a. *Calculation Package for Population Density and Environmental Justice included in ER Section 2.5 Regional Demography*. Aiken, South Carolina. September 5.
- TtNUS (Tetra Tech NUS). 2006b. *Calculation Package Water Use 2000 through 2005*. Prepared by Gary Gunter. August.
- USACE (U.S. Army Corps of Engineers). 2004a. "Mississippi Locks and Dams." Available at www.mvp.usace.army.mil/navigation/default.asp?pageid=145. Accessed on April 10, 2007.
- USACE (U.S. Army Corps of Engineers). 2004b. Report of 2003 relocation of sub-adult Lampsilis higginsii reared in cages from the Mississippi and St. Croix rivers; Conducted under Endangered Species permit TE 023308-1. Reporting Biologists: D. Kelner, M. Davis, G. Wege. January 5.
- USACE (U.S. Army Corps of Engineers). 2006a. *Final Integrated General Reevaluation Report and Environmental Impact Statement for Lock and Dam 3 Mississippi River Navigation Safety and Embankments*. St. Paul District, St. Paul, Minnesota. November.
- USACE (U.S. Army Corps of Engineers). 2006b. "Navigation Overview. St. Paul District." Available online at http://www.mvp.usace.army.mil/navigation/. June.
- USCB (U.S. Census Bureau). 1995a. Minnesota. "Population of Counties by Decennial Census: 1900 to 1990." Available online at http://www.census.gov/population/cencounts/mn190090.txt. Accessed September 21, 2006.
- USCB (U.S. Census Bureau). 1995b. Wisconsin. Population of Counties by Decennial Census: 1900 to 1990. Available online at http://www.census.gov/population/cencounts/wi190090.txt. Accessed September 21, 2006.
- USCB (U.S. Census Bureau). 2000a. "P1. Total Population [1] Universe: Total Population. Data Set: Census 2000 Summary File 1 (SF1) 100-Percent Data." Available online at http://factfinder.census.gov/. Accessed September 21, 2006.
- USCB (U.S. Census Bureau). 2000b. "Table DP-1. Profile of General Demographic Characteristics: 2000." Accessed at http://www.factfinder.com.
- USCB (U.S. Census Bureau). 2003. "Table 7. Population in Combined Statistical Areas (CSAs) and Their Component Metropolitan and Micropolitan Statistical Areas in Alphabetical Order and Numerical and Percent Change for the United States and Puerto Rico: 1990 and 2000."
- USDA (U.S. Department of Agriculture). 2004a. 2002 Census of Agriculture. Minnesota State and County Data. Volume 1, Geographic Area Series Part 23. AC-02-A-23. June.

- USDA (U.S. Department of Agriculture). 2004b. 2002 Census of Agriculture. Wisconsin State and County Data. Volume 1, Geographic Area Series Part 49. AC-02-A-49. June.
- U.S. Department of Labor. 2006. "Local Area Unemployment Statistics." Bureau of Labor Statistics. Available at http://data.bls.gov. Accessed August 10, 2007.
- USGS (U.S. Geological Survey). 2006. *Water Resources Data, Minnesota, Water Year* 2005, Water Data Report MN-05-01, April 5.
- Vaughn, Peter W. 1997. *Winged Mapleleaf Mussel (Quadrual fragosa) Recovery Plan.* Prepared for Region 3, U.S. Fish and Wildlife Service. June 25.
- WDA (Wisconsin Department of Administration). 2004. "Final Population Projections for Wisconsin Counties by Sex: 2000 - 2030." Demographic Services Center. Available online at http://www.doa.state.wi.us/. Accessed September 21, 2006.
- WDNR (Wisconsin Department of Natural Resources). 2006. "Public Water Supply Systems for Pierce County." Available at http://www.promtex00.dnr.state.wi.us/pls/inter1/pws2\$ws_web_dist_sys.QueryView ByKey?P_. Accessed September 26.
- WDNR (Wisconsin DNR). 2007. "Natural Heritage Inventory County Maps." Available on line at http://dnr.wi.gov/org/land/er/nhi/CountyMaps/index.htm.
- Welk, G. V. (Northern States Power Company). 1972. "Letter to R.E. Cox (U.S. Army Corps of Engineers)." August 18.
- Willis, J. W. 1910. "Louis Hennepin." From 1910 edition of Catholic Encyclopedia. Available on line at http://www.newadvent.org/cathen/07215c.htm.
- Willis, J. W. 1914. "Minnesota." From 1914 edition of Catholic Encyclopedia. Available on line at http://www.newadvent.org/cathen/10326c.htm.
- Wisconsin Department of Workforce Development. 2004. *Pierce County Workforce Profile.* Office of Economic Advisors. November.
- WIPSC (Wisconsin Public Service Commission). 2006. "Annual Reports for 2005, for Municipal Waterworks in Pierce County." Available at http://www.psc.wi.gov/apps/annlreport/content/munilist,aspx. Accessed October 3, 2006.
- Xcel Energy. 2003 . Xcel Energy's 2002 Progress Report Under the Minnesota Mercury Initiative Voluntary Agreement. November 6.
- Xcel Energy. 2006. "Power Generating Facilities Minnesota." Available at http://www.xcelenergy.com/XLWEB/DA/0,3080,1-1-1_1875_4797_4014-3490-0_0_0-0,00.html.

Xcel Energy. 2007. *Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program 2006 Annual Report*. Prepared for Northern States Power (d/b/a Excel Energy) by Xcel Energy Environmental Services, Water Quality Department.

3.0 PROPOSED ACTION

NRC

"...The report must contain a description of the proposed action, including the applicant's plans to modify the facility or its administrative control procedures.... This report must describe in detail the modifications directly affecting the environment or affecting plant effluents that affect the environment...." 10 CFR 51.53(c)(2)

Nuclear Management Company (NMC) proposes that the U.S. Nuclear Regulatory Commission (NRC) renew the operating licenses for Prairie Island Nuclear Generating Plant (PINGP) Units 1 and 2 for the maximum period currently allowable under the Atomic Energy Act and NRC's regulations (10 CFR 54.31). This action would provide the option to operate PINGP up to 20 years beyond the current operating license terms expiring on August 9, 2013 (Unit 1) and October 29, 2014 (Unit 2). Renewal would thereby enable the State of Minnesota, Xcel Energy and its subsidiary companies, and other participants in the wholesale power market to rely on PINGP to meet future electric power needs through the period of extended operation of these generating units.

In the following sections of Chapter 3, NMC presents a description of the PINGP site and activities relevant to assessments presented in Chapter 4 of this Environmental Report (ER). Section 3.1 provides a general description of plant design and operating features. Sections 3.2 through 3.4 describe potential changes to support the renewed PINGP Unit 1 and PINGP Unit 2 operating licenses.

3.1 GENERAL PLANT INFORMATION

General information about the design and operational features of PINGP from an environmental impact standpoint is available in several documents. Among the most comprehensive sources are the Final Environmental Statement (FES) prepared by the NRC's predecessor agency, the U.S. Atomic Energy Commission (AEC) and the Updated Safety Analysis Report (USAR). In 1973, the AEC issued an FES that analyzed impacts of constructing and operating a two-unit plant with a cooling towerbased heat dissipation system (AEC 1973). In compliance with NRC regulations, NMC routinely updates the USAR to reflect current plant design and operating features (NRC 1996).

The major structures, housed facilities, and nearby areas are shown in Figure 3.1-1. Major site buildings include the following:

- Unit 1 and Unit 2 containment buildings that house the nuclear steam supply systems including the reactors, steam generators, reactor coolant pumps, and related equipment;
- The auxiliary building that houses major components of the primary component cooling water system, boric acid storage tanks and pumps, and other safety-related equipment;
- The turbine building, where the turbine generators, main condensers, turbine plant heat exchangers, and related equipment are housed;
- Other structures and facilities of interest within the site boundary include the PINGP substation, intake and plant screenhouses, intake and discharge canals, Independent Spent Fuel Storage Installation (ISFSI), four mechanical draft cooling towers, and emergency diesel generators.

3.1.1 REACTOR AND CONTAINMENT SYSTEMS

PINGP is a two-unit plant utilizing pressurized water reactors. The plant was originally constructed with two pressurized light-water reactor nuclear steam supply systems and turbine generators designed and manufactured by Westinghouse Electric Company (Scientech 2005). Initial fuel loading was completed in 1973 for Unit 1 and 1974 for Unit 2. Following a period of testing, full commercial operation began December 16, 1973 for Unit 1 under Facility Operating License Number DPR-42, and December 21, 1974 for Unit 2 under Facility Operating License Number DPR-60 (NMC 2007, p. 1.1-1).

The containment for each unit consists of two systems. The primary containment is a cylindrical steel pressure vessel with a hemispherical dome and ellipsoidal bottom designed to withstand a loss-of-coolant accident. The secondary containment is a cylindrical shield building constructed of reinforced concrete which serves as radiation shielding for normal operation and for the loss-of-coolant condition. The shield building also acts as a secondary containment structure for control of containment leakage

(NMC 2007). The shield buildings are cylindrical (205 feet high by 120 feet in diameter), each capped with a hemispheric dome (AEC 1973, p. III-1).

PINGP has a design rating of 1650 megawatts-thermal (MWt) per reactor, which corresponds to a gross electrical output of 575 megawatts-electrical (MWe). Each reactor is capable of an ultimate thermal power output of 1721.4 MWt, and all steam and power conversion equipment, including the turbine generator, has the capability to generate a maximum calculated gross unit output of 592 MWe. All plant safety systems, including containment and engineered safeguards, were designed and originally evaluated for operation at the maximum power level of 1721.4 MWt (NMC 2007, p. 1.1-2). Unit 1's original Westinghouse steam generators were replaced with Framatome-ANP designed generators in 2004 (AREVA 2006).

3.1.2 NUCLEAR FUEL

PINGP is licensed for low-enriched uranium-dioxide fuel with enrichments to a nominal 5.0 percent by weight uranium-235 and an average fuel burn-up for the peak rod that does not exceed 62,000 megawatt days per metric ton uranium (MWd/MTU). The uranium-dioxide fuel is in the form of high-density ceramic pellets. Fuel rods used in the reactors consist of Zircaloy with fuel pellets stacked inside and sealed with welded end plugs. The fuel rods are fabricated into assemblies designed for loading into the reactor core. The PINGP reactor cores contain 29 control rod assemblies and 121 fuel assemblies. Refueling of the reactors is performed every 20 months with approximately 40 percent of the fuel being replaced during each refueling outage.

PINGP has two spent fuel pools, a larger one to store spent fuel and a smaller one intended primarily to handle a spent fuel shipping cask. New racks were installed in 1981, and resulted in the current pool storage capacity of 1,386 assemblies (MEQB 1991, Appendix D).

The NRC has licensed an Independent Spent Fuel Storage Installation (ISFSI) at PINGP, allowing up to 48 casks. Prior to 2003, State law limited the authorized use to 17 casks, but new State law enacted in 2003 now allows use of up to the 48 casks permitted by the NRC. Currently, there are 24 casks installed in the ISFSI (Minnesota Legislative Reference Library 2006).

3.1.3 COOLING AND AUXILIARY WATER SYSTEMS

3.1.3.1 Water Use Overview

Water for condenser cooling is withdrawn from the Mississippi River. Water used for service water cooling, screen wash, irrigation, and domestic water supply is groundwater withdrawn from on-site wells. Station surface water and groundwater withdrawals are governed by water appropriation limits set by the Minnesota Department of Natural Resources (MN DNR). Under Water Appropriations Permit Number 690171, PINGP may withdraw a maximum of 1,200 gallons per minute (gpm) of groundwater from two on-site wells for the domestic water system. A third well

provides domestic and irrigation water for the Training Center. Water Appropriations Permit Number 690172 limits withdrawal of surface water from the Mississippi River for condenser cooling to 630,000 gpm.

The FES related to the Prairie Island Nuclear Generating Plant (AEC 1973) describes the original configuration of the plant's cooling water systems, which were extensively modified in the early 1980s. As designed and initially operated, the plant withdrew cooling water from the Mississippi River (Sturgeon Lake) via a 750-foot-long intake canal that extended from the river shoreline to the screen house, where a trash rack removed large debris and four (3/8-inch mesh) traveling screens (per unit) removed fish and smaller debris. A skimmer wall (barrier) at the mouth of the intake canal prevented large floating objects from entering the intake canal. The plant's heated discharge flowed into a discharge basin, from which it was (depending on plant operating mode) either pumped to the cooling towers or discharged to the river via an 800-foot-long canal. The plant could be operated in any one of three modes: open cycle (once-through flow, with no cooling towers in operation), helper cycle (once-through flow with cooling towers in operation), and closed-cycle (recirculation of up to 95 percent of the cooling water flow).

The plant's cooling system was heavily modified in the early 1980s to reduce impacts of plant operation on aquatic communities (Stone & Webster 1983). A new intake screenhouse with improved traveling screens was constructed across the mouth of intake canal. A fish return line was installed to convey organisms washed from the traveling screens back to the Mississippi River. A new, half-mile-long discharge canal with a north-south orientation was created by building a 2,350-foot-long dike that paralleled the river shoreline. A new discharge structure was built at the southern terminus of the canal, and connected to the river's edge by four underground discharge pipes. The new submerged jet discharge was intended to promote rapid mixing of the heated effluent, keep fish out of the discharge canal, and prevent recycling of warm discharge water (Stone & Webster 1983). The intake and discharge modifications were completed in 1983.

3.1.3.2 Circulating Water System

As previously discussed, PINGP withdraws water from the Mississippi River for its circulating water (condenser cooling) system. Key components of the circulating water system and closely related cooling tower system are the intake screenhouse, plant screenhouse, circulating water pumps, condensers, discharge structure, mechanical draft cooling towers, discharge canal, and discharge structure, shown in Figure 3.1-1.

The PINGP cooling water intake system is designed to minimize impacts to fish populations. Aquatic organisms on the traveling screens and in the attached buckets are lifted to the level of the fish sprays and washed off into a fish collection trough within four minutes. Removal of the fish and organisms is accomplished on the upward travel side with a low pressure [10 pounds per square inch (psi)] inside spray when fine mesh screen is used and with a low pressure (20 psi) outside spray when coarse mesh screen is used. Debris is removed by a backside interior high pressure (50 psi for fine

mesh and 100 psi for coarse mesh) spray system. In spring and summer (April 1 – August 31), traveling screens are equipped with fine mesh (0.5 millimeter) panels (Xcel Energy 2006a). For the remainder of the year, conventional screens with coarse mesh (3/8 inch) panels are employed. Traveling screens can be operated over a range of speeds, depending on panel mesh size and debris loading. The pump supplying the 50 psi fine mesh spray is run at a higher speed to provide a 125 psi spray to supplement the 100 psi coarse mesh spray during periods of high trash loading. The separate fish and debris troughs combine to form a common trough. The fish and debris are then returned to the river through a buried pipe. The pipe discharges at a point approximately 1.500 feet south of the intake screenhouse. Transferring the fish downriver, outside of the influence of the cooling water intake, serves to prevent reimpingement of weakened or disoriented fish. The pipe is designed for velocities between 3 and 5 feet per second with higher velocities encountered for short durations. All internal surfaces of the pipe are smooth to preclude abrasion damage. The pipe discharges below the mean water elevation at a depth which ensures submergence below any ice cover.

River water flows into the intake screenhouse through eight (18.5 foot by 11.2 foot) intake bays, each equipped with a trash rack, a 10-foot-wide traveling screen, and high/low pressure wash systems (Xcel Energy 2006a). Bypass gates permit a continuous flow in the event that traveling screens become clogged with debris (Stone & Webster 1983). After moving through the traveling screens, circulating water flows down the intake canal to the plant screenhouse, where the circulating water pumps are housed. Four circulating water pumps (two per nuclear unit) supply water to the condensers for cooling. Each pump has a design capacity of 147,000 gpm, meaning the circulating water flow is approximately 294,000 gpm per unit (NMC 2007, pg. 11.5-1) and the total circulating water flow is approximately 588,000 gpm. Smaller volumes of water are also withdrawn for its cooling water (i.e., service water) system, which supplies cooling water to a variety of feedwater pumps, air compressors, and small heat exchangers in the plant.

3.1.3.3 Circulating Water System Operating Modes

After passing through the condensers, cooling water is piped to a discharge basin from which it may be (a) pumped to the cooling towers (closed-cycle or helper cycle) or (b) allowed to flow to the discharge canal (open cycle) via the distribution basin. If it is pumped to the cooling towers, the cooling tower outfall may be routed back to the intake canal (closed cycle) or flow to the discharge canal (helper cycle). The distribution basin receives circulating water flow from the discharge basin during open-cycle operation and from the cooling tower return canal during closed-cycle operation. During transition periods (from closed cycle to open cycle), the distribution basin receives flow from both sources.

The cooling tower system is comprised of four towers, fans, water distribution headers and basins. Each tower has one cooling tower pump and is made up of 12 cells grouped together (a bank). The cooling tower pumps intake water from the discharge basin and discharge into individual distribution pipes to the top of the cooling towers. The pumps are vertical, dry pit pumps mounted so that the casing will be flooded with the water in the discharge basin at normal level. The pump motors are mounted on, and supported by, the pump. The intakes to the pumps are submerged to prevent the intake of air from any cause. Spray nozzles at the top of the cooling towers break-up the water stream into small streams which drop by gravity through a maze of "fill" to a basin at the base of the towers. Fans draw air up through the streams of water and the heat of the water is carried into the atmosphere by the airstream. From the cold water basin at the bottom of the towers, the water flows through the cooling tower return canal to the distribution basin (NMC 2007). The towers are designed to accommodate the full circulating water flow of the plant and are capable of removing up to 96 percent of the waste heat generated by plant operation (AEC 1973).

Operation of PINGP's circulating water system is governed by spring and fall "trigger points." The spring trigger point is defined as the point in time that the daily average ambient river temperature increases to 43 degrees Fahrenheit (F) or above for five consecutive days, or April 1, whichever occurs first. The fall trigger point is the point at which the daily average upstream ambient river temperature falls below 43 degrees F for five consecutive days. From the spring trigger point through the fall trigger point, PINGP is required to operate the cooling towers as necessary to meet the following requirements: (1) the temperature of the receiving water immediately below Lock and Dam No. 3 can not be raised by more than 5 degrees F above ambient, (2) the cooling water discharge can not exceed a daily average temperature of 86 degrees F, and (3) if the daily average ambient river temperature reaches 78 degrees F for two consecutive days, all cooling towers shall be operated to the maximum extent practicable (NPDES Permit No. MN0004006).

From the fall trigger point through March 31, the temperature of the receiving water immediately below Lock and Dam No. 3 can not be raised above 43 degrees F for an extended period of time. If the receiving water temperature exceeds this 43-degree F limit for two consecutive days, NMC must notify the Commissioner and the MN DNR. The Commission may require NMC to operate the cooling towers or take alternative action to meet the 43-degree F criterion (NPDES Permit No. MN0004006).

PINGP is equipped with a deicing system to prevent the formation of ice on trash racks, traveling screens, and bypass gates (Stone and Webster 1983). Warm water is pumped from the discharge canal to the intake screenhouse via a 30-inch-diameter pipe buried below the frostline. The warm water is discharged at the bottom of the approach canal, directly in front of the intake screenhouse.

3.1.3.4 Biofouling and Scale Control

PINGP uses a cleaning system to mechanically remove biofouling micro-organisms from circulating water piping. The PINGP NPDES permit provides for periodic chlorine/bromine use in the circulating water system to treat for pathogenic amoeba (see Section 4.12) and zebra mussels (NPDES Permit No. MN0004006). The cooling

water system (service water system), however, is treated with oxidizing biocides (chlorine and bromine) to prevent the growth of biofouling micro-organisms. The current PINGP NPDES permit limits the release of total residual bromine and total residual chlorine at Outfall SD 001 (combined circulating water and cooling water discharge) to 0.001 and 0.04 milligrams per liter (mg/L), respectively, during continuous application and 0.05 and 0.2 mg/L, respectively, during intermittent application (NPDES Permit No. MN0004006).

3.1.3.5 Domestic Water Supply and Sanitary Wastewater Treatment

NMC operates three groundwater wells to meet the domestic water needs of PINGP. Two main wells, each equipped with 300-gpm pumps, supply the majority of the domestic water and are permitted to withdraw a total of 50 million gallons per year. The actual usage for these wells averaged approximately 60 gpm for the years 2000 through 2005. A third well provides domestic and irrigation water for the Training Center. This well is equipped with an 80-gpm pump and is permitted to withdraw 4.7 million gallons per year (NSP 2006). Actual use for the years 2000 through 2005 averaged 4 gpm (TtNUS 2006).

The plant's sanitary wastes are directed to seven septic systems, which are pumped on varying schedules. The systems are designated as the Plant Septic (consisting of three tanks), the Warehouse 1 Holding Tank, the Guardhouse Septic, the Office Complex, the Fabrication Shop, the New Administration Building, the Environmental Lab, and the Prairie Island Training Center (Xcel Energy Undated).

3.1.4 RADIOACTIVE WASTE TREATMENT SYSTEMS

3.1.4.1 Liquid Radioactive Waste Systems

Radioactive liquids entering the Waste Disposal System are collected in intermediate holding tanks for determination of subsequent treatment. If liquids are to be released, they are first sampled and analyzed to determine the quantity of radioactivity and if it meet acceptable release criteria. The liquid wastes are then processed as required for reuse or released under controlled conditions and in accordance with applicable limits of 10 CFR 20 and the design objectives of Appendix I to 10 CFR 50 (NMC 2007).

The bulk of the radioactive liquid drained from the Reactor Coolant System is processed by the Chemical and Volume Control System recycle train, and retained inside the plant. This minimizes liquid input to the Waste Disposal System which processes relatively small quantities of generally low activity level wastes. The processed water from the waste disposal system, from which the majority of the radioactive material has been removed, may be reused or released through a monitored line to the discharge canal downstream of the cooling towers (NMC 2007).

3.1.4.2 Gaseous Radioactive Waste Systems

The gaseous radwaste system is designed to process and control the release of gaseous radioactive effluents to the site environs so that the offsite radiation dose rate does not exceed the limits specified in 10CFR20 and the design objectives of Appendix 1 to 10CFR50 are met. Waste gases are processed by one of two interconnected equipment trains. The low level loop provides sufficient storage capacity for cover gases from the nitrogen blanketing system to minimize the need to vent gases which accumulate as a result of shutdown operations. Discharges of fission gases from the system are limited to maintenance vents, unavoidable equipment leaks, and infrequent gas decay tank releases to dispose of gases accumulated by inflows from shutdown operations and miscellaneous vents. Controls are provided to regulate the rate of release from these tanks through the monitored plant vent. The high level loop was designed to accumulate, concentrate, and contain fission gases at high activity concentrations from continuous purging of the volume control tanks gas space. It would provide continuous removal of fission gases from the letdown coolant to maintain the coolant fission gas concentrations at a low residual level. This loop can perform these functions and/or be used for reserve holdup capacity of low level loop gas (NMC 2007, Section 9.3).

3.1.4.3 Solid Radioactive Waste Systems

The solid radiological waste system is designed to package, store, and provide shielded storage facilities for solid wastes and to allow temporary storage prior to shipment from the plant for off-site processing or disposal. The system is designed to meet the requirements of 10 CFR 20, 10 CFR 71, and 49 CFR 170-189.

Solid wastes consist mainly of dry active waste (DAW) such as contaminated paper, plastic, wood, metals, and spent resin. DAW may be compacted for disposal or storage or may be sent off-site for further processing, such as sorting or incineration. The by-product of such off-site processing (incinerator ash for example) may be returned to the plant site for storage if no disposal site is available.

Contaminated metals may be compacted on-site for storage or disposal. Contaminated metals may also be sent off-site for processing such as decontamination or metal melting.

Spent resin originates in any of several system ion exchangers. Spent resin is flushed to a resin shipping liner for disposal or off-site processing. Alternatively, resin may be placed in on-site storage if a disposal site is not available. NMC plans to continue managing its low-level radioactive waste in compliance with all applicable regulations established by state and federal agencies.

Solid wastes received at disposal sites must meet the requirements of 10 CFR 61 relating to waste form and classification as well as disposal site-specific regulations (NMC 2007, Section 9.4).

3.1.5 NON-RADIOACTIVE WASTE MANAGEMENT

As outlined in Xcel Energy Environmental Policy, PINGP is committed to conducting its business in an environmentally responsible manner (Xcel Energy 2006b). One element of this policy is ensuring that wastes generated by business activities/operations are managed in compliance with applicable regulations and in a manner protective of the environment and human health. It also includes, where appropriate, minimizing the creation of waste, especially hazardous waste.

Xcel Energy's Waste Management Guidance Manual (Xcel Energy 2006c) assists PINGP employees in the identification of regulated wastes. It includes directions for selecting waste collection containers, storage and labeling requirements, and transport and disposal procedures. Training, emergency planning, and record keeping requirements associated with waste management are also described. Additional topics on waste regulations, employee responsibilities, and handling a regulatory inspection are included.

Proper management of regulated waste falls under three federal agencies: the Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), and the Department of Transportation (DOT). Congress began the process of waste regulation with the passage of the Resource Conservation and Recovery Act of 1976 (RCRA). This act authorized the EPA to write regulations providing for a comprehensive management system for hazardous wastes. It also imposed 'cradle to grave' responsibility on the generator of a hazardous waste, meaning Xcel Energy never loses liability for its waste. As a result, Xcel Energy does not select waste disposal vendors on cost alone, but also evaluates and selects transportation and disposal companies that demonstrate competence in managing hazardous wastes. RCRA authorizes states to develop their own waste regulations. The State of Minnesota has authorization to manage their hazardous waste management programs and have developed additional regulations making them more restrictive than federal requirements (MN Rules Chapter 7045).

OSHA is involved in waste management through the Hazard Communication (HAZCOM) Standard, requiring that employers inform and train workers in proper handling of hazardous substances. Under the Hazardous Waste Operations and Emergency Response (HAZWOPER) Standard, OSHA established training requirements for workers that respond to releases of hazardous substances.

The DOT considers hazardous wastes a subset of hazardous materials, which means many regulated wastes are subject to DOT requirements during shipment. DOT regulations contain packaging specifications, container marking and labeling requirements, emergency reporting requirements, release response requirements, and a complex tracking system using shipping papers and manifests. DOT also requires training for employees with responsibility for the shipment of hazardous materials.

Non-radioactive waste is produced from plant maintenance, cleaning, and operational processes. The majority of the waste generated consists of non-hazardous waste oil,

oil-filled equipment used in operations and maintenance, and oily debris. Universal waste defined by Minnesota Pollution Control Agency (MPCA) includes lighting ballasts, polychlorinated biphenyl (PCB) small capacitors, mercury containing devices and batteries, antifreeze, circuit boards, electronics, photographic negatives, cathode ray tubes (CRTs), alkaline batteries, and non-TCLP fluorescent and HID lamps, common to any industrial facility, comprise a majority of the remaining waste volumes generated. Hazardous waste routinely makes up a small percentage of the total waste generated and consists of spent and off-specification (e.g. shelf-life expired) chemicals, laboratory chemical wastes, Freon-contaminated oil, and occasional project-specific wastes.

As outlined in the company environmental policy, Xcel Energy is committed to considering pollution prevention in business planning and decision-making processes. Pollution prevention reduces wastes, which in turn reduces regulatory burdens, reduces liability, and saves money. It also helps conserve valuable resources and protects human health and the environment. Pollution prevention is achieved by utilizing the Waste Management Hierarchy for reducing waste generation. This hierarchy prioritizes waste reduction though source reduction, reuse/recycle, and treatment and disposal, respectively (Xcel Energy 2006c).

3.1.6 TRANSMISSION FACILITIES

3.1.6.1 History/Background

When PINGP was built, its generating and transmission facilities were owned and operated by Northern States Power, a regulated utility with headquarters in Minneapolis, Minnesota. In May 2000, Northern States Power transferred its authorization to operate PINGP to NMC, a contract/operations firm that currently oversees the operation of two nuclear plants in Minnesota. Northern States Power continued to operate and maintain the PINGP transmission lines when the responsibility for managing the PINGP generating facilities was transferred to NMC. Therefore the discussion that follows on the planning, construction, and modification of PINGP transmission facilities in the 1970s and 1980s applies to Northern States Power, whereas the discussion of current maintenance and vegetation management practices applies to Xcel Energy.

Before PINGP was built, a 345-kilovolt (kV) line was installed between the Red Rock substation in St. Paul and the Adams substation in Mower County, 74 miles south of Prairie Island (NSP 1971, p. II-25). This line was designed to pass near the proposed PINGP site and link to the new plant once built, thereby providing connections between the plant and St. Paul (Red Rock) and between the plant and southeastern Minnesota (Adams). When PINGP was built, the Red Rock – Adams line was divided, and the two new "halves" connected to PINGP by means of a 2.5-mile-long corridor that runs to the plant substation.

The FES noted that two new 345-kV lines were required to connect the plant to the regional electric transmission system (AEC 1973, p. III-1). One new line was built from PINGP Unit 1 to the Blue Lake substation in Scott County; another was built from PINGP Unit 2 to the Red Rock substation in south St. Paul. The new line from Unit 1 to

the Blue Lake substation required construction of a new corridor to the Inver Grove substation, in Dakota County; the remaining segment, between Inver Grove and the Blue Lake substation, was routed along an existing corridor. The entire length of the new line from Unit 2 to the Red Rock substation was routed along an existing corridor. In total, Northern States Power built 78 miles of new line to deliver power to the transmission system (AEC 1973). Because NSP was able to take advantage of existing transmission corridors, it was only necessary to acquire 33 miles of new right-of-way.

NRC defines the transmission corridors of concern for license renewal as those constructed for the specific purpose of connecting the plant to the transmission system [10 CFR 51.53(c)(3)(ii)(H)]. NRC further elaborates in the GEIS and guidance that the corridors of concern are those that were "constructed between the plant switchyard to its connection with the existing transmission system." Supplement 1 to Reg. Guide 4.2 (NRC 2000) recommends that applicants "specifically identify those transmission lines that were identified in the construction permit review as being constructed to connect the plant to the transmission system." AEC's 1968 construction permit review for PINGP predated the 1970 enactment of the National Environmental Policy Act. The FES related to the Prairie Island Nuclear Generating Plant (AEC 1973) was concerned with impacts of "...the continuation of construction permits...and the issuance of operating licenses...for the startup and operation of the PINGP" and considered impacts of both construction and operation of the plant. Two 345-kV transmission lines, PINGP - Blue Lake and PINGP - Red Rock 2, were considered in the 1973 FES and will therefore be considered for transmission-related impacts in Chapter 4. The two 2.5mile-long transmission line connections built to connect PINGP to the Red Rock 1 and Adams lines will also be analyzed. In addition, the 161-kV line owned by Great River Energy that runs from PINGP to Spring Creek is included in the scope of this analysis.

3.1.6.2 Current System Configuration

The output of PINGP is delivered to the substation just north of the generating facilities with 345-kV and 161-kV switchyards (NMC 2007, Section 8.2). Five transmission lines leave the switchyards via three transmission corridors:

- One corridor, running west, contains the 2.5-mile-long transmission line connection to Red Rock 1 and Blue Lake 345-kV lines.
- A second corridor, running west, contains the Red Rock 2 and the 2.5-mile-long transmission line connection to Adams 345-kV lines.
- A third corridor, running south, contains the Spring Creek 161-kV line.

These five transmission lines connect PINGP to the regional transmission system (NMC 2007, Section 8.2.1). The current transmission system is summarized in Table 3.1-1. Figure 3.1-1 shows the layout of the transmission lines leaving the PINGP substation. Figure 3.1-2 presents the routes of the five in-scope transmission lines.

Northern States Power and Great River Energy designed and constructed the PINGP transmission lines in accordance with industry guidance that was current when the lines were built. Ongoing surveillance and maintenance of PINGP-related transmission facilities ensure continued conformance to design standards. Section 4.10 examines the conformance of the lines with the National Electrical Safety Code requirements on line clearance to limit shock from induced currents (IEEE 1997).

Xcel Energy uses a variety of methods to ensure that transmission corridors are kept free of brush and fast-growing trees that could interfere with transmission facilities (e.g., towers, conductors, sub-stations). Because transmission corridors cross areas with different kinds of terrain and vegetation, Xcel Energy employs an Integrated Vegetation Management (IVM) approach that includes both mechanical and chemical control methods. IVM involves the judicious use of a range of vegetation management treatments including tree removal, pruning, mowing, and chemical (herbicide) application (Xcel Energy 2005). Great River Energy also uses an IVM program to enhance wildlife along power line rights-of-way. This effort includes the use of lowvolume biodegradable herbicides to remove unwanted woody species, while leaving behind the grasses, wildflowers, and low-growing trees preferred by butterflies, songbirds, wild turkey, and deer (Great River Energy 2006).

The goal of Xcel Energy's IVM program is to develop site-specific, environmentallysensitive, and cost-effective solutions to vegetation management near transmission and distribution facilities. The primary objective is to keep transmission facilities clear of tallgrowing trees and brush that could grow too close to conductors and interfere with electricity transmission. This is accomplished with routine vegetation management on each transmission circuit that is conducted on an established maintenance cycle.

Xcel Energy has adopted the "Wire zone/Border zone" concept to allow for different types and heights of vegetation in transmission corridors (Xcel Energy 2005). The goal is to manage vegetation in rights-of-way so as to establish a "wire zone" directly underneath towers and conductors with low-growing forbs and grasses and a "border zone" (from outside edge of wire zone to edge of right-of-way) with slow-growing shrubs and trees that do not grow high enough to interfere with transmission structures. Areas outside the border zone are periodically inspected for tall "danger trees" (dead, dying, or diseased trees that could fall and interfere with transmission lines). These trees are removed expeditiously, outside of the normal maintenance cycle.

Xcel Energy has adopted guidelines that govern the use of herbicides in its transmission corridors (Xcel Energy 2005). Contractors engaged in vegetation management must submit plans/proposals to Xcel Energy's Vegetation Management representative detailing any planned use of herbicides. Product labels and Material Safety Data Sheets must be supplied to the Vegetation Management representative along with the treatment plan. In addition to this oversight of site-specific vegetation management plans, Xcel Energy's Vegetation Management Guidelines (provided to all contractors engaged in vegetation management) prohibit the use of herbicides outside of right-of-way boundaries and instruct contractors to discontinue the use of herbicides

immediately if a property owner objects to their use, pending the resolution of any issues.

Xcel Energy plans to maintain these transmission lines, which are integral to the larger transmission system, indefinitely. These transmission lines will remain a permanent part of the transmission system even after PINGP is decommissioned.

3.1.6.3 Avian Mortality Resulting from Collisions with Transmission Lines

NRC (1996) noted in the GEIS that "No relatively high collision mortality is known to occur along transmission lines associated with nuclear power plants in the United States other than the Prairie Island plant in Minnesota." The statement refers to a 5-year study in which bird carcasses were collected along two transmission corridors originating at PINGP (Goddard 1977; 1978; 1979). The corridors were searched from the substation just north of the PINGP generating facilities to the transmission towers nearest the Vermillion River (Goddard 1977), a distance of about 1.5 miles. A total of 453 bird carcasses representing 53 species were found during the 5-year period. About 64 percent of the carcasses were found along the 2,500-foot east-west portion of the corridors is perpendicular to the bird migration corridor along the Mississippi River. Other avian collision studies have also found that transmission lines at right angles to avian flight paths are associated with greater collisions (Goddard 1979).

As a result of the criminal prosecution of the Moon Lake Electric Association, Inc., a Utah-based electric power company, for electrocution of protected birds, the U.S. Fish and Wildlife Service (FWS) and several power companies began to discuss a method for addressing the avian electrocution problem (USDOJ 2002). A Memorandum of Understanding (MOU) between the FWS and Xcel Energy, the first of its type completed in the U.S., has been in effect since 2002 (NSPCM & FWS 2002). The MOU was created to establish procedures and policies dealing with migratory birds that may be present on NSP property, and outlined the development of an Avian Protection Plan. Xcel Energy submits semi-annual reports to the FWS summarizing activities covered under the MOU. The Avian Protection Plan for PINGP and associated transmission lines is in development.

Very few bird carcasses have been observed at PINGP or along PINGP-associated transmission lines since 1978, but systematic searches or formal avian collision studies have not been conducted. Therefore, the current extent of collision-related mortality and a comparison of avian mortality at PINGP to other nuclear plants have not been evaluated. However, the GEIS noted that the mortality at PINGP may not be unique, and may simply reflect the fact that surveys were performed. NRC (1996) further states that "the issue is whether collision mortality is large enough to cause long-term reductions in bird populations." Based on a literature search, NRC (1996) concluded that avian collisions with transmission lines did not significantly reduce species populations, and bird collisions with transmission lines associated with license renewal would not cause long-term reduction in bird populations, and thus, collision mortality is of small significance.

3.1.7 MAINTENANCE, OPERATION, AND INSPECTION

NMC implements programs to maintain, inspect, test, and monitor the performance of plant equipment. These programs are designed to meet several requirements:

- 10 CFR 50, Appendix B (Quality Assurance), Appendix R (Fire Protection), and Appendices G and H, Reactor Vessel Materials;
- 10 CFR 50.55a, American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section XI, In-service Inspection and Testing Requirements;
- 10 CFR 50.65, the maintenance rule, and
- Maintain water chemistry in accordance with Electric Power Research Institute (EPRI) guidelines.

Additional programs include those implemented to meet Technical Specification surveillance requirements, those implemented in response to NRC generic communications, and various periodic maintenance, testing, and inspection procedures necessary to manage the effects of aging on structures and components. Certain program activities are performed during the operation of the units, while others are performed during scheduled refueling outages. Current maintenance, operation, and inspection activities will continue and be expanded to include programs for managing the effects of aging.

3.2 **REFURBISHMENT ACTIVITIES**

NRC

"... The report must contain a description of ... the applicant's plans to modify the facility or its administrative control procedures.... This report must describe in detail the modifications directly affecting the environment or affecting plant effluents that affect the environment...." 10 CFR 51.53(c)(2)

"The environmental report must contain analyses of ...refurbishment activities, if any, associated with license renewal..." 10 CFR 51.53(c)(3)(ii)

"... The incremental aging management activities carried out to allow operation of a nuclear power plant beyond the original 40 year license term will be from one of two broad categories: ... and (2) major refurbishment or replacement actions, which usually occur fairly infrequently and possibly only once in the life of the plant for any given item...." NRC 1996

NMC has addressed refurbishment activities in this environmental report in accordance with NRC regulations and complementary information in the NRC GEIS for license renewal (NRC 1996). NRC requirements for the renewal of operating licenses for nuclear power plants include the preparation of an integrated plant assessment (IPA) (10 CFR 54.21). The IPA must identify and list systems, structures, and components subject to an aging management review. Items that are subject to aging and might require refurbishment include, for example, piping, supports, and pump casings (see 10 CFR 54.21 for details), as well as those that are not subject to periodic replacement.

In turn, NRC regulations for implementing the National Environmental Policy Act require environmental reports to describe in detail and assess the environmental impacts of refurbishment activities such as planned modifications to systems, structures, and components or plant effluents [10 CFR 51.53(c)(2)]. Resource categories to be evaluated for impacts of refurbishment include terrestrial resources, threatened and endangered species, air quality, housing, public utilities and water supply, education, land use, transportation, and historic and archaeological resources.

The GEIS (NRC 1996) provides helpful information on the scope and preparation of refurbishment activities to be evaluated in this environmental report. It describes major refurbishment activities that utilities might perform for license renewal that would necessitate changing administrative control procedures and modifying the facility. The GEIS analysis assumes that an applicant would begin any major refurbishment work shortly after NRC grants a renewed license and would complete the activities during five outages, including one major outage at the end of the 40th year of operation. The GEIS refers to this as the refurbishment period.

GEIS Table B.2 (NRC 1996) lists license renewal refurbishment activities that NRC anticipated utilities might undertake. In identifying these activities, the GEIS intended to encompass actions that typically take place only once, if at all, in the life of a nuclear plant. The GEIS analysis assumed that a utility would undertake these activities solely for the purpose of extending plant operations beyond 40 years, and would undertake

them during the refurbishment period. The GEIS indicates that many plants will have undertaken various refurbishment activities to support the current license period, but that some plants might undertake such tasks only to support extended plant operations. Examples of refurbishment activities include pressurized water reactor steam generator replacement and boiling water reactor recirculation piping replacement when these activities are carried out to ensure safe operations for 20 additional years. The GEIS assumes that refurbishment activities would take place within the 10 years prior to current license expiration and would culminate in a major outage immediately prior to the extended (license renewal) term. Because the situation at PINGP is consistent with this example, NMC is analyzing Unit 2 steam generator replacement in this environmental report as a refurbishment activity, pursuant to 10 CFR 51.53(c)(3)(ii).

The new steam generators would be manufactured at AREVA's Chalon Saint-Marcel plant. Delivery of the steam generators would take place in May 2013 with installation following in September 2013 (AREVA 2006). The refurbishment outage is expected to last approximately 80 days. Like the 2004 Unit 1 steam generator replacement, the steam generators would arrive by barge after journeying from France and traveling up the Mississippi River. A temporary construction area is planned to be located approximately 100 yards northwest of the turbine building. Several temporary buildings would be built, including a facility for preparing the steam generators, office space for construction contractors, and a decontamination building. Warehouse(s) would also be built on site and would remain after the steam generator replacement outage. Any construction would occur within the existing plant boundaries. There would be no clearing of previously-undisturbed areas. No road improvements would be required because the steam generators would arrive via barge and be offloaded to a selfpropelled nuclear transporter capable of traveling on existing site roads without damage. NMC estimates that 750 workers would be required to perform the steam generator replacement and standard outage maintenance and refueling.

3.3 PROGRAMS AND ACTIVITIES FOR MANAGING THE EFFECTS OF AGING

NRC

"...The report must contain a description of ... the applicant's plans to modify the facility or its administrative control procedures.... This report must describe in detail the modifications directly affecting the environment or affecting plant effluents that affect the environment...." 10 CFR 51.53(c)(2)

"...The incremental aging management activities carried out to allow operation of a nuclear power plant beyond the original 40 year license term will be from one of two broad categories: (1) SMITTR actions, most of which are repeated at regular intervals" NRC 1996 (SMITTR is defined in NRC 1996 as surveillance, monitoring, inspections, testing, trending, and recordkeeping.)

The IPA required by 10 CFR 54.21 identifies the programs and inspections for managing aging effects at PINGP. These programs are described in the Prairie Island Nuclear Generating Plant License Renewal Application, Appendix B, Aging Management Programs. Other than implementation of programs and inspections identified in the IPA, NMC has no plans to modify administrative controls that are associated with license renewal.

3.4 EMPLOYMENT

3.4.1 CURRENT WORKFORCE

NMC employs approximately 685 permanent and long-term contract employees at PINGP, a two-unit facility. Approximately 83 percent of the employees live in Goodhue and Dakota Counties, Minnesota, and Pierce County, Wisconsin. Table 3.4-1 presents the number of employees that reside in each of these counties. The remaining employees are distributed across 21 counties in Minnesota and Wisconsin, with numbers ranging from 1 to 47 employees per county. A few employees live outside of these two states.

PINGP is on a 20-month refueling cycle. During refueling outages, site employment increases above the permanent work force by as many as 925 workers for temporary duty (based on 2003 to 2006 normal refueling outage workforces at PINGP). This number of outage workers generally falls within the range (200 to 900 workers per reactor unit) reported in the GEIS for additional maintenance workers (NRC 1996).

3.4.2 REFURBISHMENT INCREMENT

Performing the refurbishment activities described in Section 3.2 would necessitate increasing the PINGP staff workload by some increment. The size of this increment would be a function of the schedule within which NMC must accomplish the work and the amount of work involved.

In the GEIS (NRC 1996), NRC analyzed seven case study sites with respect to typical refurbishment scenarios. NRC selected a variety of nuclear plant sites that would represent the range of plant types in the United States. Then, NRC based its analyses on bounding work force estimates derived from these typical refurbishment scenarios at the case study sites. In the GEIS, NRC estimates that the most additional personnel needed to perform refurbishment activities at a pressurized water reactor would typically be 2.273 persons during a 9-month major refurbishment outage immediately before the expiration of the initial operating license. NRC also estimates that, after the refurbishment workforce has reached its peak, refueling would be undertaken to prepare for continued operation of the plant. In an effort to account for uncertainty surrounding workforce numbers, NRC performed a sensitivity analysis where socioeconomic impacts were predicted in response to a work force roughly 50 percent larger than the projected bounding case for a pressurized water reactor work force, or 3,400 workers. Having established this upper value for what would be a single event in the remainder of the life of the plant, the GEIS uses this number as the expected number of additional workers needed per unit attributable to refurbishment.

NMC analysis, including the 10 CFR 54 aging management assessments, has identified one refurbishment activity for PINGP; the steam generators for Unit 2 will be replaced (tentatively scheduled for 2013). The NMC estimate assumes a schedule similar to the Unit 1 steam generator replacement project. The estimated size of the workforce for this project is assumed to be similar to that of the workforce for the Unit 1 steam

generator replacement, 750 workers. Therefore, NMC has determined that the GEIS work force size and scheduling assumptions amply bound the PINGP refurbishment work force sizes and scheduling.

Adding 750 full-time employees to the plant work force, on a similar schedule as Unit 1 steam generator replacement, would have the indirect effect of creating additional jobs because of the multiplier effect. In the multiplier effect, each dollar spent on goods and services by a worker becomes income to the recipient who saves some but re-spends the rest. In turn, this re-spending becomes income to someone else, who in turn saves part and re-spends the rest. The number of times the final increase in consumption exceeds the initial dollar spent is called the "multiplier." There are economic models that incorporate buying and selling linkages among regional industries and are used to estimate the impact of employee expenditures in a region of interest. However, due to the temporary nature of this project, the size of the surrounding population (2,733,326 residents within a 50-mile radius), and the fact that most indirect jobs would be service related, NMC assumes that the majority of indirect workers would already be residing within the 50-mile radius and a multiplier would not be needed.

3.4.3 LICENSE RENEWAL INCREMENT

Performing the license renewal activities described in Section 3.3 would necessitate increasing the PINGP staff workload by some increment. The size of this increment would be a function of the schedule within which NMC must accomplish the work and the amount of work involved. The analysis of license renewal employment increment focuses on programs and activities for managing the effects of aging.

The GEIS (NRC 1996) assumes that NRC would renew a nuclear power plant license for a 20-year period, plus the duration remaining on the current license, and that NRC would issue the renewal approximately 10 years prior to license expiration. In other words, the renewed license would be in effect for approximately 30 years. The GEIS further assumes that the utility would initiate surveillance, monitoring, inspections, testing, trending, and recordkeeping (SMITTR) activities at the time of issuance of the new license and would conduct license renewal SMITTR activities throughout the remaining 30-year life of the plant, sometimes during full-power operation, but mostly during normal refueling and the 5- and 10-year in-service inspection and refueling outages (NRC 1996).

NMC has determined that the GEIS scheduling assumptions are reasonably representative of PINGP incremental license renewal workload scheduling. Many PINGP license renewal SMITTR activities would have to be performed during outages. Although some PINGP license renewal SMITTR activities would be one-time efforts, others would be recurring periodic activities that would continue through the life of the plant.

The GEIS estimates that the most additional personnel needed to perform license renewal SMITTR activities would typically be 60 persons during the 3-month duration of a 10-year in-service inspection and refueling outage. Having established this upper

value for what would be a single event in 20 years, the GEIS uses this number as the expected number of additional permanent workers needed per unit attributable to license renewal. GEIS Section C.3.1.2 uses this approach in order to "...provide a realistic upper bound to potential population-driven impacts...."

In reality, NMC expects to add no more than two additional permanent workers to perform all license renewal SMITTR activities. However, in an effort to be conservative, NMC is analyzing impacts for a maximum of 60 additional permanent workers. Therefore, NMC assumes that PINGP would require 60 additional permanent workers to perform all license renewal SMITTR activities and that all 60 employees would migrate into the 50-mile radius.

Adding employees to the plant work force for the period of extended operation would have the indirect effect of creating additional jobs. However, considering the size of the 50-mile radius population (2,733,326) and the fact that most indirect jobs would be service-related, NMC assumes that the majority of indirect workers would already be residing within the 50-mile radius.

TABLE 3.1-1TRANSMISSION LINES FROM PINGP SUBSTATION

2.5-mile-long transmission line connection to Red Rock 1 (345-kV; Xcel Energy Line #0986)

When the PINGP generating facilities were completed in 1973, the Red Rock – Adams line described in the 1971 Environmental Report Operating License Stage (OLER) (NSP 1971) was "split" to create two new 345-kV circuits, one running north from the plant to Red Rock and one running south from the plant to Adams. The 2.5-mile-long transmission line connection runs from PINGP to the Red Rock 1 line. It shares a 250-foot-wide corridor with the PINGP-Red Rock 2 line, PINGP-Blue Lake line, and the 2.5-mile-long transmission line.

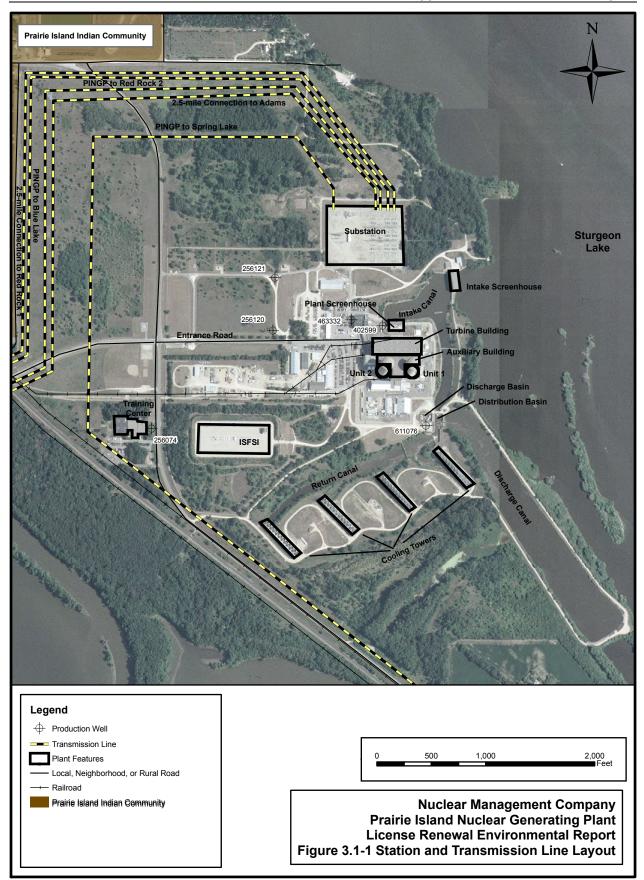
PINGP to Red Rock 2 (345-kV; Xcel Energy Line #0987)

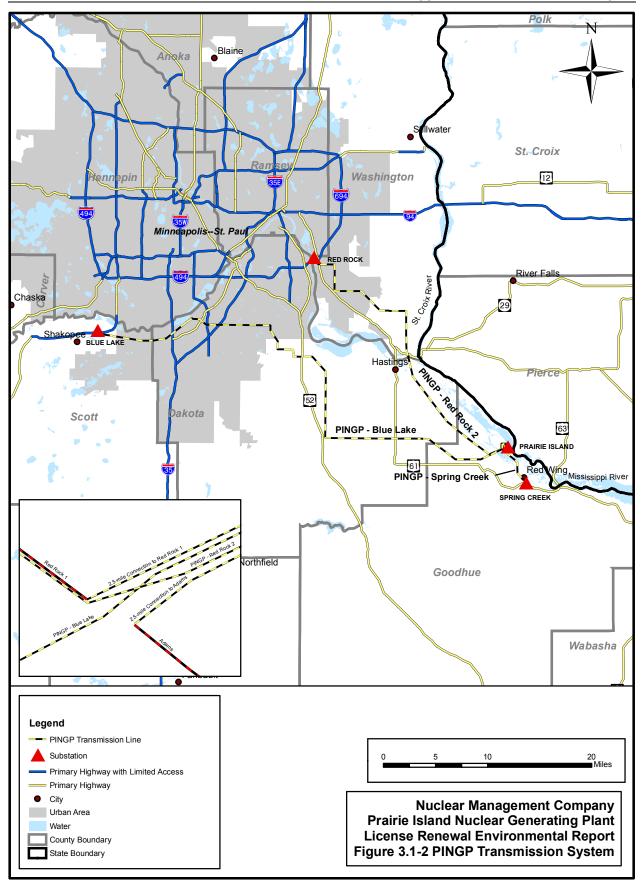
The Red Rock 2 line, described in the 1973 FES, connects PINGP to the Red Rock substation in St. Paul. It is approximately 32 miles long, and shares a corridor with three other lines for approximately 2.5 miles, then with the Red Rock 1 line for the remainder of its length.

PINGP to Blue Lake (345-kV; Xcel Energy Line #0976)

The Blue Lake Line, described in the 1973 FES, connects PINGP to the Blue Lake substation in Scott County. It is approximately 50 miles long, and is associated with a 150-foot-wide corridor.

2.5-mile transmission line Connection to Adams (345-kV; Xcel Energy Line #0979)


When the PINGP generating facilities were completed in 1973, the Red Rock – Adams line described in the 1971 OLER was "split" to create two new 345 kV circuits, one running north from the plant to Red Rock and one running south from the plant to Adams in Mower County. A 345-kV 2.5-mile-long transmission line connection to the Adams line was constructed from PINGP. This 2.5-mile-long transmission line connection shares a 250-foot wide corridor with the other 345-kV lines.


PINGP to Spring Creek (161-kV; Great River Energy Line #5302)

This 161-kV circuit, owned by Great River Energy, supplies power to the Red Wing, Minnesota area. It moves west from the PINGP switchyard, then turns to the southeast, extending to the Spring Creek substation, near Red Wing. The Spring Creek line is approximately 5 miles long, and runs through a 100-foot-wide corridor.

County	Number of Employees (Permanent and Contract)	Percentage of Total Employees
Goodhue County, Minnesota	329	48.0
Dakota County, Minnesota	139	20.3
Pierce County, Wisconsin	99	14.5
Other	118	17.2
Total	685	100.0

TABLE 3.4-1PINGP EMPLOYEES BY COUNTY

3.5 **REFERENCES**

<u>Note to reader</u>: This list of references identifies web pages and associated URLs where reference data was obtained. Some of these web pages may no longer be available or their URL addresses may have changed. NMC has maintained hard copies of the information and data obtained from the referenced web pages.

- AEC (United States Atomic Energy Commission). 1973. *Final Environmental Statement related to the Prairie Island Nuclear Generating Plant*. Directorate of Licensing, Washington, DC. May.
- AREVA. 2006. Press release AREVA Wins Contract for Two Replacement Steam Generators at Prairie Island Nuclear Generating Plant. Available at http://www.areva-np.com/scripts/press/publigen/content/templates/ show.asp?P=795&L=US. October 3.
- Goddard, S.V. 1977. "Number and Composition of Birds Killed by Striking Transmission Lines from the Prairie Island Nuclear Generating Plant." *NSP* 1976 *Annual Report for the Prairie Island Nuclear Generating Plant.* Volume 2.
- Goddard, S.V. 1978. "Number and Composition of Birds Killed by Striking Transmission Lines from the Prairie Island Nuclear Generating Plant." *Environmental Monitoring Program, 1977 Annual Report, Special Ecological Studies.* Prairie Island Nuclear Generating Plant.
- Goddard, S.V. 1979. "Number and Composition of Birds Killed by Striking Transmission Lines from the Prairie Island Nuclear Generating Plant." *Environmental Monitoring and Ecological Studies Program, 1978 Annual Report, Volume 2.* Prairie Island Nuclear Generating Plant.
- Great River Energy. 2006. *Stewardship and Other Initiatives*. Available at http://www.greatriverenergy.com/environment/stewardship.html.
- IEEE (Institute of Electrical and Electronics Engineers). 1997. *National Electrical Safety Code*, 1997 Edition, New York, New York.
- MEQB (Minnesota Environmental Quality Board). 1991. *Final Environmental Impact Statement, Prairie Island Independent Spent Fuel Storage Installation*. April 12.
- Minnesota Legislative Reference Library. 2006. *Resources on Minnesota Issues, Nuclear Waste Storage in Minnesota*. Available online at http://www.leg.state.mn.us/Irl/issues/prairieisland.asp. October.
- NMC (Nuclear Management Company, LLC). 2007. Prairie Island Nuclear Generating Plant Updated Safety Analysis Report, Revision 29. May 4.

- NRC (U.S. Nuclear Regulatory Commission). 1996. *Generic Environmental Impact Statement for License Renewal of Nuclear Plants*. Volumes 1 and 2. NUREG-1437. Washington, DC. May.
- NRC (U.S. Nuclear Regulatory Commission). 2000. Supplement 1 to NRC Regulatory Guide 4.2, Preparation of Supplemental Environmental Reports for Applications to Renew Nuclear Power Plant Operating Licenses. Office of Regulatory Research. Washington D.C. September.
- NSPCM & FWS (Northern States Power Company-Minnesota and U.S. Fish and Wildlife Service). 2002. *Memorandum of Understanding*. April 19.
- NSP (Northern States Power). 1971. Environmental Report Operating License Stage, Prairie Island Nuclear Generating Plant Units 1 and 2. May 12.
- NSP (Northern States Power). 2006. 2005 DNR Annual Report of Water Use. February 15.
- Scientech. 2005. Commercial Nuclear Power Plants, Edition No. 23. July.
- Stone & Webster (Stone & Webster Engineering Corporation). 1983. Modify Circulating Water Intake and Discharge: System Description and Design Criteria. Prepared for Northern States Power by Stone & Webster Engineering Corporation. Denver. April 1.
- TtNUS (Tetra Tech NUS). 2006. *Calculation Package Water Use 2000 through 2005*. Prepared by Gary Gunter. August.
- USDOJ (U.S. Department of Justice). 2002. *Historic Agreement between United States and Xcel Energy to Save Raptors from Electrocution in 12 States*. Available at <u>http://www.usdoj.gov/opa/pr/2002/April/02_enrd_240.htm. April 19</u>.
- Xcel Energy. 2005. Vegetation Management Guidelines.
- Xcel Energy. 2006a. *Proposal for Information Collection*. Prepared by Xcel Energy Environmental Services. July.
- Xcel Energy. 2006b. Environmental (Uniform Policy). January 23, 2006.
- Xcel Energy. 2006c. *Waste Management Program Procedure/Waste Management Guidance Manual*. Prepared by Xcel Energy Environmental Services. February.
- Xcel Energy. Undated. Prairie Island Nuclear Plant Septic System Overview.

4.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND MITIGATING ACTIONS

NRC

"The report must contain a consideration of alternatives for reducing impacts...for all Category 2 license renewal issues...." 10 CFR 51.53(c)(3)(iii)

"The environmental report shall include an analysis that considers...the environmental effects of the proposed action...and alternatives available for reducing or avoiding adverse environmental effects." 10 CFR 51.45(c) as adopted by 10 CFR 51.53(c)(2)

The environmental report shall discuss the "...impact of the proposed action on the environment. Impacts shall be discussed in proportion to their significance...." 10 CFR 51.45(b)(1) as adopted by 10 CFR 51.53(c)(2)

"The information submitted...should not be confined to information supporting the proposed action but should also include adverse information." 10 CFR 51.45(e) as adopted by 10 CFR 51.53(c)(2)

4.1 BACKGROUND

Chapter 4 presents an assessment of the environmental consequences associated with the renewal of the Prairie Island Nuclear Generating Plant (PINGP) operating licenses. The U.S. Nuclear Regulatory Commission (NRC) has identified and analyzed 92 environmental issues that it considers to be associated with nuclear power plant license renewal and has designated the issues as Category 1, Category 2, or NA (not applicable). NRC designated an issue as Category 1 if, based on the result of its analysis, the following criteria were met:

- the environmental impacts associated with the issue have been determined to apply either to all plants or, for some issues, to plants having a specific type of cooling system or other specified plant or site characteristic;
- a single significance level (i.e., small, moderate, or large) has been assigned to the impacts that would occur at any plant, regardless of which plant is being evaluated (except for collective offsite radiological impacts from the fuel cycle and from highlevel waste and spent-fuel disposal); and
- mitigation of adverse impacts associated with the issue has been considered in the analysis, and it has been determined that additional plant-specific mitigation measures are likely to be not sufficiently beneficial to warrant implementation.

If the NRC analysis concluded that one or more of the Category 1 criteria could not be met, NRC designated the issue as Category 2. NRC requires plant-specific analyses for Category 2 issues (NRC 2000).

Finally, NRC designated two issues as NA, signifying that the categorization and impact definitions do not apply to these issues.

As discussed later in Chapter 5, NMC is not aware of any new and significant information that would make NRC findings regarding Category 1 issues inapplicable to PINGP. An applicant may reference the generic findings or GEIS analyses for Category 1 issues. Attachment A of this report lists the 92 issues and identifies the environmental report section that addresses each issue.

4.1.1 CATEGORY 1 LICENSE RENEWAL ISSUES

NRC

"The environmental report for the operating license renewal stage is not required to contain analyses of the environmental impacts of the license renewal issues identified as Category 1 issues in Appendix B to subpart A of this part." 10 CFR 51.53(c)(3)(i)

"...[A]bsent new and significant information, the analyses for certain impacts codified by this rulemaking need only be incorporated by reference in an applicant's environmental report for license renewal...." 61 FR 109, June 15, 1996

NMC has determined that seven of the 69 Category 1 issues do not apply to PINGP because they are specific to design or operational features that are not found at the facility. Attachment A, Table A-1 lists the 69 Category 1 issues, indicates whether or not each issue is applicable to PINGP, and if inapplicable provides the basis for this determination. Attachment A, Table A-1 also includes references to supporting analyses in the GEIS where appropriate.

NMC has not identified any new and significant information that would make the NRC findings, with respect to Category 1 issues, inapplicable to PINGP. Therefore, NMC adopts by reference the NRC findings for these Category 1 issues.

4.1.2 CATEGORY 2 LICENSE RENEWAL ISSUES

NRC

"The environmental report must contain analyses of the environmental impacts of the proposed action, including the impacts of refurbishment activities, if any, associated with license renewal and the impacts of operation during the renewal term, for those issues identified as Category 2 issues in Appendix B to subpart A of this part." 10 CFR 51.53(c)(3)(ii)

"The report must contain a consideration of alternatives for reducing adverse impacts, as required by § 51.45(c), for all Category 2 license renewal issues...." 10 CFR 51.53(c)(3)(iii)

NRC designated 21 issues as Category 2. Sections 4.2 through 4.17 address the Category 2 issues, beginning with a statement of the issue. As is the case with Category 1 issues, two Category 2 issues apply to operational features that PINGP

does not have. If the issue does not apply to PINGP, the section explains the basis for inapplicability.

For the 19 Category 2 issues that NMC has determined to be applicable to PINGP, the appropriate sections contain the required analyses. These analyses include conclusions regarding the significance of the impacts relative to the renewal of the operating licenses for PINGP and, if applicable, discuss potential mitigation alternatives to the extent required. NMC has identified the significance of the impacts associated with each issue as either small, moderate, or large, consistent with the criteria that NRC established in 10 CFR 51, Appendix B, Table B-1, Footnote 3 as follows:

SMALL - Environmental effects are not detectable or are so minor that they will neither destabilize nor noticeably alter any important attribute of the resource. For the purposes of assessing radiological impacts, the Commission has concluded that those impacts that do not exceed permissible levels in the Commission's regulations are considered small.

MODERATE - Environmental effects are sufficient to alter noticeably, but not to destabilize, any important attribute of the resource.

LARGE - Environmental effects are clearly noticeable and are sufficient to destabilize important attributes of the resource.

In accordance with National Environmental Policy Act (NEPA) practice, NMC considered ongoing and potential additional mitigation in proportion to the significance of the impact to be addressed (i.e., impacts that are small receive less mitigative consideration than impacts that are large).

4.1.3 "NA" LICENSE RENEWAL ISSUES

NRC determined that its categorization and impact-finding definitions did not apply to Issues 60 and 92; however, NMC included these issues in Table A-1. NRC noted that applicants currently do not need to submit information on Issue 60, chronic effects from electromagnetic fields (10 CFR 51). For Issue 92, environmental justice, NRC does not require information from applicants, but noted that it will be addressed in individual license renewal reviews (10 CFR 51). NMC has included environmental justice demographic information in Section 2.5.3.

4.2 SURFACE WATER AND GROUNDWATER USE CONFLICTS

NRC categorized surface water and groundwater use conflicts in the GEIS as Category 2 issues for plants located on a small river because the significance of impacts of cooling tower makeup water withdrawals on aguatic biota (Issue 13) and alluvial aguifers (Issue 34) could not be determined without site-specific information. Consultations with regulatory agencies by NRC indicated that surface water use conflicts represented by Issue 13 were a concern at two closed-cycle plants (Limerick and Palo Verde) and could present a future problem at other plants. In particular, NRC indicates in the GEIS that some plants equipped with cooling towers and located on small rivers are susceptible to droughts or competing water uses (NRC 1996, Section 4.3.2.1). Additionally, the consumptive water loss resulting from operation of these plants may represent a substantial proportion of the river flow, with consequent potential for adverse impact on aquatic and riparian ecological communities (e.g., by reducing available aquatic habitat or dewatering riparian zone wetlands through lowered water levels). Similarly, these flow reductions could result in indirect groundwater use conflicts by reducing availability of groundwater in associated alluvial aguifers (NRC 1996, Section 4.8.1.3).

As discussed in Section 3.1.3, PINGP uses a system that can be operated in any one of three modes: open cycle (once-through flow, with no cooling towers in operation), helper cycle (once-through flow with cooling towers in operation), and closed-cycle (recirculation of up to 95 percent of the cooling water flow). Cooling water lost to cooling tower evaporation and blowdown is replaced by make-up water pumped from the Mississippi River. The site's blowdown is returned to the river via an NPDES-permitted outfall on the discharge canal. The system includes an arrangement of intake, recycle, and discharge canals that can be operated to re-use circulating water during times of the year, primarily winter and spring months. A separate line is also provided to supply condenser outlet water to the front of the new intake screenhouse for de-icing purposes during winter months.

Based on data from water years 1928 to 2005, the annual mean flow of the Mississippi River at the closest U.S. Geological Survey upstream gaging station (Prescott) is 18,380 cubic feet per second (cfs) (5.8×10^{11} cubic feet per year) (USGS 2006), which means that the Mississippi River meets the NRC definition of a small river at PINGP.

4.2.1 IMPACT ON MISSISSIPPI RIVER FLOWS AND WATER LEVELS

NRC

"If the applicant's plant utilizes cooling towers or cooling ponds and withdraws make-up water from a river whose annual flow rate is less than 3.15×10^{12} ft³ / year (9×10¹⁰ m³/year), an assessment of the impact of the proposed action on the flow of the river and related impacts on instream and riparian ecological communities must be provided. The applicant shall also provide an assessment of the impacts of the withdrawal of water from the river on alluvial aquifers during low flow." 10 CFR 51.53(c)(3)(ii)(A)

"...The issue has been a concern at nuclear power plants with cooling ponds and at plants with cooling towers. Impacts on instream and riparian communities near these plants could be of moderate significance in some situations...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 13

Flow in the reach of the Mississippi adjacent to PINGP is controlled in part by the Army Corps of Engineers Lock and Dam 3, which creates a pool that extends upstream to Lock and Dam 2, and also influences stream levels in the St. Croix River. During the initial rise in pool level. Sturgeon Lake was created by the flooding of low lying areas in the floodplain adjacent to the Mississippi River. The lock and dam was created by the Army Corps of Engineers as part of a flood control and navigation project (AEC 1973, pp. II-32 to II-42). At PINGP, the surface water withdrawal from the Mississippi River (Sturgeon Lake) occurred at an average rate of approximately 381,031 gallons per minute (gpm) (849 cfs) (TtNUS 2006) for the period from 2000 through 2005 (Table 4.2-1). PINGP's water withdrawal from the Mississippi River represents approximately 4.6 percent of the average river flow (18,380 cfs) and 11 percent of the lowest annual mean (7,656 cfs in 1977) at Prescott since completion of Lock and Dam 3 in 1938. The rate of consumptive use at PINGP is 39 cfs. This value is the difference between PINGP's surface water withdrawal and the average annual blowdown rate discharged under the site's NPDES permit back to the river or the amount of water consumed by PINGP. The 39 cfs represents approximately 5 percent of PINGP's average river withdrawal during the 2000 to 2005 period. This rate of consumptive use represents approximately 0.2 percent of the Mississippi River's annual average flow and approximately 0.5 percent of the lowest annual mean at Prescott (TtNUS 2006). The storage capacity curve for this section of the river shows that the consumption of 39 cfs (Table 4.2-1, 849 cfs – 810 cfs = 39 cfs) translates into a maximum local water elevation decrease of approximately 0.1 inch. Under normal circumstances, consumptive use of water at PINGP (evaporative losses from cooling towers) represent a small reduction in Mississippi River flow and an imperceptible (0.1 inch) reduction in stream level. A reduction in flow (or stream level) of this magnitude would have only SMALL impacts on instream and riparian ecological communities.

4.2.2 INDIRECT IMPACTS FROM SURFACE WATER USE

NRC

"If the applicant's plant utilizes cooling towers or cooling ponds and withdraws make-up water from a river whose annual flow rate is less than 3.15×10^{12} ft³ / year (9×10¹⁰ m³/year), an assessment of the impact of the proposed action on the flow of the river and related impacts on instream and riparian ecological communities must be provided. The applicant shall also provide an assessment of the impacts of the withdrawal of water from the river on alluvial aquifers during low flow." 10 CFR 51.53(c)(3)(ii)(A)

"...Water use conflicts may result from surface water withdrawals from small water bodies during low flow conditions which may affect aquifer recharge, especially if other groundwater or upstream surface water users come on line before the time of license renewal...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 34

The alluvial aquifer in the vicinity of the PINGP site was described in Section 2.2.2 of this ER. This aquifer consists of the unconsolidated sediments and alluvial material isolated within the Mississippi River channel.

The rate of consumptive use of water at PINGP is small compared to average monthly discharges at Lock and Dam 3, which ranged from 10,425 (January) to 39,562 cfs (May) in the 1995 to 2006 period (Table 2.2-3). A consumptive loss of 39 cfs relates to 0.1 percent and 0.4 percent of the highest monthly and lowest monthly average flow at Lock and Dam 3. The average consumptive use relates to a decrease in pool level at Pool 3 of 0.1 inch. The loss of cooling water through evaporation has no significant effect on Mississippi River flows, pool level, or on the adjacent alluvial aquifer. In addition, most groundwater in the vicinity of PINGP is withdrawn from the deeper confined aquifer, not from the alluvium along the Mississippi River. Therefore, NMC concludes that impacts of withdrawing water from the river on the alluvial aquifer would be SMALL and that mitigation measures would not be warranted.

4.2.3 GROUNDWATER USE CONFLICTS (PLANTS USING >100 GPM OF GROUNDWATER)

NRC

"If the applicant's plant...pumps more than 100 gallons (total onsite) of groundwater per minute, an assessment of the impact of the proposed action on groundwater use must be provided." 10 CFR 51.53(c)(3)(ii)(C)

"Plants that use more than 100 gpm may cause groundwater use conflicts with nearby groundwater users." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 33

NRC made groundwater use conflicts a Category 2 issue because, at a withdrawal rate of more than 100 gallons per minute (gpm), a cone of depression could extend offsite. This could deplete the groundwater supply available to offsite users, an impact that could warrant mitigation. Information to ascertain includes: (1) PINGP groundwater withdrawal rate (whether greater than 100 gpm), (2) drawdown at offsite locations, and (3) impact on neighboring wells.

Based on information presented in Section 2.2, PINGP used an annual average of approximately 92 gpm of groundwater from 2000 through 2005. However, during 2005, PINGP pumped 118 gpm of groundwater.

In order to determine potential offsite impacts to wells, the 118 gpm well yield from 2005 was used to calculate drawdown as though it had been pumped from a single onsite well. Well 256121 (Installation 122) (Figure 3.1-1) was used, due to its close proximity to the PINGP property boundary (approximately 1,800 feet) and its proximity to the closest off-site residence (approximately 2,100 feet). The well is also one of the site's primary production wells. Data used to input to an analytical in-well drawdown model for an unconfined aguifer was taken from PINGP's Updated Safety Analysis Report (NMC 2007, Appendix E) as indicated in Section 2.2. The calculated drawdown for Well 256121 represents a small portion of the saturated thickness of the unconfined aquifer. This allowed a confined aguifer scenario to be used to simulate site conditions. The equations used in the calculations assume that the aquifer is homogeneous, isotopic, with negligible recharge and gradient, and that boundary impacts do not occur. Assuming minimal recharge made the scenario very conservative. It was also assumed that the pumping rate used in the modeling (118 gpm) was consistent from the initial startup period. Based on the conservative results of the modeling, pumping at a rate of 118 gpm in Well 256121 would create a stabilized drawdown of 0.4 foot at a distance of 2,100 feet from the pumping well during the first 10 years of plant operations. Based on the modeling performed, there would be no additional drawdown that would occur over the period of the current operating license (40 year period) or during the license renewal period (additional 20 years) (TtNUS 2006). Based on the predicted conservative drawdown (0.4 foot) that would occur during the life of the current operating permit and the fact that no additional drawdown would occur during the license renewal period,

NMC concludes that the impacts to the aquifer system over the license renewal period would be SMALL and mitigation, such as drilling wells deeper, would be unwarranted.

4.2.4 GROUNDWATER USE CONFLICTS (PLANTS USING RANNEY WELLS)

NRC

"If the applicant's plant uses Ranney wells...an assessment of the impact of the proposed action on groundwater use must be provided." 10 CFR 51.53(c)(3)(ii)(C)

"...Ranney wells can result in potential ground-water depression beyond the site boundary. Impacts of large ground-water withdrawal for cooling tower makeup at nuclear power plants using Ranney wells must be evaluated at the time of application for license renewal...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 35

NRC made this groundwater use conflict a Category 2 issue because large quantities of groundwater withdrawn from Ranney wells could degrade groundwater quality at river sites by induced infiltration of poor-quality river water into an aquifer.

The issue of groundwater use conflicts does not apply to PINGP because the plant does not use Ranney wells.

4.2.5 DEGRADATION OF GROUNDWATER QUALITY

NRC

"If the applicant's plant is located at an inland site and utilizes cooling ponds, an assessment of the impact of the proposed action on groundwater quality must be provided." 10 CFR 51.53(c)(3)(ii)(D)

"...Sites with closed-cycle cooling ponds may degrade ground-water quality. For plants located inland, the quality of the ground water in the vicinity of the ponds must be shown to be adequate to allow continuation of current uses...." 10 CFR 51, Subpart A, Appendix B, Table B 1, Issue 39

NRC made degradation of groundwater quality a Category 2 issue because evaporation from closed-cycle cooling ponds tends to concentrate constituents (ions, dissolved solids, minerals, contaminants) in water. In turn, seepage into the water table aquifer could degrade groundwater quality.

The issue of groundwater degradation does not apply to PINGP because the plant does not use cooling ponds.

4.2.6 CONCLUSIONS

In view of these considerations, NMC concludes that consumptive losses of water from the Mississippi River would not significantly reduce river flow or affect surface water elevation, and would have no significant impact on the associated alluvial aquifer (Issue 34) or aquatic or riparian ecological communities (Issue 13) described in Section 2.3 of this ER. Hence, there would be no substantial impacts to mitigate. Also, the limited projected drawdown associated with the PINGP site's groundwater use would not create significant potential impacts on nearby groundwater users (Issue 33). Because the definition of "SMALL" includes impacts that are not detectable, the appropriate characterization of the impacts from consumptive surface water and groundwater use is SMALL, and further mitigation would be unwarranted.

4.3 ENTRAINMENT OF FISH AND SHELLFISH IN EARLY LIFE STAGES

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act 316(b) determinations...or equivalent State permits and supporting documentation. If the applicant can not provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from...entrainment." 10 CFR 51.53(c)(3)(ii)(B)

"The impacts of entrainment are small at many plants but may be moderate or even large at a few plants with once-through and cooling-pond cooling systems. Further, ongoing efforts in the vicinity of these plants to restore fish populations may increase the numbers of fish susceptible to intake effects during the license renewal period, such that entrainment studies conducted in support of the original license may no longer be valid." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 25

NRC made impacts on fish and shellfish resources from entrainment a Category 2 issue, because it could not assign a single significance level to the issue. The impacts of entrainment are small at many plants, but they may be moderate or large at others. Also, ongoing restoration efforts may increase the number of fish susceptible to intake effects during the license renewal period (NRC 1996, Section 4.2.2.1.2). Information needing to be ascertained includes: (1) type of cooling system (whether once-through or cooling pond), and (2) status of Clean Water Act (CWA) Section 316(b) determination or equivalent state documentation.

PINGP was designed to allow open-cycle, closed-cycle, or helper-cycle operation, but was originally intended to operate as a closed-cycle plant "to the maximum extent practicable" (AEC 1973, p. iv). Discussions and negotiations with resource and regulatory agencies produced agreement on a conceptual cooling system design that was subsequently installed and permitted in the early 1980s. This design, which addressed both operational constraints and environmental concerns, included a new screenhouse (with fine-mesh screening and continuous low-pressure wash capabilities during critical periods of the year) and new discharge configuration. Section 3.1.3 discusses these modifications in more detail.

Section 316(b) of the CWA requires that any standard established pursuant to Sections 301 or 306 of the CWA shall require that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts (33 USC 1326). Entrainment through the condenser cooling system of fish and shellfish in early life stages is a potential adverse environmental impact that can be minimized by the best available technology.

Northern States Power (NSP) submitted its original 316(b) demonstration to the Minnesota Pollution Control Agency (MPCA) in late 1976. The 316(b) demonstration concluded that "Fish entrainment losses represent such low percentages of ambient (local) populations that no short or long term effects are expected to be detectable."

(NUS Corporation 1976, page 9, Summary). After reviewing the 316(b) Demonstration and several annual environmental (monitoring) reports, MPCA issued a Public Notice on November 27, 1980 relating to issuance of draft National Pollutant Discharge Elimination System (NPDES) permit number MN0004006 to PINGP. The Public Notice made clear that issuance of the permit was contingent upon construction of new cooling water intake and discharge structures "to mitigate present impacts and minimize future impacts of the aquatic biota."

The NPDES permit issued to PINGP by the MPCA in January 1981 noted that it would be necessary for NSP to build an "alternate" (new or modified) cooling water intake structure "...designed to minimize the mortality of entrained and impinged fish." The NPDES permit stipulated certain essential features and design criteria for the alternate cooling water intake structure, as follows:

"The alternate structure shall include and employ the use of fine mesh screens and a low pressure wash, fish buckets and fish return system, and shall be constructed to eliminate the access of fish to the recirculating cooling water canal...minimum design criteria shall include a screen face velocity of 0.5 feet per second at a discharge rate of 800 cubic feet per second using 0.5 millimeter mesh screens."

Source: PINGP NPDES Permit No. MN 0004006, issued Jan. 19, 1981

In addition to these required hardware changes, the NPDES permit issued to PINGP in 1981 also imposed limits on plant flow/withdrawal of cooling water over the April 1 – June 30 period that were to go into effect once the new cooling water intake structure was completed:

- April 1 30 150 cubic feet per second (97 MGD)
- May 1 31 300 cfs (194 MGD)
- June 1 15 400 cfs (259 MGD)
- June 16 30 800 cfs (517.5 MGD)

The 1981 PINGP NPDES permit also mandated operation with fine mesh screens over the period April 16 – August 31. Finally, the 1981 permit required a (condenser) cooling water intake study to evaluate the effectiveness of the new cooling water intake system in reducing entrainment and impingement. Aside from determining survival rates of impinged fish, the study was intended to determine the optimum fine mesh screen size (one that would promote survival of impinged larval and juvenile fish and not create extreme clogging problems) and examine how often fine-mesh traveling screens would have to be rotated to operate as designed.

These design changes along with flow/withdrawal restrictions in spring and early summer were intended to reduce both entrainment and impingement mortality. The fine mesh screens and withdrawal limits were intended to reduce entrainment of early life

stages of fish. The lower through-screen velocities were intended to reduce impingement. The fish return system was intended to minimize mortality of larval fish, juvenile fish, and adult fish impinged on the fine-mesh screens (and larger fish impinged on coarse-mesh screens). NSP completed the MPCA-mandated modifications of the Cooling Water Intake System (CWIS) in 1983.

The flow/withdrawal restrictions in the current NPDES permit mirror those imposed in 1981, except for the month of April. Based on discussions with state agencies and studies conducted in the 1980s that showed low impingement rates and high impingement survival in April, NSP asked MPCA to apply the withdrawal restrictions on April 15 rather than April 1 and to raise the April withdrawal limit to 300 cfs (Bodensteiner 1991). The NPDES permit issued to PINGP in December 1991 incorporated this recommendation, but tied higher April withdrawals to river flows. The 1994 permit limited cooling water flow/withdrawals over the April 15-30 period to 300 cfs when river flow was 15,000 cfs or higher and 150 cfs when the river flow was lower than 15,000 cfs. When the NPDES permit was renewed in May 2000, the withdrawal limits were expressed in millions of gallons per day rather than cubic feet per second, which helped provide consistency with existing plant operations and protocols, as a maximum instantaneous value was not stipulated.

The current PINGP NPDES permit, like the 1981 permit, contains specific requirements related to intake screen operation. The plant is allowed to operate with 3/8-inch mesh screens over the period September 1 – March 31, but must employ fine mesh (0.5 mm) screens over the April 1 – August 31 period to "minimize mortality of fish and other organisms" (NPDES Permit No. MN0004006, Chapter 5, Section 4.1).

Thus the current PINGP NPDES permit (Attachment B), which was issued June 30, 2006 and expires August 31, 2010, reflects major modifications in design and operation of the CWIS made in the early 1980s to minimize entrainment and impingement mortality and constitutes the current CWA Section 316(b) determination for PINGP and reflects the cumulative results of about 30 years of study at the site. For this reason, NMC concludes that impacts of entrainment of fish and shellfish at PINGP are SMALL and warrant no mitigation beyond that already in place and required by the current NPDES permit.

The U.S. Environmental Protection Agency (EPA) issued new regulations in 2004 regarding design and operation of CWIS at large existing power-generating facilities, like PINGP, designed to withdraw 50 million gallons a day or more of cooling water (69 FR 131, pp. 41576-41653). These regulations, implementing Section 316(b) of the Clean Water Act, were intended to ensure that the "location, design, construction, and capacity of cooling water intake structures reflect the best technology available to protect aquatic organisms from being killed or injured by impingement...or entrainment..." (EPA 2004). Prior to 2004, state NPDES permitting authorities relied on draft Section 316(b) regulations issued, but never promulgated, in 1976 or made decisions on a "case-by-case, site-specific basis" (69 FR 131, p. 41584).

The NPDES permit issued to PINGP in June 2006 contained a list of required 316(b)related submittals, all due October 28, 2006. To facilitate its 316(b) planning, Xcel Energy prepared the required Proposal for Information Collection well in advance of the October 28 deadline, and submitted it to the MPCA in July 2006 (Xcel Energy 2006a). Xcel Energy submitted a comprehensive demonstration study (CDS) on October 27, 2006 in accordance with 40 CFR 125.95 that characterized entrainment and impingement mortality, described the operation of the CWIS, and asserted that the technologies and operational measures in place at PINGP satisfy the applicable requirements (performance standards) at 40 CFR 125.94. Xcel Energy selected Compliance Alternative (2) of 40 CFR 125.94(a) to meet the impingement and entrainment reduction requirements for PINGP (Xcel Energy 2006b). Alternative (2) requires that applicants demonstrate that existing design and construction technologies, operational measures, and/or restoration measures meet the impingement and entrainment performance standards.

The CDS submitted in October 2006 indicated that entrainment performance standards were satisfied by installation and use of 0.5 mm (fine) mesh screens at the intake screenhouse over the April-August period. Fine-mesh screens collect drifting eggs and larvae of most, if not all, fish species that spawn in the vicinity of PINGP, preventing their entrainment. As discussed in the CDS, studies of entrainment at PINGP before fine-mesh screens were installed and studies of "backwash" samples after fine-mesh screens in reducing impacts of entrainment (Xcel Energy 2006b).

In January 2007, the U.S. Court of Appeals for the Second Circuit remanded the EPA's 2004 rule. On July 9, 2007, EPA published a notice in the Federal Register (72 FR 130) formally suspending the Phase II regulation.

Based on informal communications between Xcel Energy and MPCA, the agency completed a preliminary review of the 316(b) submittal before the Phase II regulation was suspended and determined that PINGP's CWIS design and operation represented Best Technology Available. MPCA has indicated, informally, that it has no plans to review the submittal further, pending further rulemaking. However, the MPCA may reopen and modify the permit at any time if they see a need.

Attachment B contains relevant portions of the current NPDES permit. Based on the existing 316(b) demonstration and determination, as supported by the results of the recent studies, NMC concluded that any environmental impact from entrainment of fish and shellfish in early life stages at PINGP is SMALL and does not require further mitigation.

4.4 IMPINGEMENT OF FISH AND SHELLFISH

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act 316(b) determinations...or equivalent State permits and supporting documentation. If the applicant can not provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from...impingement...." 10 CFR 51.53(c)(3)(ii)(B)

"The impacts of impingement are small at many plants but may be moderate or even large at a few plants with once-through and cooling-pond cooling systems." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 26

NRC made impacts on fish and shellfish resources resulting from impingement a Category 2 issue because it could not assign a single significance level to the issue. The impacts of impingement are small at many plants, but they may be moderate or large at others (NRC 1996, Section 4.2.2.1.3). Information needing to be ascertained includes: (1) type of cooling system (whether once-through or cooling pond), and (2) status of CWA Section 316(b) determination or equivalent state documentation.

PINGP was designed to allow open-cycle, closed-cycle, or helper-cycle operation, but was originally intended to operate as a closed-cycle plant "to the maximum extent practicable" (AEC 1973, p. iv). Discussions and negotiations with resource and regulatory agencies produced agreement on a conceptual cooling system design that was subsequently installed and permitted in the early 1980s. This design, which addressed both operational constraints and environmental concerns, included a new screenhouse (with fine-mesh screening and continuous low-pressure wash capabilities during critical periods of the year) and new discharge configuration. Section 3.1.3 discusses these modifications in more detail.

Section 316(b) of the CWA requires that any standard established pursuant to Sections 301 or 306 of the CWA shall require that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts (33 USC 1326). Impingement of fish and shellfish on traveling screens at cooling water intake structures is a potential adverse environmental impact by the best available technology.

As noted in Section 4.2, Northern States Power submitted its original 316(b) demonstration to the MPCA in late 1976. With regard to impingement, the 316(b) demonstration concluded that "...numbers of young fish impinged per year appear to represent only a small percentage increase in the mortality resulting from natural causes and fishing" (NUS Corporation 1976, page 9 of Summary). As regards important sport fish, the report asserts that "...numbers of young white bass, walleye, and sauger impinged are approximately 0.2 percent of their adult populations in the region and represent an even smaller percentage loss of recruitment into the sport fishery." After reviewing the 316(b) Demonstration and several annual environmental

(monitoring) reports, MPCA issued a Public Notice on November 27, 1980 relating to issuance of draft NPDES permit number MN0004006 to PINGP. The Public Notice made clear that issuance of the permit was contingent upon construction of new cooling water intake and discharge structures "...to mitigate present impacts and minimize future impacts of the aquatic biota."

As discussed in Section 4.2, the NPDES permit issued to PINGP by the MPCA in 1981 required NSP to modify its cooling water intake structure to reduce the mortality of entrained and impinged fish. The MPCA directed NSP to retrofit its CWIS with finemesh screens, a continuous low-pressure wash system, fish buckets/trays, and a fish return system. The 1981 NPDES permit also imposed limits on plant flow/withdrawal of cooling water over the April 1 – June 30 period that were to go into effect once the new cooling water intake structure was completed and mandated operation with fine mesh screens over the period April 16 – August 31.

These design changes and spring/early summer flow/withdrawal restrictions were intended to reduce both entrainment and impingement mortality. The fine mesh screens and withdrawal limits were intended to reduce entrainment of early life stages of fish. The lower through-screen velocities were intended to reduce both entrainment and impingement. The fish return system was intended to minimize mortality of larval fish, juvenile fish, and adult fish impinged on the fine-mesh screens (and larger fish impinged on coarse-mesh screens). NSP completed the MPCA-mandated modifications of the CWIS in 1983.

The flow/withdrawal restrictions in the current NPDES permit mirror those imposed in 1981, except for the month of April. Based on studies conducted in the 1980s that showed low impingement rates and high impingement survival in April, NSP asked MPCA to apply the withdrawal restrictions on April 15 rather than April 1 and to raise the April withdrawal limit to 300 cfs (Bodensteiner 1991). The NPDES permit issued to PINGP in December 1991 incorporated this recommendation, but tied higher April withdrawals to river flows. Permits since 1991 have limited cooling water flow/withdrawals over the April 15-30 period to 300 cfs when river flow is 15,000 cfs or higher and 150 cfs when the river flow is lower than 15,000 cfs. The current permit was changed to MGD.

The current PINGP NPDES permit, like the 1981 permit, contains specific requirements related to intake screen operation. The plant is allowed to operate with 3/8-inch mesh screens over the period September 1 – March 31, but must employ fine mesh (0.5 mm) screens over the April 1 – August 31 period to "minimize mortality of fish and other organisms" (NPDES Permit No. MN0004006, Chapter 6, Section 4.2).

Thus the current PINGP NPDES permit (Attachment B), which was issued June 30, 2006 and expires August 31, 2010, reflects major modifications in design and operation of the CWIS made in the early 1980s to minimize entrainment and impingement mortality and constitutes the current CWA Section 316(b) determination for PINGP. For this reason, NMC concludes that impacts of impingement of fish and shellfish at the

PINGP CWIS are SMALL and warrant no mitigation beyond that already in place and required by the current NPDES permit.

As discussed in Section 4.2, Xcel Energy has compiled information to demonstrate compliance with EPA's Final Regulations for Cooling Water Intake Structures at Phase II Existing Facilities. Xcel Energy has selected Compliance Alternative (2) of 40 CFR 125.94(a) to meet the impingement and entrainment reduction requirements for PINGP. Alternative (2) requires that applicants demonstrate that existing design and construction technologies, operational measures, and/or restoration measures meet the impingement and entrainment performance standards. Xcel Energy submitted a comprehensive demonstration study (CDS) in accordance with 40 CFR 125.95 that characterized impingement mortality and entrainment, described the operation of the CWIS, and asserted that the technologies and operational measures in place at PINGP satisfy the applicable requirements (performance standards) at 40 CFR 125.94.

With regard to impingement, the CDS noted that 71.5 percent of juvenile and adult fish impinged on fine mesh screens at PINGP survive. When the survival rate was adjusted for sampling-induced mortality, the survival rate increased to more than 80 percent. Operational measures (reduced rates of cooling water withdrawal in April, May, and June) were also assumed to substantially reduce impingement mortality during the period of highest larval densities. The CDS concluded that "based on survival studies, sampling induced mortality studies, and operational measures, PINGP meets the impingement standards set forth by the 316(b) rule."

In January 2007, the U.S. Court of Appeals for the Second Circuit remanded the EPA's 2004 rule. On July 9, 2007, EPA published a notice in the Federal Register (72 FR 130) formally suspending the Phase II regulation.

Based on informal communications between Xcel Energy and MPCA, the agency completed a preliminary review of the 316(b) submittal before the Phase II regulation was suspended and determined that PINGP's CWIS design and operation represented Best Technology Available. MPCA has indicated, informally, that it has no plans to review the submittal further, pending further rulemaking.

Attachment B contains relevant portions of the current NPDES permit. Based on the existing 316(b) demonstration and determination as supported by the results of the recent studies, NMC concludes any environmental impact from impingement of fish and shellfish at PINGP is SMALL and does not require further mitigation.

4.5 HEAT SHOCK

NRC

"If the applicant's plant utilizes once-through cooling or cooling pond heat dissipation systems, the applicant shall provide a copy of current Clean Water Act... 316(a) variance in accordance with 40 CFR 125, or equivalent State permits and supporting documentation. If the applicant cannot provide these documents, it shall assess the impact of the proposed action on fish and shellfish resources resulting from heat shock" 10 CFR 51.53(c)(3)(ii)(B)

"...Because of continuing concerns about heat shock and the possible need to modify thermal discharges in response to changing environmental conditions, the impacts may be of moderate or large significance at some plants...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 27

NRC made impacts on fish and shellfish resources from heat shock a Category 2 issue, because of continuing concerns about thermal discharge effects and the possible need to modify thermal discharges in the future in response to changing environmental conditions (NRC 1996). Information to be ascertained includes: (1) type of cooling system (whether once-through or cooling pond), and (2) evidence of a CWA Section 316(a) variance or equivalent state documentation.

As described in Section 3.1.3, PINGP was designed to operate as a closed-cycle or open-cycle plant, depending on environmental conditions (river flow and water temperature) and certain operational constraints. The plant withdraws condenser cooling water from the Mississippi River and discharges to the same waterbody approximately 0.5 mile downstream of the plant intake, to prevent recirculation of heated water.

Section 316(a) of the Clean Water Act provides for alternate thermal effluent limitations when operators of facilities can demonstrate that state thermal standards are more stringent than necessary to assure "protection and propagation of a balanced indigenous population of fish and shellfish." These alternate thermal effluent limits represent a "variance" from established state water quality standards.

NSP submitted its original 316(a) demonstration to MPCA in August 1978 (HDR 1978). The 316(a) demonstration concluded that "the thermal discharge resulting from past operation of PINGP has not caused appreciable harm to any aquatic organisms, and the protection and propagation of a balanced, indigenous biota has been maintained. In the future, the discharge plume is predicted to cause neither appreciable harm nor adverse levels of impact to aquatic biota" (HDR 1978, page VII-3). However, the 316(a) demonstration acknowledged that thermal modeling had shown the plant would not be able to meet proposed NPDES thermal limits under certain extreme circumstances and would be forced to seek a variance to the proposed thermal limits "to meet the thermal criteria without derating the plant" (HDR 1978, page I-6).

After reviewing the 316(a) Demonstration and several annual environmental (monitoring) reports, MPCA issued a Public Notice on November 27, 1980 relating to

issuance of draft NPDES permit number MN0004006 to PINGP. The Public Notice made clear that issuance of the permit was contingent upon construction of new cooling water intake and discharge structures "to mitigate present impacts and minimize future impacts of the aquatic biota."

The NPDES permit issued to PINGP by the MPCA in 1981 noted that it would be necessary for NSP to build a "new discharge structure downstream from Barney's Point to reduce the potential for cold shock." The 1981 permit contained interim thermal limitations for operation prior to completion of the new discharge structure, and final limitations, which were to take effect on the day the discharge structure became operational. The 1981 NPDES permit included requirements to:

- Operate all cooling towers to the maximum practical extent from April 1 through November 30 so that the temperature of receiving waters immediately below Lock and Dam 3 is raised no more than 5°F above "natural" (ambient upstream) and in no case exceeds a daily average temperature of 86°F.
- Not raise the mixed river temperature immediately below Lock and Dam 3 above 43°F for an extended period of time after the fall trigger point (average upstream ambient river temperature at or below 43°F for five consecutive days). Should temperature equal or exceed 43°F immediately below Lock and Dam 3 for two consecutive days, NSP must notify the Director of MPCA and Minnesota Department of Natural Resources.
- Minimize to the extent practical abrupt temperature changes in the discharge to reduce the potential for cold shock in receiving water.
- Monitor mixed river temperature immediately below Lock and Dam 3 continuously.

The new discharge structure, completed in 1983, was designed specifically to be protective of local fish populations. Its design incorporated features intended to promote mixing of the heated effluent with receiving water and eliminate recirculation to the intake area. The terminus (sluice gates) of the new discharge canal was 2,150 feet downstream of the original discharge canal and used underground pipes to convey heated effluent from the discharge structure to the Mississippi River. The new discharge canal was open to the Mississippi River by a dike, whereas the original discharge pipes to the river at a velocity of 8 to 10 feet per second, which ensures rapid mixing and prevents fish from entering the pipes and moving into the discharge canal. The new configuration was also intended to prevent recirculation of heated water back to the intake area, removing a possible attractant to fish and increasing system efficiency (Stone & Webster 1983).

Permits issued to NSP prior to 1991 required PINGP to operate all cooling towers to the maximum practical extent from April 1 through October 31 so as not to raise the temperature of the receiving waters immediately below Lock and Dam 3 by more than

5°F above ambient. They also established a year-round limit of 86°F (daily average) on the temperature of the receiving waters. Based on results of fish studies conducted by NSP and submitted to MPCA, the permit issued in 1991 relaxed this requirement, requiring only that cooling towers be operated (the word "all" was removed) so as to meet the 5°F and 86°F limits. To ensure that cooling towers were operated during extremely warm periods, MPCA retained the requirement that all cooling towers would be operated in the event that ambient river temperatures reached 78°F for two consecutive days.

Thermal limitations in the current NPDES permit, issued in June 2006, are similar to those in the 1991 and 1995 permits. Thermal limits in the current permit are keyed to temperatures in the Mississippi River up- and downstream of the plant and are referred to in the permit as spring and fall "trigger points." From April 1 through the fall "trigger point" (when daily average upstream river temperature falls below 43°F for five consecutive days) PINGP is required to operate cooling towers in such a way that:

- Water temperature below Lock and Dam 3 (Outfall SW 001) is not raised more than 5 degrees above ambient (upstream) temperature, and
- Water temperature below Lock and Dam 3 (Outfall SW 001) does not exceed a daily average of 86°F

Also, if ambient (upstream) temperatures reach or exceed 78°F for two days, PINGP is required to operate cooling towers "to the maximum extent practicable" (NPDES Permit No. MN0004006, Chapter 6, Section 2.3), meaning two cooling towers per operating unit.

From the date of the fall trigger point (see above) through March 31, PINGP is not allowed to raise the temperature of the water below Lock and Dam 3 (Outfall SW 001) above 43°F "for an extended period of time" (NPDES Permit No. MN0004006, Chapter 6, Section 2.4). Should the temperature exceed 43°F for two consecutive days, PINGP is required to notify both the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, and, having done so, may be required to operate cooling towers until such time as the 43°F criteria is met. From April 1 or once the spring trigger point (>43°F for five consecutive days) is reached, plant thermal limits default to those of Section 2.3, above (maximum discharge temperature of 86°F, maximum delta-T of 5°F).

The current NPDES permit therefore reflects fishery study data and subsequent major modifications to the discharge structure in the early 1980s and subsequent NPDES-related changes in plant operations designed to reduce thermal impacts to aquatic populations, specifically the potential for fish kills in the discharge canal due to sudden temperature changes. Based on the 316(a) variance and supporting documentation, and consistent with the thermal effluent limitations in the current NPDES permit, NMC concludes that heat shock impacts are SMALL and no further mitigation is necessary.

4.6 IMPACTS OF REFURBISHMENT ON TERRESTRIAL RESOURCES

NRC

The environmental report must contain an assessment of "...the impacts of refurbishment and other license renewal-related construction activities on important plant and animal habitats...." 10 CFR 51.53(c)(3)(ii)(E)

"...Refurbishment impacts are insignificant if no loss of important plant and animal habitat occurs. However, it cannot be known whether important plant and animal communities may be affected until the specific proposal is presented with the license renewal application...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 40

"...If no important resources would be affected, the impacts would be considered minor and of small significance. If important resources could be affected by refurbishment activities, the impacts would be potentially significant...." NRC 1996

NRC made impacts to terrestrial resources from refurbishment a Category 2 issue, because the significance of ecological impacts cannot be determined without considering site- and project-specific details (NRC 1996, Section 3.6). Aspects of the site and project to be ascertained are: (1) the nature of refurbishment activities, (2) the identification of important ecological resources, and (3) the extent of impacts to plant and animal habitats.

The only license-renewal related construction activities anticipated are those associated with the replacement of the Unit 2 steam generators in 2013, as discussed in Section 3.2. These one-time activities would occur in a developed area that is devoid of natural habitats. Foraging birds such as pigeons and European starlings, which are especially common in developed areas of PINGP, could be temporarily displaced by noise, machinery, and personnel associated with refurbishment activities, but such disturbances would be temporary and minor.

Peregrine falcons (state-listed as threatened), have nested on the Unit 1 containment dome at PINGP annually since 1997. More than 30 peregrine falcons have fledged from this nest since 1997. The peregrine falcon nesting season at PINGP extends roughly from March through July. Peregrine falcons vary greatly in responsiveness to human activities, depending on individual characteristics and environmental circumstances. Breeding pairs in remote locations are especially sensitive to human disturbance, while those in areas frequently visited by humans or urban areas become habituated to close human activities. Many cities in North America have recently had peregrine falcons nesting on ledges of tall buildings and under bridges in densely populated urban areas (UM 2002, White et al. 2002). Refurbishment activities during the nesting season could startle nesting peregrine falcons at PINGP, but these birds have presumably become habituated to activities at PINGP, including movement of personnel and machinery and loud noise. In addition, the nest is not near the ground but is instead high atop the containment dome, which serves to mitigate potential disturbances that might occur if the nest were lower. Furthermore, Xcel Energy plans to

conduct the Unit 2 steam generator replacement outside the March through July falcon breeding period. Thus, the steam generator replacement project will not impact falcon breeding activities. In summary, NMC concludes that impacts to terrestrial resources from refurbishment activities would be SMALL and do not warrant mitigation.

4.7 THREATENED AND ENDANGERED SPECIES

NRC

"Additionally, the applicant shall assess the impact of the proposed action on threatened or endangered species in accordance with the Endangered Species Act." 10 CFR 51.53(c)(3)(ii)(E)

"Generally, plant refurbishment and continued operation are not expected to adversely affect threatened or endangered species. However, consultation with appropriate agencies would be needed at the time of license renewal to determine whether threatened or endangered species are present and whether they would be adversely affected." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 49

NRC made impacts to threatened and endangered species a Category 2 issue because the status of many species is being reviewed, and site-specific assessment is required to determine whether any identified species could be affected by refurbishment activities or continued plant operations through the renewal period. In addition, compliance with the Endangered Species Act requires consultation with the appropriate federal agency (NRC 1996, Sections 3.9 and 4.1).

Section 2.3.1 of this Environmental Report describes the aquatic communities of Pool 3 of the Mississippi River, including Sturgeon Lake. Section 2.3.2 describes important terrestrial habitats at PINGP and along the associated transmission corridors. Section 2.3.3 discusses threatened or endangered species that occur or may occur in the vicinity of PINGP and along associated transmission corridors.

In May 2007, NMC submitted a request to Minnesota DNR's Natural Heritage and Nongame Research Program seeking information on special-status plant and animal species in the vicinity of PINGP and associated transmission corridors. Minnesota DNR subsequently sent NMC information on occurrences of special-status species within a mile of the PINGP boundary and within a mile of PINGP transmission corridors (MN DNR 2007a, b). For the purposes of its environmental review, Minnesota DNR considered species in Township 113N, Range 15W, Sections 4 and 5 to be within one mile of the plant boundary. One federally listed species (Higgins Eye pearlymussel) and six state-listed species [peregrine falcon, Blanding's turtle, paddlefish, mucket (mussel), washboard (mussel), and butterfly (mussel)] were identified as occurring within one mile of PINGP and are the focus of the discussion of potential operational impacts that follows.

Higgins Eye pearlymussel

Mussel surveys conducted by the Corps of Engineers in 1986, 1999, 2000, and 2003 did not reveal any Higgins' eye pearlymussels in the area around Lock and Dam 3 (USACE 2006). However, this species has been cultured (reared in cages) and recently re-introduced into lower Pool 4 and both upper and lower Pool 3 (Sturgeon Lake) of the Mississippi River (USACE 2004; USACE 2006). The Sturgeon Lake relocation site, where 195 sub-adult *Lampsilis higginsii* were placed in 2003 and 1,400 more sub-adults

were placed in 2005 (Mussel Coordination Team 2005), is approximately 0.5 mile upriver of the PINGP Intake Screenhouse.

The life cycle of *L. higginsii* is complicated, with sessile adults releasing planktonic larvae (known as glochidia) that are parasitic, attaching to the gills of fish (FWS 2004a). Glochidia develop on the gills of host fish for several weeks and drop off as juveniles, ultimately settling on suitable substrate and (if successful) growing into adults. In the genus *Lampsilis*, the mantle of the female grows into a ribbon-like appendage that resembles a minnow and is believed to have evolved to attract fish hosts (FWS 2004a). Females are known to expel glochidia in the presence of these fish, increasing the likelihood that they will attach to fish gills and survive (FWS undated). Sauger, walleye, yellow perch, largemouth bass, smallmouth bass, and freshwater drum all serve as hosts for Higgins eye glochidia (FWS 2004b). When glochidia are released into the water column in the absence of fish, survival is greatly reduced.

State (MN DNR) and federal (FWS and USACE) agency partners determined that the area 0.5 mile north of the PINGP intake was suitable area for the relocation of *L. higginsii*, notwithstanding the fact that it was a short distance upstream of the plant's intake. Sub-adult *higginsii* planted upstream of the PINGP intake screenhouse in 2003 reached adulthood (sexual maturity) in 2005 (FWS 2006a) and are assumed to be releasing glochidia into Sturgeon Lake. It is conceivable that some larval *higginsii* will be carried downstream into the power plant's intake screenhouse. It should be noted, however, that mortality rate of early life stages of mussels is very high under the best of circumstances, and glochidia that do not attach to fish hosts soon after being released have a very low probability of survival.

Peregrine falcon

A pair of peregrine falcons has nested in a nest box on the Unit 1 containment dome annually since 1997, and over 30 falcons have fledged from the nest since then. As discussed in Section 4.6, peregrine falcons vary greatly in responsiveness to human activities, depending on individual characteristics and environmental circumstances. The falcons nesting on the Unit 1 containment dome have apparently become habituated to activities at PINGP, including movement of personnel and machinery and loud noise. For the reasons discussed in Section 4.6, refurbishment activities would have no impacts on this species. Similarly, continued operation of PINGP is unlikely to affect peregrine falcons.

Blanding's turtle

Blanding's turtles *(Emydoidea blandingii)*, state listed as threatened, might occur on or near the PINGP site, particularly in sloughs, lakes, and marshes. A single Blanding's turtle was observed in 1989 crossing County Road 18 near the site (MN DNR 2007a). In Minnesota, Blanding's turtles are primarily marsh and pond inhabitants. Calm, shallow water bodies with mud bottoms and abundant aquatic vegetation (cattails, water lilies, etc.) are preferred, and extensive marshes bordering rivers provide excellent

habitat. Small temporary wetlands (those that dry up in the late summer or fall) are frequently used in spring and summer. Nesting in Minnesota typically occurs during June. Nests are dug by females in open sandy uplands, and 6-15 eggs are laid. Nesting can occur as much as a mile from wetlands. After a development period of approximately two months, hatchlings leave the nest from mid-August through early-October. In late autumn (typically November), Blanding's turtles bury themselves in the substrate of deeper wetlands to overwinter (MN DNR 2007c).

As discussed in Section 2.3.1.2, the Minnesota side of Pool 3 is associated with a broad floodplain that encompasses a variety of lentic and wetland habitats including small ponds, shallow lakes, shallow marshes, and deep-water marshes. Many of these areas could provide habitat for Blanding's turtles. The site proper provides very little potential habitat. Given that more-optimal habitat for the species is available all along the western shore of Pool 3 and that Xcel Energy biologists have never observed Blanding's turtles on the plant property, continued operation of PINGP is not expected to affect this species.

Paddlefish

Northern States Power and Xcel Energy have conducted fish studies in the Mississippi River (Sturgeon Lake) since the 1970s to assess impacts of PINGP operation. With the exception of state-listed paddlefish, (see Section 2.3.3), no state- or federally-listed fish species has been collected or observed in more than 30 years of monitoring. Paddlefish in the Dakotas, Minnesota, and Wisconsin spawn in the spring over clean gravel or cobble in rivers with strong currents (high or rising flow is critical). Sturgeon Lake, a backwater of the Mississippi River, does not provide spawning habitat for the paddlefish, and as a result eggs and young of the species are not likely to be affected by PINGP operation.

State-listed mussels

Three state-listed mussel species, all classified as threatened by Minnesota DNR, are known to occur in the Mississippi River and its backwaters in the vicinity of PINGP: mucket, washboard, and butterfly (Table 2.3-1; MN DNR 2007a). Several more species (e.g., ebonyshell and yellow sandshell) may also be present, but only dead specimens and shells have been collected in recent years (MN DNR 2007a).

Although the MN DNR report provided information on known occurrences, it did not provide detailed information on the abundance (or relative abundance) of these species in the Pool 3/Sturgeon Lake area. Based on the fact that all three are state listed, they are presumed to be uncommon to rare. As is the case with *Lampsilis higginsii*, these Unionid species have planktonic, parasitic larvae that attach to the gills or fins of host fish (FWS 2006b). The planktonic larvae of all three species could be entrained at the PINGP intake screenhouse. As suggested previously, freshwater mussel larvae experience high rates of mortality under the best of circumstances and are not likely to survive unless they attach to host fish soon after being released.

Plant operations are not expected to change significantly over the license renewal term and are not expected to jeopardize any threatened or endangered species. Similarly, the continued operations of PINGP transmission lines and the vegetation management practices along these lines (which would continue irrespective of license renewal) are not believed to jeopardize any threatened or endangered species. No critical habitats have been identified on the site or transmission corridors.

As discussed in Section 4.6, refurbishment activities at PINGP during the license renewal term are not expected to adversely impact important habitats and special-status species, and no further analysis of refurbishment-related impacts is applicable.

NMC has initiated contacts with the Minnesota Department of Natural Resources and the U.S. Fish and Wildlife Service requesting information on any listed species or critical habitats that might occur on the PINGP site or along the associated transmission corridors, with particular emphasis on species that might be adversely affected by continued operation over the license renewal period. Contact letters are provided in Attachment C.

Renewal of the PINGP license is not expected to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of any critical habitat. Because current operational practices will not be affected by license renewal, NMC concludes that impacts to threatened or endangered species from license renewal would be SMALL and do not warrant mitigation.

4.8 AIR QUALITY DURING REFURBISHMENT (NON-ATTAINMENT OR MAINTENANCE AREAS)

NRC

"If the applicant's plant is located in or near a nonattainment or maintenance area, an assessment of vehicle exhaust emissions anticipated at the time of peak refurbishment workforce must be provided in accordance with the Clean Air Act as amended." 10 CFR 51.53(c)(3)(ii)(F)

"...Air quality impacts from plant refurbishment associated with license renewal are expected to be small. However, vehicle exhaust emissions could be cause for concern at locations in or near nonattainment or maintenance areas. The significance of the potential impact cannot be determined without considering the compliance status of each site and the numbers of workers expected to be employed during the outage...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 50

NRC made impacts to air quality during refurbishment a Category 2 issue because vehicle exhaust emissions could be cause for some concern, and a general conclusion about the significance of the potential impact could not be drawn without considering the compliance status of each site and the number of workers expected to be employed during an outage (NRC 1996).

Activities associated with refurbishment at PINGP are discussed in Section 3.2. Several temporary buildings would be built, including a facility for preparing the steam generators, office space for construction contractors, and a decontamination building. Warehouse(s) would also be built on site and would remain after the steam generator replacement outage. NMC anticipates that there would be ample parking space for the refurbishment workforce. Any construction would occur within the existing plant boundaries. There would be no clearing of previously-undisturbed areas. No road improvements would be required because the steam generators would arrive via barge and be offloaded to a self-propelled nuclear transporter capable of traveling on existing site roads without damage. Because any construction areas would be limited to the PINGP site, the construction period would last approximately 80 days, and best management practices would be used, fugitive dust resulting from construction activities would be minimal.

Construction equipment would generate exhaust emissions as would the vehicles of refurbishment and refueling personnel. Temporary and localized increases in atmospheric concentrations of NOx, CO, VOCs, and particulate matter would result. NRC determined that vehicle emissions from refurbishment activities occurring in geographical areas of poor or marginal air quality could be cause for concern, based on a refurbishment and refueling workforce of 2,300 and duration of 9 months. As described in Section 3.2, replacement of the Unit 2 steam generators is expected to last approximately 80 days and require 750 workers.

NMC assumes that the entire refurbishment workforce would come from outside the 50-mile radius and reside throughout the 50-mile radius.

As discussed in Section 2.10, the EPA has established National Ambient Air Quality Standards (NAAQS) for six common pollutants and has designated all areas of the United States as having air quality better than (attainment) or worse than (non-attainment) the NAAQS. PINGP is located in Goodhue County, Minnesota, which is part of the Southeast Minnesota-La Crosse (Wisconsin) Interstate Air Quality Control Region (AQCR) (40 CFR 81.66). The AQCR is in attainment for all criteria pollutants, as are all counties in Minnesota (40 CFR 81.324).

The closest maintenance area to PINGP is Dakota County for lead, sulfur dioxide, and carbon monoxide. Refurbishment activities would not result in any lead emissions, and therefore would not have the potential to endanger the Dakota County lead attainment status. Olmsted County (also part of the Southeast Minnesota-La Crosse AQCR), directly south of Goodhue County is a maintenance area for sulfur dioxide and PM10. Other maintenance areas in the vicinity include multiple counties in the Minneapolis-St. Paul Intrastate AQCR (for carbon monoxide and sulfur dioxide) and Ramsey County (Minneapolis-St. Paul Intrastate AQCR) for PM₁₀ (40 CFR 81.324).

As noted in Section 3.3 of the GEIS (NRC, 1996), a conformity analysis is required for each pollutant where the total of direct and indirect emissions caused by a proposed federal action would exceed established threshold emission levels in a non-attainment or maintenance area. Federal conformity rules are defined in 40 CFR Parts 51 and 93.

As discussed in Section 3.2, the refurbishment outage would take place in fall 2013. All construction activities would take place in Goodhue County. Construction worker commuter traffic would travel from areas within the 50-mile radius and converge on Goodhue County. Assuming each of the 750 workers would travel an average of 50 miles daily commuting to and from PINGP; this would result in an additional 37,500 vehicle miles within the region. In 2005, the average number of vehicle miles traveled within Goodhue County was 1,766,701 per day (Mn/DOT 2006). Its close proximity to large job concentrations in the Twin Cities and Rochester has led to steady growth in population which is expected to continue (Goodhue County Transportation Plan Steering Committee 2004). The additional number of vehicle miles that would be traveled in the region per day (37,500) during refurbishment represents 2.1 percent of the total miles traveled daily in Goodhue County alone. Because the construction workforce would travel from all over the 50-mile region, the amount of pollutants emitted from commuter traffic would be SMALL compared with total vehicular emissions in the region. The increase in the amount of vehicle travel, and consequently, vehicle emissions in Goodhue County would also be insignificant. Because Goodhue County is in attainment for all criteria pollutants; construction and vehicular emissions would not significantly deteriorate air quality in the area and a conformity analysis is not required.

NRC's screening analysis in the GEIS determined that emissions from 2,300 vehicles may exceed the thresholds for carbon monoxide, oxides of nitrogen, and volatile organic compounds in nonattainment and maintenance areas, and that the amount of road dust generated by the vehicles traveling to and from work would exceed the threshold for PM10 in serious nonattainment areas. Dakota, Olmsted, and Ramsey counties are not

serious nonattainment areas, and the number of workers (750) required for PINGP refurbishment is estimated to be less than one third the number assumed in the GEIS. The refurbishment duration is also much shorter than the time frame assumed in the GEIS.

The disturbed area for the new facilities and laydown areas is expected to be less than 10 acres. During site excavation and grading, some particulate matter in the form of fugitive dust would be released into the atmosphere, but fugitive dust consists primarily of large particles that settle quickly and thus have minimal adverse public health effects. Because construction would probably occur within an existing plant yard, much less site preparation would be necessary than for a previously undisturbed site. Because of the (1) small size of the disturbed area, (2) relatively short construction period, (3) availability of paved roadways at existing facilities, and (4) use of the best management practices (such as seeding and wetting), fugitive dust resulting from these construction activities should be minimal. Air quality impacts from refurbishment activities are expected to be SMALL and would not warrant mitigation.

4.9 IMPACT ON PUBLIC HEALTH OF MICROBIOLOGICAL ORGANISMS

NRC

"If the applicant's plant uses a cooling pond, lake, or canal or discharges into a river having an annual average flowrate of less than 3.15×10^{12} ft³/year (9×10¹⁰ m³/year), an assessment of the impact of the proposed action on public health from thermophilic organisms in the affected water must be provided." 10 CFR 51.53(c)(3)(ii)(G)

"These organisms are not expected to be a problem at most operating plants except possibly at plants using cooling ponds, lakes, or canals that discharge to small rivers. Without site-specific data, it is not possible to predict the effects generically." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 57

NRC designated impacts to public health from thermophilic organisms a Category 2 issue, requiring plant-specific analysis, because the magnitude of the potential public health impacts associated with thermal enhancement of such organisms, particularly *Naegleria fowleri*, could not be determined generically. NRC noted in the GEIS that impacts of nuclear power plant cooling towers and thermal discharges are considered to be of small significance if they do not enhance the presence of microorganisms that are detrimental to water quality and public health (NRC 1996, Section 4.3.6). Information to be ascertained includes: (1) thermal conditions for the enhancement of *Naegleria fowleri*; (2) thermal characteristics of the Mississippi River; (3) thermal discharge temperature; and (4) impacts to public health.

NRC requires [10 CFR 51.53(c) (ii)(G)] an assessment of the potential impact of thermophillic organisms in receiving waters on public health if a nuclear power plant uses cooling ponds, cooling lakes, or cooling canals or discharges to a river with an average annual flow rate less than 3.15×10^{12} cubic feet per year. Because the Mississippi River has an average flow rate of 5.8×10^{11} cubic feet per year at U.S. Geological Survey Prescott gauging station upstream of PINGP (USGS 2006), the Mississippi River would be considered a small river at PINGP under NRC's definition. It is also relevant because the Mississippi River in the vicinity of PINGP is used by the public for recreation, including swimming, boating, and fishing (AEC 1973).

Organisms of concern include the enteric pathogens *Salmonella* and *Shigella*, the *Pseudomonas aeruginosa* bacterium, thermophilic Actinomycetes ("fungi"), the many species of *Legionella* bacteria, and pathogenic strains of the free-living *Naegleria* amoeba.

During the early 1980s, PINGP identified the presence of the parasitic amoeba *Naeglaria* at high population densities within the plant's circulating water system. In cooperation with the Minnesota Pollution Control Agency and Minnesota Department of Natural Resources, PINGP conducted chlorination and subsequent dechlorination of the circulating water system in August 1980, September 1981, and August 1983 (NSP 1981a, NSP 1981b, and NSP 1983). The chlorination processes were successful in controlling and reducing the populations of the organisms, however the dechlorination

process does impact the fish populations in the Mississippi River. Although the Minnesota Department of Health did not consider the presence of the organism to be a public health threat, it was recognized as an occupational health hazard and plant personnel were instructed to wear protective equipment when in contact with the circulating water system components (NRC 1980). PINGP continues to periodically treat the circulating water system to control microbiological organisms and zebra mussels in accordance with the NPDES permit requirements (MPCA 2006).

Bacteria pathogenic to humans have evolved to survive in the digestive tracts of mammals and accordingly have optimum temperatures of around 99°F (Joklik and Smith 1972). Many of these pathogenic microorganisms (e.g., *Pseudomonas, Salmonella*, and *Shigella*) are ubiquitous in nature, occurring in the digestive tracts of wild mammals and birds (and thus in natural waters), but are usually only a problem when the host is immunologically compromised. Thermophilic bacteria generally occur at temperatures from 77°F to 176°F, with maximum growth at 122°F to 140°F (Joklik and Smith 1972).

Heat dissipation at PINGP can be achieved by three separate modes. Closed-cycle or helper-cycle modes dissipate heat by utilizing four mechanical draft cooling towers. The open-cycle mode pipes condenser/circulating water and cooling water to the Mississippi River via the discharge basin to the discharge canal (see Section 3.1.3 for detailed description of the condenser cooling systems). To determine the ambient river water temperature, assess the plant's thermal input, and assure compliance with NPDES thermal discharge requirements, river water is monitored by PINGP at multiple locations. Temperatures are monitored at the discharge canal, the plant intake structure, main river channel (upstream), Sturgeon Lake (upstream), and immediately downstream of Lock and Dam 3 (MPCA 2006). The highest temperatures at the station upstream of the plant intake structure were as follows:

2000	2001	2002	2003	2004	2005
81.0°F	86.0°F	82.1°F	79.8°F	78.4°F	82.7°F
(July 9)	(August 8),	(July 8)	(August 22)	(July 22)	(July 16)

ESWQD 2000, 2001, 2002, 2003, 2004, 2005

The highest temperature measured over the same period downstream of the plant at the Lock and Dam 3 monitoring station, was 86.4°F in 2001 (August 9). The highest daily maximum temperature measured at the plant's discharge canal from January 2003 through December 2004 was 99°F, recorded on July 28, 2003. The entire length of the discharge canal and adjoining portions of the Mississippi River are within the plant's exclusion zone, however, and there is no public access to these areas.

Water at these temperatures could, in theory, allow limited survival of thermophilic microorganisms, but are well below the optimal temperature range for growth and reproduction of thermophilic microorganisms. The probability of the presence of

thermophilic microorganisms due to plant operations is low. Given the thermal characteristics at the PINGP discharge and the fact that NMC periodically chlorinates the circulating water system, NMC does not expect PINGP operations to stimulate growth or reproduction of thermophilic organisms. Under certain circumstances, these organisms might be present in limited numbers in the station's discharge, but would not be expected in concentrations high enough to pose a threat to recreational users of the Mississippi River.

NMC wrote the Minnesota Department of Health on January 25, 2008, requesting information on any studies that may have been conducted on thermophilic microorganisms in the Mississippi River and any concerns the agency may have relative to these organisms. A copy of the letter is included in Attachment E of this environmental report. NMC is not aware of reported cases of illness caused by *Naegleria* or *Legionella* at, in the vicinity, or downstream of the plant. Therefore, NMC concludes that the impact of thermophilic organisms is SMALL and does not warrant mitigation.

4.10 ELECTROMAGNETIC FIELD – ACUTE EFFECTS

NRC

The environmental report must contain an assessment of the impact of the proposed action on the potential shock hazard from transmission lines "...[i]f the applicant's transmission lines that were constructed for the specific purpose of connecting the plant to the transmission system do not meet the recommendations of the National Electric Safety Code for preventing electric shock from induced currents..." 10 CFR 51.53(c)(3)(ii)(H)

"...Electrical shock resulting from direct access to energized conductors or from induced charges in metallic structures have not been found to be a problem at most operating plants and generally are not expected to be a problem during the license renewal term. However, site-specific review is required to determine the significance of the electric shock potential at the site...." 10 CFR 51, Subpart A, Table B 1, Issue 59

NRC made impacts of electric shock from transmission lines a Category 2 issue because, without a review of each plant's transmission line conformance with the National Electrical Safety Code (NESC) criteria (IEEE 1997), NRC could not determine the significance of the electric shock potential. This section provides an analysis of the PINGP transmission lines in conforming with the NESC standard. NRC does not define the phrase "transmission line" in its regulations at 10 CFR 51.53(c)(3)(ii)(H), but does indicate in the GEIS that transmission lines use voltages of about 115/138 kilovolts (kV) and higher (NRC 1996, Section 4.5.1). As indicated in the regulation above, the transmission lines of concern to license renewal are those constructed to connect the plant switchyard to the existing transmission system and reviewed as part of the construction permit for the plant (NRC 1996, Section 4.5; NRC 2000, Section 4.13).

Objects located near transmission lines can become electrically charged due to their immersion in the lines' electric field. This charge results in a current that flows through the object to the ground. The current is called "induced" because there is no direct connection between the line and the object. The induced current can also flow to the ground through the body of a person who touches the object. An object that is insulated from the ground can actually store an electrical charge, becoming what is called "capacitively charged." A person standing on the ground and touching a vehicle or a fence receives an electrical shock due to the sudden discharge of the capacitive charge through the person's body to the ground. After the initial discharge, a steady-state current can develop, the magnitude of which depends on several factors, including the following:

- the strength of the electric field which, in turn, depends on the voltage of the transmission line as well as its height and geometry
- the size of the object on the ground
- the extent to which the object is grounded.

In 1977, the NESC adopted a provision that describes how to establish minimum vertical clearances to the ground for electric lines having voltages exceeding 98-kilovolt (kV) alternating current to ground.¹ The clearance must limit the induced current² due to electrostatic effects to 5 milliamperes if the largest anticipated truck, vehicle, or equipment were short-circuited to ground. By way of comparison, the setting of ground fault circuit interrupters used in residential wiring (special breakers for outside circuits or those with outlets around water pipes) is 4 to 6 milliamperes.

As described in Section 3.1.3, there are four 345-kilovolt (kV) lines and one 161-kV line which distribute power from PINGP to the electric grid. The following portions of lines connecting PINGP to the grid were considered in the analysis:

- Line No. 0976 PINGP to Blue Lake (345 kV)
- Line No. 0979 Short connection to the pre-existing Adams line (345 kV)
- Line No. 0986 Short connection to the pre-existing Red Rock 1 line (345 kV)
- Line No. 0987 PINGP to Red Rock 2 (345 kV)
- Line No. 5302 PINGP to Spring Creek (161 kV)

The analysis of these transmission lines began by identifying all road crossings and selecting the lowest clearance locations for analysis. These limiting cases represent locations along the line where the potential for current-induced shock would be greatest. Once the limiting cases were identified, the electric field strength was calculated for the transmission line at that location, and the induced current calculated at the point of the highest electric field strength. Had the induced current of the limiting cases exceeded the NESC limit, additional analyses would have been performed to identify all locations with the potential to exceed the limit.

The electric field strength and induced current were calculated using a computer code called ACDCLINE, produced by the Electric Power Research Institute. The results of this computer program have been field-verified through actual electric field measurements by several utilities. The input parameters included design features of the limiting-case scenario and the NESC requirement that conductor sag be determined at a minimum conductor temperature of 120°F. The sag measurements were taken from plan-and-profile drawings for the five lines and input into ACDCLINE. For analysis purposes, the maximum vehicle size under the lines is considered to be a tractor-trailer of 8.5 feet in width, 12 feet average height, and 65 feet long.

The analytical results for each line are summarized in Table 4.10-1. The analysis determined that the maximum values for the five transmission lines are in compliance

¹ Part 2, Rules 232C1c and 232D3c.

² The NESC and the GEIS use the phrase "steady-state current," whereas 10 CFR 51.53(c)(3)(ii)(H) uses the phrase "induced current." The phrases mean the same here.

with the NESC and below the NESC limit of 5 milliamperes (TtNUS 2007). As shown in the table, the highest induced current was calculated to be 4.43 milliamperes for Line No. 0976 – PINGP to Blue Lake.

Xcel Energy, which owns and operates the PINGP 345-kV transmission lines, and Great River Energy, which owns and operates the 161-kV line to Spring Creek, conduct surveillance and maintenance inspections on a regular basis to assure that design ground clearances will not change. These procedures include routine ground inspections and aerial patrols by aircraft. The corridors are checked for encroachments, broken conductors, broken or leaning structures, and signs of burnt trees, any of which would be evidence of clearance problems. Ground inspections include examination for clearance at questionable locations, integrity of structures, and surveillance for dead or diseased trees that might fall on the transmission line. Problems noted during inspections are brought to the attention of the appropriate organizations for corrective action.

As a result of this analysis performed in accordance with the requirements of 10 CFR 51, NMC concludes that electric shock is of SMALL significance for the PINGP transmission lines because the magnitude of the induced currents does not exceed the NESC standard. Mitigation measures are not warranted because there is adequate clearance between energized conductors and the ground. These conclusions will remain valid into the future, provided there are no changes in line use, voltage, and maintenance practices or changes in land use under the line.

4.11 HOUSING

4.11.1 HOUSING – REFURBISHMENT

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on housing availability..." 10 CFR 51.53(c)(3)(ii)(I)

"...Housing impacts are expected to be of small significance at plants located in a medium or high population area and not in an area where growth control measures that limit housing development are in effect. Moderate or large housing impacts of the workforce associated with refurbishment may be associated with plants located in sparsely populated areas or areas with growth control measures that limit housing development...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 63

"The impacts on housing are considered to be of small significance when a small and not easily discernible change in housing availability occurs, generally as a result of a very small demand increase or a very large housing market. Increases in rental rates or housing values in these areas would be expected to equal or slightly exceed the statewide inflation rate. No extraordinary construction or conversion of housing would occur where small impacts are foreseen." (NRC 1996)

NRC made housing impacts a Category 2 issue because impact magnitude depends on local conditions that NRC could not predict for all plants at the time of GEIS publication (NRC 1996). Local conditions that need to be ascertained are: (1) population categorization as small, medium, or high, (2) applicability of growth control measures, (3) the size and growth rate of the housing market.

In the GEIS, Section 3.7.2 (NRC 1996), NRC states that the potential for refurbishmentrelated impacts to housing would be caused by increased staffing. Further, NRC states that impacts on housing would be considered to be of small significance when a small and not easily discernible change in housing availability occurs, generally as a result of a very small demand increase or a very large housing market.

In 10 CFR 51, Subpart A, Appendix B, Table B-1, NRC concluded that impacts to housing are expected to be of small significance at plants located in high population areas where growth control measures are not in effect.

The maximum impact to area housing was assessed using the following assumptions: (1) all direct jobs would be filled by in-migrating residents; (2) the majority of indirect jobs would be filled by residents within the 50-mile radius because most jobs would be service-related, and (3) each new direct job created would represent one housing unit. As described in Section 3.4.2, NMC assumes that 750 refurbishment employees would be required for the steam generator replacement project. NMC's estimate of 750 refurbishment employees could generate the demand for 750 housing units.

As described in Section 2.5, PINGP is located in a high population area. As noted in Section 2.9, Land Use Planning, the three counties surrounding the plant are not subject to growth control measures that limit housing development. The 2000 population of the 50-mile radius was 2,733,326 and the state had an average of 2.52 persons per household (USCB 2000), suggesting the existence of approximately 1.1 million housing units. Hotels and motels in the vicinity, especially within the Minneapolis-St. Paul-St. Cloud, MN-WI Combined Statistical Area (CSA), also provide temporary housing opportunities.

With the amount of temporary and permanent housing available, and due to the temporary nature of the refurbishment workforce, this demand would not create a discernible change in housing availability, rental rates or housing values, or spur housing construction or conversion in the plant vicinity or region. Therefore, NMC concludes that impacts to housing availability resulting from refurbishment-related population growth would be SMALL and would not warrant mitigation.

4.11.2 HOUSING – LICENSE RENEWAL TERM

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on housing availability..." 10 CFR 51.53(c)(3)(ii)(I)

"...Housing impacts are expected to be of small significance at plants located in a medium or high population area and not in an area where growth control measures that limit housing development are in effect. Moderate or large housing impacts of the workforce associated with refurbishment may be associated with plants located in sparsely populated areas or areas with growth control measures that limit housing development...." 10 CFR 51, Subpart A, Table B-1, Issue 63

"...[S]mall impacts result when no discernible change in housing availability occurs, changes in rental rates and housing values are similar to those occurring statewide, and no housing construction or conversion occurs...." (NRC 1996)

NRC made housing impacts a Category 2 issue because impact magnitude depends on local conditions that NRC could not predict for all plants at the time of GEIS publication (NRC 1996). Local conditions that need to be ascertained are: (1) population categorization as small, medium, or high and (2) applicability of growth control measures.

In 10 CFR 51, Subpart A, Appendix B, Table B-1, NRC concluded that impacts to housing are expected to be of small significance at plants located in high population areas where growth control measures are not in effect.

As described in Section 2.5, PINGP is located in a high population area. As noted in Section 2.9, Land Use, the area of interest is not subject to growth control measures that limit housing development.

The maximum impact to area housing was assessed using the following assumptions: (1) all direct jobs would be filled by in-migrating residents; (2) the majority of indirect jobs would be filled by residents within the 50-mile radius because most jobs would be service-related, (3) the residential distribution of new residents would be similar to current operations worker distribution; and (4) each new direct job created would represent one housing unit. As described in Section 3.4 and 6.3, NMC's conservative estimate of 60 license renewal employees could generate the demand for 60 housing units; however, NMC expects to require no more than two additional employees for the License Renewal term.

In an area which has a population within a 50-mile radius of approximately 2,733,326 and a state average of 2.52 persons per household (USCB 2000), suggesting the existence of approximately 1.1 million housing units, it is reasonable to conclude that this demand would not create a discernible change in housing availability, rental rates or housing values, or spur housing construction or conversion. NMC concludes that

impacts to housing availability resulting from station-related population growth would be SMALL and would not warrant mitigation.

4.12 PUBLIC UTILITIES: PUBLIC WATER SUPPLY AVAILABILITY

4.12.1 PUBLIC WATER SUPPLY – REFURBISHMENT

NRC

The environmental report must contain "...an assessment of the impact of population increases attributable to the proposed project on the public water supply." 10 CFR 51.53(c) (3) (ii) (I)

"...An increased problem with water shortages at some sites may lead to impacts of moderate significance on public water supply availability...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 65

"Impacts on public utility services are considered small if little or no change occurs in the ability to respond to the level of demand and thus there is no need to add capital facilities. Impacts are considered moderate if overtaxing of facilities during peak demand periods occurs. Impacts are considered large if existing service levels (such as quality of water and sewage treatment) are substantially degraded and additional capacity is needed to meet ongoing demands for services." (NRC 1996)

NRC made public utility impacts a Category 2 issue because an increased problem with water availability, resulting from pre-existing water shortages, could occur in conjunction with plant demand and plant-related population growth (NRC 1996). Local information needed would include: (1) a description of water shortages experienced in the area, and (2) an assessment of the public water supply system's available capacity.

NRC's analysis of impacts to the public water supply system considered both plant demand and plant-related population growth demands on local water resources. As Section 3.4 indicates, NMC analyzed a 750-person increase in PINGP employment attributable to refurbishment. Section 2.8.1 describes the public water supply systems in the area, their permitted capacities, and current demands. The following discussion focuses on impacts of refurbishment on local public utilities based on the assumption that PINGP would add up to 750 employees for a period of 80 days during refurbishment activities.

Plant Demand

As stated in Section 2.2.4, there are six groundwater wells located on PINGP property. Three of the wells supply the domestic water for on-site facilities. Two of these wells (256120 and 256121) are used for air conditioning water, domestic water, primary and secondary makeup water. These two wells are permitted for a total permitted withdrawal of 600 gpm and a yearly maximum of 50 million gallons per year (NSP 1988). The third well (256074) supplies domestic and irrigation water and is permitted for 80 gpm and a yearly maximum of 4.7 million gallons per year (NSP 1995). Another site well (463332) currently does not require a permit (NSP 1993), but had a prior maximum pumping rate of 90 gpm. During 2005, the well pumped at a rate of approximately 1 gpm (Section 2.2.5). Well 611076 provides water for pump bearing cooling and is permitted to pump at a maximum rate of 40 gpm not to exceed an annual

maximum of 15 million gallons per year (Xcel Energy 2004). Well 402599, which supplies the screenhouse with water, is permitted to pump at a maximum rate of 50 gpm not to exceed 20 million gallons per year. The total permitted pumping rate for these wells is 770 gpm not to exceed 354 million gallons per year. From 2000 to 2005, groundwater production from the 5 permitted wells and one well not requiring a permit in operation at the site averaged 91 gpm with an annual high for the period of 117 gpm in 2005 (Section 2.2.5, Table 2.2-4).

PINGP replaced the steam generators and refueled for Unit 1 during the period between September 11 and November 23, 2004. The groundwater production rate during 2004 was 104 gpm (TtNUS 2006). The average groundwater use rate (91 gpm) at PINGP during the period of 2000 through 2005 was well below the MN DNR's permitted total pumping rates (770 gpm) for PINGP. PINGP does not use water from a municipal system and NMC expects groundwater demands during refurbishment for Unit 2 to be consistent with those experienced during the refurbishment/refueling operations performed for Unit 1. Therefore, NMC does not expect PINGP refurbishment to have an effect on local public water supplies.

Plant-related Population Growth

The maximum impact to area public water supplies was calculated using the following assumptions: (1) all direct jobs would be filled by in-migrating residents; (2) the majority of indirect jobs would be filled by residents within the 50-mile radius because most jobs would be service-related, (3) the refurbishment work force would reside in the 50-mile radius; and (4) refurbishment-related workers would not bring families due to the temporary nature of the refurbishment projects. These assumptions are conservative, because experience from the Unit 1 steam generator replacement project in 2004 suggests that a large number of the workforce would already reside within the 50-mile area, which would place little additional demand on the public water supply.

The impact to the local water supply systems from plant-related population growth can be determined by calculating the amount of water that would be required by these individuals. The average American uses about 90 gallons per day for personal use (EPA 2003). As described in Section 3.4, PINGP estimates an additional 750 employees (refurbishment and outage) attributable to refurbishment. The plant-related population increase could require an additional 0.07 million gallons per day (750 employees multiplied by 90 gallons per day) or approximately 47 gpm within the 50-mile radius. NMC concludes that impacts resulting from plant-related population growth to public water supplies would be SMALL, requiring no additional capacity and not warranting mitigation.

4.12.2 PUBLIC WATER SUPPLY – LICENSE RENEWAL TERM

NRC

The environmental report must contain "...an assessment of the impact of population increases attributable to the proposed project on the public water supply." 10 CFR 51.53(c)(3)(ii)(l)

"...An increased problem with water shortages at some sites may lead to impacts of moderate significance on public water supply availability...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 65

"Impacts on public utility services are considered small if little or no change occurs in the ability to respond to the level of demand and thus there is no need to add capital facilities. Impacts are considered moderate if overtaxing of facilities during peak demand periods occurs. Impacts are considered large if existing service levels (such as quality of water and sewage treatment) are substantially degraded and additional capacity is needed to meet ongoing demands for services." (NRC 1996)

NRC made public utility impacts a Category 2 issue because an increased problem with water availability, resulting from pre-existing water shortages, could occur in conjunction with plant demand and plant-related population growth (NRC 1996). Local information needed would include: (1) a description of water shortages experienced in the area, and (2) an assessment of the public water supply system's available capacity.

NRC's analysis of impacts to the public water supply system considered both plant demand and plant-related population growth demands on local water resources. As Section 3.4 indicates, NMC analyzed a hypothetical 60-person increase in PINGP employment attributable to license renewal. Section 2.8.1 describes the public water supply systems in the area, their permitted capacities, and current demands. The following discussion focuses on impacts of continued operations on local public utilities, and the assumption that (1) PINGP would add up to 60 additional employees during the period of extended operation for license renewal activities, (2) the new employees would follow current employee residence trends where the majority (83 percent) of employees reside in Goodhue, Dakota, and Pierce Counties (Section 3.4).

Plant Demand

As discussed in Section 4.12.1, there are six groundwater wells located on PINGP property. From 2000 to 2005, groundwater production from the six wells in operation at the site averaged 92 gallons per minute (gpm) with an annual high for the period of 118 gpm (Section 2.2.5). An additional 60 employees would increase water use at the plant by a maximum of 5,400 gallons per day (3.75 gpm) [60 employees multiplied by 90 gallons per day]; however, NMC expects to hire no more than two additional employees in the License Renewal Term. PINGP does not use water from a municipal system and the plant groundwater use impacts during the license renewal period would be considered SMALL; therefore, NMC does not expect PINGP operations to have an effect on local water supplies.

Plant-related Population Growth

The impact to the local water supply systems from plant-related population growth can be determined by calculating the amount of water that would be required by these individuals. The average American uses about 90 gallons per day for personal use (EPA 2003). As described in Section 3.4.3, PINGP very conservatively assumes for the purposes of this analysis that an additional 60 employees, which could result in a population increase of 151 in the area (60 jobs multiplied by 2.52, which is the average number of persons per household in Minnesota). Using this consumption rate, the plant-related population increase could require an approximate additional 13,590 gallons per day (5 million gallons per year) (151 people multiplied by 90 gallons per day) in an area where the current excess public water supply capacity is approximately 528.4 million gallons per day from the municipal waterworks in Goodhue, Dakota, and Pierce Counties. Of the municipal water suppliers in Goodhue, Dakota, and Pierce Counties, there are no suppliers for which demand currently exceeds supply. If it is assumed that this increase in population would be consistent with current employee trends (83 percent reside in Goodhue, Dakota, and Pierce Counties), the increase in water demand would not create shortages in capacity of the water supply systems in these communities. NMC concludes that impacts resulting from plant-related population growth to public water supplies would be SMALL, requiring no additional capacity and not warranting mitigation.

4.13 EDUCATION IMPACTS FROM REFURBISHMENT

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on...public schools (impacts from refurbishment activities only) within the vicinity of the plant...." 10 CFR 51.53(c)(3)(ii)(I)

"...Most sites would experience impacts of small significance but larger impacts are possible depending on site- and project-specific factors...." 10 CFR 51, Subpart A, Table B-1, Issue 66

"...[S]mall impacts are associated with project-related enrollment increases of 3 percent or less. Impacts are considered small if there is no change in the school systems' abilities to provide educational services and if no additional teaching staff or classroom space is needed. Moderate impacts are generally associated with 4 to 8 percent increases in enrollment. Impacts are considered moderate if a school system must increase its teaching staff or classroom space even slightly to preserve its pre-project level of service....Large impacts are associated with projectrelated enrollment increases above 8 percent...." (NRC 1996)

NRC made refurbishment-related impacts to education a Category 2 issue because site- and project-specific factors determine the significance of impacts (NRC 1996). Local factors to be ascertained include: (1) project-related enrollment increases and (2) status of the student/teacher ratio.

As stated in Section 3.4, NMC estimates that a maximum of 750 refurbishment workers would be required for a period similar to Unit 1 steam generator replacement. The 2004 Unit 1 steam generator replacement experience suggests that the refurbishment workforce would not relocate families to the plant site region for a project of this duration. Therefore, NMC estimates that few to no children would be relocated to the region and that impacts would be SMALL and mitigation would not be warranted.

4.14 OFFSITE LAND USE

4.14.1 OFFSITE LAND USE - REFURBISHMENT

NRC

The environmental report must contain "...an assessment of the impact of the proposed action on... land-use... (impacts from refurbishment activities only) within the vicinity of the plant...." 10 CFR 51.53(c)(3)(ii)(I)

"...Impacts may be of moderate significance at plants in low population areas...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 68

"...[I]f plant-related population growth is less than 5 percent of the study area's total population, off-site land-use changes would be small, especially if the study area has established patterns of residential and commercial development, a population density of at least 60 persons per square mile, and at least one urban area with a population of 100,000 or more within 50 miles...." (NRC 1996)

NRC made impacts to offsite land use as a result of refurbishment activities a Category 2 issue because impacts could range from small to moderate and land-use changes could be considered beneficial by some community members and adverse by others. Local conditions to be ascertained include: (1) plant-related population growth, (2) patterns of residential and commercial development, and (3) proximity to an urban area with a population of at least 100,000 (NRC 1996).

In the GEIS, Section 3.7.5 (NRC 1996), NRC stated that, if refurbishment-related population growth is less than 5 percent of the study area's total population, off-site land-use changes would be small, especially if the study area has established patterns of residential and commercial development, a population density of at least 60 persons per square mile, and at least one urban area with a population of 100,000 or more within 50 miles.

As stated in Section 2.5, Demography, PINGP is located in a high population area. Within the 50-mile radius, the 2000 population was 2,733,326 and the population density was 349 persons per square mile. Within the 20-mile radius, the population was 107,131 and the population density was 85 persons per square mile. Two urban areas had a population of more than 100,000, with Minneapolis at 382,618 and St. Paul at 287,151. As stated in Section 2.9, Goodhue, Dakota, and Pierce counties, the counties closest to site and that contain the majority of the operations workforce, have established patterns of residential and commercial development.

PINGP is located in a high population area. NMC cannot predict exactly where the refurbishment workforce would reside; therefore, NMC assumes that the workers would live throughout the 50-mile radius. Even if one conservatively assumes that the entire 750 person refurbishment workforce migrates into the 50-mile area around the plant, such an increase would represent less than a 0.03 percent increase in the population of

the 50-mile region. Goodhue, Dakota, and Pierce counties have established patterns of residential and commercial development, the 20- and 50-mile radial population densities are greater than 60 persons per square mile, and there is more than one urban area with a population of 100,000 or more within 50 miles. Therefore, NMC concludes that impacts to off-site land use resulting from refurbishment would be SMALL and would not warrant mitigation.

4.14.2 OFFSITE LAND USE - LICENSE RENEWAL TERM

NRC

The environmental report must contain "...[a]n assessment of the impact of the proposed action on...land-use...." 10 CFR 51.53(c)(3)(ii)(I)

"Significant changes in land use may be associated with population and tax revenue changes resulting from license renewal." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 69

"...[I]f plant-related population growth is less than five percent of the study area's total population, off-site land-use changes would be small...." (NRC 1996, Section 3.7.5)

"...[I]f the plant's tax payments are projected to be small relative to the community's total revenue, new tax-driven land-use changes during the plant's license renewal term would be small, especially where the community has preestablished patterns of development and has provided adequate public services to support and guide development." (NRC 1996, Section 4.7.4.1)

NRC made impacts to offsite land use during the license renewal term a Category 2 issue, because land-use changes may be perceived as beneficial by some community members and detrimental by others. Therefore, NRC could not assess the potential significance of site-specific offsite land-use impacts (NRC 1996, Section 4.7.4.2). Site-specific factors to consider in an assessment of land-use impacts include: (1) the size of plant-related population growth compared to the area's total population, (2) the size of the plant's tax payments relative to the community's total revenue, (3) the nature of the community's existing land-use pattern, and (4) the extent to which the community already has public services in place to support and guide development.

The GEIS presents an analysis of offsite land use for the renewal term that is characterized by two components: population-driven and tax-driven impacts (NRC 1996, Section 4.7.4.1).

Population-Related Impacts

Based on the GEIS case-study analysis, NRC concluded that all new population-driven land-use changes during the license renewal term at all nuclear plants would be small. Population growth caused by license renewal would represent a much smaller percentage of the local area's total population than the percent change represented by operations-related growth (NRC 1996, Section 4.7.4). NMC agrees with the NRC conclusion that population-driven land use impacts would be SMALL. Mitigation would not be warranted.

Tax-Revenue-Related Impacts

Determining tax-revenue-related land use impacts is a two-step process. First, the significance of the plant's tax payments on taxing jurisdictions' tax revenues is evaluated. Then, the impact of the tax contribution on land use within the taxing jurisdiction's boundaries is assessed.

Tax Payment Significance

NRC has determined that the significance of tax payments as a source of local government revenue would be large if the payments are greater than 20 percent of revenue, moderate if the payments are between 10 and 20 percent of revenue, and small if the payments are less than 10 percent of revenue (NRC 1996).

Land Use Significance

NRC defined the magnitude of land-use changes as follows (NRC 1996):

SMALL - very little new development and minimal changes to area's landuse pattern.

MODERATE - considerable new development and some changes to landuse pattern.

LARGE - large-scale new development and major changes in land-use pattern.

NRC further determined that, "...[I]f the plant's tax payments are projected to be medium to large relative to the community's total revenue, new tax-driven land-use changes would be moderate. This is most likely to be true where the community has no pre-established patterns of development (i.e., land use plans or controls) or has not provided adequate public services to support and guide development in the past, especially infrastructure that would allow industrial development" (NRC 1996).

PINGP Tax Impacts

Table 2.7-1 provides a comparison of the 2001 through 2006 tax payments made by PINGP to Goodhue County, the City of Red Wing, and School District 256 and the tax revenues for each of these taxing bodies. Using NRC's criteria, PINGP's property tax payments were of large to moderate significance to Goodhue County, large significance to the City of Red Wing, and large significance to School District 256.

PINGP Land Use Impacts

As stated in Sections 2.5.1 and 2.9, the three counties in the socioeconomic region of influence (ROI) have experienced growth over the last several decades. Goodhue County's rate of growth has trailed that of the State of Minnesota, but Dakota County has outpaced both. Dakota County's growth is attributed to its proximity to the Minneapolis-St. Paul metropolitan area, as its northern third rapidly becomes another of the cities' suburbs. Goodhue County's increase in population over the last several decades has been largely attributed to the increase in population along the major transportation corridors, US Highways 61 and 52. US Highway 52 connects the Minneapolis-St. Paul metropolitan area with the Rochester metropolitan area and, as the Minneapolis-St. Paul area continues to expand and commuting distances increase,

more growth is expected in this region. The population growth rate in Pierce County slightly outpaced that of the State of Wisconsin. Land use planning in Pierce County has recently been initiated, with the collection of data to build a comprehensive land use planning document. Local planning officials are predicting continued population growth in the county and feel the need to begin guiding future development.

Goodhue County is the only county receiving PINGP's property tax payments. Although Goodhue County has experienced some growth over the last several decades, the majority of its land use is still in agriculture, forest, or grassland (94 percent). Local planners cite the two major transportation corridors connecting the County to the Minneapolis-St. Paul and Rochester metropolitan areas as the impetus for this growth. As these metropolitan areas continue grow, continued suburbanization of adjacent rural areas is expected.

Goodhue County uses a comprehensive land use plan and zoning and subdivision ordinances to guide development. The ordinances promote the public health, safety, and general welfare of residents; protect agricultural land from urban sprawl; and provide a basis for the orderly development. The ordinances require building permits, conditional use permits, plat development, zoning district controls, and variance requests. The County has no formal growth control measures, however.

Conclusion

Although PINGP's property taxes are of moderate to large significance to Goodhue County, and large significance to the City of Red Wing and School District 256, land use changes in the County have been minimal; less than 5 percent of the County has been developed. Population growth has been attributed to the larger influence of the surrounding metropolitan areas and advancements in the transportation network. The County has a pre-established pattern of development with a land use plan, subdivision regulations, and zoning ordinances to guide future development and has been able to provide the infrastructure needed to accommodate this growth. The nuclear plant's presence is not expected to directly attract support industries and commercial development or to encourage or deter residential development. Because population growth related to the license renewal of PINGP is expected to be SMALL and there would be no new tax impacts to Goodhue County land use, the renewal of PINGP's license would have a continued SMALL but beneficial impact on land use in Goodhue County. Therefore, mitigation would not be warranted.

4.15 TRANSPORTATION

4.15.1 TRANSPORTATION – REFURBISHMENT

NRC

The environmental report must "...assess the impact of highway traffic generated by the proposed project on the level of service of local highways during periods of license renewal refurbishment activities and during the term of the renewed license." 10 CFR 51.53(c)(3)(ii)(J)

"...Transportation impacts...are generally expected to be of small significance. However, the increase in traffic associated with additional workers and the local road and traffic control conditions may lead to impacts of moderate or large significance at some sites...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 70

Small impacts would be associated with U.S. Transportation Research Board Level of Service A, having the following condition: "...Free flow of the traffic stream; users are unaffected by the presence of others." and Level of Service B, having the following condition: "...Stable flow in which the freedom to select speed is unaffected but the freedom to maneuver is slightly diminished...." (NRC 1996)

NRC made impacts to transportation a Category 2 issue, because impact significance is determined primarily by road conditions existing at the time of refurbishment, which NRC could not forecast for all facilities (NRC 1996). Local road conditions to be ascertained are: (1) level of service conditions and (2) incremental increases in traffic associated the refurbishment work force.

The following discussion focuses on impacts of refurbishment on transportation, and the assumption that PINGP would add up to 750 additional employees for a period of 80 days during refurbishment on Unit 2. In the GEIS, NRC used the Transportation Research Board's level of service (LOS) definitions to assess significance levels of transportation impacts. LOS is a qualitative measure describing operational conditions within a traffic stream and their perception by motorists (NRC 1996). NMC was unable to employ the same definitions to analyze transportation impacts due to the lack of calculated LOS data for the roads/highways in the vicinity of the site.

The maximum impact to area transportation was analyzed using the following assumptions: (1) all direct jobs would be filled by in-migrating residents; (2) the majority of indirect jobs would be filled by residents within the 50-mile radius because most jobs would be service-related, (3) the refurbishment workforce would reside throughout the 50-mile radius, and (4) each new direct job created would represent one additional vehicle on area roadways.

The greatest concentration of refurbishment-related workforce traffic would be found in the vicinity of the intersection of County Road 18 and Sturgeon Lake Road. Goodhue County has not determined LOS values for the roads in the county. However, road/highway capacity data (vehicles per day) and the average annual daily traffic (AADT) data are outlined in Table 2.8-2 for the road sections in the vicinity of the site

that would be used by the temporary employees performing refurbishment. Traffic count data for County Road 18 north of the intersection with Sturgeon Lake Road indicates an AADT value of 6,200. Just south of the intersection the AADT value is 7,400. The AADT value for Sturgeon Lake Road is 11,500.

As discussed in Section 2.8.1, PINGP has only one entrance (the plant access road). However, employees from parking areas north of the plant access road exit the site via Wakonade Drive to Sturgeon Lake Road. Traffic at the intersections of the plant access road and Sturgeon Lake Road, Wakonade Drive and Sturgeon Lake Road, and Sturgeon Lake Road and County Road 18 is controlled by stop signs. During the refurbishment projects, construction and outage workers would use the same entrance road and exit roads as current employees. County Road 18 and Sturgeon Lake Road are also access routes to the Prairie Island Indian Community's gaming casino, Treasure Island Resort and Casino, located just off Sturgeon Lake Road.

Based on the 2004 Unit 1 SGR project, an estimated 750 workers would be involved in refurbishment work. The addition of 750 workers on County Road 18 and Sturgeon Lake Road would create a change in traffic flow during shift changes due to the added volume of vehicles. The refurbishment employees could increase the volume of traffic on Sturgeon Lake Road by approximately 7 percent. The experience from the 2004 SGR suggests that a large number of the workers would already reside within the 50mile radius. Because no hard data were available on the relative percentages of workers traveling from north and south, a bounding analysis that evaluated the impact of 750 vehicles on both road segments was performed. Assuming that the entire refurbishment workforce would approach PINGP from the north on County Road 18 would create an increase in the volume of traffic on that road segment by 12 percent. Conversely, assuming all refurbishment workforce traffic would approach PINGP from the south on County Road 18 would increase the volume of traffic on that portion of the road segment by 10 percent. The road capacities for County Road 18 and Sturgeon Lake Road are more than adequate to deal with the added volume of traffic. Given these employment projections and the average number of vehicles per day currently using the roads in the vicinity of the PINGP, NMC concludes that impacts to the overall transportation system would be SMALL. However, due to the increased volume of traffic and the lack of timed traffic signals along Sturgeon Lake Road, there could be problems with traffic flow during PINGP shift changes. Due to the temporary nature of the refurbishment period, these increased traffic flow periods could be mitigated by staggering the refurbishment work schedule and by using local police officials to direct traffic during the PINGP shift changes if necessary.

4.15.2 TRANSPORTATION –LICENSE RENEWAL TERM

NRC

The environmental report must "...assess the impact of highway traffic generated by the proposed project on the level of service of local highways during periods of license renewal refurbishment activities and during the term of the renewed license." 10 CFR 51.53(c)(3)(ii)(J)

"...Transportation impacts...are generally expected to be of small significance. However, the increase in traffic associated with additional workers and the local road and traffic control conditions may lead to impacts of moderate or large significance at some sites...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 70

Small impacts would be associated with U.S. Transportation Research Board Level of Service A, having the following condition: "...Free flow of the traffic stream; users are unaffected by the presence of others." and Level of Service B, having the following condition: "...Stable flow in which the freedom to select speed is unaffected but the freedom to maneuver is slightly diminished...." (NRC 1996)

NRC made impacts to transportation a Category 2 issue, because impact significance is determined primarily by road conditions existing at the time of license renewal, which NRC could not forecast for all facilities (NRC 1996). Local road conditions to be ascertained are: (1) level of service conditions and (2) incremental increases in traffic associated with refurbishment activities and license renewal staff.

As described in Sections 3.4 and 6.3, NMC conservatively assumes an additional 60 employees would be necessary due to license renewal activities. The greatest concentration of workforce traffic during the license renewal period would be found in the vicinity of the intersection of County Road 18 and Sturgeon Lake Road. As discussed in Section 2.8.2, Goodhue County has not determined LOS values for the roads in the county. However, road/highway capacity data (vehicles per day) and the AADT data are outlined in Table 2.8-2 for the road sections in the vicinity of the site that would be used by the employees during the license renewal period. Traffic count data for County Road 18 north of the intersection with Sturgeon Lake Road indicates an AADT value of 6,200. Just south of the intersection the AADT value is 7,400. The AADT value for Sturgeon Lake Road is 11,500 compared with a vehicle capacity of 20,000. Based on the addition of 60 employees to the current operations work force during the license renewal period, the traffic data would remain well within the designed road capacities for roads used by employees in the vicinity of the site.

Therefore, NMC expects license-renewal impacts to transportation to be SMALL and believes no mitigation would be necessary.

4.16 HISTORIC AND ARCHAEOLOGICAL RESOURCES

4.16.1 HISTORIC AND ARCHAEOLOGICAL RESOURCES – REFURBISHMENT

NRC

The environmental report must contain an assessment of "...whether any historic or archaeological properties will be affected by the proposed project." 10 CFR 51.53(c)(3)(ii)(K)

"Generally, plant refurbishment and continued operation are expected to have no more than small adverse impacts on historic and archaeological resources. However, the National Historic Preservation Act requires the Federal agency to consult with the State Historic Preservation Officer to determine whether there are properties present that require protection." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 71

"Sites are considered to have small impacts to historic and archaeological resources if (1) the State Historic Preservation Officer (SHPO) identifies no significant resources on or near the site; or (2) the SHPO identifies (or has previously identified) significant historic resources but determines they would not be affected by plant refurbishment, transmission lines, and licenserenewal term operations and there are no complaints from the affected public about altered historic character; and (3) if the conditions associated with moderate impacts do not occur." (NRC 1996)

NRC made impacts of license renewal (refurbishment) to historic and archaeological resources a Category 2 issue, because determinations of impacts to historic and archaeological resources are site-specific in nature and the National Historic Preservation Act mandates that impacts must be determined through consultation with the State Historic Preservation Officer (NRC 1996).

As discussed in Section 2.10, the AEC consulted with the State Archaeologist in the course of reviewing the NSP application for a construction permit for PINGP. The AEC did so because previous archaeological surveys in the Mississippi River valley near Red Wing demonstrated that a large number of prehistoric sites were present, and that undisturbed portions of Prairie Island, in particular, contained "many undisturbed burial mounds and a large village habitation occupied by late prehistoric (Mississippian) peoples" (AEC 1973, p. II-28). The State Archaeologist subsequently uncovered parts of this village on the Prairie Island site. This village, later named the Bartron Site, was added to the National Register of Historic Places in 1970 (NPS 2006).

NMC has developed a corporate procedure ("Excavation and Trenching Controls," number FP-IH-EXC-01) that protects cultural resources at all NMC-managed plant sites and has instituted those procedures at Prairie Island. The procedure requires a review of any planned excavation (greater than 6 inches deep) to ensure the protection of archaeological and historical resources. The Site Environmental Coordinator is responsible for determining if proposed land-disturbing activity will occur in the vicinity of a culturally-significant site, and if so, consulting with the SHPO to mitigate potential impacts. The Site Environmental Coordinator is also responsible for evaluating any cultural artifacts inadvertently discovered during construction to determine if the material

discovered has potential archaeological or historic significance and thus should be reported to the SHPO. In any case, the discovery of cultural artifacts at NMC-managed nuclear plants requires employees to stop work until the Site Environmental Coordinator has evaluated the situation. Work can resume only after the situation had been addressed, disposition of any material or artifacts has been documented, and the Site Environmental Coordinator agrees that culturally-significant material is not at risk. These controls ensure that known archaeological/historical sites are avoided and newlydiscovered archaeological/historical sites are protected.

Based on the Unit 1 SGR project, replacement of Unit 2 steam generators has little potential for disturbing, uncovering, or harming cultural artifacts. Steam generators will be barged up the Mississippi River to the PINGP site and transported to the containment building by a large, all-terrain vehicle (transporter). The transporter will move along an existing dirt service road that extends from the barge landing, 500 feet east of the Environmental Lab, to the Owner-Controlled Area security fence. The area through which the service road moves was heavily altered during construction of the original units and is surrounded by buildings and transmission towers and other infrastructure. Most natural vegetation in the area has been removed, and replaced with turf grasses, which are mowed during the growing season. Because the area was cleared and graded for construction of the original units and because moving the steam generators to the containment building will require no land disturbance, Unit 2 SGR will likely have no impact on the area's archaeological or historic resources.

Several temporary buildings would be built, including a facility for preparing the steam generators, office space for construction contractors, and a decontamination building. Warehouse(s) would also be built on site and would remain after the steam generator replacement outage. Any construction would occur within the existing plant boundaries. Several temporary buildings are planned for preparing the steam generators, office space for construction contractors, and a decontamination building. Warehouse(s) will also be built on site and would remain after the steam generator replacement outage. There would be no clearing of previously-undisturbed areas. No road improvements would be required because the steam generators would arrive via barge and be offloaded to a self-propelled nuclear transporter capable of traveling on existing site roads without damage. Additional construction personnel and additional traffic on area roadways and associated with the steam generator replacement project are not expected to impact archaeological or historical sites in the area. Therefore, NMC concludes that refurbishment activities would not impact cultural resources and no mitigation measures would be warranted beyond those prescribed in NMC's "Excavation and Trenching Controls" procedure.

NMC has written the Minnesota Historical Society, State Historic Preservation Office, to determine if the agency has any concerns regarding impacts to cultural resources from refurbishment (or license renewal) activities. This letter is included in Attachment D.

4.16.2 HISTORIC AND ARCHAEOLOGICAL RESOURCES – LICENSE RENEWAL TERM

NRC

The environmental report must contain an assessment of "...whether any historic or archaeological properties will be affected by the proposed project." 10 CFR 51.53(c)(3)(ii)(K)

"Generally, plant refurbishment and continued operation are expected to have no more than small adverse impacts on historic and archaeological resources. However, the National Historic Preservation Act requires the Federal agency to consult with the State Historic Preservation Officer to determine whether there are properties present that require protection." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 71

"Sites are considered to have small impacts to historic and archaeological resources if (1) the State Historic Preservation Officer (SHPO) identifies no significant resources on or near the site; or (2) the SHPO identifies (or has previously identified) significant historic resources but determines they would not be affected by plant refurbishment, transmission lines, and licenserenewal term operations and there are no complaints from the affected public about altered historic character; and (3) if the conditions associated with moderate impacts do not occur." (NRC 1996)

NRC made impacts of license renewal (continuing operation) to historic and archaeological resources a Category 2 issue, because determinations of impacts to historic and archaeological resources are site-specific in nature and the National Historic Preservation Act mandates that impacts must be determined through consultation with the State Historic Preservation Officer (NRC 1996).

NMC is not aware of any historic or archaeological resources that have been affected to date by PINGP operations, including operation and maintenance of transmission lines. NMC is aware, however, that the site vicinity and the surrounding environs have significant potential for containing cultural resources. Additionally, NMC is aware of cultural resources that have already been found within plant boundaries. Because NMC is aware of the potential for the discovery of cultural resources during land-disturbing activities at its facilities and along its transmission line corridors, it has developed a corporate procedure ("Excavation and Trenching Controls," number FP-IH-EXC-01) that protects cultural resources at all NMC-managed plant sites and has instituted those procedures at Prairie Island. Because NMC has no plans to construct new license renewal related facilities at PINGP during the license renewal term and because the policies and procedures established in the "Excavation and Trenching Controls" procedure should protect any resources that have been previously identified or inadvertently discovered. NMC concludes that operation of generation and transmission facilities over the license renewal term would not impact cultural resources; hence, no mitigation measures would be warranted beyond those prescribed in NMC's "Excavation and Trenching Controls" procedure.

4.17 SEVERE ACCIDENT MITIGATION ALTERNATIVES

NRC

The environmental report must contain a consideration of alternatives to mitigate severe accidents "...if the staff has not previously considered severe accident mitigation alternatives for the applicant's plant in an environmental impact statement or related supplement or in an environment assessment..." 10 CFR 51.53(c)(3)(i)(L)

"...The probability weighted consequences of atmospheric releases, fallout onto open bodies of water, releases to ground water, and societal and economic impacts from severe accidents are small for all plants. However, alternatives to mitigate severe accidents must be considered for all plants that have not considered such alternatives...." 10 CFR 51, Subpart A, Appendix B, Table B-1, Issue 76

This section provides a brief synopsis of the methodology and results for the PINGP SAMA analysis. Attachment F provides a detailed description of the severe accident mitigation alternatives (SAMA) analysis.

The term "accident" refers to any unintentional event (i.e., outside the normal or expected plant operation envelope) that results in the release or a potential for release of radioactive material to the environment. NRC categorizes accidents as "design basis" or "severe." Design basis accidents are those for which the risk is great enough that NRC requires plant design and construction to prevent unacceptable accident consequences. Severe accidents are those that NRC considers too unlikely to warrant design controls.

Historically, NRC has not included in its environmental impact statements or environmental assessments any analysis of alternative ways to mitigate the environmental impacts of severe accidents. A 1989 court decision ruled that, in the absence of an NRC finding that severe accidents are remote and speculative, severe accident mitigation alternatives (SAMAs) should be considered in the NEPA analysis [Limerick Ecology Action v. NRC, 869 F.d 719 (3rd Cir. 1989)]. For most plants, including PINGP, license renewal is the first licensing action that would necessitate consideration of SAMAs.

NRC concluded in its license renewal rulemaking that the unmitigated environmental impacts from severe accidents met its Category 1 criteria. However, NRC made consideration of mitigation alternatives a Category 2 issue because not all plants had completed ongoing regulatory programs related to mitigation (e.g., individual plant examinations and severe accident management). Since these programs have identified plant programmatic and procedural improvements (and, in a few cases, minor modifications) as cost effective in reducing severe accident and risk consequences, the NRC thought it premature to draw a generic conclusion as to whether severe accident mitigation would be required for license renewal.

Site-specific information to be presented in the license renewal environmental report includes: (1) potential SAMA candidates; (2) benefits, costs, and net value of implementing potential SAMA candidates; and (3) sensitivity of analysis to changes in key underlying assumptions. This section of the environmental report is a synopsis of key site-specific SAMA information. Additional details, as called out in the following sections, are provided in Attachment F.

4.17.1 METHODOLOGY OVERVIEW

NMC maintains a probabilistic risk assessment (PRA) model to use in evaluating the most significant risks of radiological release. The PINGP PRA model has two aspects. Level 1 determines core damage frequencies based on system analysis and human-factor evaluations, and Level 2 determines the physical and chemical phenomena that affect the performance of the containment and other radiological release mitigation features to quantify accident behavior and release of fission products to the environment. To support the SAMA analysis, NMC developed a Level 3 PRA model to characterize the hypothetical impacts from severe accidents on the surrounding environment and members of the public. The results of these models provide the primary input to the cost-benefit analysis.

The methodology used to perform the PINGP SAMA cost-benefit analysis was based on the handbook used by NRC to analyze benefits and costs of its regulatory activities (NUREG/BR-0184), subject to PINGP-specific considerations. The metrics used to represent plant risk include core damage frequency (CDF), dose risk, and economic cost risk. The following summarizes the approach NMC used in the SAMA analysis in Attachment F.

<u>PINGP PRA Model</u> – Use the PINGP Internal and External Events PRA models to characterize plant risk (Section F.2).

<u>Level 3 PRA Analysis</u> – Use PINGP Level 1 and 2 Internal Events PRA output and sitespecific meteorology, demographic, land use, and emergency response data as input in performing a Level 3 PRA using the MELCOR Accident Consequences Code System Version 2 (MACCS2) (Section F.3).

<u>Baseline Risk Monetization</u> – Use NRC regulatory analysis techniques to calculate the monetary value of the unmitigated PINGP severe accident risk. Assuming that all plant risk is eliminated, this value represents the maximum averted cost-risk (MACR) (Section F.4).

<u>Phase I SAMA Analysis</u> – Identify potential SAMA candidates based on the PINGP PRA, coupled with documentation from the industry and NRC. Screen out Phase I SAMA candidates that meet any of the following criteria (Section F.5):

(1) Candidates not applicable to the PINGP design;

(2) Candidates with no significant benefit in pressurized water reactors such as PINGP;

(3) Candidates that have already been implemented at PINGP;

(4) Candidates with benefits that have been achieved using other means;

(5) Candidates whose estimated implementation costs exceed the maximum averted cost-risk (Section F.5).

<u>Phase II SAMA Analysis</u> – Screen Phase II SAMA candidates using PRA insights. Calculate the risk reduction attributable to each remaining SAMA candidate, and perform a detailed cost-benefit analysis to identify the potential net benefit (Section F.6).

<u>Uncertainty Analysis</u> – Evaluate how changes in certain assumptions used in the SAMA analysis might affect the results (Section F.7).

<u>Conclusions</u> – Summarize results and identify SAMA candidates that should be considered for implementation (Section F.8).

4.17.2 BASELINE RISK MONETIZATION

The purpose of establishing baseline cost risk is to provide a basis for determining the cost-risk reductions (benefits) that would be attributable to the implementation of potential SAMA(s). In accordance with NUREG/BR-0184, the present dollar value for severe accident risk is characterized as the sum of the offsite exposure cost risk, offsite economic cost risk, on-site exposure cost risk, on-site cleanup and decontamination cost and replacement power cost. The total baseline cost risk for PINGP is approximately \$557,000 for Unit 1 and \$ 1,490,000 for Unit 2 (based on on-line internal events contributions). The higher baseline risk for Unit 2 is attributable primarily to the higher CDF and LERF resulting from the fact that Unit 2 has not yet replaced its steam generators. The Unit 2 steam generator replacement project planned for 2013, prior to the period of extended operation, would reduce the Unit 2 baseline risk, bringing it more in line with that of Unit 1. The methodology for calculating each of the 5 factors is presented in Attachment F, Section F.4. As described in Section F.4.6, NMC modified this value by applying a factor of two to account for external events contributions. Assuming all risk is eliminated, this modified value (\$1,114,000 Unit 1 and \$2,980,000 for Unit 2) represents the maximum averted cost-risk, and is used in the Phase I screening process.

4.17.3 SAMA IDENTIFICATION AND SCREENING

NMC utilized industry, NRC, and PINGP-specific information to create a list of 25 SAMA candidates for consideration. NMC analyzed this list and screened out those SAMAs already implemented at PINGP, those not applicable to PINGP design, or those achieving results already attained at PINGP by other means. NMC prepared preliminary cost estimates for the remaining SAMAs and used the baseline risk value to screen out

SAMAs that would clearly not be cost-beneficial. Nine candidate SAMAs remained for further consideration.

For each SAMA candidate, NMC calculated the risk reduction that would be attributable to implementing the modification and re-quantified the risk value. The difference between the baseline risk value (MACR) and the SAMA-reduced risk value is the averted risk or the benefit of implementing the SAMA.

4.17.4 COST-BENEFIT RESULTS

The benefits of revising the operational strategies in place at PINGP and/or implementing hardware modifications can be evaluated without the insight from a risk-based analysis. Use of the PRA in conjunction with cost-benefit analysis methodologies has, however, provided an enhanced understanding of the effects of the proposed changes relative to the cost of implementation and projected dose and economic impact.

The following SAMAs were determined to be cost beneficial for both Unit 1 and 2:

- SAMA 9: Perform best-estimate room heatup calculations for the safeguard cooling water pump rooms to determine to what extent natural or forced circulation (for example, installing portable fans, opening doors, etc.) can adequately remove heat following a loss of the safeguard ventilation system serving those rooms. The analysis of this area that is currently available was performed using more conservative assumptions.
- SAMA 22: Perform analysis of the actual capability of the pressurizer PORV backup air accumulators to support RCS bleed and feed cooling when the normal supply of instrument air to the PORVs is unavailable.

Note that the cost-benefit analyses performed for these SAMAs assume that the requested analyses successfully demonstrate the equipment capability in each case without implementation of additional procedural or plant modifications. If plant modifications were found to be required to achieve significant risk reduction, then re-evaluation of the cost-benefit for those modifications would be necessary. The results of the SAMA 9 and SAMA 22 analyses presented in Attachment F suggest that significant hardware modifications to address these issues may not be cost-beneficial.

Sensitivity cases were conducted to assess the impacts on the results if a 7 percent discount rate were used and if the 95th percentile results were used for CDF. The base case calculation used a 3 percent discount rate and a mean CDF value. The results of the sensitivity analysis were such that only one new SAMA, which was already shown for the base case to be cost-beneficial for Unit 2, proved cost-beneficial at the 95th percentile for Unit 1.

NMC notes that this analysis should not necessarily be considered dispositive because other engineering reviews are necessary to determine the ultimate implementation. NMC continues to consider implementation of SAMAs 9 and 22 identified in this analysis through PINGP's corrective action program.

TABLE 4.2-1 PINGP SURFACE WATER WITHDRAWALS FROM THE MISSISSIPPI RIVER AT STURGEON LAKE

Year	Annual River Water Withdrawal (gallons)	Average Annual Blowdowr Discharge (cfs)
2000	211,164,000,000	851
2001	205,615,000,000	850
2002	200,408,000,000	807
2003	192,790,000,000	775
2004	184,630,000,000	736
2005	207,650,000,000	841
Total Use (2000 - 2005)	1,202,257,000,000	4,860
Average annual (2000 – 2005) gallons per year (gpYr)	200,376,166,667 (849 cfs)	Ave. Annual 810 cfs

NSP 2001, NSP 2002, NSP 2003, NSP 2004, NSP 2005, NSP 2006

Induced Current kV) (milliamperes)
4.43
2.39
2.39
3.92
0.89

TABLE 4.10-1 RESULTS OF INDUCED CURRENT ANALYSIS

³ Lines No. 0987 and No. 0986 share the corridor to Red Rock, thus the combined influence of the two lines was included in the analysis.

4.18 **REFERENCES**

- AEC (United States Atomic Energy Commission). 1973. *Final Environmental Statement related to the Prairie Island Nuclear Generating Plant*. Directorate of Licensing, Washington, D.C. May.
- Bodensteiner, J. 1991. "Letter to T.J. Mader, MPCA, regarding renewal of PINGP's NPDES permit and proposed changes in permit conditions." Northern States Power Company, Minneapolis. March 18.
- EPA (United States Environmental Protection Agency). 2003. "Water on Tap: What You Need To Know." EPA 816- K-03-007. Office of Water. Washington, DC.
- EPA (United States Environmental Protection Agency). 2004. "Fact Sheet: Cooling Water Intake Structures Section 316(b). Final Regulations for Cooling Water Intake Structures at Large Power Plants (Phase II)." Office of Water. February.
- ESWQD (Environmental Services Water Quality Department). 2000. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.
- ESWQD (Environmental Services Water Quality Department). 2001. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.
- ESWQD (Environmental Services Water Quality Department). 2002. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.
- ESWQD (Environmental Services Water Quality Department). 2003. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.
- ESWQD (Environmental Services Water Quality Department). 2004. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.
- ESWQD (Environmental Services Water Quality Department). 2005. "Prairie Island Nuclear Generating Plant Environmental Monitoring and Ecological Studies Program." Annual Report.Goodhue County Transportation Plan Steering Committee. 2004. Goodhue county Transportation Plan (2004 – 2025). June.
- FWS (U.S. Fish and Wildlife Service). Undated. "America's Mussels: Silent Sentinels." Available on line http://www.fws.gov/midwest/Endangered/clams/mussels.html.

- FWS (U.S. Fish and Wildlife Service). 2004a. Higgins Eye Pearlymussel (Lampsilis higginsii) Recovery Plan: First Revision. Prepared by FWS Great Lakes/Big Rivers Region, Ft. Snelling, MN. May.
- FWS (U.S. Fish and Wildlife Service). 2004b. "Higgins Eye Pearlymussel" (Fact Sheet). Prepared by FWS Great Lakes/Big Rivers Region, Ft. Snelling, MN. May. Available on line at http://www.fws.gov/Midwest/endangered/clams/higginseye/hepm-facts.pdf.
- FWS (U.S. Fish and Wildlife Service). 2006a. "Mussel Conservation Activities." From U.S. Fish and Wildlife Service's Freshwater Mussels of Upper Mississippi River system website. Available on line at http://www.fws.gov/midwest/mussel/conservation.html.
- FWS (U.S. Fish and Wildlife Service). 2006b. "Life History." From U.S. Fish and Wildlife Service's Freshwater Mussels of Upper Mississippi River system website. Available on line at http://www.fws.gov/midwest/mussel/.

Goodhue County Transportation Plan Steering Committee. 2004. Goodhue county Transportation Plan (2004 – 2025). June.

- Grumbles, B. 2007. "Memorandum to Regional Administrators suspending Phase II 316(b) regulation." EPA Office of Water, Washington, DC.
- HDR (Henningson, Durham, and Richardson, Inc.). 1978. Section 316(a) Demonstration for the Prairie Island Generating Plant on the Mississippi River near Red Wing, Minnesota. Prepared for Northern States Power Company, Minneapolis. August.
- IEEE (Institute of Electrical and Electronics Engineers). 1997. *National Electrical Safety Code*, 1997 Edition, New York, New York. Joklik, W. K. and D. T. Smith. 1972. *Microbiology.* 15th Edition. Meredith Corporation. New York.
- Joklik, W. K. and D. T. Smith. 1972. Microbiology. 15th Edition. Meredith Corporation. New York.
- MN DNR (Minnesota Department of Natural Resources). 2007a. "Letter from L.A. Joyal (MN DNR Natural Heritage and Nongame Research Program) to J. Holthaus (NMC) responding to request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant (license renewal) T113N R15W Sections 4 & 5, Goodhue County." June 15.
- MN DNR (Minnesota Department of Natural Resources). 2007b. "Letter from L. Joyal (MN DNR Natural Heritage and Nongame Research Program) to J. Holthaus (NMC) responding to request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant – Transmission Lines (license renewal) Scott, Dakota, Goodhue, and Washington Counties." August 9.

- MN DNR (Minnesota Department of Natural Resources). 2007c. "Environmental Review Fact Sheet Series, Endangered, Threatened, and Special Concern Species of Minnesota, Blanding's Turtle (*Emydoidea blandingii*)." Available at http://www.dnr.state.mn.us/reptiles_amphibians/turtles/blandings.html; Accessed August 29, 2007.
- Mn/DOT (Minnesota Department of Transportation). 2006. "2005 Daily (Average) and Annual (Total) Vehicle Miles." Available at http://www.dot.state.mn.us/roadway/data/reports.vmt.html.
- MPCA (Minnesota Pollution Control Agency). 2006. "National Pollutant Discharge Elimination System, Permit MN0004006, Prairie Island Nuclear Generating Plant." January.
- Mussel Coordination Team. 2005. Status of Implementation of Higgins Eye Pearlymussel (Lampsilis higginsii) Reasonable and Prudent Alternatives and Reasonable and Prudent Measures and Winged Mapleleaf Reasonable and Prudent Measures. Prepared by Mussel Coordination Team (U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, National Park Service, Minnesota Dept. of Natural Resources, Wisconsin Dept. of Natural Resources, and Illinois Dept. of Natural Resources). November.
- NMC (Nuclear Management Company, LLC). 2007. Prairie Island Nuclear Generating Plant Updated Safety Analysis Report, Revision 29. May 10.
- NPS (National Park Service). 2006. "National Register Information System (NRIS) database: index by state and county." Accessed September 28, 2006.
- NRC (U.S. Nuclear Regulatory Commission). 1980. "Possible Occupational Health Hazard associated with closed cooling systems for Operating Power Plants." Accessed at http://www.nrc.goc/reading-rm/doc-collections/gen-comm/infonotices/1980/in80009.html. Accessed on October 19, 2006.
- NRC (U.S. Nuclear Regulatory Commission). 1996. Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS). Volumes 1 and 2. NUREG-1437. Washington, DC. May.
- NRC (U.S. Regulatory Commission). 2000. Preparation of Supplemental Environmental Reports for Applications to Renew Nuclear Power Plant Operating Licenses. Supplement 1 to Regulatory Guide 4.2. Office of Nuclear Regulatory Research. Washington, D.C. May.
- NSP (Northern States Power Company). 1981a. "Prairie Island Nuclear Generating Plant Chlorination of Circulating Water to Remove Parasitic Amoeba." Letter to D. Kriens from R. Clough. July 24.

- NSP (Northern States Power Company). 1981b. "Prairie Island Nuclear Generating Plant Circulating Water Chlorination-Dechlorination Pathogenic Amoeba Control Program." Letter to D. Kriens from W. Jensen. October 14.
- NSP (Northern States Power Company). 1983. "Prairie Island Nuclear Generating Plant Chlorination of Circulating Water System Fish Loss Report". Letter to H. Krosch and D. Kriens from W. Jensen. October 14.
- NSP (Northern States Power Company). 1988. DNR Water Permit Appropriations Permit #69-171. September 7.
- NSP (Northern States Power Company). 1993. DNR Water Permit Appropriations Permit #89-5048. March 30.
- NSP (Northern States Power Company). 1995. DNR Water Permit Appropriations Permit #96-5042. December 20.
- NSP (Northern States Power Company). 2001. 2000 DNR Annual Report of Water Use. January 30.
- NSP (Northern States Power Company). 2002. 2001 DNR Annual Report of Water Use. January 28.
- NSP (Northern States Power Company). 2003. 2002 DNR Annual Report of Water Use. January 28.
- NSP (Northern States Power Company). 2004. 2003 DNR Annual Report of Water Use. January 16.
- NSP (Northern States Power Company). 2005. 2004 DNR Annual Report of Water Use. January 31.
- NSP (Northern States Power Company). 2006. 2005 DNR Annual Report of Water Use. February 15.
- NUS Corporation. 1976. Section 316(b) Demonstration for the Prairie Island Generating Plant on the Mississippi River near Red Wing, Minnesota. December.
- Stone & Webster (Stone & Webster Engineering Corp.). 1983. *Final System Description: Modify Circulating Water Intake and Discharge*. Denver. March.
- TtNUS (Tetra Tech NUS). 2006. *Calculation Package Water Use 2000 through 2005*. Prepared by Gary Gunter. August.
- TtNUS (Tetra Tech NUS). 2007. *Calculation Package for Prairie Island Nuclear Transmission Lines Induced Current Analysis.* Prepared by Chuck M. Conrad. Aiken, South Carolina. August 14.

- USACE (U.S. Army Corps of Engineers). 2004. *Report of 2003 relocation of sub-adult Lampsilis higginsii reared in cages from the Mississippi and St. Croix rivers*; Conducted under Endangered Species permit TE 023308-1. Reporting Biologists: D. Kelner, M. Davis, G. Wege. January 5.
- USACE (U.S. Army Corps of Engineers). 2006. *Final Integrated General Reevaluation Report and Environmental Impact Statement for Lock and Dam 3 Mississippi River Navigation Safety and Embankments.* St. Paul District, St. Paul, Minnesota. November.
- USCB (U.S. Census Bureau). 2000. "State and County Quickfacts, Minnesota." Available online at http://quickfacts.census.gov/. Accessed October 2, 2006.
- USGS (U.S. Geological Survey). 2006. *Water Resources Data, Minnesota, Water Year* 2005. Water Data Report MN-05-1. April 4.
- UM (University of Minnesota) 2002. Peregrine Falcon. The Raptor Center, College of Veterinary Medicine. Available at http://www.cvm.umn.edu/raptor/info/peregrinefalcon.html. Accessed October 25, 2006.
- White, C. M., N. J. Clum, T. J. Cade, and W. G. Hunt. 2002. "Peregrine Falcon (*Falco peregrinus*). The Birds of North America Online (A. Poole, Ed.)." Ithaca: Cornell Laboratory of Ornithology; Retrieved from The Birds of North American Available at http://bna.birds.cornell.edu/BNA/demo/account/Peregrine_Falcon/CONSERVATION AND MANAGEMENT.html. Accessed October 25, 2006.

Xcel Energy. 2004. DNR Water Permit Appropriations Permit #78-5153. May 5.

- Xcel Energy. 2006a. *Xcel Energy Prairie Island Nuclear Generating Plant Proposal for Information Collection.* Prepared by Xcel Energy Environmental Services. July.
- Xcel Energy. 2006b. *Xcel Energy Prairie Island Nuclear Generating Plant Comprehensive Demonstration Study.* Xcel Energy Environmental Services. October.

5.0 ASSESSMENT OF NEW AND SIGNIFICANT INFORMATION

NRC

"...The environmental report must contain any new and significant information regarding the environmental impacts of license renewal of which the applicant is aware." 10 CFR 51.53(c)(3)(iv)

When applying to the U.S. Nuclear Regulatory Commission (NRC) for license renewal, licensees of domestic nuclear power plants must provide an application that includes an Environmental Report (ER) (10 CFR 54.23). NRC regulations, 10 CFR 51, prescribe the environmental report content and identify the specific analyses the applicant must perform. In an effort to perform the environmental review efficiently and effectively, NRC has resolved most of the environmental issues generically (designated as Category 1 issues), but requires an applicant's analysis of all the remaining applicable issues (designated as Category 2 issues).

While NRC regulations do not require an applicant's ER to contain analyses of the impacts of generically resolved environmental issues [10 CFR 51.53(c)(3)(i)], the regulations do require that an applicant identify any new and significant information of which the applicant is aware [10 CFR 51.53(c)(3)(iv)]. This requirement serves to alert NRC staff to such pertinent information, so the staff can determine whether to seek NRC's approval to waive or suspend application of the rule with respect to the affected generic analysis. NRC has explicitly indicated, however, that an applicant is not required to perform a site-specific validation of its conclusions in the *Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS)* (NRC 1996).

Nuclear Management Company, Inc. (NMC) expects that new and significant information would include:

- Information that identifies a "significant" environmental issue the GEIS does not cover and is not codified in the regulation, or
- Information not covered in the GEIS analyses that leads to an impact finding different from that codified in the regulation.

NRC does not define the term "significant." For the purpose of its review, NMC used guidance available in Council on Environmental Quality (CEQ) regulations. The National Environmental Policy Act (NEPA) authorizes CEQ to establish implementing regulations for federal agency use. NRC requires license renewal applicants to provide NRC with input, in the form of an environmental report, that NRC will use to meet NEPA requirements as they apply to license renewal (10 CFR 51.10). CEQ guidance provides that federal agencies should prepare environmental impact statements for actions that would significantly affect the environment (40 CFR 1502.3), focus on significant environmental issues (40 CFR 1502.1), and eliminate from detailed study issues that are not significant [40 CFR 1501.7(a)(3)]. The CEQ guidance includes a lengthy

definition of "significantly" that requires consideration of the context of the action and the intensity or severity of the impact(s) (40 CFR 1508.27). NMC expects that moderate or large impacts, as defined by NRC, would be "significant." NMC presents NRC definitions of "Moderate" and "Large" impacts in Section 4.1.2 of this environmental report.

NMC prepared this Prairie Island Nuclear Generating Plant (PINGP) ER in accordance with NRC regulations at 10 CFR 51.53(c). In response to 10 CFR 51.53(c)(3)(iv), NMC implemented a process for identifying new and significant information in preparation of this environmental report for PINGP License Renewal application. The process was directed by the License Renewal Environmental Project Manager and included the following actions:

- Assembly of an investigative team comprised of key representatives of NMC, Xcel Energy, and Tetra Tech NUS, Inc. to support preparation of the environmental report and to conduct the new and significant information review (NMC and Xcel Energy representatives consisted of individuals specifically knowledgeable about plant systems, the site environment, and plant environmental issues);
- 2. Interviews with subject matter experts from NMC and Xcel Energy related to the conclusions in the GEIS as they relate to PINGP;
- 3. Review of the environmental management programs, permits, procedures, and practices in place for PINGP to understand their scope and effectiveness for managing potential impacts of PINGP operations and/or as mechanisms for staff to become aware of new and significant information;
- 4. Review of internal and external documents and records related to environmental aspects of PINGP, its environs, and its associated transmission lines, including but not limited to, environmental assessments and monitoring reports, procedures, and other management controls, compliance history reports, and environmental resource plans and data;
- 5. Correspondence with state and federal regulatory agencies to determine agency environmental concerns related to PINGP operations;
- 6. Interface with nuclear power industry representatives to ensure current knowledge of events at other plants with potential to affect environmental issues;
- 7. Review of other license renewal application submittals for pertinent issues;
- 8. Crediting the oversight provided by inspections of plant facilities by state and federal regulatory agencies; and
- 9. Correspondence with tribal governments, including the Prairie Island Indian Community, to determine environmental concerns related to PINGP operations.

Information obtained as a result of these activities, including information from state and local agencies and tribal governments, was evaluated with respect to the criteria described above. As a result of this process, NMC is not aware of any new and significant information regarding the environmental impacts of PINGP license renewal.

In addition to this process, NMC notes that state and federal regulatory agencies routinely inspect PINGP facilities and records as part of their oversight of the plant and its operation and to ensure that permit conditions are met. These inspections (and less frequent permit reviews) have identified no new and significant information.

5.1 REFERENCES

NRC (U.S. Nuclear Regulatory Commission). 1996. Public Comments on the Proposed 10 CFR 51 Rule for Renewal of Nuclear Power Plant Operating Licenses and Supporting Documents: Review of Concerns and NRC Staff Response. Volumes 1 and 2. NUREG-1529. Washington, DC. May.

6.0 SUMMARY OF LICENSE RENEWAL IMPACTS AND MITIGATING ACTIONS

6.1 LICENSE RENEWAL IMPACTS

Nuclear Management Company (NMC) has reviewed the environmental impacts of renewing the Prairie Island Nuclear Generating Plant (PINGP) operating licenses and has concluded that impacts would be SMALL and would not require mitigation. This Environmental Report documents the basis for the conclusion. Section 4.1.1 incorporates by reference U.S. Nuclear Regulatory Commission (NRC) findings for the 57 Category 1 issues that apply to PINGP, all of which have impacts that are SMALL (Table A-1, Attachment A). Sections 4.2 through 4.17 analyze Category 2 issues, all of which are either not applicable or have impacts that would be SMALL. Table 6-1 identifies the impacts that PINGP license renewal would have on resources associated with Category 2 issues.

6.2 MITIGATION

NRC

"The report must contain a consideration of alternatives for reducing adverse impacts...for all Category 2 license renewal issues..." 10 CFR 51.53(c)(3)(iii)

"The environmental report shall include an analysis that considers and balances...alternatives available for reducing or avoiding adverse environmental effects..." 10 CFR 51.45(c) as incorporated by 10 CFR 51.53(c)(2) and 10 CFR 51.45(c)

Impacts of license renewal would be SMALL and would not require mitigation. Current operations include monitoring activities that would continue during the license renewal term. NMC performs routine monitoring to ensure the safety of workers, the public, and the environment. These activities include the biological monitoring program, radiological environmental monitoring program, air monitoring, effluent chemistry monitoring, and effluent toxicity testing. In addition, focused surveys for sensitive resources (e.g., threatened or endangered species) are conducted for onsite land-disturbing activities. These monitoring programs ensure that the plant's permitted emissions and discharges are within regulatory limits and any unusual or off-normal emissions/discharges would be quickly detected, mitigating potential impacts.

6.3 UNAVOIDABLE ADVERSE IMPACTS

NRC

The environmental report shall discuss any "...adverse environmental effects which cannot be avoided should the proposal be implemented..." 10 CFR 51.45(b)(2) as adopted by 10 CFR 51.53(c)(2)

This environmental report adopts by reference NRC findings for applicable Category 1 issues, including discussions of any unavoidable adverse impacts (Table A-1, Attachment A). NMC examined 21 Category 2 issues and identified the following unavoidable adverse impacts of license renewal:

- Some larval, juvenile, and adult fish are impinged on the traveling screens at the Intake Screenhouse, but most are returned to the Mississippi River unharmed via the fish return line. Based on studies conducted in the 1980s, gizzard shad, channel catfish, and freshwater drum are the species most often impinged on coarse-mesh intake screens, which are in service from September 1 through March 31.
 Freshwater drum eggs and larvae, Cyprinid larvae, gizzard shad larvae, and carp larvae (and other early life stages) are most often impinged on fine-mesh intake screens, which are in service from April 1 through August 31.
- Some larval fish are entrained at the Intake Screenhouse, but flow (withdrawal)
 restrictions and fine mesh screens substantially reduce the total number. Based on
 a 1975 study, most eggs entrained are those of freshwater drum, while most young
 fish entrained are shiners, gizzard shad, suckers, white bass, carp, and freshwater
 drum.
- NMC expects that existing "surge" capabilities would enable PINGP to perform the increased surveillance, monitoring, inspections, testing, trending, and recordkeeping (SMITTR) workload through the addition of no more than two staff members. However, for the purpose of this analysis, NMC has assumed that license renewal could necessitate adding as many as 60 staff. The assumed addition of 60 direct workers to Dakota and Goodhue counties, Minnesota and Pierce County, Wisconsin, where approximately 83 percent of the PINGP workforce resides, could result in small impacts to housing availability, public water supply, offsite land use, and transportation infrastructure (see Sections 4.11, 4.12, 4.14, and 4.15).

6.4 IRREVERSIBLE AND IRRETRIEVABLE RESOURCE COMMITMENTS

NRC

The environmental report shall discuss any "...irreversible and irretrievable commitments of resources which would be involved in the proposed action should it be implemented..." 10 CFR 51.45(b)(5) as adopted by 10 CFR 51.53(c)(2)

Continued operation of PINGP for the license renewal term will result in irreversible and irretrievable resource commitments, including the following:

- Nuclear fuel, which is utilized in the reactor and converted to radioactive waste;
- Land required to dispose of spent nuclear fuel, low-level radioactive wastes generated as a result of plant operations, and sanitary wastes generated from normal industrial operations;
- Elemental materials that will become radioactive; and
- Materials used for the normal industrial operations of the plant that cannot be recovered or recycled or that are consumed or reduced to unrecoverable forms.

These irreversible and irretrievable resource commitments are manageable and low impact.

6.5 SHORT-TERM USE VERSUS LONG-TERM PRODUCTIVITY OF THE ENVIRONMENT

NRC

The environmental report shall discuss the "...relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity..." 10 CFR 51.45(b)(4) as adopted by 10 CFR 51.53(c)(2)

The current balance between short-term use and long-term productivity at the PINGP site was established with the decision to construct the plant. The Final Environmental Statement related to the Prairie Island Nuclear Generating Plant (AEC 1973) evaluated the impacts of constructing and operating PINGP in Goodhue County, Minnesota. Short-term use of natural resources would include land and water. Much of the 560-acre site was under cultivation before its acquisition. Approximately 240 acres were disturbed and modified by plant construction activities, and 60 acres are occupied by plant structures and related facilities. Because Northern States Power (NSP) was able to take advantage of existing transmission corridors, it was only necessary to acquire 33 miles of new right-of-way. Dredging of the cooling water system canals resulted in some disruption of aquatic environments in a limited area of the river. The cooling towers historically produced some localized fogging and icing, particularly during winter months, but are now used primarily in spring and summer (AEC 1973).

After decommissioning, many environmental disturbances would cease and some restoration of the natural habitat would occur. Thus, the "trade-off" between the production of electricity and changes in the local environment is reversible to some extent.

NMC notes that the current balance between short-term use and long-term productivity of the environment at the PINGP site is now well-established and can be expected to remain essentially unchanged by renewal of the operating license and extended operation of PINGP. Extended operation of PINGP would postpone restoration of the site and its potential availability for uses other than electric power generation. It would also result in other short-term impacts on the environment, all of which have been determined to be small on the basis of NRC's evaluation in the Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) and NMC's evaluation in this Environmental Report (ER).

TABLE 6-1 ENVIRONMENTAL IMPACTS RELATED TO LICENSE RENEWAL AT PINGP

No.	Issue	Environmental Impact	
	Surface Water Quality, Hydrology, and Use (for all plants)		
13	Water use conflicts (plants with cooling ponds or cooling towers using makeup water from a small river with low flow)	SMALL. Consumptive use represents less than 1 percent of the mean annual flow of the Mississippi River and would have little or no effect of the Mississippi River and its riparian ecological communities.	
	Aquatic Ecology (for plants	with once-through and cooling pond heat dissipation systems)	
25	Entrainment of fish and shellfish in early life stages	SMALL. PINGP has a current NPDES permit which constitutes compliance with CWA Section 316(b) requirements to provide best technology available to minimize entrainment.	
26	Impingement of fish and shellfish	SMALL. PINGP has a current NPDES permit which constitutes compliance with CWA Section 316(b) requirements to provide best technology available to minimize impingement.	
27	Heat shock	SMALL. PINGP discharges meet state water quality standards and have very little impact on local aquatic life.	
		Groundwater Use and Quality	
33	Groundwater use conflicts (potable and service water, and dewatering; plants that use > 100 gpm)	SMALL. Drawdown through the current license is expected to be 0.4 feet at the nearest offsite well and there would be no additional drawdown during the license renewal period.	
34	Groundwater use conflicts (plants using cooling towers or cooling ponds withdrawing makeup water from a small river)	SMALL. PINGP consumptive use has little impact on Mississippi River flow, even during low flow conditions, and therefore have little effect on recharge to the alluvial aquifer.	
35	Groundwater use conflicts (Ranney wells)	NONE. This issue does not apply because PINGP does not use Ranney wells.	
39	Groundwater quality degradation (cooling ponds at inland sites)	NONE. This issue does not apply because PINGP does not use cooling ponds.	
		Terrestrial Resources	
40	Refurbishment impacts	SMALL. Refurbishment activities would occur in an area that is devoid of important plant and animal habitats. Peregrine falcons nest at PINGP and have presumably become habituated to activities at the plant.	
		Threatened or Endangered Species	
49	Threatened or endangered species	SMALL. Several federally-listed species are found in the general vicinity of PINGP, but none is believed to be jeopardized by plant operation. NMC has no plans to change plant operations and transmission line maintenance practices.	

TABLE 6-1 (CONTINUED) ENVIRONMENTAL IMPACTS RELATED TO LICENSE RENEWAL AT PINGP

No.	Issue	Environmental Impact	
		Air Quality	
50	Air quality during refurbishment (non- attainment and maintenance areas)	SMALL. Refurbishment activities would be of short duration. Goodhue County is in attainment for all criteria pollutants. Fugitive dust resulting from construction activities would be minimal. Impacts from exhaust emissions would not impact nearby maintenance areas.	
		Human Health	
57	Microbiological organisms (public health) (plants using lakes or canals, or cooling towers or cooling ponds that discharge to a small river)	SMALL. PINGP periodically chlorinates the circulating water system to control microbiological organisms in accordance with the NPDES permit, thereby preventing migration of these organisms to the Mississippi River.	
59	Electromagnetic fields, acute effects (electric shock)	SMALL. The largest modeled induced current under the PINGP lines is less than the 5 milliampere limit. Therefore, the lines conform to the NESC provisions for preventing electric shock from induced current.	
		Socioeconomics	
63	Housing impacts	SMALL. NRC concluded that housing impacts would be SMALL in medium and high population areas having no growth control measures. PINGP is located in a high population area with no growth control measures.	
65	Public services: public utilities	SMALL. Excess water capacity in the region of influence (ROI) is more than sufficient to handle the temporary refurbishment workforce and the permanent license renewal population growth.	
66	Public services: education (refurbishment)	SMALL. Anecdotal evidence from the 2004 steam generator replacement suggests that the majority of the refurbishment workforce would not relocate families to the plant site region for a project of this short duration, having little impact on school enrollment.	
68	Offsite land use (refurbishment)	SMALL. A refurbishment workforce of 750 would represent less than a 5 percent increase in the population of Goodhue County and an even smaller percent increase in the populations of the largest cities within the 50-mile region.	
69	Offsite land use (license renewal term)	SMALL. No changes in offsite land use are expected to occur as a result of license renewal.	
70	Public services: transportation	SMALL. Increased traffic flow during shift changes is expected during refurbishment activities, but the capacities of area roads are more than adequate. The increase in traffic flow as a result of license renewal would most likely be unnoticeable.	
71	Historic and archeological resources	SMALL. License renewal would have little or no effect on historic or archeological resources. Refurbishment may require limited ground- disturbing activities, but only in previously-disturbed areas. In addition, PINGP has an excavation procedure in place to protect potential archeological, historical, or cultural resources.	

TABLE 6-1 (CONTINUED) ENVIRONMENTAL IMPACTS RELATED TO LICENSE RENEWAL AT PINGP

No.	Issue	Environmental Impact		
Postulated Accidents				
76	Severe accidents	SMALL. NMC identified 2 potentially cost beneficial SAMAs for each unit; however none were related to aging management. NMC will evaluate these enhancements for future implementation.		

6.6 **REFERENCES**

AEC (U.S. Atomic Energy Commission). 1973. *Final Environmental Statement related to Prairie Island Nuclear Generating Plant.* Northern States Power Company. Docket Nos. 50-282 and 50-306. Directorate of Licensing. Washington, DC. May.

7.0 ALTERNATIVES TO THE PROPOSED ACTION

NRC

The environmental report shall discuss "Alternatives to the proposed action...." 10 CFR 51.45(b)(3), as adopted by reference at 10 CFR 51.53(c)(2)

"...The report is not required to include discussion of need for power or economic costs and benefits of ... alternatives to the proposed action except insofar as such costs and benefits are either essential for a determination regarding the inclusion of an alternative in the range of alternatives considered or relevant to mitigation...." 10 CFR 51.53(c)(2)

"While many methods are available for generating electricity, and a huge number of combinations or mixes can be assimilated to meet a defined generating requirement, such expansive consideration would be too unwieldy to perform given the purposes of this analysis. Therefore, NRC has determined that a reasonable set of alternatives should be limited to analysis of single, discrete electric generation sources and only electric generation sources that are technically feasible and commercially viable..." (NRC 1996a)

"...The consideration of alternative energy sources in individual license renewal reviews will consider those alternatives that are reasonable for the region, including power purchases from outside the applicant's service area...." (NRC 1996b)

The U.S. Nuclear Regulatory Commission (NRC) considers the environmental impacts of the proposed action (i.e., license renewal) and alternatives to the proposed action in accordance with its National Environmental Policy Act (NEPA) implementing regulations when deciding whether to approve renewal of an applicant's operating license [10 CFR 51.95(c)]. In this chapter, Nuclear Management Company, LLC (NMC) identifies reasonable alternatives to renewal of the Prairie Island Nuclear Generating Plant (PINGP) operating licenses and presents its evaluation of associated environmental impacts. This chapter also includes descriptions of alternatives NMC considered but determined to be unreasonable to consider in detail, and associated supporting rationale.

NMC divided its alternatives discussion into two categories, "no-action" and "alternatives that meet system generating needs." In Section 7.1, NMC addresses the "no-action alternative" in terms of the potential environmental impacts of not renewing the PINGP operating licenses, independent of any actions taken to replace or compensate for the loss of generating capacity. In Section 7.2, NMC describes feasible alternative actions that could be taken, which NMC also considers to be elements of the no-action alternative, and presents other alternatives that NMC does not consider to be reasonable. Section 7.3 presents environmental impacts for the reasonable alternatives.

The environmental impact evaluations of alternatives presented in this chapter are not intended to be exhaustive. Rather, the level of detail and analysis rely on NRC's decision-making standard for license renewal, as follows:

"...the NRC staff, adjudicatory officers, and Commission shall determine whether or not the adverse environmental impacts of license renewal are so great that preserving the option of license renewal for energy planning decision makers would be unreasonable" [10 CFR 51.95(c)(4)].

Therefore, NMC generally structured the analyses to provide enough information to support NRC decision-making by demonstrating whether an alternative would have a smaller, comparable, or greater environmental impact than the proposed action. This approach is consistent with the Council on Environmental Quality regulations, which provide that the consideration of alternatives (including the proposed action) be adequately addressed so reviewers may evaluate their comparative merits [40 CFR 1502.14(b)].

NMC characterizes environmental impacts in this chapter using the same definitions of SMALL, MODERATE, and LARGE used in Chapter 4 of this Environmental Report (ER) and by NRC in its Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) (NRC 1996a). In Chapter 8, NMC presents a summary comparison of environmental impacts of the proposed action and alternatives.

7.1 NO-ACTION ALTERNATIVE

NMC considers the no-action alternative addressed in this ER to be a scenario in which NRC does not renew the current PINGP operating licenses, PINGP ceases operation and is decommissioned, and Xcel Energy or others take appropriate action to replace or compensate for the loss of generating capacity. Section 7.1.1 addresses potential environmental impacts of terminating operations and decommissioning exclusive of actions to replace power from PINGP. NMC discusses alternatives for replacing or compensating for the loss of generating capacity in Section 7.2 of this ER.

7.1.1 TERMINATING OPERATIONS AND DECOMMISSIONING

In the event the NRC does not renew the PINGP operating licenses, NMC assumes the units would be operated until their current licenses expire in 2013 and 2014, then decommissioned in accordance with NRC requirements. Decommissioning denotes the safe removal from service of a nuclear generating facility and the reduction of residual radioactivity to a level that permits release of the property for unrestricted or restricted use, and termination of the license [10 CFR 50.2]. NMC assumes PINGP would be decommissioned for unrestricted use. The two decommissioning options typically selected for U.S. reactors are (NRC 2002a):

- immediate decontamination and dismantlement (DECON), and
- safe storage of the stabilized and defueled facility for a period of time followed by decontamination and dismantlement (SAFSTOR).

Regardless of the option chosen, decommissioning methods would be described in the post-shutdown decommissioning activities report, which must be submitted to NRC within two years following cessation of operations [10 CFR 50.82(a)(4)]. Decommissioning activities, in accordance with 10 CFR 50.82(a)(3), must be completed within 60 years after operations cease (NRC 1996a). Related NRC requirements ensure that the decommissioning activities, when defined, would be subject to required environmental reviews in accordance with NEPA [10 CFR 50.82, 10 CFR 51.53(d)].

In the GEIS, the NRC provides a summary of decommissioning activities, generic environmental impacts of the decommissioning process, and an evaluation of potential changes in impact that could result from deferring decommissioning for up to 20 years (NRC 1996a). This GEIS analysis is based on a 1988 generic environmental impact evaluation of decommissioning, NUREG-0586 (NRC 1988), which uses the 1,175-megawatt electric (MWe) Trojan Nuclear Plant, as representative of decommissioning activities for pressurized water reactor, the reactor type used at PINGP (Section 3.1.1 of this ER).

The NRC concluded from the GEIS generic evaluation that decommissioning would have SMALL impacts with respect to radiation dose, waste management, air quality, water quality, socioeconomic impacts and ecological resources, and that impacts would not be significantly greater as a result of the proposed action (NRC 1996a, 10 CFR 51).

Considering the information presented in the GEIS and the fact that the PINGP has smaller reactors than the GEIS reference plant, NMC considers the NRC's generic evaluation and associated conclusions in the GEIS bound PINGP for purposes of this ER. The NRC has updated the 1988 generic environmental impact evaluation of decommissioning on which the GEIS is based. This update, Supplement 1 to NUREG-0586, expanded the original analysis by addressing impacts of dismantling structures, systems, and components required to operate the reactor and also considered characteristics of plants currently operating in the U.S. (NRC 2002a). Of the 23 environmental issues evaluated in this updated analysis, the NRC concluded that the following were site-specific: impacts on land use from offsite activities; impacts on aquatic and terrestrial ecology and cultural and historic resources from activities beyond operational areas; impacts on threatened and endangered species; and environmental justice impacts. The NRC concluded that all of the remaining issues were generic with SMALL impacts (NRC 2002a).

Based on its review of Supplement 1 to NUREG-0586, NMC considers these generic conclusions to be appropriate for PINGP for purposes of this ER. With respect to those environmental issues identified as site-specific:

- NMC has no reason at this time to believe that PINGP decommissioning would involve land use disturbance off-site or beyond current operational areas.
- Decommissioning activities would be subject to substantial environmental reviews as noted above.
- No significant historic or archeological resources that exist on the site would be disturbed during decommissioning (Section 2.10 of this ER).
- The closest minority or low-income population to PINGP is located adjacent to PINGP, the Prairie Island Indian Community (PIIC), and is the only minority or low-income population (as defined by NRC) in the Dakota, Goodhue, and Pierce County area (Table 2.5-2 and Figure 2.5-2 of this ER).
- Only three threatened, endangered, or candidate species are known to occur at the PINGP site (Section 2.3.3 of this ER), for which the following are decommissioning impact considerations:
 - Peregrine falcons (state-threatened) successfully nest on the PINGP Unit 1 Containment Building. Removal of the containment building would eliminate one of only 25 successful nesting sites that currently exist in the State. Adverse impacts could be noticeable, but not destabilizing (i.e., MODERATE) in the absence of mitigation. However, NMC would work with the Minnesota Department of Natural Resources (MN DNR) to provide alternative nesting habitat and ensure that adverse impacts would be SMALL.

- The paddlefish (state-threatened) was once common in the Mississippi River from Lake Pepin downstream. Paddlefish are still found in these areas and are occasionally collected during fish population studies. NMC expects that termination of PINGP operations and decommissioning would not involve activities beyond current operational areas. NMC assumes there would be little or no opportunity for significant adverse impacts on this species from decommissioning.
- The Higgins eye pearlymussel (Federal and state-endangered) is a small to medium-sized freshwater mussel. It is found in rivers in areas of deep water and moderate currents. Because termination of PINGP operations and decommissioning would not involve activities beyond current operational areas, NMC assumes there would be little or no opportunity for significant adverse impacts on this species from decommissioning.

NMC notes that decommissioning activities and their impacts are not discriminators between the proposed action and the no-action alternative. License renewal would only postpone decommissioning for 20 years, and NRC has established in the GEIS that the timing of permanent cessation of plant operations does not substantially influence the environmental impact of decommissioning. NMC adopts by reference the NRC findings that the impacts of delaying decommissioning until after the license renewal terms would be SMALL (10 CFR 51).

Environmental impacts that could result more directly from terminating plant operations (e.g., from cessation of thermal effluents, reduced property tax payments, workforce reductions) are not in the scope of the analyses presented in Chapter 7 of the GEIS or in Supplement 1 to NUREG-0586, but are discussed in Section 8.4 of the GEIS and in the latter document (NRC 2002a). With the potential exception of ecological resources and socioeconomics, the NRC's generic evaluation of these issues indicates that environmental impacts of terminating operations would be SMALL (NRC 1996a). Based on its review of the discussion in these documents and information presented in this ER, NMC considers NRC's generic evaluation and conclusions in Section 8.4 of the GEIS to be appropriate for PINGP. With particular respect to ecological resources and socioeconomics impacts:

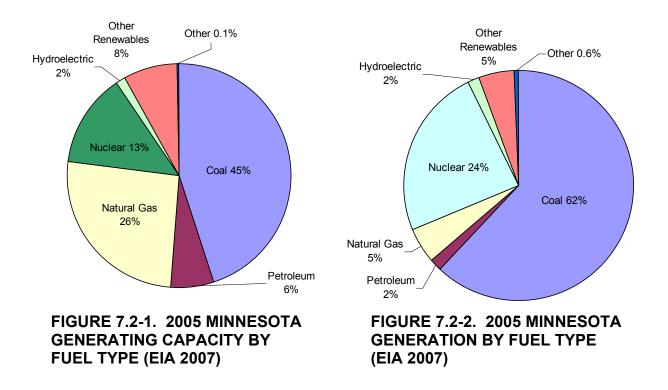
- NMC expects that termination of PINGP operations would have little, if any, adverse
 effect on ecological resources, considering occurrence and habitat affinities of
 threatened or endangered species (Section 2.3 of this ER), the small significance of
 current operational impacts (Chapter 4 of this ER), and the expectation that
 transmission lines from PINGP addressed in this ER would continue to be used
 (Section 3.1.4 of this ER).
- NMC notes that terminating PINGP operations would result in a decrease in tax revenues to local jurisdictions 20 years sooner than if the PINGP operating licenses are renewed. Property tax payments attributable to PINGP represent more than 30 percent of the operating budget for the City of Red Wing (Section 2.7 and

Table 2.7-1 of this ER) and, by NRC criteria, losses greater than 20 percent have destabilizing impacts on the governments involved (NRC 2002a).

In consideration of the above, NMC concludes that terminating operations and decommissioning PINGP could result in SMALL impacts on ecological resources and LARGE socioeconomic impacts from loss of tax revenues by the City of Red Wing 20 years earlier than would occur if the PINGP operating licenses were renewed. NMC further concludes that terminating operations and decommissioning PINGP would result in SMALL impacts with respect to the remaining resource areas evaluated, providing little or no basis for discriminating between the proposed action and the no-action alternative. The environmental impacts of replacement options considered in Section 7.3 of this ER provide additional information useful for evaluating the relative environmental merits of the proposed action versus the no-action alternative.

7.1.2 REPLACEMENT CAPACITY

PINGP is a baseload facility, providing a net baseload capacity of 1,044 MWe (NMC 2005) and in 2006 generated approximately 8.1 terawatt-hours of electricity (EIA 2006). This power, equivalent to the energy used by approximately 800,000 residential customers, would be unavailable to Xcel Energy's customers if the PINGP operating licenses were not renewed. If the PINGP operating licenses were not renewed, Xcel Energy would need to build new baseload generating capacity, purchase power, or reduce baseload power requirements through demand reduction to ensure they meet the electric power requirements of their customers. Replacement options discussed in Section 7.2 include purchasing power, building new generating facilities, delaying retirement of non-nuclear assets, and reducing power requirements through demand reduction.


7.2 ALTERNATIVES THAT MEET SYSTEM GENERATING NEEDS

In Section 7.2.1, NMC provides background information pertinent to the identification and selection of alternatives available to replace PINGP baseload generation. Alternatives NMC considers to be reasonable are described in Section 7.2.2. Section 7.2.3 describes other alternatives NMC evaluated and rationale for not considering them further in this ER.

7.2.1 GENERAL CONSIDERATIONS

7.2.1.1 Current and Projected Generating Capability and Utilization

Current and anticipated future electric power generating capability and utilization are indicative of the technical and economic viability of technologies for generating electricity, and therefore of potential alternatives to replace baseload power produced by PINGP. In 2005, electric generators in Minnesota had a total generating capacity of 12,105 MWe. This capacity includes units fueled by coal (45.0 percent), natural gas (26.1 percent), nuclear (13.4 percent), other renewables (7.9 percent), petroleum (6.1 percent), hydroelectric (1.5 percent), and other (0.1 percent). In 2005, the electric industry in Minnesota provided approximately 53.0 terawatt-hours of electricity. Actual utilization of generating capacity in Minnesota was dominated by coal (62.1 percent), followed by nuclear (24.2 percent), natural gas (5.2 percent), other renewables (5.0 percent), petroleum (1.5 percent), hydroelectric (1.5 percent), and other (0.6 percent) (EIA 2007). Figures 7.2-1 and 7.2-2 illustrate Minnesota's electric industry generating capacity and utilization, respectively.

Comparison of generating capacity with actual utilization of this capacity indicates that coal and nuclear are used by electric generators in Minnesota substantially more relative to their capacity than either petroleum-fired or gas-fired generation. This condition reflects the relatively low fuel cost and baseload suitability for nuclear power and coal-fired plants, and relatively higher use of petroleum and gas-fired units to meet peak loads. The use of petroleum and gas-fired units to meet peak loads is indicative of higher cost and greater air emissions associated with gas and petroleum firing. Capacity from renewable resources is limited and utilization can vary substantially depending on resource availability.

Insight regarding Minnesota's future generation portfolio can be gained from U.S. Department of Energy (DOE) Energy Information Agency (EIA) projections for the nation and the Mid-Continent Area Power Pool (MAPP) region, which includes Minnesota and all or part of surrounding states and two Canadian provinces (Manitoba and Saskatchewan) (MAPP 2007). Nationally, coal-fired generation is expected to remain the predominant source of electricity through 2025 and the relative amount of generation from natural gas and coal is expected to increase. Aggregate generation from nuclear plants is expected to remain near present levels with no new facilities expected in the MAPP region. Generation from renewable sources is expected to exhibit relatively slow growth because of the relatively low costs of fossil-fired generation and because competitive electricity markets favor less capital-intensive technologies (EIA 2004a, EIA 2004b).

Projected increases in capacity and generation in the MAPP region for the 2004-2010 and 2004-2025 periods (EIA 2004b) are illustrated by the following selective summary tabulation:

MAPP Projected Capacity Increase				MAPP Projected Generation Increase					
	2004-2010		2004-2025			2004-2010		2004-2025	
Source	MW	%	MW	%	Source	GWh	%	GWh	%
Coal Steam	- 40	- 1	5,240	45	Coal	14,380	78	53,300	85
Nuclear	0	0	0	0	Nuclear	110	1	110	< 1
Combined Cycle	210	7	620	5	Natural Gas	890	5	5,140	8
Combustion Turbine/Diesel	1,750	62	4,730	41	Petroleum	- 30	< 1	860	1
Renewables	810	29	950	8	Renewables	2,970	16	3,530	5
All Sources	2,810		11,610		All Sources	18.320		62,940	

As indicated by this data summary, EIA projects there will be no appreciable change in nuclear capacity or generation the MAPP region. No coal-fired capacity additions are projected in the MAPP region in the 2004-2010 period, but in 2004-2025 most capacity addition is from coal-fired units; by far the greatest increase in generation during both periods is expected to be from coal. Combustion turbine/diesel and combined cycle together represent significant projected capacity additions in both periods, but the increase is predominantly peaking capacity because most is from combustion

turbine/diesel units (likely to be nearly all combustion turbines), and the contribution to projected generation from natural gas and petroleum, typical combustion turbine fuels, is low.

EIA projects a greater relative increase in capacity and generation from renewables in MAPP than is projected nationally through 2025. This is particularly true in the 2004-2010 period, when its contribution to generation increases is expected to exceed that of natural gas. This phenomenon is mostly the result of ongoing and projected development of regional wind-conversion facilities, which are projected to account for approximately 90 percent or more of renewable capacity and generation in the 2004-2010 and 2004-2025 periods (EIA 2004b). Minnesota has the potential to develop wind energy resources, particularly in the Buffalo Ridge area in the southwestern part of the state (MDC 2006).

The MAPP regional information above does not include predictions based on legislation recently signed by the Governor of Minnesota. The Next Generation Energy Act of 2007 establishes statewide greenhouse gas emissions reduction goals of 15 percent by 2015, 30 percent by 2025, and 80 percent by 2050. Additional legislation signed earlier in the year also requires Minnesota's electric utilities to provide 25 percent of the electricity generated to be from renewable sources by 2025 (Office of the Governor 2007). This required reduction in greenhouse gas emissions and increased generation requirements from renewable sources may preclude the development of additional coal-fired capacity as described above and replace that generating capacity with renewable sources.

7.2.1.2 Effects of Electric Power Industry Restructuring

The U.S. electric power industry began its transition from a regulated monopoly structure to a competitive retail market with the passage of the Federal Energy Policy Act of 1992 and associated state initiatives. As summarized by the EIA, the Federal Energy Regulatory Commission (FERC) Order 888 requires that all public utilities provide open access to their transmission lines, and functionally separate their wholesale power services and transmission services, and encourage the creation of independent system operators to ensure independence in transmission operations (EIA 2005). Order 889 prevents public utility power marketing organizations from having preferential access to transmission information, and requires that such information be equally shared with transmission customers. FERC Order 2000 encouraged all transmission owners to voluntarily allow operation of their transmission assets by independent Regional Transmission Operators to improve market performance and equal access (FERC 2002).

In the wake of these federal initiatives and upon approval of the Minnesota Public Utilities Commission (MPUC), Minnesota's investor-owned utilities, including Xcel Energy, have joined the Midwest Independent System Operators (MISO), and have transferred functional control (but not ownership) of their transmission facilities to MISO, the operations of which are subject to FERC approval (MDC 2004).

Sixteen states and the District of Columbia have fully implemented their legislation and commission orders and currently allow full retail access for all customers. However, no state has passed restructuring legislation since June of 2000, when the California and western power crisis was just beginning. Six states that passed restructuring legislation later delayed, repealed, or indefinitely postponed implementation. A total of 34 states have repealed, delayed, suspended, or limited retail access or are no longer considering retail access (VSCC 2006).

Minnesota has not enacted major restructuring initiatives. Rather, Minnesota and most states in MAPP region have retained the traditional regulatory model in which electric utilities are comprehensively regulated to ensure reliable electric service within predetermined utility service territories (MDC 2004). In this context, Xcel Energy, through a regulated operating subsidiary (NSP), provides a comprehensive portfolio of energy related products and services in Minnesota, including generation, purchase, transmission, distribution, and sale of electricity; purchase, distribution and sale of natural gas to retail customers; and transport of customer-owned natural gas (Xcel Energy 2006a). Xcel Energy's service area in Minnesota is located predominantly in the southern part of the state from St. Cloud southward, including the Minneapolis-St. Paul Metropolitan area (Xcel Energy 2006b). Its Minnesota power generating facilities are also located in the southern part of the state (Xcel Energy 2006c).

Results of the utility restructuring initiatives discussed above are reflected in increases in the non-utility share of new electric generating capacity and generation. These increases are lower than national averages in Minnesota, which retains a traditional regulatory structure. Nonetheless, non-utility share of capacity in the state increased from 6.2 percent during 1990 to 12.9 percent in 2005. The non-utility share of generation increased from 3.5 percent to 11.7 percent in this same period (EIA 2007).

In the regulatory environment described above, and as specifically provided by Minnesota statute (Minnesota Statute 216B.37, 216B.04), Xcel is obligated to ensure the electric power needs of customers in its service area are met and to take appropriate action (e.g., power purchase, development of new generation capacity) to accommodate any shortfall in available power resulting from a decision by NRC to not renew the PINGP operating license. These actions would be undertaken in the context of planning and permitting requirements and activities of the MPUC, Minnesota Environmental Quality Board (MEQB), and various other state agencies, including the following:

- Integrated Resource Plan Regulated utilities submit to the MPUC for approval biennial integrated resource plans projecting future resource needs and providing analysis and proposals to reduce and manage energy demand and develop new generating facilities (MDC 2006).
- Transmission Plan Transmission-owning utilities in the state collaboratively identify inadequacies in the state's transmission system and propose solutions biennially (MDC 2006).

- Certificate of Need (CON) Development in Minnesota of electric power generating plants having a capacity of 50 MW or more, high voltage transmission lines with a capacity of 200 kilovolts (kV) or more, and major natural gas pipelines (i.e., those having an operating pressure over 200 pounds per square inch (psi) and instate length of more than 50 miles) requires MPUC approval either by issuance of a CON or other means (e.g., integrated resource plan approval). The CON process includes an initial review of the project with respect to environmental impacts and alternatives, including conservation and renewable alternatives (MDC 2006).
- Site/Route Permit Development in Minnesota of electric power generating equipment with a capacity of 50 MW or more, large wind energy conversion systems (combination of wind turbines with a capacity of 5 MW or more) and, regardless of length, transmission lines operating at 100 kV or more and natural gas pipelines more than 6 inches in diameter operating at pressures more than 275 psi are required to obtain a site or route permit from MEQB. This process entails detailed environmental review, analysis of alternatives, and opportunity for public input (MDC 2006).
- Other Environmental Approvals A variety of additional permits and approvals from other federal, state, and local entities also may be required to develop electrical energy facilities in Minnesota.

7.2.1.3 Mixture of Generating Sources

NRC indicated in the GEIS that, while many methods are available for generating electricity and a huge number of combinations or mixes can be assimilated to meet system needs, such expansive consideration would be too unwieldy given the purposes on the alternative analysis. Therefore, NRC determined that a reasonable set of alternatives should be limited to analysis of single discrete electrical generation sources and only those electric generation technologies that are technically reasonable and commercially viable (NRC 1996a). Consistent with the NRC determination, NMC has not evaluated mixes of generating sources. However, the impacts from coal- and gas-fired generation presented in this chapter would bound the impacts from any combination of the two technologies.

7.2.2 REASONABLE ALTERNATIVES

In view of the background information presented in Section 7.2.1 and additional information presented in this section, NMC considers that purchased power and development of new generating capacity represented by modern natural gas combined-cycle and pulverized coal-fired steam power generation technologies are reasonable alternatives to replace PINGP baseload generating capacity in the event its operating licenses are not renewed. NMC describes these alternatives in the following subsections as reasonable hypothetical scenarios for analysis without regard to whether they would be developed by Xcel Energy or others.

The following sections present purchased power (Section 7.2.2.1), gas-fired generation (Section 7.2.2.2) and coal-fired generation (Section 7.2.2.3) as reasonable alternatives to license renewal. Section 7.2.3 discusses reduced demand and presents the basis for concluding that it is not a reasonable alternative to license renewal. Section 7.2.3 also discusses other alternatives that NMC has determined are not reasonable and the bases for these determinations.

NMC analyzed locating hypothetical new coal- and gas-fired units at the existing PINGP site and at an undetermined green field site. NMC concluded that sufficient room would not be available at the PINGP site for new construction. Locating hypothetical units at a greenfield site has, therefore, been applied to the representative coal- and gas-fired units.

For comparability, NMC selected gas- and coal-fired units of equal electric power capacity. One unit with a net capacity of 1,044 MWe could be assumed to replace the 1,044-MWe PINGP net capacity. However, industry experience indicates that, although custom size units can be built, using standardized sizes is more economical. For example, standard-sized units include a gas-fired combined-cycle plant of 520 MWe net capacity (Chase and Kehoe 2000). Two of these standard-sized units would have 1,040 MWe net capacity. For comparability, NMC set the net power of the coal-fired unit equal to the gas-fired plant (1,040 MWe). Although this provides slightly less capacity than the existing units, it ensures against overestimating environmental impacts from the alternatives.

It must be emphasized, however, that these are hypothetical scenarios. Xcel Energy does not have plans for such construction.

7.2.2.1 Purchased Power

Most Minnesota utilities rely on electricity generated outside of Minnesota to meet their customer's needs, and in some manner all of them, including Xcel Energy, use the regional grid to import power at various times. However, many major transmission lines into and out of Minnesota are nearing operational limits, which could affect reliability in the future and impede the ability to import power if additional transmission infrastructure is not developed. These problems are recognized by state and regional transmission planning organizations and mechanisms are in place to identify and address transmission constraints affecting system reliability (MDC 2004). Therefore, NMC assumes purchased power would be a reasonable alternative to replace power lost in the event the PINGP operating licenses are not renewed, but could involve additional environmental impacts resulting from the need to increase transmission capability into the state.

Technologies that would be used to generate the purchased power are a matter of conjecture but, based on the discussion of Minnesota capacity and utilization data and national and region projections, NMC considers that the most likely candidates would be coal-fired and nuclear sources during off-peak periods and gas-fired sources during on-peak periods, probably supplemented by power from renewable sources, particularly

wind-conversion facilities. Because of the size of the block of baseload capacity supplied by PINGP, construction of additional baseload generating capacity using one or more of these technologies would likely be required even under the power purchase scenario. Such construction could occur within or outside of Minnesota. Therefore, a power purchase alternative would likely not eliminate the need to construct replacement baseload capacity, but rather shift it to another region. Accordingly, the impacts of power purchase alternative would be expected to be similar to the impacts of baseload alternatives analyzed in Section 7.3.2 and 7.3.3 of this ER.

In view of constraints in the existing transmission infrastructure, Xcel Energy expects that substantial additions to either the 500-kV or 345-kV transmission systems in the Upper Midwest would be required to import power into Minnesota in amounts that would replace generation from PINGP. Specific plans for such additional transmission would entail detailed studies beyond the scope or purpose of this ER. However, for purposes of analysis, NMC assumes that 100 miles of new 345-kV transmission line(s) using a 150-foot wide right-of-way (ROW) would be needed in the Upper Midwest, assumed for analysis to be located in southern Minnesota south of the Twin Cities metropolitan area, the state's main load center, in an area roughly bounded by existing 345-kV lines entering the state from the south.

The location and design of the transmission line would be subject to substantial environmental restrictions and review, including site permit review and opportunity for public participation. Therefore, NMC assumes it would be sited, developed, and operated in accordance with all applicable environmental requirements and in a manner that ensures adverse environmental impacts would not be destabilizing with respect to resources of concern.

7.2.2.2 Gas-Fired Generation

For purposes of this analysis, NMC assumed development of a modern natural gasfired combined-cycle plant with design characteristics similar to those being planned or developed elsewhere in Minnesota could be configured to replace power currently generated by PINGP. The Mankato Power Plant, developed by Calpine Corporation to generate baseload power for Xcel Energy near the city of Mankato, approximately 50 miles southwest of the Twin Cities, Minnesota, meets these general criteria. NMC used selected plant characteristics as described in the environmental assessment for that facility (MEQB 2004) as a main source of information for the representative plant characteristics. NMC assumes that the representative plant would be located at a greenfield site. Table 7.2-1 presents the basic gas-fired alternative characteristics.

The assumed representative plant consists of two combined cycle units each consisting of steam combustion turbines (CTs) with an associated heat recovery steam generator (HRSG) that supply steam to a steam turbine generator. Net generating capacity of each combined cycle unit is approximately 520 MW, for a total of 1,040 MW for the representative plant. Although capacity of the representative plant is slightly less than that of PINGP (1,044 MW), it is nonetheless reasonably comparable for purposes of this ER.

NMC assumes for conservatism that the representative plant would use natural gas as its only fuel. However, the facility could reasonably be constructed with the capability to fire oil as backup fuel for use during high demand or higher cost periods for natural gas, thus improving fuel supply capabilities and operating cost. Based on the information presented in Table 7.2-1, total annual heat input from natural gas would be approximately 48,700,000 million British thermal units, corresponding to an annual natural gas consumption of approximately 48.3 billion cubic feet.¹

Availability of sufficient capacity from existing natural gas transmission infrastructure in Minnesota to supply the plant in 2013 is conjectural. NMC notes that only a limited number of natural gas generation facilities can be added to the existing system without significant upgrades (MDC 2006). However, the Minnesota Department of Commerce (MDC) indicates that, while existing infrastructure is near capacity, there is a potential for more natural gas supplies becoming available within the state as long as liquefied natural gas displaces natural gas supplies consumed in other parts of the country, and there appears to be adequate supplies available to meet projected demand for some time beyond 2025 (MDC 2006). In view of these considerations, NMC expects that the representative plant would likely contribute to the need for major gas supply infrastructure in the state, but assumes that no such major improvements would be needed.

NMC estimates that the representative plant with associated support facilities would occupy approximately 41 acres (TtNUS 2007a). Additional land could be needed as buffer from adjacent land uses. For example, the NRC estimates that 110 acres would be required for a 1,000 MW plant (NRC 1996a). NMC assumes that the representative plant would be located at a greenfield site. Offsite infrastructure needed for the representative plant could reasonably include a natural gas supply pipeline, transmission line, and a rail spur.

NMC assumes for this assessment that construction of the gas-fired plant would be timed to enable its operation in 2013 when the first PINGP operating license expires. NMC estimates that the plant would be constructed in approximately 3 years with a peak onsite workforce of approximately 629 workers, and that a permanent full-time workforce of approximately 35 persons would operate the plant (TtNUS 2007a).

7.2.2.3 Coal-Fired Generation

NRC has routinely evaluated coal-fired generation alternatives for nuclear plant license renewal. In the GEIS Supplement for McGuire Nuclear Station (NRC 2002b), NRC analyzed 2,400 MWe of coal-fired generation capacity. NMC has reviewed the NRC analysis, considers it to be sound, and notes that it analyzed more generating capacity than the 1,040 MWe discussed in this analysis. In defining the PINGP coal-fired

¹ Annual Natural Gas Requirement (Btu) = [Natural Gas Heat Input] x [Heating Value of Fuel] = [Total Gross Capability (542 MW) x Number of Units (2) x Heat Rate (6,040 Btu/kW-hour) x 1,000 kW/MW x Capacity Factor (0.85) x 8,760 hr/yr]. Therefore: Natural Gas Heat Input = 4.872 x 10¹³ Btu/yr, or 4.872 x 10⁷ MMBtu/yr. Volume of gas required per year = Annual Natural Gas Requirement (Btu/yr) x [Heating Value of Fuel (1 scf/1,008 Btu)] = 4.833 x 10¹⁰ scf/yr, or 48.3 billion scf/yr. Table 7.2-1 lists all necessary parameters and values.

alternative, NMC has used site- and Minnesota-specific input and has applied the NRC analysis, where appropriate.

Specific coal generating technologies that would represent viable alternatives in 2013 and 2014 when the PINGP operating licenses expire are less certain than for a natural gas-fired plant, particularly in view of potentially higher air emissions compared to natural gas firing. NMC notes that integrated gasification combined-cycle (IGCC) technology could be viable based on potential development of the Mesaba Energy Project. The Mesaba Energy Project is an IGCC facility with a capacity of approximately 600 MW proposed for development in northern Minnesota (MDC 2004). However, the Mesaba facility would be the largest capacity IGCC facility constructed to date in the U.S and represents technology that is not yet fully demonstrated commercially at the size proposed. IGCC demonstration plants to date have been much smaller (MDC 2004). Given these circumstances, the long-term reliability of IGCC may not be known at the point a decision needs to be made regarding replacement of PINGP capacity. Xcel Energy recognizes modern pulverized coal-fired steam units with advanced, clean-coal technology air emission controls as currently proven technology that is economically competitive and commercially available in largecapacity unit sizes that could effectively replace PINGP. In the future, an IGCC with carbon sequestration technology might achieve lower emissions, but effective carbon sequestration technology currently does not exist. Therefore, NMC uses a representative plant of this type for purposes of impact evaluation, noting that air emissions impacts of IGCC may be lower than modern pulverized coal, but likely would be comparable to or higher than the gas-fired combined-cycle alternative (DOE 1999).

The representative plant consists of two commercially available standard-sized units having a nominal net output of approximately 520 MW each, for a total of 1,040 MW, comparable to PINGP's net capacity of 1,044 MW. Table 7.2-2 presents the basic coal-fired alternative emission control characteristics. NMC based its emission control technology and percent control assumptions on alternatives that the U.S. Environmental Protection Agency (EPA) has identified as being available for minimizing emissions (EPA 1998a). NMC assumes that the representative plant would be located at a greenfield site.

Table 7.2-2 lists basic specifications for the plant. Based on this information, annual coal consumption for the facility would be approximately 4.7 million tons². The representative plant would be designed to meet applicable standards with respect to control of air and wastewater emissions. NMC estimates that approximately 64,700 tons of limestone could be needed annually to operate the scrubber assumed for control of sulfur oxides (SO_x) emissions.

NMC estimates that approximately 170 acres would be required to accommodate the generating plant and related onsite ancillary and support facilities and infrastructure

² Coal Combusted (tons/year) = Gross Capability (553 MW) x Number of Units (2) x Heat Rate (10,200 Btu/kilowatt-hour) x 1,000 kilowatt/MW x 1/Fuel Heat Value (8,914 Btu/lb) x 0.0005 (ton/lb) x Capacity Factor (0.85) x 8,760 hr/year = 4.7 million tons/yr. All necessary parameters and values are provided in Table 7.2-1.

(e.g., coal and limestone transport, storage, and handling facilities; switchyard and onsite transmission lines; storage tanks; cooling towers; technical and administration buildings; access roads; parking) (TtNUS 2007a). The extent to which these solid wastes could be used beneficially is dependent on such factors as air emission control design specifics and future demand. However, approximately 30 percent of the ash from Xcel Energy coal-fired generating plants goes to such beneficial uses as concrete products and roadbed material (Xcel Energy 2004a). Therefore, NMC assumes for purposes of this ER that 30 percent of the ash from the representative coal-fired plant would be beneficially used, and that the remainder of this air emission control waste would be landfilled onsite. Assuming an average fill depth of 30 feet, approximately 180 acres would be required over an assumed 40-year plant life (TtNUS 2007b). Therefore, the minimum total land requirement for the plant is assumed to be approximately 350 acres. Additional land likely would be necessary to allow for a peripheral buffer. For example, the NRC estimates that a total of 1,700 acres could be required for a larger (1,000 MW) plant (NRC 1996a).

NMC assumes that construction of the coal-fired unit would be timed to enable its operation when the first PINGP operating license expires in 2013, and estimates that the plant could be constructed in approximately 5 years with peak onsite workforce of approximately 1,700 workers. Depending on the level of automation, a permanent work force of 120 full-time employees would likely be required to operate the plant (TtNUS 2007a).

7.2.2.4 Siting Considerations

Xcel Energy considers it unlikely that either of the representative plants would be developed at the PINGP site because sufficient room would not be available to site the new construction. Therefore, NMC assumes for purposes of this ER that the hypothetical alternative would be located at a greenfield site in southern Minnesota generally south of the Twin Cities. The choice of a specific location for the plant would require detailed studies and analysis beyond the scope or necessity for this ER. However, NMC notes that Northern States Power (NSP) has recently considered areas generally south of the Twin Cities (e.g., at Mankato and in the Rosemount area, near the Mississippi River immediately southeast of the Twin Cities metropolitan area), as potentially favorable for siting natural gas-fired or coal-fired power plants for new generation.

NMC has made the following assumptions to reasonably define offsite infrastructure that would be needed to locate either plant at a greenfield site. NMC assumes that 5 miles of new natural gas supply pipeline would be needed to supply the gas-fired plant and 10 miles of new rail would be required for delivery of coal and limestone to the coal-fired plant. In addition, NMC assumes 5 miles of new 345-kV transmission line would be needed to connect to the grid. NMC assumes that the supply pipeline would require a 30-foot wide ROW, a rail spur would require a 50-foot wide ROW, and the transmission line would occupy a 150-foot wide ROW.

As indicated by discussion elsewhere in this ER, the location and design of either alternative plant and associated offsite infrastructure would be subject to substantial environmental restrictions and review, including MEQB site permit review and opportunity for public participation. Therefore, NMC assumes the representative plant and associated offsite infrastructure would be sited, developed, and operated in accordance with all applicable environmental requirements and in a manner that ensures adverse environmental impacts would not be destabilizing with respect to resources of concern.

7.2.3 OTHER ALTERNATIVES

This section identifies alternatives that NMC has determined are not reasonable and the NMC bases for these determinations. NMC accounted for the fact that PINGP is a base-load generator and that any feasible alternative to PINGP would also need to be able to generate base-load power. In addition to coal-fired and natural gas-fired generation, the NRC evaluated several other generation technologies in the GEIS (NRC 1996a). NMC has considered these options as potential alternatives to continued operation of PINGP and determined them to be unreasonable on the basis of economics, high land-use impacts, low capacity factors, geographic limitations, insufficiently developed technology, or other significant reasons.

7.2.3.1 Demand Side Management

Under provisions of Minnesota Statute 216B.241, Minnesota public utilities, rural electric cooperatives, and municipal utilities are required to invest 1.5 percent of in-state revenues in projects designed to reduce their customers' consumption of electricity and improve efficient use of energy resources. Utilities that operate nuclear generating facilities like PINGP are required to invest 2.0 percent of revenues in this manner. Cost of this program, which is administered by the MDC, is recovered from utility customers (MDC 2006). Each utility is required to submit to the MDC for approval an annual conservation improvement plan (CIP) which details its energy-saving programs (MDC 2006). Within certain limits as specified under Minnesota Statute 216B.241, the MDC may specifically direct utilities like Xcel Energy in regards to investments and expenditures to be made for energy conservation.

In this context, Xcel Energy has in place a wide variety of electrical energy conservation (i.e., demand-side management, or DSM) programs and activities, including:

- Conservation Programs programs like Xcel Energy's Energy Solutions newsletter and internet-based information resources designed to educate and inform customers about energy efficiency and Xcel Energy offerings.
- Energy Efficiency Programs programs like ConservationWise from Xcel EnergySM that help customers increase energy efficiency by providing rebates, pricing, or other incentives to purchase energy efficient systems or components (e.g., boilers, air conditioning systems, lighting, motors); renovate facilities that meet specific energy

efficiency standards (e.g., roofing); undertake energy conservations assessments; and obtain expert energy conservation design assistance.

 Load Management Programs – programs such as OperationWise from Xcel EnergySM that encourage customers to switch load to customer-owned standby generators during periods of peak demand, and include features like Saver's Switch® that encourage customers to allow a portion of their load to be interrupted during periods of peak demand.

Details of Xcel Energy DSM programs are provided in its most recent CIP.

In Xcel Energy's 2004 Integrated Resource Plan, Xcel Energy established the DSM goals for the 2005-2019 planning period. This plan established aggressive targets of 3,773 gigawatt-hours (GWh) of cumulative energy savings and 1,063 MW of cumulative peak demand savings in Xcel Energy's service area over this period (Xcel Energy 2004b).

Recent legislation, the Next Generation Energy Act of 2007, signed in May of 2007 by the Governor of Minnesota, introduces reforms to the existing DSM programs in Minnesota (Office of the Governor 2007). This legislation includes a provision for utilities to reduce electricity demand by 1.5 percent per year. It also transitions the CIP program from a spending program to an energy savings program. These reforms are expected to double the amount of electricity saved (MDC 2007).

NMC notes that even if these aggressive annual DSM savings targets required by the CIP and the Next Generation Energy Act of 2007 were achieved, the cumulative savings through 2013 would be insufficient to replace generation lost as a result of PINGP operations termination at the end of its current operating licenses. Moreover, Xcel Energy credits these DSM goals from the CIP in its demand forecasts, which indicate the need for substantial amounts of energy to meet obligations in its service area even assuming the PINGP operating license is renewed. In addition, DSM tends to reduce peak demand, and has less effect on reducing demand for baseload capacity. Therefore, NMC concludes that DSM does not represent a meaningful alternative to renewal of the PINGP operating license.

7.2.3.2 Wind

Wind power, by itself, is not suitable for large base-load generation. As discussed in Section 8.3.1 of the GEIS, wind has a high degree of intermittence, and average annual capacity factors for wind plants are relatively low (less than 30 percent). Wind power, in conjunction with energy storage mechanisms, might serve as a means of providing base-load power. However, current energy storage technologies are too expensive for wind power to serve as a large base-load generator.

Based on American Wind Energy Association (AWEA) estimates from 2005, Minnesota has the technical potential (the upper limit of renewable electricity production and capacity that could be brought online, without regard to cost, market acceptability, or

market constraints) for roughly 75,000 MWe of installed wind power capacity. The full exploitation of wind energy is constrained by a variety of factors including land availability and land-use patterns, surface topography, infrastructure constraints, environmental constraints, wind turbine capacity factor, wind turbine availability, and grid availability. When these constraints on wind energy development are considered, the achievable wind energy potential is expected to fall in the range of 20-40 percent of technical potential estimates or 15,000 - 30,000 MWe. As of the end of 2005 a total of 744 MWe of wind energy had been developed in Minnesota (AWEA 2006).

Wind farms, the most economical wind option, generally consist of 10-50 turbines in the 1-3 MWe range. Estimates based on existing installations indicate that a utility-scale wind farm would occupy about 50 acres per MWe of installed capacity (McGowan & Connors 2000). Wind farm facilities would occupy 3 to 5 percent of the wind farm's total acreage (McGowan and Connors 2000). Therefore, replacement of PINGP generating capacity with wind power, even assuming ideal wind conditions, would require about 149,000 acres (230 square miles) of which about 4,500 acres (7 square miles) would be occupied by turbines and support facilities. Based on the amount of land needed to replace PINGP, the wind alternative would require a large green field site, which would result in a large environmental impact. Additionally, wind plants have aesthetic impacts, generate noise, and can harm flying birds and bats.

The scale of this technology is too small to directly replace a power plant of the size of PINGP, capacity factors are low (30 to 40 percent), and the land requirement (7 square miles) is large. The expected increase in wind energy generation will likely meet the additional renewable generation required by the Next Generation Energy Act of 2007 and not be available to replace base-load generation. Therefore, NMC has concluded that wind power is not a reasonable alternative to PINGP license renewal.

7.2.3.3 Solar

By its nature, solar power is intermittent. In conjunction with energy storage mechanisms, solar power might serve as a means of providing base-load power. However, current energy storage technologies are too expensive to permit solar power to serve as a large base-load generator. Even without storage capacity, solar power technologies (photovoltaic and thermal) cannot currently compete with conventional fossil-fueled technologies in grid-connected applications, due to high costs per kilowatt of capacity (NRC 1996a). However, Xcel Energy's portfolio includes purchased power of 8 megawatts of solar.

The amount of solar radiation that Minnesota receives ranges from 4.0 kilowatt hours per square meter per day in the northeast part of the state to nearly 5.0 kilowatt hours per square meter per day in the southwest corner (NREL 2006). Estimates based on existing installations indicate that utility-scale plants would occupy about 7.4 acres per MWe for photovoltaic and 4.9 acres per MWe for solar thermal systems (DOE 2004). Utility-scale solar plants have only been used in regions, such as southern California, that receive high concentrations (5 to 7.2 kilowatt hours per square meter per day) of solar radiation. NMC believes that a utility-scale solar plant located in Minnesota, which

receives 4.0 to 5.0 kilowatt hours of solar radiation per square meter per day, would occupy about 10.62 acres per MWe for photovoltaic and 7.03 acres per MWe for solar thermal systems. Therefore, replacement of PINGP generating capacity with solar power would require dedication of about 16,000 acres (26 square miles) for photovoltaic and 26,000 acres (41 square miles) for solar thermal systems. The existing PINGP site is approximately 578 acres. Neither type of solar electric system would fit at the PINGP site, and both would have large environmental impacts at a greenfield site.

NMC has concluded that due to the high cost, limited availability of sufficient incident solar radiation, and amount of land needed (approximately 26 to 41 square miles), solar power is not a reasonable alternative to PINGP license renewal.

7.2.3.4 Hydropower

According to the U.S. Hydropower Resource Assessment for Minnesota (Francfort 1996), there are no sites in Minnesota that would be environmentally suitable for a large hydroelectric facility. As the GEIS points out in Section 8.3.4, hydropower's proportion of United States generating capacity is expected to decline because hydroelectric facilities have become difficult to site as a result of public concern over flooding, destruction of natural habitat, and alteration of natural river courses.

The GEIS estimates land use of 1,600 square miles per 1,000 MWe for hydroelectric power. Based on this estimate, replacement of PINGP generating capacity would require flooding approximately 1,700 square miles, resulting in a large impact on land use. Further, operation of a hydroelectric facility would alter aquatic habitats above and below the dam, which would impact existing aquatic communities.

NMC has concluded that due to the lack of suitable sites in Minnesota for a large hydroelectric facility and the amount of land needed (approximately 1,700 square miles) hydropower is not a reasonable alternative to PINGP license renewal.

7.2.3.5 Geothermal

As illustrated by Figure 8.4 in the GEIS (NRC 1996a), geothermal plants might be located in the western continental United States, Alaska, and Hawaii, where hydrothermal reservoirs are prevalent. However, because there are no high-temperature geothermal sites in Minnesota, NMC concludes that geothermal is not a reasonable alternative to PINGP license renewal.

7.2.3.6 Wood Energy

As discussed in the GEIS (NRC 1996a), the use of wood waste to generate electricity is largely limited to those states with significant wood resources. The pulp, paper, and paperboard industries in states with adequate wood resources generate electric power by consuming wood and wood waste for energy, benefiting from the use of waste materials that could otherwise represent a disposal problem. According to the U.S.

Department of Energy, Minnesota does not have enough wood resources to replace the generating capacity of PINGP (Walsh et al. 2000).

Further, as discussed in Section 8.3.6 of the GEIS (NRC 1996a), construction of a wood-fired plant would have an environmental impact that would be similar to that for a coal-fired plant, although facilities using wood waste for fuel would be built on a smaller scale. Like coal-fired plants, wood-waste plants require large areas for fuel storage, processing, and waste (i.e., ash) disposal. Additionally, operation of wood-fired plants has environmental impacts, including impacts on the aquatic environment and air. Wood has a low heat content that makes it unattractive for base-load applications. It is also difficult to handle and has high transportation costs.

NMC has concluded that, due to inadequate resources, the lack of an environmental advantage, low heat content, handling difficulties, and high transportation costs, wood energy is not a reasonable alternative to PINGP license renewal.

7.2.3.7 Municipal Solid Waste

As discussed in Section 8.3.7 of the GEIS (NRC 1996a), the initial capital costs for municipal solid waste plants are greater than for comparable steam turbine technology at wood-waste facilities. This is due to the need for specialized waste separation and handling equipment.

The decision to burn municipal solid waste to generate energy is usually driven by the need for an alternative to landfills, rather than by energy considerations. The use of landfills as a waste disposal option is likely to increase in the near term; however, it is unlikely that many landfills will begin converting waste to energy because of unfavorable economics.

Estimates in the GEIS suggest that the overall level of construction impacts from a waste-fired plant should be approximately the same as that for a coal-fired plant. Additionally, waste-fired plants have the same or greater operational impacts (including impacts on the aquatic environment, air, and waste disposal). Some of these impacts would be moderate, but still larger than the environmental effects of PINGP license renewal.

NMC has concluded that, due to the high costs and lack of environmental advantages, burning municipal solid waste to generate electricity is not a reasonable alternative to PINGP license renewal.

7.2.3.8 Other Biomass-Derived Fuels

In addition to wood and municipal solid waste fuels, there are several other concepts for fueling electric generators, including burning energy crops, converting crops to a liquid fuel such as ethanol (ethanol is primarily used as a gasoline additive), and gasifying energy crops (including wood waste). As discussed in the GEIS, none of these

technologies has progressed to the point of being competitive on a large scale or of being reliable enough to replace a base-load plant such as PINGP.

Further, estimates in the GEIS suggest that the overall level of construction impacts from a crop-fired plant should be approximately the same as that for a wood-fired plant. Additionally, crop-fired plants would have similar operational impacts (including impacts on the aquatic environment and air). These systems also have large impacts on land use, due to the acreage needed to grow the energy crops.

NMC has concluded that, due to the high costs and lack of environmental advantage, burning other biomass-derived fuels is not a reasonable alternative to PINGP license renewal.

7.2.3.9 Petroleum

Minnesota has several petroleum(oil)-fired power plants; and from 1990 to 2005 the percentage share of power produced by oil-fired generating plants decreased from 9.0 percent to about 5.9 percent (EIA 2007). However, oil-fired generation represents a small portion of the overall generation mix in Minnesota and is more expensive than nuclear or coal-fired generation. Future increases in petroleum prices are expected to make oil-fired generation increasingly more expensive than coal-fired generation. Also, construction and operation of an oil-fired plant would have environmental impacts. For example, Section 8.3.11 of the GEIS (NRC 1996a) estimates that construction of a 1,000-MWe oil-fired plant would require about 120 acres. Additionally, operation of oil-fired plants would have environmental impacts (including impacts on the aquatic environment and air) that would be similar to those from a coal-fired plant.

NMC has concluded that, due to the high costs and lack of obvious environmental advantage, oil-fired generation is not a reasonable alternative to PINGP license renewal.

7.2.3.10 Fuel Cells

Fuel cell power plants are in the initial stages of commercialization. While more than 700 large stationary fuel cell systems have been built and operated worldwide, the global stationary fuel cell electricity generating capacity in 2004 was only 132 MWe. In addition, the largest stationary fuel cell power plant is only 11 MWe (Fuel Cell Today 2003 and 2005). Recent estimates suggest that a company would have to produce about 100 MWe of fuel cell stacks annually to achieve a price of \$1,000 to \$1,500 per kilowatt (Kenergy Corporation 2000). However, the production capability of the largest stationery fuel cell manufacturer is 50 MWe per year (CSFCC 2002). NMC believes this technology has not matured sufficiently to support production for a facility the size of PINGP. NMC has concluded that, due to cost and production limitations, fuel cell technology is not a reasonable alternative to PINGP license renewal.

7.2.3.11 Advanced Nuclear Reactor

Increased interest in the development of advanced nuclear power plants has been expressed recently by members of both industry and government. However, it is extremely unlikely that a replacement for the PINGP could be planned, licensed, constructed, and on line by the time the operating licenses expire in 2013 and 2014. Further, there is currently a moratorium in Minnesota on the construction of new nuclear plants. In addition, a new nuclear plant would have environmental impacts similar to those for PINGP but would also incur the new construction impacts. Therefore, constructing a new nuclear plant would not be expected to be environmentally superior to the continued operation of PINGP.

7.2.3.12 Delayed Retirement of Existing Non-nuclear Units

As the NRC noted in the GEIS (NRC 1996a), extending the lives of existing non-nuclear generating plants beyond the time they were originally scheduled to be retired represents another potential alternative to license renewal. However, delaying retirement in order to compensate for PINGP generally would be unreasonable without major construction to upgrade or replace plant components. Xcel Energy undertakes upgrades of its older baseload plants in cases where it is reasonable to do so. Such actions are currently accounted for in Xcel Energy's plans to meet anticipated demands irrespective of the loss of generating capacity if the PINGP operating license is not renewed and, therefore, do not represent a realistic option. In addition, NMC expects that the environmental impacts of implementing such upgrades and operating the upgraded plants are reasonably bounded by assessments presented in this chapter for the gas-fired and coal-fired alternatives.

7.3 ENVIRONMENTAL IMPACTS OF ALTERNATIVES

NMC evaluations of environmental impacts for the feasible replacement power alternatives are presented in the following sections. Section 7.3.1 provides NMC's impact assessment of the purchased power alternative. Sections 7.3.2 and 7.3.3 address impacts associated with the natural gas-fired and coal-fired plant alternative, respectively. Chapter 8 presents a summary comparison of the environmental impacts of license renewal and the alternatives discussed in this section.

The evaluations presented below focus on the impacts specific to these alternatives. Impacts associated with terminating operations and decommissioning PINGP (i.e., base case, Section 7.1.1 of this ER) are expected to be of SMALL significance for all resource areas addressed except socioeconomics; therefore, these generally are not further discussed. However, conclusions expressed below regarding the significance of impact for each alternative denote the total expected impact for each resource area, inclusive of the base case. The influence of the base case on these conclusions is noted where appropriate.

The new generating plants addressed in Sections 7.3.2 and 7.3.3 would not be constructed only to operate for the period of extended operation of PINGP. Therefore, NMC assumes for this analysis a typical design life of 30 years for the combined-cycle natural gas-fired plant and 40 years for the coal-fired plant, and considers impacts associated with operation for the entire design life of the units in this analysis. As discussed in Section 7.2, NMC assumes that construction of these plants would be phased to provide replacement capacity in 2013 and 2014 when respective PINGP operating licenses expire.

7.3.1 PURCHASED POWER

Because it would be replacing PINGP's baseload capacity, NMC assumes that the generating technology used under the power purchase alternative would likely be coalfired or gas-fired generation capable of baseload operation. Further, because of the large block of baseload power provided by PINGP, NMC assumes that if power purchases were used to replace this power over the twenty year replacement term, construction of new generation would still be required, albeit potentially in another state, region or Canada. Therefore, NMC assumes that the generation-related impacts associated with a power purchase alternative would be similar to those evaluated in Sections 7.3.2 and 7.3.3 of this ER. NMC is also adopting by reference the NRC analysis of the environmental impacts from those technologies. Under the purchased power alternative, environmental impacts would still occur, but they would likely originate from a power plant located elsewhere in Minnesota, the region, the U.S., or Canada. However, for purposes of comparative analysis, NMC assumes that overall generation-associated adverse impacts would be no greater than are identified in this ER for the representative gas-fired and coal-fired plant alternatives.

Environmental impacts associated with terminating operations and decommissioning PINGP nonetheless could result in LARGE adverse socioeconomic impacts to the City

of Red Wing from loss of tax revenues 20 years earlier than would occur if the PINGP operating license is renewed. Terminating operations and decommissioning PINGP could result in SMALL impacts to the peregrine falcon and paddlefish, a state-listed threatened species, and SMALL impacts to the Higgins eye pearlymussel, a Federal and state-endangered species.

NMC assumes that 100 miles of new 345-kV transmission line on a 150-foot wide ROW in southern Minnesota, potentially affecting approximately 1,800 acres, would be required to import purchased power. Considering the nature of transmission line development and mitigation available, impacts of greatest concern are those related to changes in land use, terrestrial ecological communities, and aesthetics.

Land use and terrestrial ecological habitats in the region where it is assumed the line would be built consists predominantly of rural agricultural land interspersed in some areas with natural vegetation (e.g., forested tracts, wetlands). Therefore, NMC expects these land uses and ecological habitats, which are abundant in the region, would be most affected by transmission line development. Development of the transmission line would limit changes in future land uses on the ROW to those that are compatible with the line, but most agricultural practices and other currently compatible uses could continue.

Establishment of ROW for the transmission line(s) would have little effect on either the amount or value of habitat represented by agricultural land, the predominant habitat expected on lands traversed by these facilities, because compatible agricultural practices could continue. Similarly, open wetlands would be spanned and therefore minimally affected. Depending on route specifics, clearing of forest and shrubland, some of which may qualify as wetland, would also be required. However, hydrologic regimes of wetlands would not be appreciably affected and the conversion of ROW areas currently in forest to open (herbaceous and shrub) habitats can be advantageous to species with affinities for remnant prairie habitats, now rare in the area of interest.

Some visual impairment of the rural landscape would result from development of the transmission line. However, the topography throughout most of southern Minnesota is rolling, and forested tracts occur in some parts of the area. Both of these attributes would act to reduce the viewshed and limit potential for impairment of visual aesthetics. In addition, the presence of transmission line is not out of character for the existing rural southern Minnesota landscape.

Finally, NMC expects that routing of the line could be accomplished such that highly incompatible land uses, important habitats and associated important species, and areas of potentially high impact on visual aesthetics would be recognized and avoided or appropriately mitigated such that important attributes of these resources would not be destabilized.

On the basis of these considerations, NMC concludes that the associated impacts of the transmission line development and operation would be SMALL to MODERATE with respect to land use, ecological resources, and aesthetics. Transmission line

development could result in LARGE adverse socioeconomic impacts to the City of Red Wing from loss of tax revenues 20 years earlier than would occur if the PINGP operating license is renewed. Impacts to remaining resources would be of SMALL significance.

7.3.2 GAS-FIRED GENERATION

NRC evaluated environmental impacts from gas-fired generation alternatives in the GEIS, focusing on combined-cycle plants. Section 7.2.2.2 presents NMC's reasons for defining the gas-fired generation alternative as a combined-cycle plant on a greenfield site.

In the GEIS Supplement for McGuire Nuclear Station (NRC 2002b), NRC evaluated the environmental impacts of constructing and operating five 482 MWe combined-cycle gas-fired units as an alternative to a nuclear power plant license renewal. NMC has reviewed the NRC analysis, believes it to be sound, and notes that it analyzed more generating capacity than the 1,040 MWe of net power discussed in this analysis.

7.3.2.1 Land Use

Although potential impacts on land use would be location specific and therefore conjectural for a greenfield site, potentially affected areas are predominantly rural agricultural land interspersed in some areas with natural vegetation (e.g., forested tracts and wetlands). Based on information presented in Section 7.2.2.2 of this ER, NMC expects plant development would involve conversion of approximately 41 acres of rural agricultural land and/or natural plant communities abundant in the region to industrial use. Development of offsite infrastructure (i.e., transmission line, gas pipeline), involving approximately 110 acres of ROW, would similarly limit development of future incompatible land uses but compatible land uses, including most agricultural practices, could continue. Considering also that land use impacts would be addressed in siting and designing these facilities, NMC concludes that land use impacts could range from SMALL to MODERATE, depending on site-specific factors.

7.3.2.2 Air Quality

Natural gas is a relatively clean-burning fossil fuel that primarily emits nitrogen oxides (NO_x) , a regulated pollutant, during combustion. A natural gas-fired plant would also emit small quantities of sulfur oxides (SO_x) , particulate matter, and carbon monoxide, all of which are regulated pollutants. Carbon dioxide, a greenhouse gas, would also be emitted. Control technology for gas-fired turbines focuses on NO_x emissions. NMC estimates the gas-fired alternative emissions to be as follows (TtNUS 2007b):

SO_x = 83 tons per year

 NO_x = 312 tons per year

Carbon monoxide = 409 tons per year

Filterable Particulates = 122 tons per year (all particulates are PM_{10})

In 2005, Minnesota was ranked 25th nationally in sulfur dioxide (SO_2) emissions (EIA 2007). Therefore, the electric power plants in 24 states emitted more SO_2 than those located in Minnesota. The acid rain requirements of the Clean Air Act Amendments capped the nation's SO_2 emissions from power plants. Each company with fossil-fuel-fired units was allocated SO_2 allowances. To be in compliance with the Act, the companies must hold enough allowances to cover their annual SO_2 emissions. Xcel Energy would need to obtain SO_2 credits to operate a fossil-fuel-burning plant at the greenfield site.

In 1998, the EPA promulgated the NO_x State Implementation Plan (SIP) Call regulation that required 22 states, including Minnesota, to reduce their NO_x emissions by over 30 percent to address regional transport of ground-level ozone across state lines (EPA 1998b). The NO_x SIP Call imposes a NO_x "budget" to limit the NO_x emissions from each state. To operate a fossil-fuel-fired plant at the greenfield site, Xcel Energy would also need to obtain enough NO_x credits to cover annual emissions either from the set-aside pool or by buying NO_x credits from other sources.

In addition, Minnesota is one of the states covered by the Clean Air Interstate Rule (CAIR), designed to reduce air pollution that moves across state boundaries. The CAIR, issued March 10, 2005, will permanently cap emissions of sulfur dioxide and nitrogen oxides in the eastern United States when fully implemented (EPA 2006). The CAIR is projected to reduce Minnesota's sulfur dioxide and nitrogen oxide emissions by 36 and 59 percent, respectively, by 2015. Minnesota must achieve the required emission reductions of the CAIR, and Xcel Energy will have to comply with Minnesota's emission reduction program.

 NO_x effects on ozone levels, SO_2 allowances, and NO_x emission offsets could all be issues of concern for gas-fired combustion. While gas-fired turbine emissions are less than coal-fired boiler emissions, and regulatory requirements are less stringent, the emissions are still substantial. NMC concludes that emissions from the gas-fired alternative at a greenfield site would noticeably alter local air quality, but would not destabilize regional resources (i.e., air quality). Air quality impacts would therefore be MODERATE.

7.3.2.3 Waste Management

The solid waste generated from this type of facility would be minimal. NMC concludes that gas-fired generation waste management impacts would be SMALL.

7.3.2.4 Ecological Resources

Development of the representative plant at a greenfield site in southern Minnesota would likely result in the loss of approximately 41 acres of terrestrial habitat for onsite plant facilities, and modification of approximately 110 acres of existing offsite terrestrial habitat for a new natural gas supply pipeline and transmission line ROW. Habitat most

likely to be affected consists of rural agricultural land interspersed in some areas with natural vegetation communities abundant in the region (e.g., forested tracts and wetlands).

Impacts associated with transmission line and pipeline development would be similar to those described in Section 7.3.1 for the transmission line(s) assumed to be needed for the purchase power alternative.

The most significant potential impacts to aquatic communities relate to operation of the cooling water system. However, the cooling system for the plant would be designed and operated in compliance with the Clean Water Act (CWA), including National Pollutant Discharge Elimination System (NPDES) limitations for physical and chemical parameters of potential concern and provisions of CWA Sections 316(a) and 316(b), which are respectively established to ensure appropriate protection of aquatic communities from thermal discharges and the location and operation of cooling water intakes.

In view of these considerations and assumptions of this assessment, NMC expects that impacts on ecological resources would not noticeably alter any important attribute of the resource, particularly if located on agricultural lands, consistent with NRC's definition of SMALL impact significance. However, considering the uncertainties associated with greenfield development, NMC concludes that impacts on ecological resources could be of SMALL to MODERATE significance.

7.3.2.5 Socioeconomics

Major sources of potential socioeconomic impacts from the representative gas-fired generation alternative include:

• temporary increases in jobs, economic activity, and demand for housing and public services in communities surrounding the site during the construction period, and

• net change in permanent jobs, tax revenues, and economic activity attributable to gasfired plant operation and termination of PINGP operations.

Although the area south of Minneapolis is predominantly rural, it is within commuting distance of relatively large population centers, including Minneapolis-St. Paul, Mankato, and Rochester. Considering the proximity of these sources of labor and services, NMC expects that most of the construction workforce would commute and relatively few would relocate to small communities near the plant such that significant demand for housing or public services would result. Associated socioeconomic impacts during construction are therefore expected to be SMALL, regardless of plant location. Considered together with impacts of the no action "base case" (terminating operations and decommissioning PINGP), the greenfield siting alternative could result in LARGE adverse socioeconomic impacts to the City of Red Wing from loss of tax revenues 20 years earlier than would occur if the PINGP operating licenses were not renewed. NMC

concludes that overall socioeconomic impact of the representative plant at the assumed greenfield site would be of MODERATE to LARGE significance.

7.3.2.6 Aesthetics

Potential aesthetic impacts of construction and operation of a gas-fired plant include visual impairment resulting from the presence of a industrial facility and associated ROWs, particularly 200-foot high exhaust stacks and condensate plume from the cooling tower. However, the topography throughout most of southern Minnesota is rolling and forested tracts are common in some areas. Both of these factors act to reduce the viewshed and limit potential for impairment of visual aesthetics. NMC assumes that adequate buffer and vegetation screens would be provided at the plant site as needed to moderate visual and noise impacts. Considering also that the location and design of the plant and associated offsite infrastructure would be decided with consideration of potential adverse aesthetic effects, NMC concludes that aesthetic impact could range from SMALL to MODERATE, depending on location.

7.3.2.7 Other Impacts

Cooling water intake and discharge flows, potable and service water use, and wastewater discharges for the representative gas-fired plant would be substantially lower than currently result from PINGP operation, due to less power derived from a steam cycle, use of a closed-cycle cooling system, and smaller operating workforce. Cooling water, wastewater, and stormwater discharges would be regulated under the CWA and corresponding state programs by NPDES permit. Potential impacts on water quality during construction would also be subject to regulatory controls.

Operation of the gas-fired alternative would generate only small quantities of municipal and industrial waste, including spent catalyst used for NO_x control, which would be disposed of in accordance with applicable regulations at a permitted offsite disposal facility.

NRC cites risk of accidents to workers and public risks (e.g., cancer, emphysema) from the inhalation of toxics and particulates associated with air emissions as potential risks to human health associated with the gas-fired generation alternative (NRC 1996a). NMC assumes that regulatory requirements imposed on facility design and operations under the authority of the Occupational Safety and Health Act, Clean Air Act, and related statutes are designed to provide an appropriate level of protection to workers and the public with respect to these risks.

The representative gas-fired plant and associated gas supply pipeline and transmission line would be located with consideration of cultural resources, and NMC expects that appropriate measures would be taken to avoid, recover or provide other mitigation for loss of any resources discovered during onsite or offsite construction.

NMC concludes that the potential adverse impacts of this alternative on water quality and use, threatened and endangered species, human health, and cultural resources would likely be SMALL.

7.3.3 COAL-FIRED GENERATION

NRC evaluated environmental impacts from coal-fired generation alternatives in the GEIS (NRC 1996a). NRC concluded that construction impacts could be substantial, due in part to the large land area required (which can result in natural habitat loss) and the large workforce needed. NRC identified major adverse impacts from operations as human health concerns associated with air emissions, waste generation, and losses of aquatic biota due to cooling water withdrawals and discharges. The coal-fired alternative that NMC has defined in Section 7.2.2.3 would be located at a greenfield site.

7.3.3.1 Land Use

Although potential impacts on land use would be location specific and therefore conjectural for a greenfield site, potentially affected areas are predominantly rural agricultural land interspersed in some areas with natural vegetation (e.g., forested tracts and wetlands) all of which are abundant in the region. NMC expects the total site would consist of approximately 170 acres (TtNUS 2007a). Land uses would also be precluded on 180 acres onsite for waste disposal (TtNUS 2007b). Offsite, an estimated 60 acres of land would be converted to transportation use (rail spur) and 90 acres would be converted to transportation (transmission ROW, but compatible land uses, including most agricultural practices, could continue. In view of the large amount of land affected and the permanent land use change from the landfill, NMC concludes that land use impacts would be clearly noticeable. Considering also the assumption that environmental review, siting and design of these facilities would ensure that land uses in affected areas would not be destabilized, NMC concludes that land use impacts.

7.3.3.2 Air Quality

A coal-fired plant would emit SO_x , NO_x , particulate matter, and carbon monoxide, all of which are regulated pollutants. Non-regulated pollutants including carbon dioxide, a greenhouse gas, and mercury, would also be emitted. As Section 7.2.1.1 indicates, NMC has assumed a plant design that would minimize air emissions through a combination of boiler technology and post-combustion pollutant removal. NMC estimates the coal-fired alternative emissions to be as follows (TtNUS 2007b):

SO_x = 1,815 tons per year

NO_x = 848 tons per year

Carbon monoxide = 1,178 tons per year

Mercury = 0.2 tons per year

Particulates:

Total suspended particulates = 152 tons per year

 PM_{10} (particulates having a diameter of less than 10 microns) = 35 tons per year

The Section 7.3.2.2 discussion of regional air quality is applicable to the coal-fired generation alternative. SO_2 emission allowances, low NO_x burners, overfire air, fabric filters, and scrubbers are regulatory-imposed mitigation measures. As such, NMC concludes that the coal-fired alternative would have MODERATE impacts on air quality; the impacts would be noticeable and greater than those of the gas-fired alternative, but would not destabilize air quality in the area.

7.3.3.3 Waste Management

NMC concurs with the GEIS assessment that the coal-fired alternative would generate substantial amounts of solid waste. The coal-fired plant would annually consume approximately 4,700,000 tons of coal with an ash content of 6.47 percent. After combustion, 30 percent of this ash, approximately 91,000 tons per year, would be marketed for beneficial reuse. The remaining ash, approximately 210,000 tons per year, would be collected and disposed of onsite. In addition, approximately 77,000 tons of scrubber sludge would be disposed of onsite each year (based on annual lime usage of nearly 65,000 tons). NMC estimates that ash and scrubber waste disposal over a 40-year plant life would require approximately 180 acres (a square area with sides of approximately 2,800 feet). While only half this waste volume and acreage would be attributable to the 20-year license renewal period alternative, the total numbers are pertinent as a cumulative impact (TtNUS 2007b).

NMC contends that, with proper siting coupled with current waste management and monitoring practices, waste disposal would not destabilize any resources. After closure of the waste site and revegetation, the land would be available for other uses. For these reasons, NMC contends that waste management for the coal-fired alternative would have MODERATE impacts; the impacts of increased waste disposal would be noticeable, but would not destabilize any important resource, and further mitigation would be unwarranted.

7.3.3.4 Ecological Resources

Development of the representative coal-fired plant at a greenfield site in southern Minnesota would likely result in the loss of 350 acres of terrestrial habitat for onsite plant facilities and air emission control waste landfill, loss of approximately 60 acres of offsite habitat for the rail line, and modification of 90 acres of offsite terrestrial habitat for a new transmission line to serve the plant. While the amount of habitat affected would be larger, the nature of impacts would be the same as described for the gas-fired alternative (Section 7.3.2). The most significant potential impacts to aquatic communities relate to operation of the cooling water system, but regulatory controls would be expected to ensure appropriate protection of aquatic communities from thermal discharges and cooling water intake structures. In addition, because the plant is assumed to use closed-cycle cooling, the cooling water intake and discharge flows would be lower than that of PINGP, the impact from which is considered to be SMALL.

For the same reasons provided with respect to the gas-fired alternative, NMC concludes that impacts on ecological resources from the representative coal-fired plant could be of SMALL to MODERATE significance for the greenfield site option.

7.3.3.5 Socioeconomics

Major sources of potential socioeconomic impacts from the representative coal-fired generation alternative include:

• temporary increases in jobs, economic activity, and demand for housing and public services in communities surrounding the site during the construction period, and

• net change in permanent jobs, tax revenues, and economic activity attributable to gasfired plant operation and termination of PINGP operations.

As indicated for the gas-fired alternative, NMC expects that socioeconomic impacts from construction to be SMALL regardless of location. Considered together with impacts of the no action "base case" (terminating operations and decommissioning PINGP), the greenfield siting alternative could result in LARGE adverse socioeconomic impacts to the City of Red Wing from loss of tax revenues 20 years earlier than would occur if the PINGP operating licenses were not renewed. NMC concludes that the overall socioeconomic impact of the representative plant at the greenfield site would be of MODERATE to LARGE significance.

7.3.3.6 Aesthetics

Potential aesthetic impacts of construction and operation of a coal-fired plant include visual impairment resulting from the presence of a industrial facility, particularly a 500-foot high exhaust stack and condensate plume from the cooling tower. However, the topography throughout most of southern Minnesota is rolling and forested tracts are common in some areas. Both of these factors act to reduce the viewshed and limit potential for impairment of visual aesthetics from onsite and offsite infrastucture. NMC assumes that adequate buffer and vegetation screens would be provided at the plant site as needed to reduce visual and noise impacts. Considering also that the location and design of the plant and associated offsite infrastructure would be decided with consideration of potential adverse aesthetic effects, NMC concludes that aesthetic impact could range from SMALL to MODERATE, depending on location.

7.3.3.7 Other Impacts

NMC expects that cooling water intake and discharge flows, potable and service water use, and wastewater discharges for the representative coal-fired plant, which has a closed-cycle cooling system would be lower than current PINGP operations, the impact from which is considered to be small. Cooling water, wastewater, and stormwater discharges would be regulated under the CWA and corresponding state programs by NPDES permit. Potential impacts on water quality during construction would also be subject to regulatory controls.

In the GEIS, NRC cites risk of accidents to workers and public risks (e.g., cancer, emphysema) from the inhalation of toxics and particulates associated with air emissions as potential risks to human health associated with the coal-fired generation alternative (NRC 1996a). NMC assumes that regulatory requirements imposed on facility design and operations under the authority of the Occupational Safety and Health Act, Clean Air Act, and related statutes are designed to provide an appropriate level of protection to workers and the public with respect to these risks.

The representative coal-fired plant and associated transmission line would be located with consideration of cultural resources, and NMC expects that appropriate measures would be taken to avoid, recover or provide other mitigation for loss of any resources discovered during onsite or offsite construction.

NMC concludes that the potential adverse impacts of this alternative on water quality and use, human health, threatened and endangered species, and cultural resources would likely be SMALL.

Characteristic	Basis
Unit size = 520 MWe ISO rating net ^a	Manufacturer's standard size gas-fired combined- cycle plant that is < PINGP net capacity - 1,044 MWe
Unit size = 542 MWe ISO rating gross ^a	Calculated based on 4 percent onsite power
Number of units = 2	Assumed
Fuel type = natural gas	Assumed
Fuel heating value = 1,008 Btu/ft ³	2004 value for gas used in Minnesota (EIA 2007)
Fuel SO _x content = 0.0034 lb/MMBtu	EPA 2000, Table 3.1-2a
NO _x control = selective catalytic reduction (SCR)	Selected for NO _x emissions control in the feasibility study (UE 2002)
Fuel NO _x content = 0.0128 lb/MMBtu	Typical for large SCR-controlled gas fired units (EPA 2000)
Fuel CO content = 0.0168 lb/MMBtu	Typical for large SCR-controlled gas fired units (EPA 2000)
Fuel PM ₁₀ content = 0.005 lb/MMBtu	EPA 2000, Table 3.1-2a
Heat rate = 6,040 Btu/kWh	(Chase and Kehoe 2000)
Capacity factor = 0.85	Assumed based on performance of modern plants

TABLE 7.2-1GAS-FIRED ALTERNATIVE

^{a.} The difference between "net" and "gross" is electricity consumed onsite.

" I he diffe	erenc	e between "net" and "gross" is electricity consumed onsite.
Btu	=	British thermal unit
CO	=	carbon monoxide
ft ³	=	cubic foot
ISO rating	=	International Standards Organization rating at standard atmospheric conditions of 59°F,
		60 percent relative humidity, and 14.696 pounds of atmospheric pressure per square inch
kWh	=	kilowatt hour
Lb	=	pound
MM	=	million
MWe	=	megawatt electric
NOx	=	nitrogen oxides
PM ₁₀	=	particulates having diameter of 10 microns or less
SCR	=	selective catalytic reduction
Sox	=	sulfur oxides
≤	=	less than or equal to

TABLE 7.2-2COAL-FIRED ALTERNATIVE

Calculated to be ≤ PINGP net capacity – 1,044 MWe Calculated based on 6 percent onsite power Assumed Minimizes nitrogen oxides emissions (EPA 1998a Typical for coal used in Minnesota 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
Assumed Minimizes nitrogen oxides emissions (EPA 1998a Typical for coal used in Minnesota 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
Minimizes nitrogen oxides emissions (EPA 1998a Typical for coal used in Minnesota 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
Typical for coal used in Minnesota 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a) 		
 2004 value for coal used in Minnesota (EIA 2007) 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a) 		
 2001 value for coal used in Minnesota (EIA 2007) 2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a) 		
2002 value for coal used in Minnesota (EIA 2007) Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
Typical for pulverized coal, tangentially fired, dry-bottom, NSPS (EPA 1998a)		
Typical for pulverized coal, tangentially fired, dry		
Typical for pulverized coal, tangentially fired, dry- bottom, NSPS (EPA 1998a)		
Typical for coal-fired, single-cycle steam turbines (EIA 2002)		
Typical for large coal-fired units		
Best available and widely demonstrated for minimizing NO _x emissions (EPA 1998a)		
Best available for minimizing particulate emission (EPA 1998a)		
Best available for minimizing SO _x emissions (EPA 1998a)		
consumed onsite. sota is not available. ating at standard atmospheric conditions of 59°F, 96 pounds of atmospheric pressure per square inch		

Ib = pound MWe = megawatt NO_x = nitrogen oxides

 SO_x = oxides of sulfur

 \leq = less than or equal to

7.4 REFERENCES

<u>Note to reader</u>: This list of references identifies web pages and associated URLs where reference data was obtained. Some of these web pages may no longer be available or their URL addresses may have changed. NMC has maintained hard copies of the information and data obtained from the referenced web pages.

- AWEA (American Wind Energy Association). 2006. "Wind Energy Fast Facts." Available at http://www.awea.org/newsroom/FastFacts2006.pdf. Accessed October 11, 2006.
- Chase, D. L and Kehoe, P. T. 2000. *GE Combined-Cycle Product Line and Performance*. GER-3574G. GE Power Systems, Schenectady, NY. October.
- CSFCC (California Stationary Fuel Cell Collaborative). 2002. "White Paper Summary of Interviews with Stationary Fuel Cell Manufacturers." Available at http://stationaryfuelcells.org/Index.htm. Accessed December 23, 2003.
- DOE (U.S. Department of Energy). 1999. *Clean Coal Technology Evaluation Guide Final Report*. December.
- DOE (U.S. Department of Energy). 2004. "PV FAQs How much land will PV need to supply our electricity?". DOE/GO-102004-1835. Office of Energy Efficiency and Renewable Energy Washington, DC. February. Available at http://www.nrel.gov/docs/fy04osti/35097.pdf. Accessed October 11, 2006.
- EIA (Energy Information Administration). 2002. *Electric Power Annual 2000, Volume II*. DOE/EIA-0348(00)/2. November. Available at http://www.eia.doe.gov/cneaf/ electricity/epav2/epav2.pdf. Accessed August 12, 2007.
- EIA (Energy Information Administration). 2004a. *Annual Energy Outlook 2004 With Projections to 2025.* DOE/EIA-0383(2004). January 2004. Available at http://www.eia.doe.gov/oiaf/aeo/index.html.
- EIA (Energy Information Administration). 2004b. *Supplemental Tables to the Annual Energy Outlook 2004*. Available at http://www.eia.doe.gov/oiaf/aeo/supplement/index.html.
- EIA (Energy Information Administration). 2005. *Electric Power Industry Restructuring Fact Sheet.* July 27. Available at http://www.eia.doe.gov/cneaf/electricity/page/fact_sheets/ restructuing.html. Accessed October 12, 2006.
- EIA (Energy Information Administration). 2006. *Monthly Nuclear Generation by State and Reactor, 2006.* Available at http://www.eia.doe.gov/cneaf/nuclear/page/nuc_generation/usreactors2006.xls. Accessed August 11, 2007.

- EIA (Energy Information Administration). 2007. *State Electricity Profiles 2005. DOE/EIA-0348(01)/2*. March. Available at http://www.eia.doe.gov/cneaf/electricity/st_profiles/sep2005.pdf. Accessed August 13, 2007.
- EPA (U.S. Environmental Protection Agency). 1998a. Air Pollutant Emission Factors. Vol. 1, Stationary Point Sources and Area Sources. Section 1.1, "Bituminous and Subbituminous Coal Combustion." AP-42. September. Available at http://www.epa.gov/ttn/chief/ap42/index.html. Accessed September 30, 2006.
- EPA (U.S. Environmental Protection Agency). 1998b. Finding of Significant Contribution and Rulemaking for Certain States in the Ozone Transport Assessment Group Region for Purposes of Reducing Regional Transport of Ozone. Federal Register. Vol. 63, No. 207. October 27.
- EPA (U.S. Environmental Protection Agency). 2000. *Air Pollutant Emission Factors. Vol. 1, Stationary Point Sources and Area Sources*. Section 3.1, "Stationary Gas Turbines." AP-42. April. Available at http://www.epa.gov/ttn/chief/ap42/index.html. Accessed October 12, 2006.
- EPA (U.S. Environmental Protection Agency). 2006. "Clean Air Interstate Rule." Available at http://www.epa.gov/cair/index.html. Accessed October 25, 2006.
- FERC (Federal Energy Regulatory Commission). 2002. Remedying Undue Discrimination through Open Access Transmission Service and Standard Electricity Market Design. Docket No. RM01-12-000. Notice of Proposed Rulemaking. July 31, 2002.
- Francfort, James E. 1996. U.S. Hydropower Resource Assessment for Minnesota. DOE/ID-10430(MN). Available at http://hydropower.inel.gov/resourceassessment//pdfs/states/mn.pdf. Accessed October 11, 2006.
- Fuel Cell Today. 2003. "Fuel Cells Market Survey: Large Stationary Applications." Available at http://www.fuelcelltoday.com. Accessed on October 11, 2006.
- Fuel Cell Today. 2005. "Fuel Cells Market Survey: Large Stationary Applications." Available at http://www.fuelcelltoday.com. Accessed on October 11, 2006.
- Kenergy Corporation. 2000. "Fuel Cell Technology Its Role in the 21st Century." Commercial & Industrial News 4th Quarter 2000. Available at http://www.kenergycorp.com/ci/cinews/ qtr4ci2000/technology.htm. Accessed on June 19, 2002.
- MAPP (Mid-Continent Area Power Pool). 2007. "About MAPP." Available at http://www.mapp.org/content/about_mapp.shtml. Accessed on August 15, 2007.

- McGowan, J. G. and S. Connors. 2000. *Windpower: A Turn of the Century Review. Annual Review of Energy and the Environment, Volume 25*, pages 147-197.
- MDC (Minnesota Department of Commerce). 2004. Energy Policy and Conservation Report. Available at http://www.state.mn.us/mn/externalDocs/Commerce/Quadrennial_Report_2004_ 071404102049 2004-QuadReport.pdf. Accessed October 11, 2006.
- MDC (Minnesota Department of Commerce). 2006. "Energy Utilities." Available at http://www.state.mn.us/portal/mn/jsp/content.do?subchannel=-536881736&programid= 536886614&sc3=null&sc2=-536881993&id=-536881351&agency=Commerce. Accessed October 11, 2006.
- MDC (Minnesota Department of Commerce). 2007. "The Next Generation Renewable Energy Objective, Minnesota's Smart Renewable Standard" Available at http://www.state.mn.us/mn/externalDocs/Commerce/The_Next_Generation_Renewa ble_Energy_Objective_2007_012207111157_REO%20Report2007.pdf. Accessed November 28, 2007.
- MEQB (Minnesota Environmental Quality Board). 2004. *Environmental Assessment Calpine Mankato Energy Center Power Generating Plant*. EQB Docket Number 04-76-PPS-Calpine Mankato Energy Center. July.
- MISO (Midwest Independent Transmission System Operator, Inc.). 2006. "Our Members." Available at http://www.miswestiso.org/. Accessed October 12, 2006.
- NMC (Nuclear Management Company, LLC). 2005. *Monthly Operating Report February 2005, Minnesota*. March 11.
- NRC (U.S. Nuclear Regulatory Commission). 1988. *Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities ,* NUREG-0586. Office of Nuclear Regulatory Research. Washington, D.C., August.
- NRC (U.S. Nuclear Regulatory Commission). 1996a. *Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS), Volumes 1 and 2,* NUREG-1437. Washington, D.C., May.
- NRC (U.S. Nuclear Regulatory Commission). 1996b. "Supplementary Information to Final Rule." *Federal Register*. *Vol. 61, No. 244*. December 18.
- NRC (U.S. Nuclear Regulatory Commission). 2002a. Final Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities; Supplement 1; Regarding the Decommissioning of Nuclear Power Reactors. NUREG-0586 Supplement 1. Washington, DC. November.
- NRC (U.S. Nuclear Regulatory Commission). 2002b. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding McGuire Nuclear

Station, Units 1 and 2. NUREG-1437, Supplement 8, Final. Office of Nuclear Reactor Regulation. Washington, DC. December.

- NREL (National Renewable Energy Laboratory). 2006. "Solar Maps." Available at http://www.nrel.gov/gis/solar.html. Accessed October 11, 2006.
- Office of the Governor. 2007. "Pawlenty signs Next Generation Energy Act." Press Release on May 25, 2007. Available at http://www.governor.state.mn.us/mediacenter/pressreleases/PROD008146.html. Accessed on August 12, 2007.
- TtNUS. 2007a. Calculation Package for Employment and Land Requirements for Alternatives included in ER Chapter 7 Alternatives to the Proposed Action. Prepared by Jeffrey Zimmerly, Tetra Tech NUS. December 3, 2007.
- TtNUS. 2007b. Calculation Package for Air Emissions and Solid Waste from Coal- and Gas-Fired Alternatives included in ER Chapter 7 Alternatives to the Proposed Action. Prepared by Jeffrey Zimmerly, Tetra Tech NUS. December 3, 2007.
- UE (Utility Engineering). 2002. *Feasibility Study for Conversion of Prairie Island to Natural Gas Fired Generation*. November 20.
- VSCC (Virginia State Corporation Commission). 2006. 2006 Performance Review of Electric Power Markets. August 27, 2006. Available online at http://www.scc.state.va.us/caseinfo/reports/2006_rose_1.pdf. Accessed on August 12, 2007.
- Walsh M. E., R. L. Perlack, A. Turhollow, D. de la Torre Ugarte, D. A. Becker,
 R. L. Graham, S. E. Slinsky, and D. E. Ray. 2000. "Biomass Feedstock Availability in the United States: 1999 State Level Analysis." Oak Ridge National Laboratory. Oak Ridge, TN. April 30, 1999. Updated January, 2000. Available at http://bioenergy.ornl.gov/resourcedata/index.html. Accessed October 11, 2006.

Xcel Energy. 2004a. 2004 Environmental Report.

Xcel Energy. 2004b. 2004 Resource Plan. November. Available at http://www.xcelenergy.com/XLWEB/CDA/0,3080,1-1-1_1875_12180_17838-16204-5_538_969-0,00.html. Accessed October 11, 2006.

Xcel Energy. 2006a. United States Securities and Exchange Commission Form 10-K. Available at http://www.sec.gov/Archives/edgar/data/72903/000110465906012011/a06-1891_110k.htm. Accessed October 12, 2006.

Xcel Energy. 2006b. Xcel Energy Service Area Map. Available at http://www.xcelenergy.com/XLWEB/CDA/0,3080,1-1-1_18554_19083-179-5_538_969-0,00.html. Accessed September 28, 2006. Xcel Energy. 2006c. *Power Generating Facilities - Minnesota*. November. Available at http://www.xcelenergy.com/XLWEB/CDA/0,3080,1-1-1_1875_4797_4014-3490-5_538_969-0,00.html. Accessed October 12, 2006.

8.0 COMPARISON OF ENVIRONMENTAL IMPACTS OF LICENSE RENEWAL WITH THE ALTERNATIVES

NRC

"To the extent practicable, the environmental impacts of the proposal and the alternatives should be presented in comparative form..." 10 CFR 51.45(b)(3) as adopted by 51.53(c)(2)

Nuclear Management Company, LLC (NMC) presents its evaluations of the environmental impacts associated with Prairie Island Nuclear Generating Plant (PINGP) operating license renewal (the proposed action) and those associated with selected alternatives in Chapter 4 and Chapter 7 of this ER, respectively. In this chapter, NMC provides a comparative summary of these impacts. The environmental impacts comparison addresses Category 2 issues associated with the proposed action and additional issues the U.S Nuclear Regulatory Commission (NRC) identifies in the Generic Environmental Impact Statement for License Renewal of Nuclear Plants (GEIS) (NRC 1996, Section 8.1) as major considerations in an alternatives analysis. Inclusion of these additional issues therefore established a basis for comparison of relevant impacts among alternatives. NMC provides a comparative summary of its conclusions regarding these issues in Table 8-1, and a more detailed comparison in Table 8-2.

As indicated in Tables 8-1 and 8-2, environmental impacts of the proposed action (PINGP license renewal) are expected to be SMALL for all impact categories. In contrast, NMC expects that socioeconomic impacts would be LARGE for the no-action alternative (NRC decision not to renew the PINGP operating license), considered with or without development of replacement generation facilities. Expected adverse environmental impacts include the potential loss of substantial tax revenues by the City of Red Wing, and Goodhue County from termination of PINGP operations 20 years sooner than if its license is renewed. Notable adverse impacts in the areas of land use, air quality, ecological resources, waste management, socioeconomics, and aesthetics may result from replacement of PINGP generating capacity with an alternative generating source, depending on the alternative selected.

In summary, NMC's analysis indicates that renewal of the PINGP operating licenses is preferred from an environmental standpoint. With respect to NRC's decision-making standard at 10 CFR 51.95(c)(4), the analysis supports a conclusion that the option of renewing PINGP operating license should be preserved.

			No Action Alternatives			
Impact	Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
Land Use	SMALL	SMALL	MODERATE	SMALL to MODERATE	SMALL to MODERATE	
Water Quality	SMALL	SMALL	SMALL	SMALL	SMALL	
Air Quality	SMALL	SMALL	MODERATE	MODERATE	MODERATE	
Ecological Resources	SMALL	SMALL	SMALL to MODERATE	SMALL to MODERATE	SMALL to MODERATE	
Threatened or Endangered Species	SMALL	SMALL	SMALL	SMALL	SMALL	
Human Health	SMALL	SMALL	SMALL	SMALL	SMALL	
Socioeconomics	SMALL	LARGE	MODERATE to LARGE	MODERATE to LARGE	MODERATE to LARGE	
Waste Management	SMALL	SMALL	MODERATE	SMALL	SMALL to MODERATE	
Aesthetics	SMALL	SMALL	SMALL to MODERATE	SMALL to MODERATE	SMALL to MODERATE	
Cultural Resources	SMALL	SMALL	SMALL	SMALL	SMALL	

TABLE 8-1 IMPACTS COMPARISON SUMMARY

SMALL - Environmental effects are not detectable or are so minor that they will neither destabilize nor noticeably alter any important attribute of the resource. MODERATE - Environmental effects are sufficient to alter noticeably, but not to destabilize, any important attribute of the resource. LARGE - Environmental effects are clearly noticeable and are sufficient to destabilize important attributes of the resource. 10 CFR 51, Subpart A, Appendix B, Table B-1, Footnote 3.

		No-Action Alternatives					
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power			
		Alternative Descriptions					
PINGP license renewal for 20 years beyond the current expiration dates of 2013 and 2014 for Units 1 and 2, respectively.	Terminate operations and decommission PINGP following license expiration in 2013 and 2014 for Units 1 and 2, respectively. Adopting by reference NRC impacts of associated activities provided in the GEIS Chapter 7.	New construction at a greenfield site.	New construction at a greenfield site.	Would involve construction of new generation capacit in Minnesota or other states.			
		New rail spur (60 acres)	Construction of a new gas pipeline and transmission line disturbing as much as 110 acres. May require upgrades to existing pipelines.				
		New switchyard and transmission lines	New switchyard and transmission lines	Construct approximately 10 miles of transmission lines.			
		Two 520 MW (net) tangentially-fired, dry bottom unit; capacity factor 0.85	Two 520 MW (net) (Combined-cycle turbines to be used); capacity factor 0.85				
		New cooling water intake/ discharge system	New cooling water intake/ discharge system				
		Pulverized bituminous coal, 8,914 Btu/pound; 10,200 Btu/kWh; 6.47% ash; 0.44% sulfur; 7.2 lb/ton nitrogen oxides; 4.7 million tons coal/yr	Natural gas, 1,008 Btu/ft ³ ; 6,040 Btu/kWh; 0.0034 lb sulfur/MMBtu; 0.0128 lb NO _x /MMBtu; 48.3 million ft ³ gas/yr				

TABLE 8-2 IMPACTS COMPARISON DETAIL

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

			No Action Alternative	
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power
		Low NO _x burners, overfire air and selective catalytic reduction (95% NO _x reduction efficiency)	Selective catalytic reduction with steam/water injection	
		Wet scrubber – lime/limestone desulfurization system (95% SO _x removal efficiency); 64,675 tons lime/yr		
		Fabric filters (99.9% particulate removal efficiency)		
582 permanent and 103 long-term contract workers		1,700 construction workers and 120 permanent workers (Section 7.2.2.3)	629 construction workers and 35 permanent workers(Section 7.2.2.2)	
		Land Use Impacts		
SMALL – Adopting by reference Category 1 issue findings (Appendix A, Table A-1, Issues 52, 53). Offsite land use impacts as a result of license renewal and refurbishment would be minimal as a result of established land use patterns (Section 4.14, Issues 68 and 69).	SMALL – Not an impact evaluated by GEIS (NRC 1996)	MODERATE – 350 acres required for the powerblock and waste disposal. 150 acres required for transmission line and rail spur (Section 7.3.3.1).	SMALL to MODERATE – 41 acres for facility; 110 acres for pipeline and transmission line (Section 7.3.2.1). New gas pipeline would be built to connect with existing gas pipeline corridor.	SMALL to MODERATE – transmission facilities could be constructed to avoid highly incompatible land uses (Section 7.3.1)

		No Action Alternative			
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
		Water Quality Impacts			
SMALL – Adopting by reference Category 1 Issue findings (Appendix A, Table A-1, Issues 1-3, 6-12, 14-16, and 31). Two Category 2 groundwater issues not applicable (Section 4.2, Issues 35 and 39). Under normal conditions PINGP withdrawals do not affect surface water and groundwater quality or conflict with water use (Section 4.2, Issues 13, 33, and 34)	SMALL – Adopting by reference Category 1 issue finding (Appendix A, Table A-1, Issue 89).	SMALL – Construction impacts minimized by use of best management practices. (Section 7.3.3.7)	SMALL – Reduced cooling water demands, inherent in combined-cycle design (Section 7.3.2.7)	SMALL– Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3	
		Air Quality Impacts			
SMALL – Adopting by reference Category 1 issue finding (Appendix A, Table A-1, Issue 51). Air quality impacts as a result of refurbishment would be temporary and localized (Section 4.8, Issue 50).SMALL – Adopting by reference Category 1 issue findings (Appendix A, Table A-1, Issue 88)		MODERATE – 1,815 tons SO _x /yr 848 tons NO _x /yr 1,178 tons CO/yr 152 tons TSP/yr 35 tons PM ₁₀ /yr 0.2 tons Hg/yr (Section 7.3.3.2)	MODERATE – 83 tons SO _x /yr 312 tons NO _x /yr 409 tons CO/yr 122 tons PM_{10}/yr^a (Section 7.3.2.2)	MODERATE – Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)	

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

			No Action Alternative	
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power
		Ecological Resource Impacts		
SMALL – Adopting by reference Category 1 issue findings (Appendix A, Table A-1, Issues 15-24, 28- 30, 43, 45-48). Entrainment, impingement, and heat shock impacts are SMALL (Section 4.3, Issue 25; Section 4.4, Issue 26; Section 4.5, Issue 27); Refurbishment activities would occur in locations devoid of ecological resources (Section 4.6, Issue 40).	SMALL – Adopting by reference Category 1 issue finding (Appendix A, Table - 1, Issue 90)	SMALL to MODERATE – 500 acres could be required for plant facilities and ash/sludge disposal over 20- year license renewal term. (Section 7.3.3.4).	SMALL to MODERATE – Construction of new facilities could alter 41 acres and new pipeline and transmission line ROW could impact 110 acres (Section 7.3.2.4).	SMALL to MODERATE – Impacts would be similar to the impacts of baseload alternatives (Sections 7.2.2 and 7.2.3)

			No Action Alternative	
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power
	Threate	ened or Endangered Species	Impacts	
SMALL – Three state- or federally-listed threatened or endangered species are known to occur in the vicinity of the PINGP site or along the transmission corridors. A pair of Peregrine falcons has nested in a nest box on the Unit 1 containment dome since 1997. Higgins' eye pearlymussels have been cultured and recently re- introduced into lower Pool 4 and upper Pool 3. Biologists conducting fish population studies in Sturgeon Lake over the last several decades have occasionally collected individual paddlefish (Section 4.7, Issue 49).	MODERATE – Removal of the containment buildings would eliminate one of only 25 successful nesting sites that currently exist in the state. Adverse impacts would be SMALL with mitigation (Section 7.1.1).	SMALL – Federal and state laws prohibit destroying or adversely affecting protected species and their habitats.	SMALL – Federal and state laws prohibit destroying or adversely affecting protected species and their habitats.	SMALL – Federal and state laws prohibit destroying o adversely affecting protected species and their habitats.

		No Action Alternative				
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power		
		Human Health Impacts				
SMALL – Adopting by reference Category 1 issues (Appendix A, Table A-1, Issues 54-56, 58, 61, 62). Risk due to microbiological organisms minimal because the system undergoes periodic treatments to control (Section 4.9, Issue 57) Risk due to transmission- line induced currents minimal due to conformance with consensus code (Section 4.10, Issue 59).	SMALL – Adopting by reference Category 1 issue finding (Appendix A, Table A-1, Issue 86)	SMALL – Adopting by reference GEIS conclusion that risks such as cancer and emphysema from emissions are likely (NRC 1996)	SMALL – Adopting by reference GEIS conclusion that some risk of cancer and emphysema exists from emissions (NRC 1996)	SMALL– Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)		

			No Action Alternative		
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power	
		Socioeconomic Impacts			
 SMALL – Adopting by reference Category 1 issue findings (Appendix A, Table A-1, Issues 64, 67, 91). Existing temporary and permanent housing available minimizes potential for housing impacts. (Section 4.11, Issue 63). Capacity of public water supply and transportation infrastructure minimizes potential for related impacts (Section 4.12, Issue 65 and Section 4.15, Issue 70). The refurbishment workforce would not relocate families due to the short duration of the refurbishment (Section 4.13, Issue 66). License renewal and refurbishment not expected to influence area land-use pattern, but would continue beneficial impact on county (Section 4.14, Issues 68, 69). 	LARGE – Large impacts from the loss of tax revenue for the City of Red Wing (Section 7.1.1).	MODERATE to LARGE– Proximity to large population centers would result in SMALL impacts at the location of the representative plant. LARGE impacts from the reduction in tax revenue for the City of Red Wing (Section 7.3.3.5).	MODERATE to LARGE– Proximity to large population centers would result in SMALL impacts at the location of the representative plant. LARGE impacts from the reduction in tax revenue for the City of Red Wing (Section 7.3.2.5).	MODERATE to LARGE – Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)	

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

			No Action Alternative	
Proposed Action (License Renewal)	Base (Decommissioning)	With Coal-Fired Generation	With Gas-Fired Generation	With Purchased Power
		Waste Management Impacts		
MALL – Adopting by eference Category 1 issue ndings (Appendix A, able A-1, Issues 77-85)	SMALL – Adopting by reference Category 1 issue finding (Appendix A, Table A-1, Issue 87)	MODERATE – 210,000 tons of coal ash per year and 77,000 tons of scrubber sludge per year would require 90 acres over 20- year license renewal term. Industrial waste generated annually (Section 7.3.3.3).	SMALL – Almost no waste generation (Section 7.3.2.3)	SMALL to MODERATE – Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)
		Aesthetic Impacts		
MALL – Adopting by eference Category 1 issue ndings (Table A-1, sues 72-74)	SMALL – Not an impact evaluated by GEIS (NRC 1996)	SMALL to MODERATE – The coal-fired power blocks and the exhaust stacks would be visible from a moderate offsite distance (Section 7.3.3.6).	SMALL to MODERATE – Steam turbines and stacks would create visual impacts (Section 7.3.2.6).	SMALL to MODERATE – Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)
		Cultural Resource Impacts		
MALL – No known impacts archeological or cultural esources on PINGP site or ansmission line corridors Section 4.16, Issue 71).	SMALL – Not an impact evaluated by GEIS (NRC 1996)	SMALL – Impacts to cultural resources would be avoided (Section 7.3.2.7).	SMALL – Impacts to cultural resources would be avoided (Section 7.3.3.7).	SMALL – Impacts would be similar to the impacts of baseload alternatives (Sections 7.3.2 and 7.3.3)
ODERATE Environmental effects B-1, Footnote 3. ARGE - Environmental effects ar tu = British thermal unit a = cubic foot al = EIS = Generic Environment	ts are sufficient to alter noticeably,	but not to destabilize, any important ent to destabilize important attributes $MW = mtion NO_x $	egawatt rogen oxide rrticulates having diameter less than ate Historic Preservation Officer ides of sulfur	51, Subpart A, Appendix B, Table
N-h = kilowatt-hour = pound M = million	sie DM	TSP = to	ides of sulfur tal suspended ar	particulates

8.1 **REFERENCES**

NRC (U.S. Nuclear Regulatory Commission). 1996. *Generic Environmental Impact Statement for License Renewal of Nuclear Plants* (GEIS), Volumes 1 and 2, NUREG-1437. Washington, D.C. May.

9.0 STATUS OF COMPLIANCE

9.1 PROPOSED ACTION

NRC

"The environmental report shall list all federal permits, licenses, approvals and other entitlements which must be obtained in connection with the proposed action and shall describe the status of compliance with these requirements. The environmental report shall also include a discussion of the status of compliance with applicable environmental quality standards and requirements including, but not limited to, applicable zoning and land-use regulations, and thermal and other water pollution limitations or requirements which have been imposed by Federal, State, regional, and local agencies having responsibility for environmental protection." 10 CFR 51.45(d), as adopted by 10 CFR 51.53(c)(2)

9.1.1 GENERAL

Table 9.1-1 lists environmental authorizations that Northern States Power (NSP) has obtained for current Prairie Island Nuclear Generating Plant (PINGP) operations. In this context Nuclear Management Company, LLC (NMC) defines "authorizations" to include any permits, licenses, approvals, or other entitlements. NMC expects NSP to continue renewing these authorizations during the current license period and through the U.S. Nuclear Regulatory Commission (NRC) license renewal period, and complying with the Red Wing Zoning Ordinance for General Industrial Use. Because the NRC regulatory focus is prospective, Table 9.1-1 does not include authorizations that NMC obtained for past activities that did not include continuing obligations such as building and construction permits.

Before preparing the application for license renewal, NMC conducted an assessment to identify any new and significant environmental information (Chapter 5). The assessment included interviews with NMC, NSP, and Xcel Energy experts, review of PINGP environmental documentation, and communication with state and federal environmental protection agencies. Based on this assessment, NMC concludes that PINGP is in compliance with applicable environmental standards and requirements.

Table 9.1-2 lists additional environmental authorizations and consultations related to NRC renewal of the PINGP license to operate. As indicated, NMC anticipates needing relatively few such authorizations and consultations. Sections 9.1.2 through 9.1.5 discuss some of these items in more detail.

9.1.2 THREATENED OR ENDANGERED SPECIES

Section 7 of the Endangered Species Act (16 USC 1531 et seq.) requires federal agencies to ensure that agency action is not likely to jeopardize any species that is listed, or proposed for listing as endangered, or threatened. Depending on the action involved, the Act requires consultation with the U.S. Fish and Wildlife Service (FWS) regarding effects on non-marine species, the National Marine Fisheries Service (NMFS)

for marine species, or both. The FWS and NMFS have issued joint procedural regulations at 50 CFR 402, Subpart B, that address consultation, and FWS maintains the joint list of threatened and endangered species at 50 CFR 17.

As discussed in Section 4.7 of this Environmental Report (ER), NMC does not expect the continued operation of PINGP to affect the population of any state or federally listed threatened or endangered species or natural communities in the vicinity of the PINGP site. Although not required of an applicant by federal law or NRC regulation, NMC has chosen to invite comment from federal and state agencies regarding potential effects that PINGP license renewal might have on threatened or endangered species. Attachment C includes copies of NMC correspondence with FWS and the Minnesota Department of Natural Resources, Ecological Resources Division, Natural Heritage and Nongame Research Program.

9.1.3 HISTORIC PRESERVATION

Section 106 of the National Historic Preservation Act (16 USC 470 et seq.) requires federal agencies having the authority to license any undertaking to, prior to issuing the license, take into account the effect of the undertaking on historic properties and to afford the Advisory Council on Historic Preservation an opportunity to comment on the undertaking. Council regulations provide for the State Historic Preservation Officer (SHPO) to have a consulting role (35 CFR 800.2). Although not required of an applicant by federal law or NRC regulation, NMC has chosen to invite comment by the Minnesota SHPO. Attachment D contains a copy of NMC's letter to the Minnesota SHPO.

9.1.4 WATER QUALITY (401) CERTIFICATION

Federal Clean Water Act Section 401 requires an applicant for a federal license to conduct an activity that might result in a discharge into navigable waters to provide the licensing agency a certification from the state that the discharge will comply with applicable Clean Water Act requirements (33 USC 1341). NRC has indicated in its Generic Environmental Impact Statement for License Renewal (NRC 1996, Section 4.2.1.1) that issuance of a National Pollutant Discharge Elimination System (NPDES) permit implies certification by the state. NMC is applying to NRC for license renewal to continue PINGP operations. Consistent with the GEIS, NMC is providing PINGP's NPDES permit as evidence of state water quality (401) certification (Attachment B).

9.1.5 STATE OF MINNESOTA ENVIRONMENTAL REVIEW PROGRAM

The Minnesota Public Utility Commission (MPUC) requires a Certificate of Need (CON) application to allow additional dry cask storage at the Independent Spent Fuel Storage Installation (ISFSI) on the PINGP site. Minnesota Statute Chapter 216B.243 Subdivision 3b(b) requires that the CON address the impacts of continued operation during the period covered by the renewed license. Minnesota Statute Chapter 116C.83 Subdivision 6(b) requires that an environmental impact statement (EIS) be prepared by the Minnesota Environmental Quality Board (MEQB) pursuant to the requirements of Chapter 116D for the construction and operation of an ISFSI. This EIS will be prepared

by the MEQB and submitted to the MPUC for consideration in the MPUC's CON determination.

9.2 ALTERNATIVES

NRC

"The discussion of alternatives in the report shall include a discussion of whether the alternatives will comply with such applicable environmental quality standards and requirements." 10 CFR 51.45(d), as required by 10 CFR 51.53(c)(2)

The coal, gas, and purchased power alternatives discussed in Section 7.2.2 could be constructed and operated to comply with applicable environmental quality standards and requirements. NMC notes that increasingly stringent air quality protection requirements could make the construction of a large fossil-fueled power plant infeasible in many locations. NMC also notes that the U.S. Environmental Protection Agency has revised requirements for design and operation of cooling water intake structures at new and existing facilities (40 CFR 125 Subparts I and J). These requirements could necessitate construction of cooling towers for the coal- and gas-fired alternatives if surface water were used for once-through condenser cooling.

TABLE 9.1-1 ENVIRONMENTAL AUTHORIZATIONS FOR CURRENT PINGP OPERATIONS

Agency	Authority	Requirement	Number	Expiration Date	Activity Covered
		Federal and S	State Requirement	ts	
Minnesota Department of Health	Minnesota Rules 4740.2010 through 4741.2120	Certification	027-049-218	12/23/2009	Certification of the Environmental Laboratory
Minnesota Department of Natural Resources	10 U.S.C. 2668	Amended Permit (amended as needed)	80-5082	NA	Construction of intake canal system.
Minnesota Department of Natural Resources	10 U.S.C. 2668	Amended Permit (amended as needed)	80-5081	NA	Construction of discharge canal system.
Minnesota Department of Natural Resources	MN Rules Chapters 97A & 6212.1400	Division of Fish and Wildlife Special Permit	14658	12/31/2008	Collect fish and ichthyo - plankton for biological evaluation.
Minnesota Department of Natural Resources	MN Rules 6216.1400 and 6212.1500	Division of Fish and Wildlife Special Permit	14567	12/31/2008	Collect native fish for aquaria
Minnesota Department of Natural Resources	MN Rules 6216.0100 to 6216.0600 to	Permit	159	12/31/2009	Collect and possess zebra mussels from Lakes Zumbro and Pepin for control studies at plant

TABLE 9.1-1 ENVIRONMENTAL AUTHORIZATIONS FOR CURRENT PINGP OPERATIONS (CONTINUED)

Agency	Authority	Requirement	Number	Expiration Date	Activity Covered
		Federal and	State Requirements		
Minnesota Department of Natural Resources	MN Rules 103 G.271	Surface Water Appropriation Permit	690172	N/A	Appropriation of river water from Mississippi River for cooling at 630,000 gpm or 235 MGY
Minnesota Department of Natural Resources	MN Rules 103 G.271	Groundwater Appropriation Permit	690171	N/A	Wells 256120 (Installation #121) & 256121 (Installation #122), Appropriate groundwater for Plant operations
Minnesota Department of Natural Resources	MN Rules 103 G.271	Groundwater Appropriation Permit	785153	N/A	Well 611076, Appropriate groundwater for motor cooling and lubrication of pump seals for cooling towers
Minnesota Department of Natural Resources	MN Rules 103G.271	Groundwater Appropriation Permit	865114	N/A	Well 402599, Appropriate groundwater for pump bearing lubrication at PINGP
Minnesota Department of Natural Resources	MN Rules 103 G.271	Groundwater Appropriation Permit	965042	N/A	Well 256074, Appropriate groundwater for Training Center domestic use and lawn irrigation
MN Department of Transportation	Minnesota Statutes, section 221.0355	Registration	UPR-211635-MN	10/27/2008	Hazardous materials shipments

TABLE 9.1-1 ENVIRONMENTAL AUTHORIZATIONS FOR CURRENT PINGP OPERATIONS (CONTINUED)

Agency	Authority	Requirement	Number	Expiration Date	Activity Covered
		Federal and	State Requirements		
Minnesota Pollution Control Agency, Industrial Division	Clean Water Act (33 USC 1251 et seq.), MN Statutes Chapts. 115, 116, and Rules Chapts. 7001, 7050, and 7060, National Pollutant Discharge Elimination System	Permit	MN0004006	08/31/2010	Industrial wastewater discharges to Mississippi River
Minnesota Pollution Control Agency	Clean Air Act (42 USC 7401 et seq), MN Statutes Chapts. 115 and 116, MN Rules Chapt. 7007	Permit	00000001-003	12/17/2004 (renewal application submitted)	Operation of air emission system for an electric utility power generation system
Minnesota Pollution Control Agency	Clean Air Act (42 USC 7401 et seq), MN Regulations Chapters 7007.1150 to 7007.1500	Permit	04900030-003	01/3/2012	Operation of oil-fired boiler and diesel-fired engines for emergency power, pump cooling water, fire fighting system
Minnesota Pollution Control Agency	Clean Water Act (33 USC 1251 et seq.), MN Rules 7100.0030.	Permit	MPCA 51557	No expiration	Above ground storage tank registration
Minnesota Pollution Control Agency	MN Rules Chapter 7045, Statute 116.07	License	MND049537780	06/30/2008	Hazardous Waste Generator License, Small Quantity

TABLE 9.1-1 ENVIRONMENTAL AUTHORIZATIONS FOR CURRENT PINGP OPERATIONS (CONTINUED)

Agency	Authority	Requirement	Number	Expiration Date	Activity Covered
		Federal and S	State Requirements		
South Carolina Department of Health and Environmental Control – Division of Waste Management	South Carolina Radioactive Waste Transportation and Disposal Act (Act No. 429)	Permit	0051-22-08-X	12/31/2008	Transportation of radioactive waste into the State of South Carolina
State of Tennessee Department of Environment and Conservation Division of Radiological Health	Tennessee Department of Environment and Conservation Rule 1200-2-10.32	Permit	T-MN003-L08	12/31/2008	Transportation of radioactive waste into the State of Tennessee
State of Utah Department of Environmental Quality Division or Radiation Control	Utah Radiation Control Rules R313-26	Permit	0402 002 748	02/23/2008 (renewal application submitted)	Transportation of radioactive into the State of Utah
Wisconsin Department of Natural Resources	WI State Statutes 29.614, 169.25, 19.31, 169.34, and 169.35	Scientific Collectors Permit	SCP-WCR- 20-C-08	12/31/2008	Collect fish and ichthyoplankton for radiological and biological monitoring.
U.S. Army Corps of Engineers	Section 10 of River and harbor Act of 1899 (33 U.S.C. 403)	General Permit	GP/LOP-98-MN	02/18/2008	Maintenance dredging and erosion control discharge canal
U.S. Army Corps of Engineers	10 U.S.C. 2668	License	DACW37-3-06- 0071	9/30/2011	Air quality monitoring station at Lock and Dam Number 3.

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

TABLE 9.1-1 ENVIRONMENTAL AUTHORIZATIONS FOR CURRENT PINGP OPERATIONS (CONTINUED)

Agency	Authority	Requirement	Number	Expiration Date	Activity Covered		
Federal and State Requirements							
U.S. Army Corps of Engineers	Section 10 of River and harbor Act of 1899 (33 U.S.C. 403)	Dredging Permit	GP-01-MN	05/15/.2006	Maintenance dredging in front of the River Intake Structure		
U.S. Department of Transportation	49 USC 5108, 49CFR Part 107, Subpart G	Registration	062706 552 0090	6/30/2008	Hazardous materials shipments		
U.S. Fish and Wildlife Service	16 USC 703-712, Regulation 50 CFR Part 13, 50 CFR 21.27	Special Purpose Federal Fish and Wildlife Permit	MB074020-0	3/31/2009	Retrieve, transport, and temporarily possess carcasses of migratory birds. Collect, stabilize, and transport sick/ injured migratory birds.		
U.S. Nuclear Regulatory Commission	Atomic Energy Act (42 USC 2011, et seq.), 10 CFR 50.10	License to operate nuclear plant	DPR-42 DPR-60	08/09/2013 10/29/2014	Operation of PINGP Unit 1 Operation of PINGP Unit 2		

TABLE 9.1-2 ENVIRONMENTAL AUTHORIZATIONS FOR PINGP LICENSE RENEWAL^a

Requirement	Agency	Authority	Remarks
License renewal	U.S. Nuclear Regulatory Commission	Atomic Energy Act (42 USC 2011 et seq.)	Environmental Report submitted in support of license renewal application
Consultation	U.S. Fish and Wildlife Service (FWS)	Endangered Species Act Section 7 (16 USC 1536)	Requires federal agency issuing a license to consult with the FWS (Attachment C)
Certification	Minnesota Pollution Control Agency, Industrial Division	Clean Water Act Section 401 (33 USC 1341)	State issuance of NPDES permit (Attachment B) constitutes 401 certification (Section 9.1.4)
Consultation	Minnesota Historical Society	National Historic Preservation Act Section 106 (16 USC 470f)	Requires federal agency issuing a license to consider cultural impacts and consult with SHPO. (Attachment D)

9.3 **REFERENCES**

NRC (U.S. Nuclear Regulatory Commission). 1996. *Generic Environmental Impact Statement for License Renewal of Nuclear Plants. Volume 1.* NUREG-1437. Washington, DC. May.

ATTACHMENT A

NRC NEPA ISSUES FOR LICENSE RENEWAL

OF NUCLEAR POWER PLANTS

NMC has prepared this environmental report in accordance with the requirements of U.S. Nuclear Regulatory Commission (NRC) regulation 10 CFR 51.53. NRC included in the regulation a list of National Environmental Policy Act (NEPA) issues for license renewal of nuclear power plants. Table A-1 lists these 92 issues and identifies the section in which NMC addressed each applicable issue in this environmental report. For organization and clarity, NMC has assigned a number to each issue and uses the issue numbers throughout the environmental report.

	Issue	Category	Section of this Environmental Report	GEIS Cross Reference ^b (Section/Page)
	Surface Water Qu	ality, Hydrolo	gy, and Use (for a	ll plants)
1.	Impacts of refurbishment on surface water quality	1	4.1	3.4.1/3-4
2.	Impacts of refurbishment on surface water use	1	4.1	3.4.1/3-4
3.	Altered current patterns at intake and discharge structures	1	4.1	4.2.1.2.1/4-5
4.	Altered salinity gradients	1	NA	Issue applies to a plant feature, discharge to saltwater, that PINGP does not have.
5.	Altered thermal stratification of lakes	1	NA	Issue applies to a plant feature, discharge to a lake, that PINGP does not have.
6.	Temperature effects on sediment transport capacity	1	4.1	4.2.1.2.3/4-8
7.	Scouring caused by discharged cooling water	1	4.1	4.2.1.2.3/4-6
8.	Eutrophication	1	4.1	4.2.1.2.3/4-9
9.	Discharge of chlorine or other biocides	1	4.1	4.2.1.2.4/4-10
10.	Discharge of sanitary wastes and minor chemical spills	1	4.1	4.2.1.2.4/4-10
11.	Discharge of other metals in waste water	1	4.1	4.2.1.2.4/4-10
12.	Water use conflicts (plants with once-through cooling systems)	1	4.1	4.2.1.3/4-13
13.	Water use conflicts (plants with cooling ponds or cooling towers using make-up water from a small river with low flow)	2	4.2.1	4.2.1.3/4-13
14.	Refurbishment impacts to aquatic resources	1	4.1	3.5/3-5
15.	Accumulation of contaminants in sediments or biota	1	4.1	4.2.1.2.4/4-10
16.	Entrainment of phytoplankton and zooplankton	1	4.1	4.2.2.1.1/4-15

	Issue	Category	Section of this Environmental Report	GEIS Cross Reference ^b (Section/Page)
	Aqua	tic Ecology (for all plants)	
17.	Cold shock	1	4.1	4.2.2.1.5/4-18
18.	Thermal plume barrier to migrating fish	1	4.1	4.2.2.1.6/4-19
19.	Distribution of aquatic organisms	1	4.1	4.2.2.1.6/4-19
20.	Premature emergence of aquatic insects	1	4.1	4.2.2.1.7/4-20
21.	Gas supersaturation (gas bubble disease)	1	4.1	4.2.2.1.8/4-21
22.	Low dissolved oxygen in the discharge	1	4.1	4.2.2.1.9/4-23
23.	Losses from predation, parasitism, and disease among organisms exposed to sublethal stresses	1	4.1	4.2.2.1.10/4-24
24.	Stimulation of nuisance organisms (e.g., shipworms)	1	4.1	4.2.2.1.11/4-25
	Aquatic Ecology (for plants with on	ce-through a	and cooling pond h	eat dissipation systems)
25.	Entrainment of fish and shellfish in early life stages for plants with once-through and cooling pond heat dissipation systems	2	4.3	4.2.2.1.2/4-16
26.	Impingement of fish and shellfish for plants with once-through and cooling pond heat dissipation systems	2	4.4	4.2.2.1.3/4-16
27.	Heat shock for plants with once- through and cooling pond heat dissipation systems	2	4.5	4.2.2.1.4/4-17
	Aquatic Ecology (for plants w	ith cooling-to	ower-based heat di	ssipation systems)
28.	Entrainment of fish and shellfish in early life stages for plants with cooling-tower-based heat dissipation systems	1	4.1	4.3.3/4-33
29.	Impingement of fish and shellfish for plants with cooling-tower-based heat dissipation systems	1	4.1	4.3.3/4-33

	Issue	Category	Section of this Environmental Report	GEIS Cross Reference ^b (Section/Page)
30.	Heat shock for plants with cooling- tower-based heat dissipation systems	1	4.1	4.3.3/4-33
	Grou	nd-water Us	e and Quality	
31.	Impacts of refurbishment on groundwater use and quality	1	4.1	3.4.2/3-5
32.	Groundwater use conflicts (potable and service water; plants that use < 100 gpm)	1	NA	Issue applies to a plant feature, groundwater use less than 100 gpm, that PINGP does not have.
33.	Groundwater use conflicts (potable, service water, and dewatering; plants that use > 100 gpm)	2	4.2.3	4.8.1.1
34.	Groundwater use conflicts (plants using cooling towers withdrawing make-up water from a small river)	2	4.2.2	4.8.1.3/4-117
35.	Groundwater use conflicts (Ranney wells)	2	NA	Issue applies to a feature, Ranney wells, that PINGP does not have.
36.	Groundwater quality degradation (Ranney wells)	1	NA	Issue applies to a feature, Ranney wells, that PINGP does not have.
37.	Groundwater quality degradation (saltwater intrusion)	1	NA	Issue applies to a feature, location in a coastal area, that PINGP does not have.
38.	Groundwater quality degradation (cooling ponds in salt marshes)	1	NA	Issue applies to a feature, cooling ponds, that PINGP does not have.
39.	Groundwater quality degradation (cooling ponds at inland sites)	2	NA	Issue applies to a feature, cooling ponds at inland sites, that PINGP does not have.
-	1	Ferrestrial Re	esources	
40.	Refurbishment impacts to terrestrial resources	2	4.6	3.6/3-6
41.	Cooling tower impacts on crops and ornamental vegetation	1	4.1	4.3.4/4-34
42.	Cooling tower impacts on native plants	1	4.1	4.3.5.1./4-42

		Section of this Environmental	GEIS Cross Reference ^b
lssue	Category	Report	(Section/Page)
43. Bird collisions with cooling towers	1	4.1	4.3.5.2/4-45
44. Cooling pond impacts on terrestrial resources	1	NA	Issue applies to a feature, cooling ponds, that PINGP does not have.
 Power line right-of-way management (cutting and herbicide application) 	1	4.1	4.5.6.1/4-71
46. Bird collisions with power lines	1	4.1	4.5.6.2/4-74
 Impacts of electromagnetic fields on flora and fauna (plants, agricultural crops, honeybees, wildlife, livestock) 	1	4.1	4.5.6.3/4-77
48. Floodplains and wetlands on power line right-of-way	1	4.1	4.5.7/4-81
Threatened or	Endangered	Species (for all pla	ants)
49. Threatened or endangered species	2	4.7	4.1/4-1
	Air Qua	lity	
50. Air quality during refurbishment (non-attainment and maintenance areas)	2	4.8	3.3/3-2
51. Air quality effects of transmission lines	1	4.1	4.5.2/4-62
	Land U	lse	
52. Onsite land use	1	4.1	3.2/3-1
53. Power line right-of-way land use impacts	1	4.1	4.5.3/4-62
	Human H	lealth	
54. Radiation exposures to the public during refurbishment	1	4.1	3.8.1/3-27
55. Occupational radiation exposures during refurbishment	1	4.1	3.8.2/3-27
56. Microbiological organisms (occupational health)	1	4.1	4.3.6/4-48

			Section of this	
	Issue	Category	Environmental Report	GEIS Cross Reference ^b (Section/Page)
57.	Microbiological organisms (public health) (plants using lakes or canals, or cooling towers or cooling ponds that discharge to a small river)	2	4.9	4.3.6/4-48
58.	Noise	1	4.1	4.3.7/4-49
59.	Electromagnetic fields, acute effects (electric shock)	2	4.10	4.5.4.1/4-66
60.	Electromagnetic fields, chronic effects	NA	4.1	NA – Not applicable. The categorization and impact finding definitions do not apply to this issue.
61.	Radiation exposures to public (license renewal term)	1	4.1	4.6.2/4-87
62.	Occupational radiation exposures (license renewal term)	1	4.1	4.6.3/4-95
		Socioecon	omics	
63.	Housing impacts	2	4.11	3.7.2/3-10 (refurbishment) 4.7.1/4-101 (renewal term)
64.	Public services: public safety, social services, and tourism and recreation	1	4.1	Refurbishment 3.7.4/3-14 (public services) 3.7.4.3/3-18 (safety) 3.7.4.4/3-19 (social) 3.7.4.6/3-20 (tour, rec) Renewal Term 4.7.3/4-104 (public services) 4.7.3.3/4-106 (safety) 4.7.3.4/4-107 (social) 4.7.3.6/4-107 (tour, rec)
65.	Public services: public utilities	2	4.12	3.7.4.5/3-19 (refurbishment) 4.7.3.5/4-107 (renewal term)
66.	Public services: education (refurbishment)	2	4.13	3.7.4.1/3-15
67.	Public services: education (license renewal term)	1	4.1	4.7.3.1/4-106
68.	Offsite land use (refurbishment)	2	4.14	3.7.5/3-20
69.	Offsite land use (license renewal term)	2	4.14	4.7.4/4-107

70. Public services: transportation 2 4.15 3.7.4.2/3-17 (refurbishment) 71. Historic and archaeological resources 2 4.16 3.7.7/3-23 (refurbishment) 72. Aesthetic impacts (refurbishment) 1 4.1 3.7.8/3-24 73. Aesthetic impacts (license renewal term) 1 4.1 3.7.8/3-24 74. Aesthetic impacts (license renewal term) 1 4.1 4.7.6/4-111 74. Aesthetic impacts of transmission lines (license renewal term) 1 4.1 4.5.8/4-83 Postulated Accidents 75. Design basis accidents 1 4.1 5.3.2/5-11 (design basis) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 5.3.3.4/5-65 (groundwater) 76. Severe accidents 2 4.17 5.3.3/5-19 (pair dose) 5.3.3.4/5-65 (groundwater) 77. Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 6.2/6-8 78. Offsite radiological impacts (collective effects) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent <	Issue	Category	Section of this Environmental Report	GEIS Cross Reference ^b (Section/Page)
resources 4.7.7/4-114 (renewal term) 72. Aesthetic impacts (refurbishment) 1 4.1 3.7.8/3-24 73. Aesthetic impacts (license renewal 1 4.1 4.7.6/4-111 term) 1 4.1 4.7.6/4-111 74. Aesthetic impacts of transmission 1 4.1 4.5.8/4-83 lines (license renewal term) Postulated Accidents 1 4.1 5.3.2/5-11 (design basis) 75. Design basis accidents 1 4.1 5.3.3/5-12 (probablististic analysis) 5.3.3.2/5-19 (air dose) 76. Severe accidents 2 4.17 5.3.3/5-96 (economic) 5.3.3.3/5-96 (economic) 5.3.3.5/5-96 (economic) 5.3.3.5/5-96 (economic) 5.4/5-106 (mitigation) 5.5.2/5-114 (summary) Uranium Fuel Cycle and Waste Management 77. Offsite radiological impacts 1 4.1 6.2/6-8 (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 Not in GEIS. 78. Offsite radiological impacts (spent 1 4.1 Not in GEIS. 6.2.2.6/6-20 (land use) 80. Nonradiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (water use)	70. Public services: transportation	2	4.15	3.7.4.2/3-17 (refurbishment) 4.7.3.2/4-106 (renewal term)
73. Aesthetic impacts (license renewal 1 4.1 4.7.6/4-111 74. Aesthetic impacts of transmission lines (license renewal term) 1 4.1 4.5.8/4-83 Postulated Accidents 75. Design basis accidents 1 4.1 5.3.2/5-11 (design basis) 5.5.1/5-114 (summary) 76. Severe accidents 2 4.17 5.3.3/5-19 (air dose) 5.3.3/5-49 (water) 5.3.3.4/5-65 (groundwater) 5.5.2/5-114 (summary) Uranium Fuel Cycle and Waste Management 77. Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 6.2/6-8 78. Offsite radiological impacts (collective effects) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent fuel and high-level waste disposal) 1 4.1 Not in GEIS. 80. Nonradiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (land use) 6.2.2.8/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-27 (chemical) 6.4.3/6-37 (low-level volume 6.4.4/6-48 (renewal effects)	71. Historic and archaeological resources	2	4.16	
term) 74. Aesthetic impacts of transmission 1 4.1 4.5.8/4-83 Postulated Accidents 75. Design basis accidents 1 4.1 5.3.2/5-11 (design basis) 5.5.1/5-114 (summary) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 5.3.3/5-49 (water) 5.3.3.4/5-65 (groundwater) 5.3.3.4/5-65 (groundwater) 5.3.3.4/5-65 (groundwater) 5.3.3.4/5-66 (groundwater) 5.3.3.4/5-66 (groundwater) 5.3.3.4/5-66 (groundwater) 5.3.3.4/5-65 (groundwater) 5.3.3.4/5-63 (groundwater) 5.2.2.5/6-20 (and use) 6.2.2.3/6-20 (and use) 6.2.2.3/6-20 (groundwater) 6.2.2.3/6-21 (groundwater) 6.2.2.3/6-21 (groundwater) 6.2.2.3/6-21 (groundwater) 5.2.2.5/6-20 (groundwater) 5.3.3.4/5-63 (groundwat	72. Aesthetic impacts (refurbishment)	1	4.1	3.7.8/3-24
Inters (license renewal term) Postulated Accidents 75. Design basis accidents 1 4.1 5.3.2/5-11 (design basis) 5.5.1/5-114 (summary) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 5.3.3.2/5-19 (air dose) 5.3.3.3/5-49 (water) 76. Severe accidents 2 4.17 5.3.3/5-19 (air dose) 5.3.3.3/5-49 (water) 5.3.3.3/5-49 (water) 5.3.3.3/5-49 (water) 5.3.3.3/5-49 (water) 5.3.3.5/5-96 (economic) 5.4/5-106 (mitigation) 5.5.2/5-114 (summary) Uranium Fuel Cycle and Waste Management 77. Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high- level waste) 78. Offsite radiological impacts (spent 1 4.1 Not in GEIS. 79. Offsite radiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (land use) 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical) 81. Low-level waste storage and disposal 1 4.1 6.4.2/6-36 (iow-level definition) 6.4.3/6-37 (low-level volume 6.4.4/6-48 (renewal effects)	73. Aesthetic impacts (license renewal term)	1	4.1	4.7.6/4-111
75. Design basis accidents 1 4.1 5.3.2/5-11 (design basis) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 5.3.3.2/5-19 (air dose) 5.3.3.2/5-19 (air dose) 5.3.3.3/5-49 (water) 5.3.3.4/5-65 (groundwater) 5.3.3.4/5-65 (groundwater) 5.3.3.5/5-96 (economic) 5.4/5-106 (mitigation) 5.5.2/5-114 (summary) 5.4/5-106 (mitigation) 77. Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 6.2/6-8 78. Offsite radiological impacts (collective effects) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent 1 4.1 Not in GEIS. 6.2.2.7/6-20 (land use) 80. Nonradiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (land use) 81. Low-level waste storage and disposal 1 4.1 6.4.2/6-36 (low-level definition) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects) 6.4.4/6-48 (renewal effects)	 Aesthetic impacts of transmission lines (license renewal term) 	1	4.1	4.5.8/4-83
76. Severe accidents 2 4.17 5.5.1/5-114 (summary) 76. Severe accidents 2 4.17 5.3.3/5-12 (probablististic analysis) 5.3.3/5-19 (air dose) 5.3.3/5-49 (water) 5.3.3/5-66 (groundwater) 5.3.3/5-66 (groundwater) 5.3.3/5-66 (economic) 5.4/5-106 (mitigation) 5.5.1/5-114 (summary) 5.5.2/5-114 (summary) Uranium Fuel Cycle and Waste Management 77. Offsite radiological impacts 1 4.1 6.2/6-8 (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 Not in GEIS. 78. Offsite radiological impacts (collective effects) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent 1 4.1 Not in GEIS. 16.1 and high-level waste disposal) 1 4.1 6.2.2.6/6-20 (land use) 80. Nonradiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (water use) 6.2.2.9/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 81. Low-level waste storage and disposal 1 4.1 6.4.2/6-36 (low-level definition) 6.4.3/6-37 (low-level volume) 6.4.3/6-37 (low-level volume) 6.4.3/6-37 (low-		Postulated A	ccidents	
analysis) 5.3.3.2/5-19 (air dose) 5.3.3.2/5-10 (mitigation) 5.2/5-114 (summary) 5.4/5-106 (mitigation) 5.4/5-106 (mitigation) 5.4/5-106 (mitigation) 5.2/5-114 (summary) 70. Offsite radiological impacts (spent 1 4.1 Not in GEIS. (collective effects) 79. Offsite radiological impacts (spent 1 4.1 0.1 0.2.2.6/6-20 (land use) (ac.2.2.7/6-20 (water use)<	75. Design basis accidents	1	4.1	
77. Offsite radiological impacts (individual effects from other than the disposal of spent fuel and high-level waste) 1 4.1 6.2/6-8 78. Offsite radiological impacts (collective effects) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent fuel and high-level waste) 1 4.1 Not in GEIS. 79. Offsite radiological impacts (spent fuel and high-level waste disposal) 1 4.1 Not in GEIS. 80. Nonradiological impacts of the uranium fuel cycle 1 4.1 6.2.2.6/6-20 (land use) 6.2.2.8/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.2.2.9/6-21 (chemical) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	76. Severe accidents	2	4.17	analysis) 5.3.3.2/5-19 (air dose) 5.3.3.3/5-49 (water) 5.3.3.4/5-65 (groundwater) 5.3.3.5/5-96 (economic) 5.4/5-106 (mitigation)
(individual effects from other than the disposal of spent fuel and high- level waste)78. Offsite radiological impacts (collective effects)14.1Not in GEIS.79. Offsite radiological impacts (spent fuel and high-level waste disposal)14.1Not in GEIS.80. Nonradiological impacts of the uranium fuel cycle14.16.2.2.6/6-20 (land use) 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical)81. Low-level waste storage and disposal14.16.4.2/6-36 (low-level definition) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	Uranium Fu	el Cycle and	Waste Manageme	nt
(collective effects)79. Offsite radiological impacts (spent fuel and high-level waste disposal)14.1Not in GEIS.80. Nonradiological impacts of the uranium fuel cycle14.16.2.2.6/6-20 (land use) 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical)81. Low-level waste storage and disposal14.16.4.2/6-36 (low-level definition) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	the disposal of spent fuel and high-	1	4.1	6.2/6-8
fuel and high-level waste disposal) 80. Nonradiological impacts of the 1 4.1 6.2.2.6/6-20 (land use) uranium fuel cycle 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical) 81. Low-level waste storage and 1 4.1 6.4.2/6-36 (low-level disposal 6.4.3/6-37 (low-level volume) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	 Offsite radiological impacts (collective effects) 	1	4.1	Not in GEIS.
uranium fuel cycle 6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel) 6.2.2.9/6-21 (chemical) 81. Low-level waste storage and 1 4.1 6.4.2/6-36 (low-level disposal 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	 Offsite radiological impacts (spent fuel and high-level waste disposal) 	1	4.1	Not in GEIS.
disposal definition) 6.4.3/6-37 (low-level volume) 6.4.4/6-48 (renewal effects)	80. Nonradiological impacts of the uranium fuel cycle	1	4.1	6.2.2.7/6-20 (water use) 6.2.2.8/6-21 (fossil fuel)
82. Mixed waste storage and disposal 1 4.1 6.4.5/6-63	 Low-level waste storage and disposal 	1	4.1	
	82. Mixed waste storage and disposal	1	4.1	6.4.5/6-63

Issue	Category	Section of this Environmental Report	GEIS Cross Reference ^b (Section/Page)
83. Onsite spent fuel	1	4.1	6.4.6/6-70
84. Nonradiological waste	1	4.1	6.5/6-86
85. Transportation	1	4.1	6.3/6-31, as revised by Addendum 1, August 1999
	Decommiss	sioning	
86. Radiation doses (decommissioning)	1	4.1	7.3.1/7-15
87. Waste management (decommissioning)	1	4.1	7.3.2/7-19 (impacts) 7.4/7-25 (conclusions)
88. Air quality (decommissioning)	1	4.1	7.3.3/7-21 (air) 7.4/7-25 (conclusion)
89. Water quality (decommissioning)	1	4.1	7.3.4/7-21 (water) 7.4/7-25 (conclusion)
90. Ecological resources (decommissioning)	1	4.1	7.3.5/7-21 (ecological) 7.4/7-25 (conclusion)
91. Socioeconomic impacts (decommissioning)	1	4.1	7.3.7/7-24 (socioeconomic 7.4/7-25 (conclusion)
	Environmenta	al Justice	
92. Environmental justice	NA	2.5.3	NA – Not applicable. The categorization and impact finding definitions do not apply to this issue.

NEPA = National Environmental Policy Act.

ATTACHMENT B

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM STATE DISPOSAL PERMIT

Minnesota Pollution Control Agency

CERTIFIED MAIL NO: 7004 2510 0000 2117 5535 RETURN RECEIPT REQUESTED

Mr. Patrick Flowers Manager, Water Quality Solid Waste Northern States Power d/b/a Xcel Energy 414 Nicollet Mall Minneapolis, MN 55401-1993

RE: Major Modification National Pollutant Discharge Elimination System/State Disposal System Permit No. MN 0004006 Xcel Prairie Island Nuclear Generating Plant Welch, Minnesota

Dear Mr. Flowers:

Enclosed is a copy of the reissued final modified National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) permit for the Prairie Island Nuclear Generating Plant. This permit supersedes an earlier NPDES permit that was issued on September 23, ^^^ and modified on January 26, 2006. All written comments received during the public notic period were considered.

It is the responsibility of the Permittee to maintain compliance with all of the terms and conditions of this permit. Please carefully review the entire permit.

We would like to draw your attention to the following:

Limits and Monitoring Requirements:

An additional requirement to monitor and report the total calendar month flow at surface discharge station SD 001 during the months of April, May, and June has been added. The previous permit required that this value be reported only for the months July through March. The modified permit requires year round monitoring and reporting for total calendar month flow at SD 001.

Dredged Material Management Requirements:

The modified permit includes requirements related to the storage, treatment, disposal and/or reuse of dredged material generated at Prairie Island Nuclear Generating Plant. The modified permit does not authorize or regulate the dredging activity itself. Prior to conducting dredging

520 Lafayette Rd. N.; Saint Paul, MN 55155-4194; (651) 296-6300 (Voice); (651) 282-5332 (TTY); www.pca.state.mn.us St. Paul • Brainerd • Detroit Lakes • Duluth • Mankato • Marshall • Rochester • Willmar Equal Opportunity Employer • Printed on recycled paper containing at least 20 percent fibers from paper recycled by consumers. Mr. Patrick Flowers Page 2

activities in the bed of public waters the Xcel Energy is required to contact the Minnesota Department of Natural Resources, the U.S. Army Corps of Engineers, the appropriate Soil and water Conservation District, county and/or local unit of government.

If you have any questions regarding any of the terms and conditions of the permit, please contact Katrina Kessler of our staff at 651-296-7376.

Sincerely

Jeff Stollenwerk Supervisor Land and Water Quality Permits Section Industrial Division

KK:lmg

Enclosures: Final Permit

cc: Jim Bodensteiner, Xcel Energy, Minneapolis (w/enclosures) Brent Kuhl, Xcel Energy, Minneapolis (w/enclosures) Jeanne Tobias, Xcel Energy, Prairie Island Plant (w/enclosures) George Azevedo, Environmental Protection Agency, Chicago (w/enclosure)

	Page 1 Permit MN0004006
s s	
Minnes	sota Pollution Control Agency
	Industrial Division
	ischarge Elimination System (NPDES) and Il System (SDS) Permit MN0004006
PERMITTEE: Northern States Power Con	npany d/b/a Xcel Energy
FACILITY NAME: Prairie Island Nuclear	Generating Plant
RECEIVING WATERS: Mississippi River	
CITY/TOWNSHIP: Welch	COUNTY: Goodhue
MODIFICATION DATE: 6/30/2006	EXPIRATION DATE: August 31, 2010
The state of Minnesota, on behalf of its citizer authorizes the Permittee to discharge from this with the requirements of this permit.	ns through the Minnesota Pollution Control Agency (MPCA), s facility to the receiving waters named above, in accordance
The goal of this permit is to protect water qua including Minn. Stat. chs. 115 and 116, Minn.	lity according to Minnesota and U.S. statutes and rules, R. chs. 7001, 7050 and 7060, and the U.S. Clean Water Act.
This permit is effective on the modification da was issued for this facility on September 23, 2	ate identified above, and supersedes the previous permit that 2005, and modified on January 26, 2006.
This permit expires at midnight on the expirat	ion date identified above.
signature: MILL	etto
Michael (Mike) J Tibetts, Mana Land and Water Quality Permits S Industrial Division	
If you have questions on this permit, inc reporting or permit compliance status, p	cluding the specific permit requirements, permit lease contact:
Industrial Div 520 Lafayette	Road North
St. Paul, MN Telephone: (6 Fax: (651) 296-8 Telephone Device	551) 296-7376
Printed on recycled paper c	ontaining at least 10% paper recycled by consumers
· .	

.

۰.

Page 2 Permit MN00040^

Table of Contents

	Page	
Required Submittals	2	
remitted Facility Description	3-5	
Topographic Map of Permitted Facility	6	
Limits and Monitoring Requirements	7-11	
Chapter 1. Surface Discharge Stations	12-16	
Chapter 2. Surface Water Station	16-20	
Chapter 3. Waste Stream Station	20	
Chapter 4. Industrial Process Wastewater	21-22	
Chapter 5. Dredge Material Management	22-30	
Chapter 6. Steam Electric	30-33	
Chapter 7. Storm Wastewater	33-35	
Chapter 8. Chemical Additives	35-36	
Chapter 9. Total Facility Requirements	36-42	
Dredge Sampling Information	Appendix 1	

Required Submittals

,	316(b) Required Submittais*:	
	Source water physical data required by 316(b) Phase II	
	Cooling water intake structure data	October 28, 2006
	Cooling water system data	October 28, 2006
	Proposal for Information Collection	
	Comprehensive Demonstration Study	October 28, 2006
	Results of IM &E Study	
	Design Construction Technology Plant	October 28, 2006
	Technology Installation and Operation Plan	October 28, 2006
	Verification Monitoring Plan	

*The Permittee has tentatively selected Compliance Alternative (2) of 40 CFR 125.94 (a) to meet the impingement and entrainment reduction requirements. Alternative (2) requires that the Permittee demonstrate that existing design and construction technologies, operational measures, and/or restoration measures meet the impingement mortality and entrainment performance standards.

Other Submittals:

21(A) D

inad Cabasittalat

•.	Storm water pollution prevention plan180 days after permit issuance
	DMRs
	following permit issuance
	Application of permit reissuance

Page 3 Permit MN0004006

Permitted Facility Description

This facility is a two unit nuclear fueled electric-generating plant. Both units use a pressurized water reactor system design with a maximum Nuclear Regulatory Commission (NRC) licensed power level of 1650 megawatts thermal per unit, which is equivalent to a combined maximum generating capacity of approximately 1100 megawatts electric for the facility. The treatment and disposal systems at the plant consist of a chemical treatment system, a reverse osmosis system, a radioactive waste (radwaste) treatment system, an intake screening system, and cooling towers. Water is withdrawn from wells for plant process uses, and from the river for condenser/circulating water system and cooling water systems. The condenser/circulating water system provides high volume cooling water flow for the turbine-condenser steam cycle whenever a unit is operating and also allows for excess heat rejection when a nuclear unit is at thermal power with the generator off-line. The cooling water system supplies other plant equipment, such as pumps, motors, and heat exchangers and is normally operated at all times.

The plant discharges condenser/circulating water and cooling water to the Mississippi River via the condenser/circulating water system discharge canal through surface discharge SD 001. During the winter months, a portion of the warm water from the discharge canal is returned to the intake screenhouse via a de-icing line to prevent ice build-up on the bar racks and traveling screens. The plant discharges steam generator blowdown through surface discharge SD 002. Radwaste treatment system effluent is discharged through surface discharge SD 003. The reverse osmosis (RO) system effluent is discharged through surface discharge SD 004. The unit 1 and unit 2 turbine building sumps, which are comprised of noncontact cooling water, condensate traps and drains, roof and floor drains, unit 1 and 2 condensate blowdown and the heating system blowdown, are discharged through surface discharge SD 005 and SD 006. Miscellaneous plant floor drains are discharged through surface discharge SD 010. All of the above surface discharges (SD) are ultimately discharged to the river via the circulating water system discharge canal, SD 001.

The plant intake screen backwash is discharged via SD 012. The fish return system which collects impinged fish, aquatic organisms, and debris off the vertical traveling screens is also discharged via SD 012. SD 012 discharges directly to the river.

The plant has two internal waste streams, the Unit 1 and Unit 2 cooling water systems. These systems are treated routinely with bromine and/or chlorine to control biofouling organisms and, when being treated, are designated as waste streams WS 001 and WS 002. Bromine and/or chlorine residuals are limited in accordance with this permit. Since WS 001 and WS 002 are comprised of cooling water system flow(s) at the time of treatment, these internal waste streams are also discharged to the river via the circulating water system at SD 001.

Page 4 Permit MN0004006

The plant also has an on land treatment and disposal system, typically referred to as the "landlock drainage system." The land-lock drainage system is used for periodic disposal and treatment of turbine building sump discharges when the total suspended solids and oil and grease residual of the sump water is such that it exceeds applicable discharge limitations. The system consists of an approximately 500 ft long, 10 ft wide drainage trench which allows for treatment/filtration of collected water through a semi-permeable clay liner system. Reconstructed in 1998, the drainage trench does not discharge to surface waters, and accumulated water either evaporates or seeps away. Turbine building sump discharges to the land-lock drainage system are primarily composed of river water/sediment and solids.

The plant uses a number of chemical additives for various purposes within the plant systems and piping and may discharge residual concentrations of these additives via the surface discharges. The concentrations of any additives used that may contribute to a discharge have been reviewed and approved by the MPCA (reference NPDES Limits Matrix dated November 1, 2004) and are restricted accordingly. Any new chemical additive usage or increase in dosages used requires approval by the MPCA in accordance with Chapter 7 of this permit.

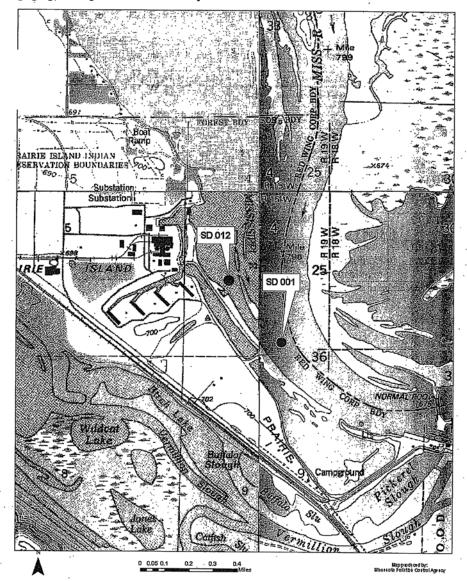
The plant is limited in the amount of heat it may discharge to the river. The thermal limitations regulating the plant cooling water discharge are described in Chapter 5 part 2 Applicable Effluent Limitations – Thermal Limitations. The plant's heat discharge or thermal load to the river is limited by mixed river temperature immediately below Lock and Dam No. 3, downstream of the plant. Cooling tower operation is sometimes required to meet the thermal limitations. To determine the ambient river water temperature, assess the plant's thermal input, and assure compliance with applicable thermal limitations, temperature monitoring is conducted at SD 001 (condenser/circulating water and cooling water discharge canal outfall), at the plant intake (SW 002), at the main river channel (SW 003-upstream river point), at a point(s) in Sturgeon Lake (SW 004-upstream river point), and immediately downstream of Lock and Dam No. 3 by three separate temperature probes (SW 001).

The plant is also regulated by the amount of river water that may be used for condenser and equipment cooling. The design of the various plant cooling systems does not allow for direct measurement or river intake flow but does allow for calculation of discharge flow SD 001 based on sluice gate positions and canal water elevation. River water withdrawal rates are controlled indirectly by imposing limitations on discharge flow at SD 001, which approximates intake flow. The discharge flows are limited from April 15 through June 30 in order to minimize the impingement of fish and fish larvae, as stated in Chapter 1, Part 5.1. The plant must operate the intake screening system throughout the year as required in Chapter 5, Parts 4.1 and 4.2 to assure impinged fish are returned to the river via the fish return system. In addition, during the period April 1 through August 31, the plant is required to operate the intake vertical traveling screens using the fine mesh screen material in order to minimize entrainment of larval fish, fish eggs, and other aquatic organisms.

Page 5 Permit MN0004006

ł

Sanitary wastewater generated at the plant is treated using the plant's septic system or trucked to Red Wing WWTP or Prairie Island Community Water Treatment Plant.


The surface discharge (SD) and internal waste stream (WS) discharges from the plant are described in the following table, with approximate flows in million gallons per day (MGD):

DISCHARGE	WASTEWATER SYSTEM	MAXIMUM FLOW	AVERAGE FLOW
SD 001	Condenser/Circulating Water	864	503
	and Cooling Water		
SD 002	Steam Generator Blowdown	0.576	0.012
SD 003	Radioactive Waste Effluent	0.230	0.002
SD 004	Reverse Osmosis Effluent	0.244	0.051 1
SD 005	Unit 1 Turbine Building Sump	0.360	0.030
SD 006	Unit 2 Turbine Building Sump	0.360	0.030
SD 010	Miscellaneous Plant Floor	0.015	0.001
· · · · ·	Drains		a di sa
SD 012	Intake Screen Backwash and	3.2	2.0
· · ·	Fish Return		· ·
WS 001	Combined Unit 1 and Unit 2	69	-25
WS 002	Cooling Water (when subject		
· · · .	to oxidation)	·	

Note: ¹ Flows are based on available data for 3 months of system operation in 2005

ATTACHMENT B

Page 6 Permit MN0004006

The location of the facility and the selected monitoring stations is shown on the map below. **Topographic Map of Permitted Facility**

.

Xcel - Prairie Island Nuclear Generatin Limits and Monitoring Requirements

Page 7 Permit #: MN0004006

The Permittee shall comply with the limits and monitoring requirements as specified below.

Parameter	Limit	Units	· Limit Type	Effective Period	Sample Type	Frequency	Notes
	Monitor		Daily Maximum	Jan-Dec	Calculation		
Chlorine Rate	Only	kg/day				1 x Day	2
Flow	Monitor Only	MG	Calendar Month Total	Jan-Dec	Measurement	1 x Day	1
Flow	Monitor Only	mgd	Daily Average	Jul-Mar	Measurement	1 x Day	1
Flow	97	mgd	Daily Average	Apr	Measurement	1 x Day	13
Flow	• 194	mgd	Daily Average Intervention	Apr	Measurement	1 x Day	12
Flow	194	mgd	Daily Average Intervention	Мау	Measurement	1 x Day	4.
Flow	259	mgd	Daily Average	Jun	Measurement	1 x Day	15
Flow	517.5	mgd	Daily Average Intervention	Jun	Measurement	1 x Day	14
Oxidants, Total Residual (Bromine), Continuous	0.001	' mg/L	Daily Maximum	Jan-Dec	Calculation	1 x Day	
Oxidants, Total Residual (Bromine), Intermittent	0.05	mg/L	Instantaneous Maximum	Jan-Dec	Grab	1 x Day	
Oxidants, Total Residual (Chlorine), Continuous	0.04	mg/L	Daily Maximum	Jan-Dec	, Calculation	1 x Day	-
Oxidants, Total Residual (Chlorine), Intermittent	0.2	mg/L	Instantaneous Maximum	Jan-Dec	Grab	1 x Day	
pH	9.0	SU	Calendar Month Maximum	Jan-Dec	Grab	1 x Week	17
pH	6.0	SU .	Calendar Month Minimum	Jan-Dec	Grab	1 x Week	17
Plant Capacity Factor, Percent of Capacity	Monitor Only	%	Calendar Month Average	Jan-Dec	Measurement	1 x Day	
Temperature, Water	Monitor Only	Deg F	Single Value	Jan-Dec	Measurement, Continuous	1 x Day	7

SD 001: Condenser Circ Water & Cooling Water Sys (Applicable only during discharge)

SD 002: Steam Generator Blowdown Discharge

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow	Monitor- Only	MG	Calendar Month Total	Jan-Dec	Estimate	1 x Month	
Solids, Total Suspended (TSS)	65.3	kg/day	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	·30	mg/L	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	217.0	kg/day	Daily Maximum	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	100	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Quarter	

Xcel - Prairie Island Nuclear Generating Limits and Monitoring Requirements

Page 8 Permit #: MN0004006

The Permittee shall comply with the limits and monitoring requirements as specified below.

SD 003: Radwaste Treatment Effluent

.

. .

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow .	Monitor Only	MG	Calendar Month Total	Jan-Dec	Estimate	1 x Month	
Solids, Total Suspended (TSS)	26.0	kg/day	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	30 .	mg/Ļ	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	86.9	kg/day	Daily Maximum	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	100	`mg/L	Daily Maximum	Jan-Dec	Grab	1 x Quarter	

SD 004: Reverse Osmosis Effluent

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow	Monitor Only	MG	Calendar Month Total	Jan-Dec	Estimate	1 x Month	

SD 005: Unit 1 Turbine Bldg Sump Dschg

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow	Monitor . Only	MG	Calendar Month Total	Jan-Dec	Estimate	1 x Month	
Oil & Grease, Total Recoverable (Hexane Extraction)	- 10	mg/L	Calendar Month Average	Jan-Dec	Grab	1 x Month	•
Oil & Grease, Total Recoverable (Hexane Extraction)	15	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Month	
Solids, Total Suspended (TSS)	30	mg/L	Calendar Month Average	Jan-Dec	. Grab	1 x Month	16
Solids, Total Suspended (TSS)	100	mg/L	Daily Maximum	Jan-Dec	· Grab	1 x Month	16

SD 006: Unit 2 Turbine Bldg Sump Dschg

Parameter	Limit `	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow .	Monitor Only	. mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow	Monitor Only	MG	Calendar Month Total	Jan-Dec	Estimate -	1 x Month	
Oil & Grease, Total Recoverable (Hexane Extraction)	10	mg/L	Calendar Month Average	Jan-Dec	Grab	1 x Month	
Oil & Grease, Total Recoverable (Hexane Extraction)	15	mg/L ·	Daily Maximum	. Jan-Dec	Grab	1 x Month	
Solids, Total Suspended (TSS)	30	mg/L	Calendar Month Average	Jan-Dec	Grab	1 x Month	16

Xcel - Prairie Island Nuclear Generating Limits and Monitoring Requirements Page 9 Permit #: MN0004006

The Permittee shall comply with the limits and monitoring requirements as specified below.

SD 006: Unit 2 Turbine Bldg Sump Dschg

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Solids, Total Suspended (TSS)	· 100	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Month	16

SD 010: Misc Plant Floor Drains Discharge

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd ·	Calendar Quarter Average	Jan-Dec	Estimate	1 x Quarter	• .
Flow	Monitor Only	MG	Calendar Quarter Total	Jan-Dec	Estimate	1 x Quarter	
Oil & Grease, Total Recoverable (Hexane Extraction)	10	mg/L	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	
Oil & Grease, Total Recoverable (Hexane Extraction)	15	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Quarter	
Solids, Total Suspended (TSS)	30	mg/L	Calendar Quarter Average	Jan-Dec	Grab	1 x Quarter	16
Solids, Total Suspended (TSS)	100	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Quarter	16
	• •						

SD 012: Intake Screen Backwash + Fish Retn

SD 012. Intake Screen Backwash +	Lign room						
Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Estimate	1 x Month	
Flow	Monitor Only	MG	Calendar Month Total	Jan-Dec	Estimate	1 x Month	3

SW 001: Mississippi River Below Lock & Dam #3

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Temperature Difference Between Sample & Reference Point	5	Deg F	Monthly Average of Daily Maximum	Apr-Oct	Measurement, Continuous	1 x Day	9
Temperature, Water	86	Deg F	Daily Average	Jan-Dec	Measurement, Continuous	1 x Day	8
Temperature, Water	43	Deg F	Daily Average Intervention	Nov-Mar	Measurement, Continuous	1 x Day	5
Temperature, Water	43	Deg F	Daily Average Intervention	Apr-Oct	Measurement, Continuous	1 x Day	10

SW 002: Plant Intake Channel

.

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Temperature, Water	Monitor	Deg F	Single Value	Jan-Dec	Measurement,	1 x Day	8
_	Only	L			Continuous		

Xcel - Prairie Island Nuclear Generating Limits and Monitoring Requirements

Page 10 Permit #: MN0004006

The Permittee shall comply with the limits and monitoring requirements as specified below.

SW 003: Main River Channel Upstream Pt.

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type Frequency N	Notes
Temperature, Water	Monitor Only	Deg F	Single Value	Jan-Dec	Measurement, 1 x Day Continuous	8
· ,						

SW 004: Sturgeon Lake - Upstream Pt.

						•		
Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes	
perature, Water	Monitor Only	Deg F	Single Value	Jan-Dec	Measurement, Continuous	1 x Day	8.	

WS 001: Unit 1Cooling Water Discharge

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor	mgd	Calendar Month Average	Jan-Dec	Measurement,	1 x Day	6
· .	Only	1	·		Continuous	· ·	
Flow .	Monitor	MG.	Calendar Month Total	Jan-Dec	Measurement,	1 x Day	6 ·
· · · ·	Only				Continuous		
Oxidants, Total Residual	2.0	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Day	11

WS 002: Unit 2 Cooling Water Discharge

Parameter	Limit	Units	Limit Type	Effective Period	Sample Type	Frequency	Notes
Flow	Monitor Only	mgd	Calendar Month Average	Jan-Dec	Measurement, Continuous	1 x Day	Ģ
Flow .	Monitor Only	MG	Calendar Month Total	Jan-Dec	Measurement, Continuous	1 x Day	6 ·
Oxidants, Total Residual	2.0	mg/L	Daily Maximum	Jan-Dec	Grab	1 x Day	11

Notes:

Xcel - Prairie Island Nuclear Generating Limits and Monitoring Requirements

Page 11 Permit #: MN0004006

The Permittee shall comply with the limits and monitoring requirements as specified below.

4 - May exceed this flow limit if needed to keep from exceeding 85 degree F condenser inlet temperature operating limit provided that flow is 5 -- Once the temperature in the receiving water falls below 43 degrees F for five consecutive days the discharge shall not raise the temperature of the receiving water above 43 degrees for an extended period of time. If the temperature in the river is greater than 43 degrees F for two consecutive days the Permittee shall notify the MPCA. This limits applies until the ambient river temperature increases to 43 degrees F or above for 5 consecutive days or until April 1, whichever occurs first. The Permittee shall submit the daily maximum, daily average, and daily minimum temperature collected at each

2 - During intermittent treatment, the discharge of total residual oxidants shall be limited to a total of 2 hours per 24 hour period. The Permittee shall

of the three monitoring probes located on the dividing piers at Lock and Dam No. 3 with the monthly DMR.

1 -- Determined using flow curve and sluice gate position, see Chapter 9, Part 1.28.

monitor the amount and time of oxidant application and shall report it monthly.

-- See Chapter 3 for data collection and reporting.

-- See Thermal Limitations in Chapter 5.

3 - Large debris collected at the trash racks shall be disposed of so as to prevent it from entering waters of the state

 See See Applicable sections in Chapter 2 and 5 for thermal limitations and data collection requirements.
 Set applicable sections in Chapter 2 and 5 for thermal limitations and data collection requirements. based on the monthly averages of maximum daily temperatures at the three monitoring probes (reference point) located on the piers dividing Lock and Dam No. 3. This limit applies until such a point when the daily average temperature of the receiving water is less than 43 degrees F for 5 consecutive days.

10 -- Starting April 1 the discharge shall not raise the temperature of the receiving water greater than 5 degrees F above the ambient water temperature. This limit applies until such a point when the daily average temperature of the receiving water is less than 43 degrees F for 5 consecutive days. The Permittee shall submit the daily maximum, daily average, and daily minimum temperature for each of the three monitoring probes located on the dividing piers at Lock and Dam No. 3 with the monthly DMR.

11 -- The Permittee shall monitor SD 001 for total residual oxidant and be subject to the limitations as described in the Limits and Monitoring requirements for SD 001.

12 - This limit applies from April 15 -30 when the flow in the receiving water is greater than or equal to 15, 000 cfs. May exceed this flow limit if needed to keep from exceeding the 85 degree F condenser inlet temperature operating limit provided that flow is minimized and cooling towers are operating to maximum extent possible.

13 -- This limit applies from April 15 - 30 when the flow in the receiving water is less than 15, 000 cfs. May exceed this flow limit if needed to keep from exceeding the 85 degree F condenser inlet temperature operating limit provided that flow is minimized and cooling towers are operating to maximum extent possible.

14 -- This limit applies from June 16 - 30. May exceed this flow limit if needed to keep from exceeding 85 degree F condenser inlet temperature operating limit provided that flow is minimized and cooling towers are operating to the maximum extent possible. 15 -- This limits applies from June 1- 15. May exceed this flow limit if needed to keep from exceeding 85 degree F condenser inlet temperature

operating limit provided that flow is minimized and cooling towers are operating to the maximum extent possible.

16 -- Where the background level of natural origin is reasonably definable and normally is higher than the specified limits for total suspended solids (average and maximum), the natural level may be used as the limit. 17 -- pH limit is not subject to averaging and shall be met at all times

Xcel - Prairie Island Nuclear Generating

Page 12 Permit #: MN0004006

Chapter 1. Surface Discharge Stations

1. Sampling Location

1.1 Samples taken in compliance with monitoring requirements specified for surface discharge SD 001 shall be taken at a point representative of the discharge. Samples taken in compliance with monitoring requirements for outfalls 002, 003, 004, 010, and 012 shall be taken at a point representative of the discharge prior to mixing with other waste streams. Samples taken in compliance with monitoring requirements for outfalls 005 and 006 shall be taken at a point representative of the discharge prior to mixing with other waste streams. Samples taken in compliance with monitoring requirements for outfalls 005 and 006 shall be taken at a point representative of the discharge prior to mixing with other waste streams, and samples shall be taken at each outfall.

2. Surface Discharges

- 2.1 Oil or other substances shall not be discharged in amounts that create a visible color film.
- 2.2 There shall be no discharge of floating solids or visible foam, except that which occurs naturally in the river, in other than trace amounts.
- 2.3 The Permittee shall install and maintain outlet protection measures at the discharge stations to prevent erosion if necessary.

3. Discharge Monitoring Reports

3.1 The Permittee shall submit monitoring results for discharges in accordance with the limits and monitoring requirements for this station. If no discharge occurred during the reporting period, the Permittee shall check the "No Discharge" box on the Discharge Monitoring Report (DMR).

4. Requirements for Specific Stations

- 4.1 SD 001: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.2 SD 002: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.3 SD 003: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.4 SD 004: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.5 SD 005: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.6 SD 006: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 4.7 SD 010: Submit a quarterly DMR quarterly by 21 days after the end of each calendar quarter following permit issuance.
- 4.8 SD 012: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.

5. Special Requirements

Discharge Operations

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	• .	Page 13
Permit Expires: August 31, 2010			Permit #: MIN0004006
•			

Chapter 1. Surface Discharge Stations

5. Special Requirements

5.1 The plant cooling water discharge flows in million gallons per day (mgd) shall be limited as follows during the specified periods:

April 15 - 30: 194 mgd if the flow in the river is at or above 15,000 cfs 97 mgd if the flow in the river is below 15,000 cfs

May 1 - 31: 194 mgd June 1 -15: 259 mgd

June 16-30: 517.5 mgd

5.2 The plant may discharge water at SD 001 at higher flow rates during the specified period if needed to prevent condenser inlet temperatures from exceeding 85 degree F provided that such higher flows are minimized to the

condenser inlet temperatures from exceeding 85 degree F provided that such higher flows are minimized to the extent practical, and all cooling towers are opearted to the maximum practical extent.

316(b) Demonstration

Source Water Physical Data, Cooling Water Intake Structure Data, Cooling Water System Data

5.3 The Permittee shall submit the source water physical data, cooling water intake structure data, and cooling water system data in accordance with the NPDES Final Regulations to Establish Requirements for Cooling Water Intake Structures at Phase II Existing Facilities, published July 9, 2004 in the Federal Register pursuant to 316(b) of the Clean Water Act, 40CFR Parts 9, 122, 123, 124, and 125.

The data shall be submitted by October 28, 2006.

316(b) Proposal for Information Collection and Comprehensive Demonstration Study Requirements

- 5.4 The Permittee has tentatively selected Compliance Alternative (2) of 40CFR 125.94 (a) to meet the impingement and entrainment reduction requirements. Alternative (2) requires that the Permittee demonstrate that existing design and construction technologies, operational measures, and/or restoration measures meet the impingement mortality and entrainment performance standards.
- 5.5 The Permittee shall submit a Proposal for Information Collection in accordance with the NPDES Final Regulations to Establish Requirements for Cooling Water Intake Structures at Phase II Existing Facilities by October 28, 2006.
- 5.6 The Permittee shall submit a comprehensive demonstration (CDS) study in accordance with 316(b) of the Clean Water Act, 40CFR Parts 9, 122, 123, 124, and 125. The 316(b) demonstration study elements, further described below, shall be implemented to assure that the location, design, construction, and capacity of the cooling water intake structure at the plant reflect the best technology available (BTA) for minimizing adverse environmental impact.

The 316(b) CDS shall demonstrate that the implementation and/or operation of technology and operational measures will reduce cooling water intake impingement mortality of all life stages of fish and shellfish by 80 to 95 and percent and will reduce entrainement by 60 to 90 percent from the baseline calculation, based on the 316(b) performance requirements for a freshwater river.

The Permittee shall submit the CDS by October 28, 2006.

316(b) Demonstration Impingement Mortality and Entrainment (IM&E) Characterization Study (baseline development)

Page 14 Permit #: MN0004006

.

Chapter 1. Surface Discharge Stations

5. Special Requirements

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

- 5.7 The Permittee shall submit the results of an Implingement Mortality and Entrainment Characterization Study (IM&E Study). The study shall provide information to support the development of a calculation baseline for evaluating impingement mortality and entrainment consistent with the 316(b) rule. The Permittee may update the study upon request to, and approval by, the MPCA.
 - All field sampling shall be conducted under present normal plant operating conditions, screen rotation, and plant flows. Documentation shall be maintained of plant operations during sampling. All species impinged shall be identified, with weight and length measurements taken to the extent feasible. Data from historical studies may be included in the calculation of baseline impingement and entrainment if deemed relevant and appropriate.

8 The IM&E Study shall include the following in accordance with the 316(b) requirements:

a. Taxonomic identifications of all life stages of fish, shellfish, and any species protected under Federal, State, or Tribal Law (including threatened or endangered species) that are in the vicinity of the cooling water intake structure and are susceptible of impingement and entrainment.

b. A characterization of all life stages of fish, shellfish, and any species protected under Federal, State, and Tribal Law (including threatened or endangered species) identified pursuant to paragraph a. above, including a description of the abundance and temporal and spatial characteristics in the vicinity of the cooling water intake structure(s), based on sufficient data to characterize annual, seasonal, and diel variations in impingement mortality and entrainment (e.g. related to climate and weather differences, spawning, feeding, and water column migration). These may include historical data that are representative of the current operation and biological conditions at the site.

c. Documentation of the current impingement mortality of all life stages of fish, shellfish, and any species protected under Federal, State, or Tribal Law (including threatened or endangered species) identified pursuant to paragraph a. above and an estimate of impingement mortality and entrainment to be used as a baseline.

5.9 The Permittee shall submit the results of the IM&E study, by October 28, 2006. The submittal shall describe the calculated baseline for impingement mortality and entrainment and verify the calculated baseline based on the total acquired impingement and entrainment data.

316(b) Demonstration

Design and Construction Technology Plan

- 5.10 The Permittee shall submit a Design and Construction Technology Plan (DCT Plan) to the MPCA for review and approval. The DCT Plan shall describe the technologies and/or operational measures in place and/or selected to meet the impingement and entrainment performance requirements in the 316(b) Rule, 125.94.
- 5.11 The DCT Plan shall include the following information in accordance with 316(b) Rule requirements:

a. A narrative description of the design and operation of all design and construction technologies and/or operational measures (existing and proposed), including fish handling and return systems, that are in place or will be used to meet the requirements to reduce impingement mortality and entrainment of those species expected to be most susceptible, and information that demonstrates the efficacy of the technologies and/or operational measures for those species. A complete narative description is contained in the NPDES permit application.

b. Calculations of the reduction in impingement mortality and entrainment of all life stages of fish and shellfish that would be achieved by the technologies and/or operational measures selected, based on the IM&E study. The total reduction in mortality must be assessed against the calculation baseline.

c. Design and engineering drawings, and calculation results and descriptions, prepared by a qualified professional to support the descriptions required by paragraph a. above.

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	Page 15	
Permit Expires: August 31, 2010		Permit #: MIN0004006	

Chapter 1. Surface Discharge Stations

5. Special Requirements

5.12 The DCT Plan shall be submitted to the MPCA for review and approval by October 28, 2006.

316(b) Demonstration

Technology Installation and Operation Plan

5.13 A Technology Installation and Operation Plan (TIO Plan) shall be submitted for MPCA review and approval. The TIO Plan shall includes the following in accordance with 316(b) Rule requirements:

a. A schedule for the maintenance of any new design and construction technologies. The technology installation shall be reasonably scheduled to ensure that impacts to energy reliability and supply are minimized.

b. List of operational and other parameters to be monitored, and the locations and frequency for monitoring.

c. List of activities to be undertaken to ensure to the degree practicable the efficacy of installed design and construction technologies and operational measures, and the schedule for implementation.

d. A schedule and methodology for assessing the efficacy of any installed design and construction technologies and operational measures in meeting applicable performance standards or site specific requirements, including an adaptive management plan for revising design and construction technologies, operational measures, operation and maintenance requirements, and/or monitoring requirements if the assessment indicates that applicable performance standards (impingement mortality and entrianment reductions) are not being met.

5.14 The TIO Plan shall be submitted to the MPCA for review and approval by October 28; 2006. The Permittee shall meet the terms of the TIO Plan in accordance with MPCA approval of the TIO Plan, including any revisions to the adaptive management plan component of the TIO Plan that may be necessary should applicable performance standards (impingement mortality and entrainment reductions) not be met.

316(b) Demonstration

Verification Monitoring Plan

5.15 The Permittee shall submit a Verification Monitoring Plan (VM Plan) to the MPCA for review and approval. The VM Plan shall describe the monitoring to be conducted over a period of 2 years designed to verify that the full-scale performance of the proposed or already implemented technologies and/or operational measures are successful in meeting the performance standards (applicable impingement mortality and entrainment reductions). The VM Plan shall provide the following:

a. Description of the frequency and duration of monitoring, the parameters to be monitored, and the basis for determining the parameters and the frequency and duration of monitoring. The parameters selected and duration and frequency of monitoring shall be consistent with any methodology for assessing success in meeting applicable performance standards in the TIO Plan. The method for assessment of success shall be specified including the averaging period for determining the percent reduction in impingement mortality.

b. A proposal on how naturally moribound fish and shellfish that enter the cooling water intake structure would be identified and taken into account in assessing success in meeting the performance standard.

c. A description of the information to be included in a subsequent biennial status report to the MPCA.

5.16 The VM Plan shall be submitted to the MPCA by October 28, 2006.

Xcel - Prairie Island Nuclear Generating

Page 16 Permit #: MN0004006

Chapter 1. Surface Discharge Stations

5. Special Requirements

5.17 Verfication monitoring in accordance with the VM Plan shall be conducted for a period of 2 years to demonstrate whether the design and construction technology and/or operational measures meet the applicable performance standard (impingement mortality and entrainment reduction). A final report on verification monitoring shall be submitted to the MPCA within 120 days of completion of verification monitoring. The MPCA may approve a change to the plan at any time. The plan elements and procedures shall be followed as described in the latest approved version of the plan. The Permittee may make changes to the studies and plan upon request to, and approval by, the MPCA.

316(b) Demonstration Records

- 5.18 The Permittee shall maintain records of significant data used to develop the IEM, TIO Plan, VM Plan; records regarding compliance with the requirements of the 316(b) Rule; and any compliance monitoring data for a period of at least 5 years from permit issuance.
 - 316(b) Demonstration

Biennial Status Report

5.19 The Permittee shall submit a biennial status report beginning July 1, 2011 to the MPCA. The biennial status report shall summarize monitoring data and other information relevant to performance of the installed technology and/or operation measures. Other information shall include summaries of significant operation and maintenance records and summaries of adaptive management activities, or other information relevant to determining compliance with the facility's TIO Plan.

Chapter 2. Surface Water Stations

1. Sampling Location

1.1 Temperature monitoring for SW Station 001 shall be taken by 3 separate probes located immediately downstream of Lock and Dam No. 3 on three piers dividing the four gated sections of the dam. Individual temperature (maximum, average, and minimum) data from each probe shall be collected and submitted. Compliance with the 5 degree F maximum allowable increase at SW 001 shall be based on the monthly average of the daily maximum temperature at the three probes. Temperature monitoring for SW Station 002 shall be taken at a point in the intake channel representative of river water temperature unaffected by the plant thermal discharge. Temperature monitoring for SW Station 003 shall be taken in the main river channel at a point unaffected by the plant thermal discharge. Temperature monitoring for SW Station 004 shall be taken in Sturgeon Lake at one or more points unaffected by the plant for thermal discharge.

2. Discharge Monitoring Reports

- 2.1 The Permittee shall submit monitoring results in accordance with the limits and monitoring requirements for this station. If flow conditions are such that no sample could be acquired, the Permittee shall check the "No Flow" box and note the conditions on the Discharge Monitoring Report (DMR).
- 2.2 For parameters required to be monitored continuously, portions of the monitoring data will occasionally be lost when equipment is out of service for repairs or while performing routine instrument calibrations and maintenance. In such cases, loss of one hour or less of data in a calendar day need not be reported unless the Permittee has reason to believe that resulting values reported on the DMR are not representative of actual conditions.

3. Requirements for Specific Stations

3.1 SW 001: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	Page 17	
Permit Expires: August 31, 2010		Permit #: MIN0004006	

Chapter 2. Surface Water Stations

3. Requirements for Specific Stations

- 3.2 SW 002: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 3.3 SW 003: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 3.4 SW 004: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.

4. Special Requirements

Exceedance of Permit Thermal Limitations Under Energy Emergencies

- 4.1 The thermal limitations of this permit may be exceeded for a limited period under extreme conditions of
- electrical energy emergencies. Exceedance of the thermal limitations may occur only during electrical energy emergencies. For purposes of this permit an "electrical energy emergency" is defined as the time period when Northern States Power Company's, d/b/a Xcel Energy (Permittee or Xcel Energy), generating system is in System Conditioning Operating Code Red, or when in System Code Orange (danger) if degradation to Code Red appears likely absent corrective action.
- 4.2 System Code Red (emergency) occurs when the energy supply is subject to, but not limited to, partial power interruptions, curtailment of energy supply to controlled customers and peak controlled customers, power interruption to commercial customers, and reduction of peak voltage. It represents a situation where all electrical reserves have been exhausted, the electrical grid is unstable, and electrical demand has exceeded electrical supply. Code Red is also commonly referred to as a "brown-out". A Code Red may also lead to interruption to retail customers and power interruption, commonly referred to as a rotating "black-out".

System Code Orange (danger) occurs when the entire electrical system is vulnerable to instability due a single failure, such as a potential transmission fault, loss of a generating unit, or other technical failure. It represents a situation where electric power demand is currently being met but utility equipment is being operated at or near maximum dependable capacity and remaining energy reserves are extremely low or non existent. Under Code Orange energy controlled customers and energy peak customers are being curtailed, external energy is unavailable, and loss of an Xcel electrical generating unit or external purchase would result in Xcel being unable to meet required NERC (North American Electric Reliability Council) operating requirements.

4.3 Thermal limitation exceedances may occur only under the following conditions:

1. Thermal limitation exceedances will only be considered under an electrical energy emergency. Xcel Energy shall base decisions regarding thermal limitation exceedances on engineering and operational measures necessary to maintain stable regional energy supplies and protect critical generation and transmission equipment. Xcel Energy shall take all reasonable corrective actions available to avoid thermal limitation exceedances.

2. Thermal limitation exceedances are allowable only after Xcel Energy has exhausted all other reasonable alternatives or determined them to be inadequate. These alternatives include, but are not limited to, use of all available Xcel Energy power generation including Xcel Energy oil burning facilities and reserves, energy purchases, demand side management measures, curtailment of non-essential auxiliary load, and public appeals for voluntary energy conservation measures. Energy costs, either incurred at Xcel Energy generating facilities or through energy purchased, shall not be a factor in exhausting these alternatives.

3. Xcel Energy shall restore operations to return to compliance with permit thermal limitations as soon as possible upon termination of the electrical energy emergency, that is, upon return to a stable system Code Orange (danger) or better system code. The duration of thermal limitation exceedances shall be minimized.

Page 18 Permit #: MN0004006

Permit Modified: June 30, 2006 Permit Expires: August 31, 2010

Chapter 2. Surface Water Stations

4. Special Requirements

4.4

4. Xcel Energy shall limit the severity of thermal limitation exceedances to the extent possible. Xcel Energy shall maintain any existing cooling tower systems and other cooling systems used to remove heat from cooling water to be discharged, so that these cooling systems are completely available during energy emergencies.

5. Xcel Energy shall attempt to notify the MPCA in advance of its intent to exercise this provision to exceed the permit thermal limitations under an electrical energy emergency. If Xcel Energy is unable to provide advance notification, due to sudden problems caused by storms, unplanned loss of critical generation or transmission, or similar circumstances causing conditions to rapidly deteriorate, Xcel Energy shall notify MPCA staff as soon as possible after the initial response actions are completed. If the event occurs after normal business hours or a weekend Xcel Energy shall notify the State Duty Officer and provide follow up notification to MPCA the next business day.

6. Xcel Energy shall institute monitoring for any environmental impacts during exceedances of the thermal limitations. Specifically Xcel Energy shall institute periodic biological observations of the zone of influence of the thermal discharge on the receiving water and any plant discharge canal, to monitor for signs of dead or distressed fish and other aquatic life. Any dead or distressed fish observed shall be tabulated and recorded by Xcel Energy staff and reported within one day, or the next business day if on a weekend, to the MPCA and the Minnesota Department of Natural Resources (MDNR).

Xcel Energy shall submit a monitoring plan for biological observations during electrical energy emergencies, within 30 days after issuance of this permit.

4.5

7. Xcel Energy shall comply with the Minnesota Department of Natural Resources (MDNR) requirements concerning any costs or charges levied by the MDNR for fish or other aquatic organisms lost due to any thermal limitation exceedances.

8. Unless otherwise specified by the MPCA, during an electrical energy emergency Xcel Energy shall provide a daily summary of the status of plant operations, the nature and extent of any permit deviations or exceedances of the thermal limitations, any mitigating actions being taken, and any observed environmental impacts. The daily summaries shall be provided by telephone and e-mail message to the MPCA during business days. Daily summaries during the weekend shall be provided by e-mail message.

Xcel - Prairie Island Nuclear Generating

Page 19 Permit #: MN0004006

Chapter 2. Surface Water Stations

4. Special Requirements

4.6

9. Xcel Energy shall provide a written summary of any thermal limitation exceedances pursuant to an electrical energy emergency within 30 days of termination of the energy emergency. The summary shall address at a minimum:

a. The specific cause of the electrical energy emergency and information describing the conditions leading to the energy emergency which may include, but are not limited to, weather conditions and power demands.

b. The system code that Xcel Energy was operating under and all steps that Xcel took to lower energy demand and/or increase energy output in order to prevent a thermal limitation exceedance. These steps include, but are not limited to, items such as operation of peaking and oil burning plants, internal load reduction measures, energy purchases, public appeals for voluntary energy reduction, implementation of curtailment of service to interruptible customers, power interruption to commercial customers, etc.

c. A statement confirming that the electrical energy emergency leading to exceedances of thermal limitations was unintentional and that there was no known, viable engineering alternative for deviation from the plantt s permitted thermal limitations. A similar statement confirming that the electrical energy emergency leading to exceedances of thermal limitations resulted from factors beyond Xcel Energy's control and did not result from operator error, improperly designed facilities, lack of preventative maintenance, or increases in production beyond the design capacity of the treatment facility (cooling equipment).

4.7

d. A written summary of the technical aspects of the facility that are involved with cooling and maintaining compliance with thermal limitations.

e. Information on any alternatives to a thermal limitation exceedance and impacts that would likely have occurred if power generation was reduced in order to avoid a thermal limitation exceedance. Such impacts may include public health and safety, public security issues, damage to generating plants, disruption of commercial and industrial processes, and related potential impacts.

f. If it is determined that the thermal limitation exceedance was the result of inadequate design, operations or maintenance, the actions Xcel Energy will take to avoid a future thermal limitation exceedance.

 Permit Modified: June 30, 2006
 Xcel - Prairie Island Nuclear Generating
 Page 20

 Permit Expires: August 31, 2010
 Permit #: MN0004006

Chapter 2. Surface Water Stations

4. Special Requirements

4.8 This provision is meant to provide for limited and infrequent short-term exceedances of the permit thermal limitations solely under extreme and relatively unique circumstances (such as an unusual heat wave). This provision does not preclude the MPCA from subsequently requiring Xcel Energy to resolve any recurring thermal limitation exceedances through installation of additional cooling equipment, or other measures to remove excess heat, in the event that thermal exceedances become relatively frequent or are the result of inadequate design under normal (non-emergency) conditions.

This provision does not preclude the MPCA from taking any enforcement action pursuant to thermal limitation exceedances if the above conditions are not followed.

Chapter 3. Waste Stream Stations

1. Sampling Location

- 1.1 Samples for Station WS 001 and WS 002 shall be taken at each internal wastestream, units 1 and 2, cooling water discharge or at another point representative of the discharge prior to mixing with circulating water or any other waters.
- 1.2 The Permittee shall submit monitoring results for discharges in accordance with the limits and monitoring requirements for this station. If no discharge occurred during the reporting period, the Permittee shall check the "No Discharge" box on the Discharge Monitoring Report (DMR).
- 1.3 For parameters required to be monitored continuously, portions of the monitoring data will occasionally be lost when equipment is out of service for repairs or while performing routine instrument calibrations and maintenance. In such cases, loss of one hour or less of data in a calendar day need not be reported unless the Permittee has reason to believe that resulting values reported on the DMR are not representative of actual conditions.

2. Requirements for Specific Stations

- 2.1 WS 001: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.
- 2.2 WS 002: Submit a monthly DMR monthly by 21 days after the end of each calendar month following permit issuance.

3. Special Requirements

- 3.1 If the need arises to raise the halogen level above 2.0 mg/l for WS 001 and WS 002, units 1 and 2 plant cooling water, a calculation shall be performed using the actual condenser/circulating water and cooling water flow halogen demand determined at that time. This information shall be submitted with the other monitoring data required in the monthly DMR.
- 3.2 A calculation shall be performed using the actual cooling water flow rate, condenser/circulating water flow rate and the halogen demand of 0.5 mg/l. The calculation consists of the ratio of total cooling water flow rate to the condenser/circulating water flow rate multiplied by the highest measured cooling water halogen level, minus the condenser/circulating water demand (0.5 ppm). The value should be a negative value showing that all the halogen was used prior to discharge to the rive

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	Page 21
Permit Expires: August 31, 2010		Permit #: MN0004006

Chapter 4. Industrial Process Wastewater

1. Prohibited Discharges

- 1.1 The Permittee shall prevent the routing of pollutants from the facility to a municipal wastewater treatment system in any manner unless authorized by the pretreatment standards of the MPCA and the municipal authority.
- 1.2 The Permittee shall not transport pollutants to a municipal wastewater treatment system that will interfere with the operation of the treatment system or cause pass-through violations of effluent limits or water quality standards.
- 1.3 This permit does not authorize the discharge of sewage, wash water, scrubber water, spills, oil, hazardous substances, or equipment/vehicle cleaning and maintenance wastewaters to ditches, wetlands or other surface waters of the state except as permitted in the NPDES permit, for site treatment systems.

2. Hydrotest Discharges

- 2.1 The Permittee shall notify the MPCA prior to discharging hydrostatic test waters. The Permittee shall provide information necessary to evaluate the potential impact of this discharge and to ensure compliance with this permit. This information shall include:
 - a. the proposed discharge dates;
 - b. the name and location of receiving waters, including city or township, county, and township/range location;
 - c. an evaluation of the impact of the discharge on the receiving waters in relation to the water quality standards;
 - d. a map identifying discharge location(s) and monitoring point(s);
 - e. the estimated average and maximum discharge rates;
 - f. the estimated total flow volume of discharge;

g. the water supply for the test water, with a copy of the appropriate Minnesota Department of Natural Resources (DNR) water appropriation permit;

- h. water quality data for the water supply;
- i. proposed treatment method(s) before discharge; and
- j. methods to be used to prevent scouring and erosion due to the discharge.
- 2.2 The above notification procedure does not apply to routine hydrostatic tests of plant equipment provided all of the following conditions are met:
- a. The test is conducted using the equipment's normal process water.

b. The hydrostatic discharge is through the designated outfall for that equipment when in normal operation (as identified in this permit).

c. The water meets all applicable discharge criteria for that outfall, including volume and rate.

d. There are no residual chemicals or contaminants present of a type or at levels beyone those already reviewed and approved as acceptable by the MPCA staff for that outfall.

3. Polychlorinated Biphenyls (PCBs)

3.1 PCBs, including but not limited to those used in electrical transformers and capacitors, shall not be discharged or released to the environment.

mit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	Page 22
mit Expires: August 31, 2010		Permit #: MN0004006

Chapter 4. Industrial Process Wastewater

4. Application for Permit Reissuance

4.1 The permit application shall include priority pollutant analytical data as part of the application for reissuance this permit. These analyses shall be done on individual samples taken during the two year period before the reissuance application is submitted.

Chapter 5. Dredged Material Management

1. Authorization

Pern

- 1.1 This permit is intended to regulate the storage, disposal and/or reuse of dredged material.
- 1.2 This permit authorizes the Permittee to store, dispose, and/or reuse dredged material in accordance with the provisions of this permit.
 - 1.3 This permit does not authorize or otherwise regulate dredging activity. However, dredging activity is subject to the water quality standards specified in Minnesota Rules chs. 7050 and 7060.

Initiation of dredge activities shall not commence until the Permittee has obtained all federal, state and/or local approvals that may be required for a particular project, including but not limited to state permits regulating activities in the bed of public waters as defined in Minn. Stat. sec. 105 from the Minnesota Department of Natural Resources (DNR), federal permits for dredged or fill material from the U.S. Army Corps of Engineers, and local permits from the appropriate Soil and Water Conservation District, county or local unit of government (LUG).

1.4 Compliance with the terms and conditions of this permit releases the Permittee from the requirement to obtain a separate permit for construction and/or industrial activities at the storage, disposal and/or reuse site that would otherwise require the Permittee to obtain a construction and/or industrial storm water permit in accordance with the Clean Water Act and Agency rules, except where the use or reuse of dredged material is occurring at a location separate from other activity covered by this permit.

2. Sampling and Analyses

- 2.1 Characterization of sediment from the proposed dredge site must be completed prior to the initiation of dredging activity. Results of sediment characterization must be compiled and submitted to the MPCA prior to the start of dredging. Characterization shall consist of at least a grain size analysis and, if applicable, baseline and additional sediment analysis per Tables 3 and 4 of Appendix 1.
- 2.2 Grain Size Analysis

The Permittee shall complete a sieve grain size analysis using ASTM Method C-136 for the gradation analysis and ASTM Method D-2487 for classification. The minimum number of samples required for the analysis shall be determined using table 1 in Appendix 1. If the sieve analysis obtained is greater than 95 percent sands then the material is acceptable for Tier 1 or 2 use and additional analytical sampling is not required.

2.3 Baseline Sediment Analysis

Dredged material not excluded from additional analysis (as determined by the grain size analysis), must be analyzed for the constituents listed in Table 2 of Appendix 1.

2.4 Additional Analysis

If it is established through a review of past activities at the site that there is a reasonable likelihood for a pollutant to be present in sediment at a dredge site, the dredged material must be analyzed for additional analyte(s) in accordance with Table 3 and Table 4 in Appendix 1.

nit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	,
nit Expires: August 31, 2010		

Page 23* Permit #: MN0004006

Chapter 5. Dredged Material Management

Perm

Perm

3. Rehandling, Off-Loading and Transportation of Dredged Material

- 3.1 Dredged materials shall be managed in a manner so as to minimize the amount of material returned by spillage, erosion or other discharge to waters of the state during rehandling, off-loading and/or transportation activities.
- 3.2 Areas for the rehandling and/or off-loading of dredged material shall be sloped away from surface water or otherwise controlled.
- 3.3 Dredged material hauled on federal, state, or local highways, roads, or streets must be hauled in such a way as to prevent dredged material from leaking, spilling, or otherwise being deposited in the right-of-way. Dredged material deposited on a public roadway must be immediately removed and properly disposed.
- 3.4 Tracked soil and/or dredged material shall be removed from impervious surfaces that do not drain back to the dredged material storage, disposal and/or reuse facility within 24 hours of discovery, and placed in the storage, disposal and/or reuse facility site.

4. Storage, Disposal and/or Reuse of Dredged Material

- 4.1 Authorization. Prior to the use of a new (different from already disclosed) site for the storage, disposal, and/or reuse of dredged material, the Permittee shall obtain written MPCA approval for such use.
- 4.2 General. Any site used for the storage, disposal and/or reuse of a dredged material shall be operated and maintained by the Permittee to control runoff, including stormwater, from the facility to prevent the exceedance of water quality standards specified in Minnesota Rules, chs. 7050 and 7060.
- 4.3 The Permittee may dispose of dredged material at a permitted solid waste landfill, through on-site disposal, or through reuse for a beneficial purpose, as follows:

a. Temporary storage and/or treatment of dredged material at the dredge project site. Temporary storage of dredged material is subject to the requirements of part 3.4 of this chapter.

b. Disposal of dredged material at the dredge project site. Disposal of dredged material is subject to parts 3.5 through 3.36 of this chapter.

c. Reuse of dredged material for beneficial purposes. Reuse of dredged material is subject to parts 3.37 through 3.39 of this chapter.

A. Temporary Storage and/or Treatment of Dredged Material

4.4 All of the following requirements apply to the temporary storage and/or treatment of dredged material: a. Temporary storage shall not exceed 1 year. Storage or accumulation of dredged material for more than 1 year constitutes disposal, and is subject to the disposal facility requirements of parts 3.5 through 3.36 of this chapter. b. Dredged materials shall be managed in a manner so as to minimize the amount of material returned by spillage, erosion or other discharge to waters of the state. Best management practices for the management of dredged materials are outlined in the MPCA fact sheet, "Best Management Practices for the Management of Dredged Material".

c. If dikes, berms or silt fences have been constructed to contain temporary stockpiles of dredged material, they shall not be removed until all material has been removed from the stockpile.

B. Disposal of Dredged Material

- 4.5 Notification. Notification of a new or existing dredge disposal facility shall be submitted for MPCA review and approval.
- 4.6 Disposal facilities shall be constructed/operated in accordance with local requirements, including the requirement to obtain a permit, license, or other governmental approval to initiate construction.

Page 24 Permit #: MN0004006

Chapter 5. Dredged Material Management

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

4. Storage, Disposal and/or Reuse of Dredged Material

- 4.7 Initial Site Plan. An initial site plan shall be prepared and submitted for MPCA review and approval. The initial site plan shall consist of volume calculations for the final permitted capacity and a map of the facility. The map of the facility shall include the permitted boundaries, dimensions, site contours (at contour intervals of two feet or less), soil boring locations with surface elevations and present and planned pertinent features, including but not limited to roads, screening, buffer zone, fencing, gate, shelter and equipment buildings, and surface water diversion and drainage. The initial site plan must be signed by a land surveyor registered in Minnesota or a professional engineer registered in Minnesota.
- 4.8 Delineation and Identification of Permitted Waste Boundary. The perimeter or outer limit of a dredged material disposal facility shall be indicated by permanent posts or signage. In addition, a permanent sign, identifying the operation and showing the permit number of the site, shall be posted at the dredged material disposal facility.
 - Site Selection and Use
- 4.9 Locational Prohibitions. All of the following locational standards apply to any facility for the disposal of dredged material:
 - a. The disposal facility must be located entirely above the high water table.
 - b. The disposal facility must not be located within a shoreland or wild and scenic river land use district governed by Minn. R. chapters 6105 and 6120.

c. The disposal facility must not be located within a wetland, unless the Permittee has obtained all federal, state and/or local approvals that may be required for a particular project.

d. The disposal area shall not be located in an area which is unsuitable because of topography, geology, hydrology, or soils.

4.10 Separation Distances. A minimum separation distance of 50 feet must be maintained between the boundaries of the disposal facility and the site property line.

Design Requirements

- 4.11 The following design standards apply to a facility used for the disposal of dredged materials:
 - a. An earthen containment dike, or other MPCA approved embankment and/or other sediment control measure(s), shall be established around the perimeter of the dredged material disposal facility (permitted waste boundary).

b. Site preparation shall allow for orderly development of the site. Initial site preparations shall include clearing and grubbing, topsoil stripping and stockpiling, fill excavation, if appropriate, drainage control structures, and other design features necessary to construct and operate the facility.

c. Surface water runoff shall be diverted around dredged materials disposal facilities to prevent erosion, and protect the structural integrity of exterior embankments from failure.

d. Slopes and drainageways shall be designed to prevent erosion. Slopes longer than 200 feet shall be interrupted with drainageways.

e. Final slopes for the fill area shall be a minimum two percent and a maximum 20 percent, and shall be consistent with the planned ultimate use for the site.

g. Final cover shall consist of at least 18 inches of soil with the top 12 inches capable of sustaining vegetative growth.

h. For a system that will impound water (e.g. hydraulic dredging) with a constructed dike over 6 feet in height, or that impound more than 15 acre-feet of water, the system is subject to Minn. R. parts 6115.0300 through 6115.0520 [state Dam Safety Program]. Contact state Dam Safety Program staff at (651) 296-0521 for more information.

. Permit #: MN0004006

Page 25

Chapter 5. Dredged Material Management

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

4. Storage, Disposal and/or Reuse of Dredged Material

4.12 Site Stabilization. The Permittee shall stabilize the dredged material disposal facility before any disposal in the facility is allowed, as follows:

a. The exterior slope of all permanent dikes or berms shall be no steeper than 3 to 1 (horizontal to vertical). The exterior slopes of all permanent dikes or berms must be seeded and a soil fixative (e.g. mulch, blanket) applied within 72 hours of the completion of any grading work on the slopes.

b. If grading work is completed too late in the growing season to seed or plant the desired species, then the Permittee must propagate an annual cover crop that can be dormant seeded or planted and must apply a soil fixative to the site. At the very minimum, the Permittee must apply a soil fixative to the exterior slopes of all permanent dikes or berms prior to the first snowfall.

c. Silt fences, if used, must be properly installed. The silt fences shall be tall enough and installed at a sufficient distance from the base of the permanent dikes/berms or temporary stockpiles to create a reasonable secondary containment area.

4.13 Operational Plan. An Operational Plan of the site and immediately adjacent area shall be developed and implemented, and shall show progressive development of trench and/or area fills and any phase construction. The scale of the development plan shall not be greater than 200 feet per inch.

- 4.14 Facilities for the disposal of dredged material shall be designed by a professional engineer registered in the state of Minnesota, and in accordance with the criteria in parts 3.13 and 3.14 of this chapter. The Permittee shall construct the facility in accordance with these design plans and specifications under the direct supervision of a professional engineer registered in the state of Minnesota.
- 4.15 Certification Required. Prior to use of a facility for the disposal of dredged material under this part, the Permittee shall obtain and submit written certification from an engineer licensed in Minnesota stating that the disposal facility meets the requirements of parts 3.13 and 3.14 of this chapter, and has been constructed in accordance with the design plans and specifications.

Site Management, Limitations, and Restrictions

4.16 New or Expanded Facilities. All of the following requirements apply to the construction of new or expanded facilities used for the disposal of dredged material:

a. The Permittee shall plan for and implement construction practices that minimize erosion and maintain dike integrity.

b. Erosion control measures shall be established on all downgradient perimeters prior to the initiation of any upgradient land-disturbing construction activities.

c. Surface runoff must be directed around and away from the storage and/or disposal facility site, until the site is stabilized, usually by assuring that vegetative cover is well-established.

d. Sediment control practices shall be designed and implemented to minimize sediment from entering surface waters. The timing of the installation of sediment control practices may be adjusted to accommodate short-term activities such as equipment access. Any short-term activity must be completed as quickly as possible and the sediment control practices must be installed immediately after the activity is completed. However, sediment control practices must be installed before the next precipitation event even if the activity is not complete. e. All erosion and sediment control measures shall remain in place until final stabilization has been established. Permanent cover or final stabilization methods are used to prevent erosion, such as the placement of rip rap, sodding, or permanent seeding or planting. Permanent seeding and planting must have a uniform perennial vegetation cover of at least 70 percent density to constitute final stabilization.

Xcel - Prairie Island Nuclear Generating

Page 26 Permit #: MN0004006

Chapter 5. Dredged Material Management

4. Storage, Disposal and/or Reuse of Dredged Material

- 4.17 Management of Disposal Facilities. The following standards apply to a facility used for the disposal of dredged material:
 - a. Each fill phase shall be outlined with grade stakes, and staked for proper grading and filling.
 - b. All trenches or fill areas shall be staked with permanent markers.

c. A permanent benchmark shall be installed on-site and show its location on the facility as-built plan. d. Run-on and run-off of stormwater shall be controlled. The owner or operator must implement management practices designed to control run-on and run-off of stormwater from the disposal facility.

e. Vegetative cover shall be established within 120 days of reaching the final permitted capacity of the dredged material disposal facility, or within 120 days of the inactivation or completion of a phase of the facility thereof. f. If the disposal facility contains any particulate matter that may be subject to wind dispersion, the owner or operator shall cover or otherwise manage the dredged material to control wind dispersion.

g. Nuisance conditions resulting from the disposal of dredged material shall be controlled and managed by the facility owner or operator.

h. Cover slopes shall be surveyed and staked during placement.

Inspection and Maintenance

4.18 Periodic Site Inspections. The Permittee shall inspect the disposal facility to ensure integrity of the erosion control measures, system stability and dredged material containment. At a minimum, the facility shall be inspected:

- a. prior to the initial placement of any dredged material in the facility; and,
- b. within 24 hours of each significant storm event and/or the subsidence of flood events; or,
 c. at least once per month if a and/or b, above, are not occurring.

Inspections may be less frequent once a project is complete assuming all material has been transported to an off-site permitted facility or reused in accordance with this permit and is vegetated.

- 4.19 Recordkeeping. The Permittee shall record the date of each inspection, any problem identified with the facility, and the action(s) taken to correct any identified problem. The Permittee shall keep these inspection records on site and available to MPCA staff upon request.
- 4.20 Nonfunctioning erosion and sediment control measures shall be repaired, replaced or supplemented with functioning erosion and/or sediment control measures within three days of discovery.
- 4.21 Dikes and berms constructed to contain hydraulically dredged material and the attendant liquid must be maintained free of all types of animal burrows. Animal burrows should be backfilled with compacted material within three days of discovery.
- 4.22 Where dredging and disposal have been suspended due to frozen ground conditions, the inspections and maintenance shall begin as soon as weather conditions warrant, or prior to resuming dredged material placement in the disposal facility, whichever occurs first,

Sediment Removal and Disposal

- 4.23 Dredged material shall be removed from disposal facilities in a manner so as to not damage the integrity and effectiveness of the containment structure or area.
- 4.24 Dredged material removed from a storage, disposal, and/or reuse facility shall be managed in accordance with this chapter.
- 4.25 Recordkeeping. The Permittee shall record the dates, the volume of dredged material removed from the disposal facility, and the method and location of the disposition (disposal or reuse) of such materials. This information shall be submitted with the annual 'Dredged Material Report', as specified in the 'Annual Report' part of this chapter.

Closure and Post-Closure Requirements

Page 27 Permit #: MN0004006

. . .

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

Chapter 5. Dredged Material Management

4. Storage, Disposal and/or Reuse of Dredged Material

- 4.26 The Permittee must cease to dispose of dredged materials and immediately close the dredged material disposal facility when:
 - a. the Permittee declares the dredged material disposal facility closed;
 - b. all fill areas reach final permitted capacity;
 - c. an agency permit held by the facility expires, and renewal of the permit is not applied for, or is applied for and denied;
 - d. an agency permit for the facility is revoked; and/or,
 - e. an agency order to cease operations is issued.
- 4.27 Closure Plan. The Permittee shall prepare and submit a 'Closure Plan' for the final closure of a dredged material disposal facility for MPCA review and approval.
- 4.28 The 'Closure Plan' shall identify the steps needed to close the entire site at the end of its operating life. The closure plan shall include the following elements:

a. A description of how and when the entire facility will be closed. The description shall include the estimated year of closure and a schedule for completing each fill phase.

- b. An estimate of the maximum quantity of dredged material in storage at any time during the life of the facility. c, A cost estimate including an itemized breakdown for closure of each fill phase and the total cost associated with closure activities at dredged material disposal facilities.
- 4.29 A copy of the approved 'Closure Plan' and all revisions to the plan shall be kept at the facility until closure is completed and certified. At the time of closure, the agency will issue a closure document in accordance with Minn. R. part 7001.3055.
- 4.30 Amendment of Plan. The Permittee may amend the 'Closure Plan' (plan) any time during the life of the facility. The Permittee shall amend the plan whenever changes in the operating plan or facility design affect the closure procedures needed, and whenever the expected year of closure changes. Required amendments shall be completed within 60 days of any change or event that affects the closure plan.
- 4.31 Notification of Final Facility Closure. The Permittee shall notify the commissioner at least 90 days before final facility closure activities are to begin, except if the permit for the facility has been revoked.
- 4.32 Closure Performance Standard. The Permittee must close the dredged material disposal facility in a manner that eliminates, minimizes, or controls the escape of pollutants to ground water or surface waters, to soils, or to the atmosphere during the postclosure period.
- 4.33 Completion of Closure Activities. Within 30 days after receiving the last shipment of dredged material for disposal, the Permittee must begin the final closure activities outlined in the approved 'Closure Plan' for the dredged material disposal facility. Closure activities must be completed according to the approved 'Closure Plan'. The commissioner may approve a longer period if the owner or operator demonstrates that the closure activities will take longer due to adverse weather or other factors not in the control of the Permittee.

4.34 Closure Procedures.

- a. Complete the appropriate activities outlined in the approved 'Closure Plan'.
- b. Complete final closure activities consisting of submitting to the county recorder and the commissioner a detailed description of the waste types accepted at the facility and what the facility was used for, together with a survey plat of the site. The plat must be prepared and certified by a land surveyor registered in Minnesota. The landowner must record a notation on the deed to the property or on some other instrument normally examined during a title search, that will in perpetuity notify any potential purchaser of the property of any special conditions or limitations for use of the site, as set out in the 'Closure Plan' and closure document.

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	
Permit Expires: August 31, 2010		

Page 28 Permit #: MN0004006

Chapter 5. Dredged Material Management

4. Storage, Disposal and/or Reuse of Dredged Material

4.35 Certification of Closure. When final facility closure is completed, the Permittee shall submit to the commissioner certification by the Permittee and an engineer registered in Minnesota that the facility has been closed in accordance with this chapter.

The certification shall contain the following elements:

a. a completed and signed 'Site Closure Record';

b. documentation of closure, such as pictures, showing the construction techniques used during closure; and, c. a copy of the notation carrying the recorder's seal which has been filed with the county recorder.

4.36 Post-Closure Care. After final closure, the Permittee shall comply with the following requirements: a. restrict access to the facility by use of gates, fencing, or other means to prevent further disposal at

the site, unless the site's final use allows access;

b. maintain the integrity and effectiveness of the final cover, including making repairs to the final cover system as necessary to correct the effects of settling, subsidence, gas and leachate migration, erosion, root

penetration, burrowing animals, or other events;

c. prevent run-on and run-off from eroding or otherwise damaging the final cover;

d. protect and maintain surveyed benchmarks

C. Beneficial Use or Re-Use of Dredged Material

- 4.37 Prior to the use or reuse of a dredged material, the Permittee shall determine the appropriate "suitable reuse category" of the dredged material to be used or reused, as described below.
- 4.38 Suitable Reuse Categories. The suitable reuse category of a dredged material is based on the analyzed characteristics of the dredged material (sampled prior to dredging or in a spoil pile after dreding) and appropriately applied Soil Reference Values (SRVs), which are listed in Table 2 of Appendix 1 to this permit.

For the purposes of this permit, dredged material intended for the beneficial use or reuse is categorized into three tiers: Tier 1, Tier 2, and Tier 3. If the sieve analysis obtained by a #200 sieve is greater than 95 percent sands then the material is acceptable for Tier 1 or 2 use and additional analytical sampling is not required.

a. Tier 1 material is authorized to be used or reused at/on sites with a residential property use category. Tier 1 material is characterized by a contaminant level that is at or below all respective analyte concentrations listed in the Tier 1 SRV column for any contaminant that can be reasonably expected to be present in the dredged material.

b. Tier 2 material is authorized to be used or reused on/at sites with an industrial or recreational use category. Tier 2 material is characterized by a contaminant level that is at or below all respective analyte concentrations listed in the Tier 2 SRV column for any contaminant that can be reasonably expected to be present in the

dredged material.

c. Tier 3 material is NOT authorized to be used or reused under this permit. Tier 3 material is characterized by a contaminant level that is greater than any respective analyte concentrations listed in the Tier 2 SRV column for any contaminant that can be reasonably expected to be present in the dredged material.

4.39 Storage Prior to Reuse. Storage of dredged material prior to reuse or use is subject to the temporary storage requirements of this chapter, or the disposal requirements of this chapter, as applicable.

Page 29 Permit #: MN0004006

Chapter 5. Dredged Material Management

5. Annual Report

Permit Modified: June 30, 2006

Permit Expires: August 31, 2010

- 5.1 The annual 'Dredged Material Report' shall be on a form provided by the Commissioner, or another MPCA approved form, and shall include the following elements:
 - a. Dates of dredging;
 - b. Volume of material placed into storage or disposal facility;
 - c. Any incidents, such as spills, unauthorized discharge and/or other permit violations which may have occurred;
- d. Water level records for the disposal facilities of hydraulic dredging projects;
 e. Such information as the MPCA may reasonably require of the Permittee pursuant to Minn. R. 7001 and Minn. Stat. chap. 115 and 116 as amended;
- f. For disposal facilities, the dates of 'Periodic Site Inspections' required by this chapter, and the status of erosion control measures at the disposal facility;
- g. For disposal facilities, the dates, the volume of dredged material removed from the disposal facility, and the method and location of the disposition (disposal or reuse) of such materials.
- h. For facilities that used or reused dredged material during the previous calendar year, the following information shall also be provided:
- i. A written description of the use or reuse of the dredged material;
- ii. A written determination of the use category and appropriate Soil Reference Values (SRVs); and,
- iii. The results of an evaluation of the level of contaminants in the dredged material proposed for reuse for the respective SRVs.

6. Definitions

- 6.1 "Beach Nourishment" means the disposal of dredged material on the beaches or in the water waterward starting at or above the Ordinary High Water Level (OHWL) for the purpose of adding to, replenishing, or preventing the erosion of, beach material.
- 6.2 "Beneficial Re-use" means the re-use of dredged material, after the material has been dewatered, in projects such as, but not limited to: road base, building base or pad, etc.
- 6.3 "Carriage, or Conveyance, Water" means the water portion of a slurry of water and dredged material.
- 6.4 "Carriage Water Return Flow" means the carriage water which is returned to a receiving water after separation of the dredged material from the carriage water in a disposal, rehandling or treatment facility.
- 6.5 "Design capacity" means the total volume of compacted dredged materials, along with any topsoil, intermittent intermediate, and/or final cover, as calculated from final contour and cross-sectional plan sheets that define the areal and vertical extent of the fill area.
- 6.6 "Discharges of Dredged Material" means any addition of dredged material into waters of the state and includes discharges of water from dredged material disposal operations including beach nourishment, upland, or confined disposal which return to waters of state. Material resuspended during normal dredging operations is considered "de minimis" and is not a dredged material discharge.
- 6.7 "Disposal Facility" means a structure, site or area for the disposal of dredged material.
- 6.8 "Dredged Material" means any material removed from the bed of any waterway by dredging.
- 6.9 "Dredging" means any part of the process of the removal of material from the beds of waterways; transport of the material to a disposal, rehandling or treatment facility; treatment of the material; discharge of carriage or interstitial water; and disposal of the material.
- 6.10 "Erosion Control" means methods employed to prevent erosion. Examples include: soil stabilization practices, horizontal slope grading, temporary or permanent cover, and construction phasing. (look for SW definition)
- 6.11 "Final Stabilization" means that all soil disturbing activities at the site have been completed, and that a uniform perennial vegetative cover (a density of 70 percent cover for unpaved areas and areas not covered by permanent structures) has been established or equivalent permanent stabilization measures have been employed. Examples of vegetative cover practices can be found in Supplemental Specifications to the 1988 Standard Specifications for Construction (Minnesota Department of Transportation, 1991).

Permit Modified	June 30, 2006
Permit Expires:	August 31, 2010

Page 30 Permit #: MN0004006

Chapter 5. Dredged Material Management

6. Definitions

- 6.12 "Flood Event" means that the surface elevation of a waterbody has risen to a level that causes the inundation or submersion of areas normally above the Ordinary High Water Level.
- 6.13 "Impoundment" means a natural or artificial body of water or sludge confined by a dam, dike, floodgate, or other barrier.
- 6.14 "Interstitial, or Pore, Water" means water contained in the interstices or voids of soil or rock in the dredged material.
- 6.15 "Ordinary High-Water Level (OHWL)" means the boundary of waterbasins, watercourses, public waters, and public waters wetlands, and shall be an elevation delineating the highest water level which has been maintained for a sufficient period of time to leave evidence upon the landscape, commonly that point where the natural vegetation Cs from predominantly aquatic to predominantly terrestrial. For watercourses, the ordinary high water level is the elevation of the top of the bank of the channel. For reservoirs and flowages, the ordinary high water level is the operating elevation of the normal summer pool. (Minn. Stat. chap. 103G.005 Subd. 14 and MN Rule 6120.2500 Subp. 11.)
- 6.16 "Rehandling Facility" means a temporary storage site or facility used during the transportation of dredged material to a treatment or disposal facility.
- 6.17 "Significant Storm Event" means a storm event that is greater than 1.0 inches in magnitude and that occurs at least 72 hours from the previously measurable (greater than 1.0 inch rainfall) storm event. The 72-hour storm event interval may be waived where:

a. the preceding measurable storm event did not result in a measurable discharge from the facility; or,

b. the Permittee documents that less than a 72-hour interval is representative for local storm events during the season when sampling is being conducted.

- 6.18 "Stabilized" means staked sod, riprap, wood fiber blanket, or other material that prevents erosion from occurring has covered the exposed ground surface. Grass seed is not stabilization.
- 6.19 "Storage Facility" means a structure, site or area for the holding of dredged material for more than 48 hours in quantities equal to or greater than ten cubic yards. Storage for more than 1 year constitutes disposal.
- 6.20 "Unconfined Disposal" means the deposition of dredged material, in water, on the bed of a waterway.
- 6.21 "Upland Disposal" means the disposal of dredged materials landward from the ordinary high-water level of a waterway or waterbody.

Chapter 6. Steam Electric

1. Authorization

- 1.1 The Permittee is authorized to discharge condenser/circulating water and noncontact cooling water in accordance with and in compliance with the effluent limitations, restrictions, and conditions contained elsewhere in this permit.
- 1.2 The Permittee holds a Minnesota Department of Natural Resources Permit 80-5081, which requires the facility to maintain the wetland (duck pond) adjacent to the discharge canal.
- 1.3 The Permittee is not prohibited from a discharge of condenser/circulating water and cooling water for use as a de-icing agent at the intake structure should the need arise.

2. Applicable Effluent Limitations - Thermal Limitation

2.1 The thermal waste streams shall not impact the safety and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in and on the Mississippi River.

Xcel - Prairie Island Nuclear Generating

Page 31 Permit #: MIN0004006

Chapter 6. Steam Electric

2. Applicable Effluent Limitations - Thermal Limitation

- 2.2 In accordance with the Federal Water Pollution Control Act, this permit may be re-opened to insert a more restrictive thermal limit or the requirement to conduct a 316(a) study if it has been shown that the thermal component(s) of the surface water discharges affect the safety and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in and on the Mississippi River.
- 2.3 For the purposes of this permit, the fall trigger point is defined as the point at which the daily average upstream ambient river temperature falls below 43 degrees F for five consecutive days.

During the period April 1 through the fall thermal point the Permittee shall operate the cooling towers and associated equipment, to the extent necessary, in such a way that the cooling water discharge satisfies the following conditions:

1) Does not raise the temperature of the receiving water immediately below Lock and Dam No. 3 by more than 5 degrees F above ambient based on upstream monitoring data and the monthly averages of maximum daily temperatures at the three monitoring probes located on the piers dividing the four gated sections of the dam.

2) In no case shall it exceed a daily average temperature of 86 degrees F.

3) If the daily average ambient river temperature reaches 78 degrees F for two consecutive days, the Permittee shall operate all cooling towers to the maximum extent practicable. For single unit operations, this requirement is satisfied by operation of two of the four cooling towers.

2.4 During the effective period (beginning on the fall trigger point and ending March 31), or earlier as described below, plant thermal discharges shall be limited by ambient river temperature as follows:

Once the daily average ambient river temperature falls below 43 degrees F for five consecutive days, the Permittee shall not raise the temperature of the receiving water immediately below Lock and Dam No. 3 (SW 001) above 43 degree F for an extended period of time. While operating under this restriction, if the daily average temperature in the receiving water measured at SW 001 (measured using three probes on the piers dividing the four gated sections of the dam) equals or exceeds 43 degrees F for two consecutive days, the Permittee shall notify the Commissioner and the Minnesota Department of Natural Resources. Following such notification the Commission may require the Permittee to operate the cooling towers or take alternative action as necessary until such time that the 43 degree F criteria can be consistently met.

2.5 The spring trigger point is defined as the point in time that the daily average ambient river temperature increases to 43 degrees F or above for five consecutive days, or April 1, whichever occurs first.

The Permittee shall operate in the above manner (Section 2.4) throughout the winter and into spring until the spring trigger point. Once the spring 43 degree F daily average ambient river temperature trigger or the April 1 date trigger has been reached, plant thermal limits default back to the requirements of Section 2.3 until the following fall thermal trigger point. If the temperature trigger results in a partial month of operation under Section 2.3 conditions/requirements, compliance with the Delta T of 5 degrees F shall be based on the monthly average of the maximum daily ambient temperatures on days after the trigger is reached.

From April 1, or earlier as described above, through the fall thermal trigger point the requirements of Section 2.3 apply.

- 2.6 Abrupt temperature changes in the discharge due to changes in cooling tower operational modes or generator unit tripouts shall be minimized to the maximum extent practical to reduce the potential for thermal shock in the receiving water (Mississippi River). The Permittee shall be responsible for fish kills in the receiving water (Mississippi River) and the recirculating water system due to thermal shock and chemical treatments.
- 2.7 The ambient river water temperature shall be defined as the temperature of the river at a point unaffected by the plant or any other thermal discharge and shall be representative of the main river channel temperature and Sturgeon Lake outlet temperature.

Xcel - Prairie Island Nuclear Generating

rage 32 Permit #: MN0004006

Chapter 6. Steam Electric

2. Applicable Effluent Limitations - Thermal Limitation

- 2.8 The Permittee shall monitor the temperature of the receiving water immediately below Lock and Dam No. 3 continuously (using three probes on the piers dividing the four gated sections of the gates), and this data shall be reported along with the monthly discharge monitoring reports. The Permittee shall maintain the site temperature monitoring system for outfall SD 001.
- 2.9 The Permittee shall conduct temperature monitoring for stations including the combined effluent from the condenser/circulating water system and cooling water system (SD001), upstream locations Strugeon Lake 1, Sturgeon Lake 2, Diamond Bluff (main channel), the screenhouse inlet temperature (intake channel), and the three separate temperature probes located at Lock and Dam No. 3 (on the piers dividing the four gated sections of the dam). The minimum, maximum, and average temperatures shall be recorded daily at these stations and reported with the monthly discharge monitoring reports.

The Permittee shall maintain the site temperature monitoring system encompassing ambient river temperature, Lock and Dam No. 3, intake, and outfall SD 001. Eliminations or reductions in portions of the system may be allowed as the information is compiled. The Permittee may evaluate the reliability and/or representativeness of the monitoring system and its various stations. Any relocations in the system, and reductions or eliminations of monitoring requirements are subject o MPCA review and approval.

2.10 If monitoring equipment for Sturgeon Lake 1, Sturgeon Lake 2, or Diamond Bluff (main channel) is out of service, then intake temperature monitoring may be utilized as the back up for ambient river water temperature determination. If either Sturgeon Lake 1 or Surgeon Lake 2 is out of service, the remaining station(s) may be utilized as the backup for Sturgeon Lake 1 or Surgeon Lake 2 is out of service, the remaining station(s) may be stillized as the backup for Sturgeon Lake 2 temperature inputs to determine ambient river water temperature. The Sturgeon Lake 1 and Sturgeon Lake 2 temperature monitoring equipment may be removed from service in the fall after the daily average ambient river temperature is below 43 degrees F for two consecutive days. The Sturgeon Lake 1 and Sturgeon Lake 2 temperature monitoring equipment shall be reinstalled in the spring, once the potential for damage from ice and floating debris is minimal. It shall be installed prior to, or as soon after April 1 as practical.

3. Chlorination

3.1 Chlorine/bromine may be used only in the cooling water system, except chlorine or bromine may be used in the condenser/circulating cooling water system periodically to treat for parasitic amoeba or zebra mussels provided the circulating cooling water is dechlorinated prior to discharge.

The Permittee shall monitor the amount and time of bromine/chlorine application and shall report it monthly on the DMRs

- 3.2 During intermittent bromination the discharge of total residual oxidant (bromine/chlorine used) at SD 001, shall be limited to a total of 2 hours per 24 hour period and to an instantaneous maximum concentration of 0.05 mg/l. During continuous chlorination the discharge of total residual oxidant shall be limited to an instantaneous maximum concentration of 0.2 mg/l. The Permittee shall also monitor the amount and time of chlorine and or bromine application and shall report it monthly along with the other monitoring reports.
 - At times, plant configuration can result in shutdown of a unit's cooling water pump (WS 001 or WS 002) for a short period of time with continuous chlorine/bromine injection in progress. During this time, chlorine/bromine injection would continue via the normal injection path but could back flow through the idle cooling water pump suction and be drawn into the condenser/circulating water system. Any chlorine/bromine would be subsequently discharged to SD 001, the normal discharge for both the cooling water and condenser/circulating water systems. In this off-normal plant configuration, chlorine/bromine injection may continue at the normal rate provided SD 001 discharge limits are not exceeded. Any plant operation in this off-normal configuration shall be documented on the monthly DMR.

Xcel - Prairie Island Nuclear Generating

Page 33 Permit #: MN0004006

Chapter 6. Steam Electric

3. Chlorination

3.3 The discharge of total residual oxidants at SD001, bromine/chlorine used, shall be limited during intermittent bromination/chlorination to a total or two hours per 24-hour period from the facility. The Permittee shall also monitor the amount and time of chlorine and/or bromine application and shall report it monthly along with the other monitoring reports.

4. Intake Screens

- 4.1 The Permittee may operate with up to 3/8 inch mesh screens during the period September 1 through March 31. During the April 1 through August 31 period, the Permittee shall use the 0.5 mm fine mesh screens, or alternate minimum larger sized screens upon approval by the MPCA.
- 4.2 The intake screening system shall be maintained to provide for continuous fine mesh screen operation during the sensitive period April 1 through August 31 in order to minimize mortality of fish and other organisms. Operation shall include maintaining design screen wash pressures and operation of all intake screens to minimize fish impingement/entrainment and mortality. Maintenance of the intake screen system shall be scheduled and completed during the less sensitive impingement/entrainment period of September 1 through March 31. This restriction applies only to routine planned maintenance that 1) requires the intake screening system (or a portion of the system) to be taken out of service, and that 2) could reasonably be scheduled and completed outside of the time period of concern (March 31-September 1) without adversely affecting personnel safety or equipment reliability.

The Permittee shall minimize the amount of time that intake screenhouse emergency bypass gates are open. The emergency bypass gates may be opened when necessary to meet Nuclear Regulatory Commission reactor safety and testing requirements or to allow for urgently required maintenance or repairs. If the bypass gates are open for more than 24 hours in a calendar month the dates and circumstances shall be reported in the next DMR.

4.3 Water used to rinse the intake screens shall be free of chlorine and chemical additives.

4.4 Large debris collected at the trash racks shall be disposed of so as to prevent it from entering waters of the state.

- 4.5 The Permittee shall be responsible for fish kills in the receiving water and the recirculating water system due to thermal shock and chemical treatments.
- 4.6 The permit may be reopened and modified based on ecological monitoring and studies by the Minnesota Department of Natural Resources, the Wisconsin Department of Natural Resources, Northern States Power, and the MPCA.
- 4.7 The Permittee shall submit a monitoring plan to maintain ecological monitoring consistent with the Annual Environmental reports to the Commissioner for approval within 45 days of the effective date of this permit. The monitoring plan shall include the impingement study discussed in part 4.6 above. The Commissioner shall consult with the Minnesota Department of Natural Resources in review and approval of the ecological monitoring plan.
- 4.8 The Permittee shall submit an Annual Environmental report to the Commissioner by July 1 of each year summarizing the previous years' data collection.
- 4.9 The Commissioner shall consult with the Minnesota Department of Natural Resources in review and approval of the ecological monitoring submittals described in section 4.7 and 4.8 of this chapter.

Chapter 7. Stormwater

1. Authorization

1.1 This chapter authorizes the Permittee to discharge storm water associated with industrial activity in accordance with the terms and conditions of this chapter.

Xcel - Prairie Island Nuclear Generating

Page 34 Permit #: MN0004006

Chapter 7. Stormwater

2. Stormwater Pollution Prevention Plan

- 2.1 The Permittee shall submit a copy of the Storm Water Pollution Prevention Plan (SWPPP) to the MPCA 180 days after the permit is issued. Subsequent revisions to the SWPPP during the permit terms can be retained at the facility.
- 2.2 The Stormwater Pollution Prevention Plan shall include a description of appropriate Best Management Practices for protection of surface and ground water quality at the facility, and a schedule for implementing the practices. The Plan shall also include the procedures to be followed by designated staff employed by the Permittee to implement the plan.
- 2.3 The Permittee shall comply with its Stormwater Pollution Prevention Plan.
- 2.4 The Permittee shall develop and implement a Storm Water Pollution Prevention Plan to address the specific conditions at the industrial facility. The goal of the Plan is to eliminate or minimize contact of storm water with significant materials that should be treated before it is discharged.

3. Temporary Protection and Permanent Cover

- 3.1 The Permittee shall provide and maintain temporary protection or permanent cover for the exposed areas at the facility.
- 3.2 Temporary protection methods are used to prevent erosion on a short-term basis, such as the placement of mulching straw, wood fiber blankets, wood chips, erosion control netting, or temporary seeding.
- 3.3 Permanent cover or final stabilization methods are used to prevent erosion, such as the placement of riprap, sodding, or permanent seeding or planting. Permanent seeding and planting must have a uniform perennial vegetation cover of at least 70 percent density to constitute final stabilization.

4. Inspection and Maintenance

- 4.1 The Permittee shall ensure that temporary protection and permanent cover for the exposed areas at the site are maintained.
- 4.2 Site inspections shall be conducted at least once every two months during non-frozen conditions. Inspections shall be conducted by appropriately trained personnel at the facility site per the facility's Storm Water Pollution Prevention Plan (SWPPP). The purpose of inspections is to 1) determine whether structural and non-structural BMPs require maintenance or changes, and 2) evaluate the completeness and accuracy of the SWPPP. At least one inspection during a reporting period shall be conducted while storm water is discharging from the facility.
- 4.3 Inspections shall be documented and a copy of all documentation shall remain on the permitted site and be available upon request. Indicate the date and time of the inspection as well as the name of the inspector on the inspection form.
- 4.4 The following compliance items will be inspected, and documented where appropriate:
 - a. evaluate the facility to determine that the SWPPP accurately reflects site conditions;
 - b. evaluate the facility to determine whether new exposed materials have been added to the site since completion of the SWPPP, and document any new significant materials;
 - c. during the inspection conducted during the runoff event, observe the runoff to determine if it is discolored or otherwise visibly contaminated, and document observations; and,

d. determine if the non-structural and structural BMPs as indicated in the SWPPP are installed and functioning properly.

4.5 If the findings of a site inspection indicate that BMPs are not meeting the objectives of the SWPPP corrective actions must be initiated within 30 days and the BMPs restored to full operation as soon as field conditi--- allow.

Xcel - Prairie Island Nuclear Generating

Page 35 Permit #: MN0004006

Chapter 7. Stormwater

4. Inspection and Maintenance

4.6 The Permittee shall minimize vehicle tracking of gravel, soil or mud.

- 5. Sedimentation Basin Design and Construction
 - 5.1 Inlet(s) and outlet(s) shall be designed to prevent short circuiting and the discharge of floating debris.
 - 5.2 The inlet(s) shall be placed at an elevation at least above one-half of the basin design hydraulic storage volume.
 - 5.3 The outlet(s) shall consist of a perforated riser pipe wrapped with filter fabric and covered with crushed gravel. The perforated riser pipe shall be designed to allow complete drawdown of the basin(s).
 - 5.4 Permanent erosion control, such as riprap, splash pads or gabions shall be installed at the outlet(s) to prevent downstream erosion.
 - 5.5 The basins shall be designed to allow for regular removal of accumulated sediment by a backhoe or other suitable equipment.
 - 5.6 New sedimentation basins shall be designed by a registered professional engineer, and installed under the direct supervision of a registered professional engineer.
 - 5.7 Basins shall provide at least 1800 cubic feet, per acre drained, of hydraulic storage volume below the top of the outlet riser pipe.
- 6. Application of Chemical Dust Suppressants
 - 6.1 If a material applied is mixed with water or another solvent before application, the chemical analysis shall be done on the aqueous or other mixture that is representative of the solution applied. This analysis shall be conducted during the same calendar year of application. This analysis shall include the parameters that may be determined by U.S. Environmental Protection Agency (EPA) Methods 624 and 625 which are described in 40 CFR Part 136.
 - 6.2 The Chemical Dust Suppressant Annual Report shall include:
 - a. a record of the dates, methods, locations and amounts by volume of application at the facility;
 - b. whether the product was applied in the preceding year; and
 - c. the results of a chemical analysis of the materials applied each year.
 - 6.3 In areas that runoff to the surface receiving water identified on Page 1 of this permit (Mississippi River), chemical dust suppressants, if used, shall not be applied within 100 feet of the Mississippi River. These materials also shall not be applied within 100 feet of ditches that conduct surface flow to the Mississippi River.
 - 6.4 If chemical dust suppressants are applied, the Permittee shall submit a Chemical Dust Suppressant Annual Report due March 31 of each calendar year following the application of a chemical dust suppressant.

Chapter 8. Chemical Additives

1. General Requirements

- 1.1 The Permittee shall receive prior written approval from the MPCA before increasing the use of a chemical additive authorized by this permit, or using a chemical additive not authorized by this permit. "Chemical additive" includes processing reagents, water treatment products, cooling water additives, freeze conditioning agents, chemical dust suppressants, detergents and solvent cleaners used for equipment and maintenance cleaning, among other materials.
- 1.2 The Permittee shall request approval for an increased or new use of a chemical additive 60 days before the proposed increased or new use.

Permit Modified: June 30, 2006		Xcel - Prairie Island Nuclear Generating	Page 36
Permit Expires: August 31, 2010		_	Permit #: MN0004006

Chapter 8. Chemical Additives

1. General Requirements

1.3 This written request shall include the following information for the proposed additive:

- a. Material Safety Data Sheet.
- b. A complete product use and instruction label.
- c. The commercial and chemical names of all ingredients.

d. Aquatic toxicity and human health or mammalian toxicity data including a carcinogenic, mutagen. teratogenic concern or rating.

e. Environmental fate information including, but not limited to, persistence, half-life, intermediate breakdow products, and bioaccumulation data.

- f. The proposed method, concentration, and average and maximum rates of use.
- g. If applicable, the number of cycles before wastewater bleedoff
- 'h. If applicable, the ratio of makeup flow to discharge flow.
- 1.4 This permit may be modified to restrict the use or discharge of a chemical additive.

Chapter 9. Total Facility Requirements

1. General Permit Requirements

Definitions

- 1.1 "Calendar Month Average" is calculated by adding all daily values measured during a calendar month and dividing by the number of daily values measured during that month. The "Calendar Month Average" limit is an upper limit.
- 1.2 "Calendar Month Maximum" is the highest value of single samples taken throughout the month. The "Calendar Month Maximum" is an upper limit.
- 1.3 "Calendar Month Minimum" is the lowest value of single samples taken throughout the month. The "Calendar Month Minimum" is a lower limit.
- 1.4 "Calendar Month Total" is calculated by adding all daily values measured during a calendar month. It is usually expressed in mass or volume units. The "Calendar Month Total" is an upper limit.
- 1.5 "Daily Maximum" means the maximum allowable discharge of pollutant during a calendar day. Where daily maximum limitations are expressed in units of mass, the daily discharge is the total mass discharged over the course of the day. Where daily maximum limitations are expressed in terms of a concentration, the daily discharge is the arithmetic average measurement of the pollutant concentration derived from all measurements taken that day. The "Daily Maximum" is an upper limit.
- 1.6 "Grab" sample type is an individual sample collected from one location at one point in time.
- 1.7 "Instantaneous Maximum" is the highest value recorded when continuous monitoring is used or when the reporting frequency is not specifically defined. The "Instantaneous Maximum" limit is an upper limit. The highest value recorded is reported.
- 1.8 "Single Value" in the context of this permit is in reference to temperature limitations described under thermal limitations, where applicable, or to a temperature monitoring requirement.

Xcel - Prairie Island Nuclear Generating

Page 37 Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

- 1.9 "Stormwater" means stormwater runoff, snow melt runoff, and surface runoff and drainage.
- General Conditions
- 1.10 Incorporation by Reference. The following applicable federal and state laws are incorporated by reference in this permit, are applicable to the Permittee, and are enforceable parts of this permit: 40 CFR pts. 122.41, 122.42, 136, 403 and 503; Minn. R. pts. 7001, 7041, 7045, 7050, 7060, and 7080; and Minn. Stat. Sec. 115 and 116.
- 1.11 Permittee Responsibility. The Permittee shall perform the actions or conduct the activity authorized by the permit in compliance with the conditions of the permit and, if required, in accordance with the plans and specifications approved by the Agency. (Minn. R. 7001.0150, subp. 3, item E)
- 1.12 Toxic Discharges Prohibited. Whether or not this permit includes effluent limitations for toxic pollutants, the Permittee shall not discharge a toxic pollutant except according to Code of Federal Regulations, Title 40, sections 400 to 460 and Minnesota Rules, parts 7050.0100 to 7050.0220 and 7052.0010 to 7052.0110 (applicable to toxic pollutants in the Lake Superior Basin) and any other applicable MPCA rules. (Minn. R. 7001.1090, subp.1, item A)
- 1.13 Nuisance Conditions Prohibited. The Permittee's discharge shall not cause any nuisance conditions including, but not limited to: floating solids, scum and visible oil film, acutely toxic conditions to aquatic life, or other adverse impact on the receiving water. (Minn. R. 7050.0210 subp. 2)
- 1.14 Property Rights. This permit does not convey a property right or an exclusive privilege. (Minn. R. 7001.0150, subp. 3, item C)
- 1.15 Liability Exemption. In issuing this permit, the state and the MPCA assume no responsibility for damage to persons, property, or the environment caused by the activities of the Permittee in the conduct of its actions, including those activities authorized, directed, or undertaken under this permit. To the extent the state and the MPCA may be liable for the activities of its employees, that liability is explicitly limited to that provided in the Tort Claims Act. (Minn. R. 7001.0150, subp. 3, item O)
- 1.16 The MPCA's issuance of this permit does not obligate the MPCA to enforce local laws, rules, or plans beyond what is authorized by Minnesota Statutes. (Minn. R. 7001.0150, subp.3, item D)
- 1.17 Liabilities. The MPCA's issuance of this permit does not release the Permittee from any liability, penalty or duty imposed by Minnesota or federal statutes or rules or local ordinances, except the obligation to obtain the permit. (Minn. R. 7001.0150, subp.3, item A)
- 1.18 The issuance of this permit does not prevent the future adoption by the MPCA of pollution control rules, standards, or orders more stringent than those now in existence and does not prevent the enforcement of these rules, standards, or orders against the Permittee. (Minn. R. 7001.0150, subp.3, item B)
- 1.19 Severability. The provisions of this permit are severable, and if any provisions of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances and the remainder of this permit shall not be affected thereby.
- 1.20 Compliance with Other Rules and Statutes. The Permittee shall comply with all applicable air quality, solid waste, and hazardous waste statutes and rules in the operation and maintenance of the facility.
- 1.21 Inspection and Entry. When authorized by Minn. Stat. Sec. 115.04; 115B.17, subd. 4; and 116.091, and upon presentation of proper credentials, the agency, or an authorized employee or agent of the agency, shall be allowed by the Permittee to enter at reasonable times upon the property of the Permittee to examine and copy books, papers, records, or memoranda pertaining to the construction, modification, or operation of the facility covered by the permit or pertaining to the activity covered by the permit, and to conduct surveys and investigations, including sampling or monitoring, pertaining to the construction, modification, or operation of the facility covered by the permit or pertaining to the activity covered by the permit. (Minn. R. 7001.0150, subp.3, item I)

 Permit Modified: June 30, 2006
 Xcel - Prairie Island Nuclear Generating
 Page 38

 Permit Expires: August 31, 2010
 Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

1.22 Control Users. The Permittee shall regulate the users of its wastewater treatment facility so as to prevent the introduction of pollutants or materials that may result in the inhibition or disruption of the conveyance system, treatment facility or processes, or disposal system that would contribute to the violation of the conditions of this permit or any federal, state or local law or regulation.

Sampling

- 1.23 Representative Sampling. Samples and measurements required by this permit shall be conducted as specified in this permit and representative of the discharge or monitored activity. (40 CFR 122.41 (j)(1))
- 1.24 Additional Sampling. If the Permittee monitors more frequently than required, the results and the frequency of monitoring shall be reported on the Discharge Monitoring Report (DMR) or another MPCA-approved form for that reporting period. (Minn. R. 7001.1090, subp. 1, item E)
- 1.25 Certified Laboratory. A laboratory certified by the Minnesota Department of Health shall conduct analyses required by this permit. Analyses of dissolved oxygen, pH, temperature and total residual oxidants (chlorine, bromine) do not need to be completed by a certified laboratory but shall comply with manufacturers specifications for equipment calibration and use. (Minn. Stat. Sec. 144.97 through 144.98 and Minn. R. 4740.2010 through 4740.2040)
- 1.26 Sample Preservation and Procedure. Sample preservation and test procedures for the analysis of pollutants shall conform to 40 CFR Part 136 and Minn. R. 7041.3200.
- 1.27 Equipment Calibration. All monitoring and analytical instruments used to monitor as required by this permit shall be calibrated and maintained at a frequency necessary to ensure accuracy. Flow monitoring equipment should be calibrated at least twice annually. For facilities with lift stations/pumps, calibration shall be completed at least twice annually. The Permittee shall maintain written records of all calibrations and maintenance for at least three years. (Minn. R. 7001.0150, subp. 2, items B and C)
- 1.28 Unless otherwise approved, instruments used to measure metered flows shall be accurate within plus or minus 10 percent of the true flow values. Flow for non-metered systems (e.g., screenwash return) shall be estimated using methods such as pump discharge curves and run times. SD 001 discharge flow shall be determined by comparing discharge canal sluice gate position and canal water elevation to the applicable engineering flow curves.
- 1.29 Maintain Records. The Permittee shall keep the records required by this permit for at least three years, including any calculations, original recordings from automatic monitoring instruments, and laboratory sheets. The Permittee shall extend these record retention periods upon request of the MPCA. The Permittee shall maintain records for each sample and measurement. The records shall include the following information (Minn. R. 7001.0150, subp. 2, item C):
 - a. The exact place, date, and time of the sample or measurement;
 - b. The date of analysis;
 - c. The name of the person who performed the sample collection, measurement, analysis, or calculation; and
 - d. The analytical techniques, procedures and methods used; and
 - e. the results of the analysis. (Minn. R. 7001.0150, subp. 2, item C)

Permit Modified:	June 30, 2006
Permit Evnires	wenet 31 2010

Page 39 Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

1.30 Completing Reports. The Permittee shall submit the results of the required sampling and monitoring activities on the forms provided, specified, or approved by the MPCA. The information shall be recorded in the specified areas on those forms and in the units specified. (Minn. R. 7001.1090, subp. 1, item D; Minn. R. 7001.0150, subp. 2, item B)

Required forms may include:

Discharge Monitoring Reports (DMRs)

The results of the monitoring and sampling required in this permit shall be recorded on the (grey and white) DMRs which, if required, will be provided by the MPCA. If no discharge occurred during the reporting period, the Permittee shall check the "No Discharge" box on the DMR. Note: Every open, white box must be filled-in on the DMR, unless no discharge occurred during the reporting period.

Supplemental Report Form (SRFs)

Individual values for each sample and measurement must be recorded on the SRF which, if required, will be provided by the MPCA. SRFs shall be submitted with the appropriate DMRs. You may design and use your own SRF, however it must be approved by the MPCA. Note: Required Summary information MUST also be recorded on the DMR. Summary information that is submitted ONLY on the SRF does not comply with the reporting requirements.

Other Reports and Forms Other reports and information required by this permit shall be recorded on a form supplied or approved by the MPCA and submitted by the date specified in the permit. (Minn. R. 7001.1090, subp. 1, item D and Minn. R. 7001.0150, subp. 2, item B)

1.31 Submitting Reports. DMRs and SRFs shall be submitted to:

MPCA

Attn: Discharge Monitoring Reports

- 520 Lafayette Road North
- St. Paul, Minnesota 55155-4194.

DMRs and SRFs shall be submitted or postmarked by the 21st day of the month following the sampling period or as otherwise specified in this permit. A DMR shall be submitted for each required station even if no discharge occurred during the reporting period. (Minn. R. 7001.0150, subps. 2.B and 3.H)

Other reports required by this permit shall be submitted or postmarked by the date specified in the permit to:

MPCA Attn: WQ Submittals Center 520 Lafayette Road North St. Paul, Minnesota 55155-4194

1.32 Incomplete or Incorrect Reports. The Permittee shall immediately submit an amended report or DMR to the MPCA upon discovery by the Permittee or notification by the MPCA that it has submitted an incomplete or incorrect report or DMR. The amended report or DMR shall contain the missing or corrected data along with a cover letter explaining the circumstances of the incomplete or incorrect report. (Minn. R. 7001.0150 subp. 3, item G)

Xcel - Prairie Island Nuclear Generating

Page 40 Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

- 1.33 Required Signatures. All DMRs, forms, reports, and other documents submitted to the MPCA shall be signed by the Permittee or the duly authorized representative of the Permittee. Minn. R. 7001.0150, subp. 2, item D. The person or persons that sign the DMRs, forms, reports or other documents must certify that he or she understands and complies with the certification requirements of Minn. R. 7001.0070 and 7001.0540, including the penalties for submitting false information. Technical documents, such as design drawings and specifications and engineering studies required to be submitted as part of a permit application or by permit conditions, must be certified by a registered professional engineer. (Minn. R. 7001.0540)
- 1.34 Detection Level. The Permittee shall report monitoring results below the reporting limit (RL) of a particular instrument as "<" the value of the RL. For example, if an instrument has a RL of 0.1 mg/L and a parameter is not detected at a value of 0.1 mg/L or greater, the concentration shall be reported as "<0.1 mg/L". "Non-detected ", "undetected ", "below detection limit ", and "zero" are unacceptable reporting results, and are permit reporting violations. (Minn. R. 7001.0150, subp. 2, item B)</p>
- 1.35 Records. The Permittee shall, when requested by the Agency, submit within a reasonable time the information and reports that are relevant to the control of pollution regarding the construction, modification, or operation of the facility covered by the permit or regarding the conduct of the activity covered by the permit. (Minn. R. 7001.0150, subp. 3, item H)
- 1.36 Confidential Information. Except for data determined to be confidential according to Minn. Stat. Sec. 116.075, subd. 2, all reports required by this permit shall be available for public inspection. Effluent data shall not be considered confidential. To request the Agency maintain data as confidential, the Permittee must follow Minn. R. 7000.1300.

Noncompliance and Enforcement

- 1.37 Subject to Enforcement Action and Penalties. Noncompliance with a term or condition of this permit subjects the Permittee to penalties provided by federal and state law set forth in section 309 of the Clean Water Act; United States Code, title 33, section 1319, as amended; and in Minn. Stat. Sec. 115.071 and 116.072, including monetary penalties, imprisonment, or both. (Minn. R. 7001.1090, subp. 1, item B)
- 1.38 Criminal Activity. The Permittee may not knowingly make a false statement, representation, or certification in a record or other document submitted to the Agency. A person who falsifies a report or document submitted to the Agency, or tampers with, or knowingly renders inaccurate a monitoring device or method required to be maintained under this permit is subject to criminal and civil penalties provided by federal and state law. (Minn. R. 7001.0150, subp.3, item G., 7001.1090, subps. 1, items G and H and Minn. Stat. Sec. 609.671)
- 1.39 Noncompliance Defense. It shall not be a defense for the Permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. (40 CFR 122.41(c))
- 1.40 Effluent Violations. If sampling by the Permittee indicates a violation of any discharge limitation specified in this permit, the Permittee shall immediately make every effort to verify the violation by collecting additional samples, if appropriate, investigate the cause of the violation, and take action to prevent future violations. Violations that are determined to pose a threat to human health or a drinking water supply, or represent a significant risk to the environment shall be immediately reported to the Minnesota Department of Public Safety Duty Officer at 1(800)422-0798 (toll free) or (651)649-5451 (metro area). In addition, you may also contact the MPCA during business hours. Otherwise the violations and the results of any additional sampling shall be recorded on the next appropriate DMR or report.
- 1.41 Unauthorized Releases of Wastewater Prohibited. Except for conditions specifically described in Minn. R. 7001.1090, subp. 1, items J and K, all unauthorized bypasses, overflows, discharges, spills, or other releases of wastewater or materials to the environment, whether intentional or not, are prohibited. However, the MPCA will consider the Permittee's compliance with permit requirements, frequency of release, quantity, type, location, and other relevant factors when determining appropriate action. (40 CFR 122.41 and Minn. Stat. Sec 115.061)

Xcel - Prairie Island Nuclear Generating

Page 41 Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

1.42 Upset Defense. In the event of temporary noncompliance by the Permittee with an applicable effluent limitation resulting from an upset at the Permittee's facility due to factors beyond the control of the Permittee, the Permittee has an affirmative defense to an enforcement action brought by the Agency as a result of the noncompliance if the Permittee demonstrates by a preponderance of competent evidence:

a. The specific cause of the upset;

b. That the upset was unintentional;

c. That the upset resulted from factors beyond the reasonable control of the Permittee and did not result from operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventative maintenance, or increases in production which are beyond the design capability of the treatment facilities;

d. That at the time of the upset the facility was being properly operated;

e. That the Permittee properly notified the Commissioner of the upset in accordance with Minn. R. 7001.1090, subp. 1, item I; and

f. That the Permittee implemented the remedial measures required by Minn. R. 7001.0150, subp. 3, item J.

Operation and Maintenance

- 1.43 The Permittee shall at all times properly operate and maintain the facilities and systems of treatment and control, and the appurtenances related to them which are installed or used by the Permittee to achieve compliance with the conditions of the permit. Proper operation and maintenance includes effective performance, adequate funding, adequate operator staffing and training, and adequate laboratory and process controls, including appropriate quality assurance procedures. The Permittee shall install and maintain appropriate backup or auxiliary facilities if they are necessary to achieve compliance with the conditions of the permit and, for all permits other than hazardous waste facility permits, if these backup or auxiliary facilities are technically and economically feasible Minn. R. 7001.0150. subp. 3, item F.
- 1.44 In the event of a reduction or loss of effective treatment of wastewater at the facility, the Permittee shall control production or curtail its discharges to the extent necessary to maintain compliance with the terms and conditions of this permit. The Permittee shall continue this control or curtailment until the wastewater treatment facility has been restored or until an alternative method of treatment is provided. (Minn. R. 7001.1090, subp. 1, item C)
- 1.45 Solids Management. The Permittee shall properly store, transport, and dispose of biosolids, septage, sediments, residual solids, filter backwash, screenings, oil, grease, and other substances so that pollutants do not enter surface waters or ground waters of the state. Solids should be disposed of in accordance with local, state and federal requirements. (40 CFR 503 and Minn. R. 7041 and applicable federal and state solid waste rules)
- 1.46 Intake traveling screen rinse water and contents will be returned to the river uninterrupted for the protection of fish and other aquatic organisms.
- 1.47 Scheduled Maintenance. The Permittee shall schedule maintenance of the treatment works during non-critical water quality periods to prevent degradation of water quality, except where emergency maintenance is required to prevent a condition that would be detrimental to water quality or human health. (Minn. R. 7001.0150. subp. 3, item F and Minn. R. 7001.0150. subp. 2, item B)
- 1.48 Control Tests. In-plant control tests shall be conducted at a frequency adequate to ensure compliance with the conditions of this permit. (Minn. R. 7001.0150. subp. 3, item F and Minn. R. 7001.0150. subp. 2, item B)

Changes to the Facility or Permit

Permit Modified: June 30, 2006	Xcel - Prairie Island Nuclear Generating	 Page 42
Permit Expires: August 31, 2010		Permit #: MN0004006

Chapter 9. Total Facility Requirements

1. General Permit Requirements

1.49 Permit Modifications. No person required by statute or rule to obtain a permit may construct, install, modify, o operate the facility to be permitted, nor shall a person commence an activity for which a permit is required by statute or rule until the Agency has issued a written permit for the facility or activity. (Minn. R. 7001.0030)

Permittees that propose to make a change to the facility or discharge that requires a permit modification must follow Minn. R. 7001.0190. If the Permittee cannot determine whether a permit modification is needed, the Permittee must contact the MPCA prior to any action. It is recommended that the application for permit modification be submitted to the MPCA at least 180 days prior to the planned change.

1.50 Report Changes. The Permittee shall immediately report to the MPCA (Minn. R. 7001.0150, subp. 3, item M.):

a. Any substantial changes in operational procedures;

b. Activities which alter the nature or frequency of the discharge; and

c. Material factors affecting compliance with the conditions of this permit. (Minn. R. 7001.0150, subp. 3, ite M.)

- 1.51 MPCA Initiated Permit Modification, Suspension, or Revocation. The MPCA may modify or revoke and reissue this permit pursuant to Minn. R. 7001.0170. The MPCA may revoke without reissuance this permit pursuant to Minn. R. 7001.0180.
- 1.52 Permit Transfer. The permit is not transferable to any person without the express written approval of the Agency after compliance with the requirements of Minn. R. 7001.0190. A person to whom the permit has been transferred shall comply with the conditions of the permit. (Minn. R., 7001.0150, subp. 3, item N)
- 1.53 Permit Reissuance. If the Permittee desires to continue permit coverage beyond the date of permit expiration, the Permittee shall submit an application for reissuance at least 180 days before permit expiration. If the Permittee does not intend to continue the activities authorized by this permit after the expiration date of this permit, the Permittee shall notify the MPCA in writing at least 180 days before permit expiration.

If the Permittee has submitted a timely application for permit reissuance, the Permittee may continue to conduct the activities authorized by this permit, in compliance with the requirements of this permit, until the MPCA takes final action on the application, unless the MPCA determines any of the following (Minn. R. 7001.0040 and 7001.0160):

a. The Permittee is not in substantial compliance with the requirements of this permit, or with a stipulation agreement or compliance schedule designed to bring the Permittee into compliance with this permit;

b. The MPCA, as a result of an action or failure to act by the Permittee, has been unable to take final action on the application on or before the expiration date of the permit;

c. The Permittee has submitted an application with major deficiencies or has failed to properly supplement the application in a timely manner after being informed of deficiencies. (Minn. R. 7001.0040 and 7001.0160)

..

Appendix 1:

Table 1. Minimum number of samples for sediment evaluation

VOLUME PLANNED FOR REMOVAL in CUBIC YARDS	NUMBER OF CORE SAMPLE SITES
0-30,000	3
30,000-100,000	5
100,000-500,000	6
500,000-1,000,000	8
>1,000,000	· >8 .

• •

Parameter	Analytical Method	Method Detection Limit (mg/kg, dry weight unless noted)	<u>Tier 1</u> Soil Reference Value (SRV) (mg/kg, dry weight unless noted)	<u>Tier 2</u> Soil Reference Value (SRV) (mg/kg, dry weight unless noted)
Inorganics - Metals		17		
Arsenic	SW-846 3050B/6010B EPA 6010 or 7060	. 0.42	· 5	. 20
Cadmium	SW-846 3050B/6010B EPA 7131	0.02	. 25	160
Chromium III	SW-846 3050B/6010B EPA 6010 or 7191	0.058	44,000	100,000
Chromium VI	SW-846 3050B/6010B EPA 6010 or 7191	0.058	. 87	650
Copper	SW-846 3050B/6010B EPA 6010 or 7211	0.1	11	9,000
Lead	SW-846 3050B/6010B EPA 6010 or 7421	0.22	. 300	700
Mercury	SW-846 7471A EPA 7471	0.02	. 0.5	1.5
Nickel	SW-846 3050B/6010B EPA 6010	0.36	560	2,500
Selenium.	SW-846 3050B/6010B	0.43	160	· · 1,250
Zinc	SW-846 3050B/6010B EPA 6010 or 7951	0.35	8,700	70,000
linorganics = Nutrile	1(5)			
Total Phosphorus	EPA 365.2/365.3	50		
Nitrate + Nitrite				· .
Ammonia-Nitrogen				
Total Kjeldahl Nitrogen				
Organies	The second s			All a second
PCBs (Total)	SW-846 8081	0.02	1.2	. 8
	EPA 8081, 3540B, 3541			
Total Organic Carbon	SW 846 8081 SW846-EPA 9060	0.2%		
Physical Tests	an shake san ang ang ar			
Sieve and Hydrometer Analysis	ASTM D-422			
Moisture Content	ASTM D-2216			

Table 2. Baseline Sediment Parameter List

Parameter	Analytical Method		Method Detection Limit (mg/kg, dry weight unless noted)	Tier 1 Soil Reference Value (SRV) (mg/kg, dry weight unless noted)	Tier 2 Soil Reference Value (SRV) (mg/kg, dry weight unless noted)			
Inorganics - Metals	in the section of the							
Barium	SW-846 3050B/6010B		0.049	1,200	11,000			
Cyanide	SW-846 9012A		0.5	62	5,000			
Manganese .	SW-846 3050B/6010B		0.39	3,600	8,100			
Inorganics – Nutriei	its							
Oil & Grease	SW-846 9070							
Organics				AND STATE				
Aldrin	SW-846 8081 EP.	A 8081, 354440B, 3541	0.00044	1	. 2			
Chlordane	SW-846 8081 EP	A 8081, 354440B, 3541	0.01	13	74			
Endrin	SW-846 8081 EP	A 8081, 354440B, 3541	0.00073	. 8	50			
Dieldrin	SW-846 8081 EP	A 8081, 354440B, 3541	0.00091	0.8	2			
Heptachlor	SW-846 8081 EP	A 8081, 354440B, 3541	0.00077	2	3.			
Lindane (Gamma BHC)	SW-846 8081 EP	A 8081, 354440B, 3541	0.00029	. 9				
DDT	SW-846 8081 EP	A 8081, 354440B, 3541	0.00063	15	. 88			
DDD	SW-846 8081 EP	A 8081, 354440B, 3541	0.0002	56	12			
DDE	SW-846 8081 EP	A 8081, 354440B, 3541	.0.0002	40	90			
Toxaphene		SW-846 8081	0.003	13	28			
2,3,7,8-dioxin, 2,3,7,8- furan and 15 2,3,7,8- substituted dioxin and	-	EPA 8290	1-10 pg/g	0.00002	0.0000			
furan congeners	· .							
Polycyclic Aromatic Hydr	ocarbons (PAHs)							
Naphthalene		EPA 8310	176 ug/kg	10	2			
Pyrene		EPA 8310	195 ug/kg	890	5,80			
Fluorene		EPA 8310	77.4 ug/kg	850	4,12			
Acenapthene		EPA 8310	6.7 ug/kg	Contraction of the local division of the loc	5,20			
Anthracene		EPA 8310	57.2 ug/kg	7,880	45,40			
Fluoranthene	•	EPA 8310	423 ug/kg	1,080	6,80			
Benzo (a) pyrene	(BAP)/BAP equivalent	_ EPA 8310	150 ug/kg	2	<u> </u>			
Benzo (a) anthracene	EPA 8310	108 ug/kg	-	for these analytes shoul			
Benzo (e) pyrene	EPA 8310	150 ug/kg	BAP equiv	ogether and treated as the alent, which is compare			
Benzo (b) fluoranthene	EPA 8310	240 ug/kg		soil reference value for			
Benzo (ghi) perylene	EPA 8310.	170 ug/kg	Benzo (a) pyrene, above.				
Benzo (k) fluoranthene	EPA 8310	240 ug/kg		-			

Table 3. Additional Sediment Parameter List

anthracene	EPA 8310	. 166 ug/kg		
anthracene				
	EPA 8310	33 ug/kg		
3-cd) pyrene	EPA 8310	200 ug/kg		
是希望和学生的			44.9% (A.S.F.	
STM D4318	·			
STM D-854				
	5TM D4318	5TM D4318	3TM D4318	STM D4318

-	_	_			_				_													_			_		÷	_	_					-
		•				lle					4								ne	sentadiene			ene								zodioxin (TCDD)	zofuran (FCDF)		
	Acenapthene	Aldrin	Ammonia	Aniline	Arsenic	Benzo(a)anthracene	Benzo(a)pyrene	Cadmium	Chlordane	Chromium	Copper	Cyanide	DDE	DDT	Dieldrin	Endrin	Ethyl Parathion	Hentachlor	Hexachlorobenzene	Hexachlorocyclopentadiene	Lead	Mercury	2-Methylnaphthalene	NICKEI	Organotin / Tin	PCB	Phenanthrene	Phosphorus	Pyrene	Selenium	Tetrachlorodibenzodioxin (TCDD)	Tetrachlorodibenzofuran (TCDF)	Ioxaphene Zinc	
Aluminum Die-casting		4	-	-	-	쁵	-	픪	믝		4	쒸	믝	믝	믝	쀠	-	-	1=	-	ㅋ	4					-	-	-	S	片	막	12	1
Approximation Approximations	1	潮	1	織	1	验	1		1930	35		-	-	殿			13 10	8 00		53	32	×.	振調	駅 宛	11 3 50	影	1		讔	翻	1992 (國情	設備	
Anti-fouling Paints		395	105	<u>湖</u> 府 -	498 1	388	1930.	<u>25</u>	24	589) 1999		82	HRE			228		363		200	盤	劉		8183 1	9 - 22 (B	10A	题		1	39	<u>編第</u>	壁的		1
Automotive	8	瀫	凝	潇		諁	簷		骤	這				-		12	3 英ピ	新訪	源		畿		議議			1	歰	纐	1	颜			氯纖	ł
Batteries	1924	153	592 I	1992	医	1	253	2	200	276	1		1			200	950 U	- -	1560	205	1000E		1921 EX		1355			预图	1016	<u>98</u>	2096 d	感思望	1000	1
Boat Manufacturing, Boat Repoin		漆	2		翻	1		齎	鏓	1		Sic	3			罷			33	彩	-			3				驟	6				創業	No.
Boat Refueling	10000	235	347 	30	199 8)			-		- 195a	DOK N	1345			2059-10		10/16		K DEE	5050		1	SR HE	99 (d) 1		1000		325		WTE	200	100 A		1
Enemical Manufacturing,	論	ing.		驟	1	SE.	盛	雷	嬼		2			彩		彩		10	1	影	13	羅				132		藏	25	灜		新		No.
Coal Gasification (MGP)	1201	2075	UENF	1000	- Steel					445	192		1	and the					A REEL	672	100				E 276	1 ACCE		97 M		10.0	1 ESE	No. of	-	1
commercial Carming	1000		1	龗	13. 13.	蘯	鹽		驗	i.		휇	ġ.		展					靋			8 8	5				灑		1	题	激	顧	
Corrosion Metallurgy	1.275	3054	(CARD)		900.5	20.01	-		1000		890/0 8		1	27967	Act 1	REG N	1355(155		1000	100		23015	1		0008	1	See.	3/3	1921	045	9505	ARC SI	1005	1
and the second second second	32	躔		ġ.	麣	3			編	虃					穀	邈					3					臓		癱		8	1			
Detergents / Surfactants	10003			3000	1.000	2410	192.44	200	-			T	1000	200		7	1913 1911	1 Note	-	1967.08	unpa			2028		-	15,28		200	HINE!	E-O-S	100/120		1
a senten for a first first first first	ių į	题	题	1		巅		2								题														6	霾			
Electrical		CZAR.	COM	1912	2000		2005						1000		20010		State and		a prosection										1.08		Director of	Here the	B	1
Explosites		13		题		33		2	2	翮					後日の	2	認識			题	嬼		遊園			3		18		2	题			
Fish and Wildlife Consumption Advisory	1								1		2723		1	1							·		T		T							T	1	1
Enumand Vegetables.	殿	200	邋		派	3	影	S.	鯼	鐵						3		AN A			盛					1C	驟			躁				1940
Leather / Tanning					·		-	·					·	T		T	.				-					T	-		120		Ĩ		T	1
MeanProducts		論	钃	100		1	語	響	2	旞	\$			国			新良		派									龖	識					
Metal Finishing / Refining				8														T			R	·	1		1	T								
Metalurgich Processes	影	龗						×	霾	龖				1	100				12		調							いた	题					Į.
Nitric Acid Manufacturing	Γ									·			Τ		Τ	Τ		Т	Т		Π	·	T		Τ	Г	Γ				Π	T	T.	1
Oside Manufacturing		影	쪫	調		高額	編	题	3		臝		12	1997	語	<u>6</u>	105	14.14	選	1.5	꺫		語ない				影	四次	题	羅				
Pesticides / Fertilizers											·		•		٠									Τ			[Ħ	:		Π	1		1
Petroleum Refining	影	通過		1	影響	题		影		覆	劉	靈.	Date:		2							額		No and No			流	麗	龗			震		- Hote
Phosphate Mining								·							1							•				Γ				•.]
Photographic		調	쮋	影								经						「日本		調				1260			いい		影					Number of Street
Pigments / Inks																					-1								1					
Plastics		in the	副新					額		新 語		治	いた		意		ALL A	たち		影	癝		後年		-			1000						
Printing Plates																																	8	
Pulp and Paper Mills		2	No.	語	题		の家	艱		No.				×.					潮		調問		美 世				語言	調理	認識					
Rubber													· [·			1.						Ι	1						\Box			
Steam Power		蠹	-		藼				影								A C	日日											聽		翻	Sec.		line in the
Steel / Iron		·					圜													·														
Sufferic Acid		1	j,	瀛	195		深		織							No.		Constant of the local division of the local		题	3		正の	Case of the local diversion of the local dive			耀		鑢		影	影		
Textiles										• •				1									·									ľ	Ľ	
Utilities	1	1	讔			議	黨		巖	蜜					3		S.			黨	震		花を				1		篇	臝				
Valuable Mineral Mining	•												_																					
Waste Water Treatment Plants			1	18 18	题			126						黨		業					夏		新								黨			

Table 4. Contaminants and Source Industries. Adapted from Inland Testing Manual (EPA/Corps, 1998)

l

PARAMETER	LIMIT	RESTRICTIONS						
Biocide	Per request/approval letters	Restrictions per approval letters.						
Intake Pipe Back-Flushing	NĄ	Back-flush intake piping periodically to remove accumulated river sediment. Displaced sediment from the pipe would not be remove from the river, only shifted some distance away from intake pipe suction.						
Hydro Lasing Emergency Intake Gates	. · NA .	Periodic cleaning of emergency intake gates. The water and river is discharged into the plant intake canal.						
		NDENSER CIRCULATING WATER JARGE SD001)						
PARAMETER	LIMIT	RESTRICTIONS						
Total Residual Oxidant, Bromine Used	Intermittent 0.05 ppm (Instantaneous Max) Continuous = 0.001 ppm	Intermittent by daily grab sample. Continuous by daily calculation.						
Total Residual Oxidant, Chlorine Used	Intermittent = 0.2 ppm (Instantaneous Max) Continuous = 0.04 ppm	Intermittent by daily grab sample. Continuous by daily calculation, but may be done by analysis.						
. рН .	6.0 - 9.0	Shall be monitored by weekly grab samples. Limits are not subject to averaging and shall be met at all times.						
Oil or Other Substances	No visible color film on surface of receiving waters.	NA						
Floating Solids or Visible Foam	Trace Amounts	NA						
Biocide	Per request/approval letters	Used for Zebra mussel control, with restrictions per approval letter						
		VTAINMENT, AND ZX SYSTEM (SD001)						
PARAMETER	LIMIT	RESTRICTIONS						
Nitrite Based Inhibitor with Additives	0 - 900 ppm	Corrosion inhibitor in the chilled water system. 700 to 900 ppm normal operating range.						
Microbiocide	0 - 200 ppm	Used for microbiological attack in closed loop systems. Has been used in the containment chillers.						
Molybdate Based Corrosion	0 – 70 ppm	Used in the containment chillers.						

NPDES LIMITS 11/1/04

•	NPDES LIMITS
	11/1/04

		11/1/04
	STEAM GENE (DISC)	FRATOR BLOWDOWN HARGE SD002)
PARAMETER	LIMÍT	RESTRICTIONS
Boric Acid	0 - 5000 ppm	0 - 10 ppm is routine range. Boron is added in higher concentrations for S/G crevice flushing.
Hydrazine	0 - 150 ppm	Normal operating range 0 - 125 ppb in the feedwater. Wet lay-up range 50 - 100 ppm.
Carbohydrazide	0 - 150 ppm	Carbohydrazide may be used in conjunction with or in place of hydrazine. Used during S/G wet lay up.
Ammonium Hydroxide	NA	Used for steam generator pH adjustment during wet lay up.
Morpholine	· 0 - 150 ppm	Normal operating range is 0 -25 ppm. During outages, wet lay-up range is 50 - 100 ppm.
Aqueous Alkylamine (DAE)	. 0 - 150 ppm	Normal operating range is between 0 - 25 ppm. During outages, wet lay-up range is 50 – 100 ppm.
Methoxypropylamine (MPA)	0 - 150 ppm	Normal operating range is between 0 - 25 ppm. During outages, wet lay-up range is 50 - 100 ppm.
Hydrogen Peroxide	3000 ppm	Biological decontamination
Floating Solids or Visible Foam	Trace Amounts	NA
Total Suspended Solids	Monthly Avg = 30 ppm Daily Max = 100 ppm	Request permission to delete this requirement
Oil or Other Substances	No visible color film on surface of receiving waters.	NA .
	RADWASTE TREAT	MENT SYSTEM EFFLUENT (SD003)
PARAMETER	LIMIT	RESTRICTIONS
Polyquartenary Amine Coagulant	NA	500 grams added to 5000 gallons in Waste Hold-Up Tank. Used to precipitate large particles for increased filtration efficiency.
Floating Solids or Visible Foam	Trace Amounts	NA .
Total Suspended Solids	Monthly Avg = 30 ppm Daily Max = 100 ppm	Request permission to delete this requirement
Oil or Other Substances	No visible color film on surface of receiving waters	NA .

	RADWASTE TREA	FMENT SYSTEM EFFLUENT (SD03) :ontinued]
PARAMETER	LIMIT	RESTRICTIONS
Hot Lab Sink Effluent	NA	Miscellaneous indicators, reagents, samples and expired laboratory standards. Essentially removed by ion exchangers prior to discharge.
Sodium Hydroxide	NA	Minor system leakage from routine operations as well as small amounts from drainage for maintenance of system components.
TSP Free Detergent	NA .	Used for laundering, protective clothing, towels, rags, and as a cleaning preparation prior to painting.
Chlorine Bleach	NA	Used for laundering radioactively contaminated protective clothing, towels, and rags.
Radiac Wash	Miscellaneous Amounts	Used for radioactive decontamination wetting agent.
Hydrogen Peroxide	Miscellaneous Amounts	Addition to decrease biological oxygen demand levels. Used in laundry and as a cleaning preparation prior to painting. Also used for personnel and equipment decontamination.
Boron	NA	Concentration not to exceed .5-ppm ambient value at the sluice gates.
Nitrite based corrosion Inhibitor with additives and biocide	NA	Minor system leakage from routine operations. Essentially removed by ion exchangers prior to discharge.
Ethylene Glycol	NA .	Minor system leakage from routine operations.
Potassium Chromate Potassium Dichromate Potassium hydroxide	NA	Minor system leakage from routine operations and maintenance. Laundering of reusable towels and rags contaminated with potassium chromate. Analyze the next two ADT Monitor tanks following a potassium chromate release of >20 gallons.
Special Respirator Cleaner Plus	NA	Used for cleaning and decontamination in the Radiation Controlled Area.

NPDES LIMITS

.

'n.

NPDES LIMITS 11/1/04

		OSMOSIS EFFLUENT HARGE SD004)
PARAMETER	LIMIT	RESTRICTIONS
Clean in Place Skid (CIP) Total Suspended Solids	Batch release <= 30 ppm	Sample each batch before release. Batches may be discharged to the turbine building sump, landlock or SD004, depending on the suspended solids results. Report results in the Discharge Monitoring Report.
Clean in Place Skid (CDI) PH	>2.0 - <12.0	Sample each batch before release. Batches may be pH adjusted and discharged to the Turbine Building Sump, landlock, or SD004. Report results in the Discharge Monitoring Report.
Total Reverse Osmosis Effluent Flow		Total effluent from all processes must me summed monthly and reported in the Discharge Monitoring Report.
RO and Continuous de- ionizing Units (CDI) cleaning includes: hydrochloric acid, sodium hydroxide, sodium chloride, sodium percarbonate, sodium laurel sulfate		Periodic cleaning
Hydrogen Peroxide	3000 ppm	Used for biological decontamination. Discharge to landlock, TBS, or SD004.
Floating Solids or Visible Foam	Trace Amounts	NA
Oil or Other Substances	No visible color film on surface of receiving waters	NA
		UMP OR LAND APPLICATION 005: UNIT 2-= DISCHARGE SD006)
PARAMETER	LIMIT	RESTRICTIONS
Cold Lab Effluent	75 gallons per year	Miscellaneous indicators, reagents samples and expired laboratory standards. Sinks and floor drains may collect small amounts of various cleaning solutions.
Floating Solids or Visible Foarn	Trace Amounts	NA
Total Suspended Solids	Monthly Avg = 30 ppm Daily Max = 100 ppm	Where the background level of the natural origin is reasonably definable and normally is higher than the specified limits, the natural level may be used as the limit. May be directed to "landlock" when > limit, provided no runoff reaches surface waters.
Oil and Grease	Monthly Avg = 10 ppm Daily Max = 15 ppm	If contaminated with oil, the sump may be directed to landlock to facilitate cleanup.
Oil or Other Substances	No visible color film on surface of receiving waters	If contaminated with oil, the sump may be directed to landlock to facilitate cleanup.

NPDES LIMITS 11/1/04

	(UNIT 1 = DISCHARGE SD	SUMP OR LAND APPLICATION 005: UNIT 2 = DISCHARGE SD006) continued]
PARAMETER	LIMIT	RESTRICTIONS
Corrosion Inhibitor with additives and biocide	NA .	Minor pump leakage and triple rinsing empty drums.
Ethylene Glycol	NA	Minor pump leakage and triple rinsing empty drums
Hydrazine, Boric Acid, Morpholine, Carbohydrazide, Ammonium Hydroxide, Methoxypropylamine, Aqueous Alkylamine	Miscellaneous amounts from Steam Generator carry over, Heating Boiler and condenser draining for maintenance	Drain chemical feed tanks and triple rinse chemical drums for safety reasons to the TBS. Drain chemical feed tanks for maintenance and outages.
Formula 65	Infrequent Use	Used for condenser tube leak testing.
Neutralizer	NA	Needed for neutralizing hydrazine, acid, and caustic spills in the turbine building sump. If safe to do so, neutralization may be done at the spill location and then flushed to the turbine building sump system.
Radiac wash	NA.	Wetting agent used for steam cleaning.
Hydrogen Peroxide	NA	Used for biological decontamination. Discharge to SD001 or landlock
		T" - LAND APPLICATION OR TES 005; UNIT 2 DISCHARGE SD006)
PARAMETER	LIMIT	RESTRICTIONS
Biocide	Per request/approval letters	Used for Zebra mussel control, with restrictions per approval letters.
		NT BUILDING FLOOR DRAINS IARGE SD010)
PARAMETER	LIMIT	RESTRICTIONS
Floating Solids or Visible Foam	Trace Amounts	NA
Flow	. 0.004 MGD	NA ·
Oil and Grease	Monthly Avg = 10 ppm Daily Max = 15 ppm	NA
Total Suspended Solids	Monthly Avg = 30 ppm Daily Max = 100 ppm	Where the background level of the natural origin is reasonably definable and normally is higher than the specified limits, the natural level may be used as the limit.
Oil or Other Substances	No visible color film on surface of receiving waters	NA
Sodium Sulfite	NA	Used on as needed basis for chlorine/bromine neutralization.
Hydrogen Peroxide	3000 ppm	Used for biological decontamination.
the second set of an	and a second	

NPDES	LIMITS
11/1	1/04

	NPD	ES LIMITS 11/1/04
		COOLING WATER OUTFALL 001; UNIT 2-WS002)
PARAMETER	LIMIT	RESTRICTIONS
Total Residual Oxidants, Bromine/Chlorine	2.0 ppm	Sample daily, may be obtained from Generator Hydrogen Coolers or from Cooling Water Pump Discharge if cooling water outfall lines are plugged or any point representative of system discharge. These additional-sample points would be more conservative.
		1 & FISH RETURN EFFLUENT SHARGE 012)
PARAMETER	LIMIT	RESTRICTIONS
Flow	2.0 MGD	Monthly estimate.
Floating Solids or Visible Foam	- Trace Amounts	NA
Screen Size	3/8" 9/1-4/1:0.5 mm (or minimum larger sized screens) 4/1-8/31	Commissioner approval is required to conduct a study to review the placement of 0.5 mm mesh screens or the minimum larger sized screens or other methods for the period April 1 - 15.
Oil or Other Substances	No visible color film on surface of receiving waters	NA
Debris	NA .	Large debris collected at the trash racks shall be disposed of on dry land so as to prevent it from entering waters of the state.
MISC	ELLANEOUS USE/DISPOS/	AL REQUESTS AND LAND APPLICATION
PARAMETER	LIMIT	RESTRICTIONS
Cinders and corn	NA	Use for controlling leakage through stop logs while dewatering bays. Approval given for P.I. as well as other NSP facilities.
Chlorine	NA	Land apply for Total Coliform disinfection.
Soda Blast Water	NA	Land application used for transformer cleaning and other miscellaneous components.
Titanic C or Zyme	NA	Diluted in 300 gallons of water and used to clean intake screen panels. The screens are rinsed in the yard and the tank solution is discharged to the area of "landlock" from the turbine building.
Screen Rinsing	NA	Clean water ONLY for rinsing/cleaning of screens with discharge to surface waters. Green Klean is approved diluted at 5 gal to 250/300 gal water with discharge to the area of "landlock" discharge once or twice/year.
Bio Action Biological Drain Opener	NA	To treat outside transformer pits for stagnant rainwater.
Diagnostic Trasar	0-5 ppm 0-6 times per year Intermittent 24 hour tests	To detect and correct possible chemical leakage in various plant systems.

ATTACHMENT C

SPECIAL-STATUS SPECIES CORRESPONDENCE

Table of Contents

Letter	<u>Page</u>
Mike Wadley (Nuclear Management Company) to Tony Sullins (U.S. Fish and W Service)	ildlife C-3
James Holthaus (Nuclear Management Company) to Sarah Wren or Sharron Ne	lson
(Natural Heritage and Nongame Research Program)	C-10
Lisa Joyal (Minnesota Department of Natural Resources) to James Holthaus (Nu	clear
Management Company)	C-15
Lisa Joyal (Minnesota Department of Natural Resources) to James Holthaus (Nu	clear
Management Company)	C-23
Mike Wadley (Nuclear Management Company) to Lisa Joyal (Minnesota Departm	nent of
Natural Resources)	C-52

January 25, 2008

Mr. Tony Sullins Field Supervisor U.S. Fish and Wildlife Service Twin Cities Ecological Services Office 4101 East 80th Street Bloomington, Minnesota 55425

SUBJECT:

T: Prairie Island Nuclear Generating Plant License Renewal Request for Information on Threatened and Endangered Species

Dear Mr. Sullins:

Nuclear Management Company (NMC), acting on behalf of Northern States Power Company, a wholly-owned subsidiary of Xcel Energy would like to thank the U.S. Fish and Wildlife Service (USFWS) for your June 20, 2007 memorandum from Mr. Gary Wege in response to our April 2007 letter seeking information and concerns about the proposed action of renewing the Prairie Island Nuclear Generating Plant (PINGP) licenses for an additional 20 years. The memorandum, listed two issues of interest to the Service: (1) potential thermal effluent changes, particularly in winter, and (2) an interagency task force's desire to draw down of Pool 3 to allow re-establishment of aquatic vegetation. The USFWS memorandum did not mention threatened and endangered species

NMC is currently finalizing the application to the U.S. Nuclear Regulatory Commission (NRC) to renew the operating licenses for Prairie Island Nuclear Generating Plant (PINGP), which expire in 2013 (Unit 1) and 2014 (Unit 2). As part of the license renewal process, the NRC requires license applicants to "assess the impact of the proposed action on threatened and endangered species in accordance with the Endangered Species Act" (10 CFR 51.53). The NRC will request an informal consultation with your office at a later date under Section 7 of the Endangered Species Act. By contacting you in advance, we hope to identify any issues that need to be addressed or any information your office may need to expedite the NRC consultation.

Renewal of the PINGP operating licenses would not involve any land disturbance, any changes to plant operations, or any modifications of the transmission system that connects the plant to the regional electric grid. There are plans, however, to replace the Unit 2 steam generators in the fall of 2013, one year before the Unit 2 operating license expires. The steam generators would arrive by barge, and would be installed within the Unit 2 containment structure. Temporary buildings and parking areas would be necessary, but these facilities would be constructed in previously-disturbed areas. Because, in all likelihood, Northern States Power would not replace the steam generators were it not seeking approval for an additional 20 years of operation, we have considered environmental impacts of steam generator replacement in the Environmental Report we are submitting to the NRC. In NEPA parlance, it is a "connected action" (40 CFR 1508.25). We would therefore appreciate your taking steam generator replacement into consideration when you conduct your review of the project's potential effect on threatened or endangered species.

NMC would appreciate your review of the following assessment summary, and transmittal of written concurrence, or concerns, relative to the following conclusions that continued operation of PINGP would have little or no adverse effect on threatened and endangered species in the

vicinity of the site. NMC does not expect renewal of the PINGP operating license to negatively impact state or federally listed threatened and endangered species, jeopardize the continued existence of such species, or result in destruction or adverse alteration of any critical natural habitats.

Area of Concern

The PINGP site, located in Goodhue County, Minnesota, consists of 578 acres on the west bank of the Mississippi River, within the city limits of Red Wing, Minnesota (Figure 1). The City of Hastings is located approximately 13 miles northwest (upstream) of the plant. Minneapolis is located approximately 39 miles northwest and St. Paul is located approximately 32 miles northwest of the plant. At the plant location, the Mississippi River serves as the state boundary between Minnesota and Wisconsin. PINGP is located on the western shore of Sturgeon Lake, a backwater area located one mile upstream from the U.S. Army Corps of Engineers (USACE) Lock and Dam No. 3. The Vermillion River lies just west of PINGP and flows into the Mississippi River approximately two miles downstream of Lock and Dam No. 3.

Figure 2 shows the property boundary and exclusion zone, which is restricted by a perimeter fence with "No Trespassing" signs. Access to the exclusion zone by water is not restricted by a fence; however, "No Trespassing" signs are placed at intervals along the shoreline of the river. East of the plant the exclusion zone boundary extends to the main channel of the Mississippi River. Islands within this boundary as well as a small strip of land northeast of the plant are owned by the Corps of Engineers.

Directly north of Xcel property lies the Prairie Island Indian Community and Reservation, a federally recognized Indian Tribe organized under the Indian Reorganization Act. The Prairie Island Indian Community owns and operates the Treasure Island Resort and Casino, a 250-room hotel and convention center that is currently being expanded. It offers gaming, dining, live entertainment, an RV park, a 137-slip marina to accommodate visitors arriving by the Mississippi River, and sightseeing and dinner cruises on their river boat.

Five transmission lines connect PINGP to the regional electric system. The transmission system is depicted in Figures 3 and 4. The output of PINGP is delivered to the substation just north of the generating facilities with 345-kV and 161-kV switchyards, where five transmission lines leave via three transmission corridors. The transmission lines include two 2.5 mile (Red Rock 1 and Adams) transmission connections, the Red Rock 2 connection to the Red Rock Substation in St. Paul, the Blue Lake Substation connection, and the Spring Creek Substation connection.

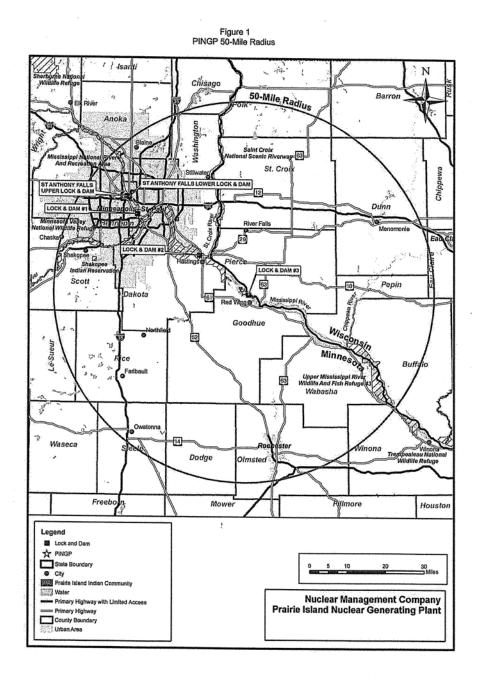
Transmission corridors are maintained by Xcel Energy and Great River Energy using an Integrated Vegetation Management (IVM) approach that includes both mechanical and chemical control methods. In particular, both wetland and upland habitats are maintained in low-growing vegetation through the use of manual cutting and the selective application of EPA-approved herbicides resulting in the open habitats preferred by threatened and endangered species.

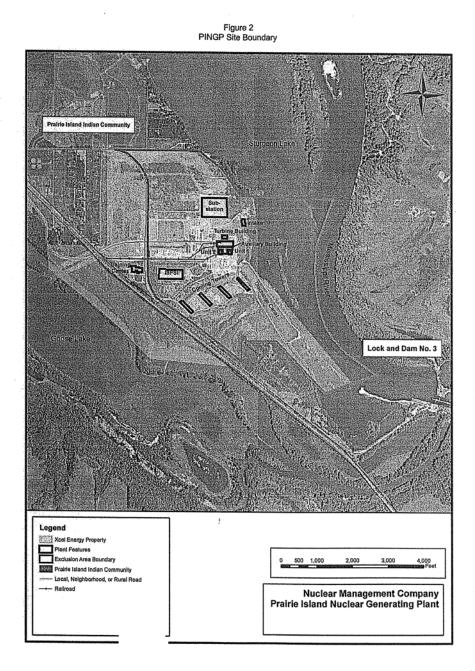
NMC does not expect PINGP operations through the period of extended operation (an additional 20 years) to have little or no adverse affect on threatened or endangered species in the vicinity of PINGP and associated transmission lines. Nor does NMC expect steam generator replacement to adversely impact ecological resources on site because the project will not involve ground disturbing activities in any previously undisturbed areas.

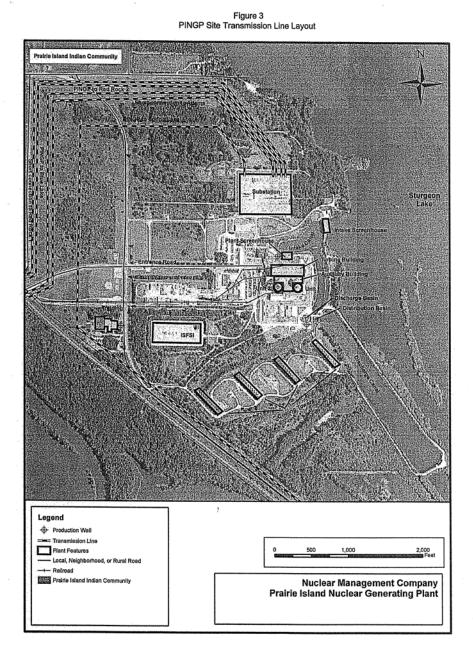
We would appreciate your sending a letter detailing any concerns you may have about potential impacts to threatened or endangered species (or their habitats) in the area of PINGP or confirming NMC's conclusion that operation of PINGP over the license renewal term would have no effect on these species. This letter serves as NMC's official request for USFWS concerns about threatened and endangered species issues regarding PINGP license renewal. NMC will

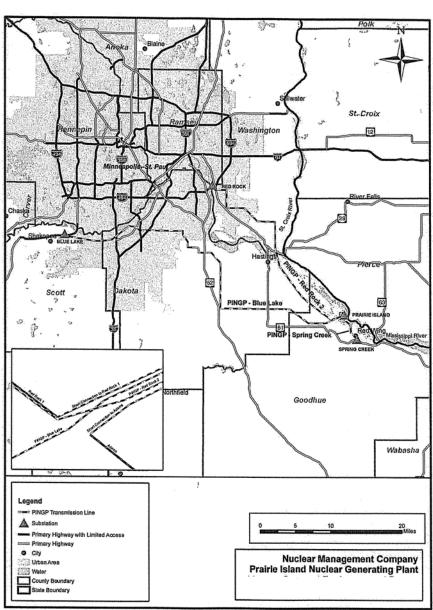
include a copy of this letter and your response in the license renewal application that we submit to the NRC.

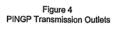
Again, thank you for your previous assistance providing PINGP with USFWS concerns. We look forward to continuing to work with the USFWS through the license renewal process. Please direct any requests for additional information, questions and your response to:


James J. Holthaus, PMP Environmental Project Manager Prairie Island Nuclear Generating Plant 1717 Wakonade Drive East 13 – Plex (License Renewal) Welch, MN 55089 651-388-1121 ext 7268


Sincerely,


Mike Woelley


Mike Wadley Prairie Island Site Vice President Nuclear Management Company


Enclosures: Figure 1 Figure 2 Figure 3 Figure 4

ents		For Agency Use Only: Received Due RUSH Related ES#
		Search Radius ml. ER/All EOs Map'd C / NoC Let Inv Log out
MINNESOT	A NATTIDAL HEDIT	FAGE INFORMATION SYSTEM DATA REQUEST FORM
DATE OF REQU	EL .I)7
WHO IS REOU	ESTING THE INFOR	MATION?
Name and Title	-	rans, Environmental Project Manager
Agency/Compar		Management Company
Address <u>13-P</u>	(Street)	(City) (State) (Zip Code)
Phone 651-381	8-1121 (7268) AX	612-330-5801 e-mail james. holthans P. nmCCO. C
		, 0
	N IS BEING REQUESTED ON	
WHAT INFORM	MATION DO YOU NI	BED?
v rintoud commun	ities; and aggregation	es of federally and state listed plants and animals; native plant sites such as bat hibernacula, colonial waterbird nesting sites, and
prairie c	hicken booming groun	ıds.
		geological features and state rare species with no legal status.
Other (s	pecify):	
Other (s	pecify):	
		re if you DO NOT need a copy of the field-by-field explanation of the printouts:
	Frequent applicants: Check her	
WHERE IS THE project area (top	Frequent applicants: Check her B AREA OF INTERES 10graphic maps or aeriz	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is
WHERE IS THE project area (top	Frequent applicants: Check her B AREA OF INTERES 10graphic maps or aeriz	ST? 1) ENCLOSE A MAP showing detailed boundaries of the
WHERE IS THI project area (top available, please	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is ted in UTM Zone 15, NAD83).
WHERE IS THI project area (top available, please	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is
WHERE IS THI project area (top available, please	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is cted in UTM Zone 15, NAD83).
WHERE IS THI project area (top available, please PROVIDE <u>County</u>	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec THE FOLLOWING	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION
WHERE IS THI project area (top available, please PROVIDE <u>County</u>	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec THE FOLLOWING Twnshp# Range#	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is cted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known).
WHERE IS THI project area (top available, please PROVIDE <u>County</u>	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec THE FOLLOWING Twnshp# Range#	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is cted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known).
WHERE IS THI project area (top available, please PROVIDE <u>County</u>	Frequent applicants: Check her B AREA OF INTERES ographic maps or acria provide a copy projec THE FOLLOWING <u>Twnshp#</u> <u>Range#</u> <u>T113 N</u> <u>15W</u>	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). Sted in UTM Zone-15, NAD83). Steet in UTM Zone-15, NAD83).
WHERE IS THI project area (top available, please PROVIDE <u>County</u>	Frequent applicants: Check her B AREA OF INTERES ographic maps or acria provide a copy projec THE FOLLOWING <u>Twnshp#</u> <u>Range#</u> <u>T113 N</u> <u>15W</u>	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is cted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known).
WHERE IS THI project area (top available, please PROVIDE <u>County</u> <u>Goodhue</u> Project Name Project Prope	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec THE FOLLOWING <u>Twnshp# Range#</u> <u>T113 N 15W</u> e <u>Prairie Islam</u> oser <u>Nuclear Man</u>	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). PREQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known) Sections 4 and 5 ad Nuclear Generating Plant (PINGP) license renewal tagement Company (NMC)
WHERE IS THI project area (top available, please PROVIDE <u>County</u> <u>Goodhue</u> Project Name Project Propo Detailed Proj	Frequent applicants: Check her B AREA OF INTERES ographic maps or aeria provide a copy projec THE FOLLOWING <u>Twnshp# Range#</u> <u>T113 N 15W</u> e <u>Prairie Islam</u> oser <u>Nuclear Man</u> ject Description (attach	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). PREQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known) Sections 4 and 5 ad Nuclear Generating Plant (PINGP) license renewal tagement Company (NMC) additional sheets if necessary) NMC PEOPOSES to renew operating
WHERE IS THE project area (top available, please PROVIDE <u>County</u> <u>Goodhue</u> Project Name Project Propo Detailed Prop Licens	Frequent applicants: Check her B ARBA OF INTERES ographic maps or aerie provide a copy projec THE FOLLOWING <u>Twnshp# Range#</u> <u>T113 N 15W</u> e <u>Prairie Islam</u> oser <u>Nuclear Man</u> ject Description (attach ses for PINGP Un	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known) Sections 4 and 5 d Nuclear Generating Plant (PINGP) license renewal aggement Company (NMC) additional sheets if necessary) NMC Proposes to renew operating tits 1 and 2. Although no land disturbance is anti-
WHERE IS THE project area (top available, please PROVIDE <u>County</u> <u>Goodhue</u> Project Name Project Propo Detailed Proj <u>Licens</u> cipated,	Frequent applicants: Check her B ARBA OF INTERES ographic maps or aerie provide a copy projec THE FOLLOWING <u>Twnshp#_Range#_</u> <u>T113 N_15W</u> <u>T113 N_15W</u> <u>C_Prairie Islan</u> oser <u>Nuclear Man</u> ject Description (attach ses for PINGP Un the US Nuclear	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known) Sections 4 and 5 Ad Nuclear Generating Plant (PINCP) license renewal magement Company (NMC) additional sheets if necessary) MMC PLOPOSES to renew operating wits 1 and 2. Although no land disturbance is anti- Regulatory Commission (NRC) requires applicants for
WHERE IS THE project area (top available, please PROVIDE <u>County</u> <u>Goodhue</u> Project Name Project Propo Detailed Proj <u>licens</u> <u>cipated</u> , <u>operating</u> on state-	Frequent applicants: Check here B AREA OF INTERES orgaphic maps or aeria provide a copy project THE FOLLOWING Twnshp#_Range#	ST? 1) ENCLOSE A MAP showing detailed boundaries of the al photos are preferred). 2) If a GIS shapefile of the project area is sted in UTM Zone-15, NAD83). REQUIRED PROJECT INFORMATION Section(s) (and half-section, quarter-section, etc., if known) Sections 4 and 5 d Nuclear Generating Plant (PINGP) license renewal aggement Company (NMC) additional sheets if necessary) NMC Proposes to renew operating tits 1 and 2. Although no land disturbance is anti-

(OVER)

HOW WILL THE INFORMATION BE USED? Describe the planned use of the information, including in what form and detail you wish to publish this information, if any. Information will be used to evaluate potential ecological impacts of renewing the operating licenses of PINCP Units 1 and 2. Locations of significant natural communities(e.g., colonial waterbird colonies) will not be shown on maps in the Environmental Report submitted to NRC if that is Minnesota DNR's preference. TURN-AROUND TIME

Requests generally take 3 weeks from date of receipt to process, and are processed in the order received. Rush requests are processed in 2 weeks or less.

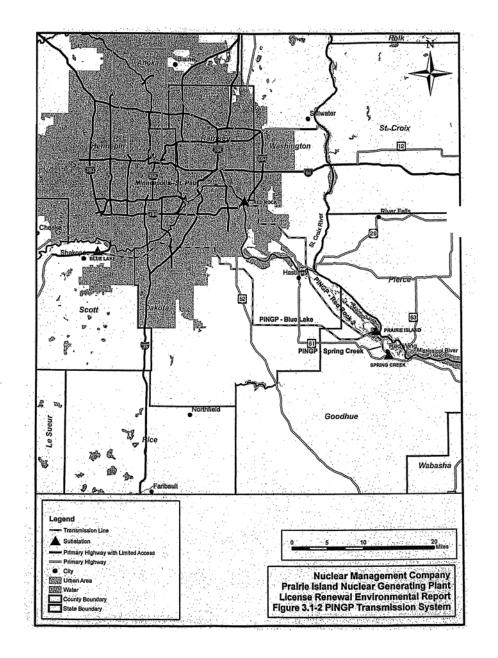
FEES

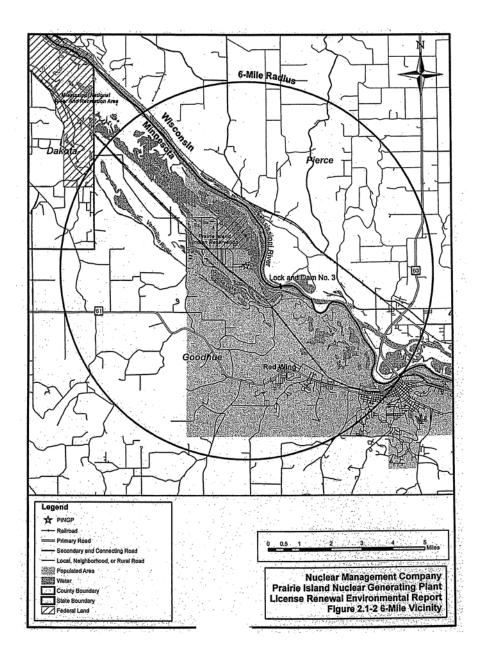
For-profit organizations, including consultants working for governmental agencies, are charged a fee for this service. In addition, a fee may be charged for large requests from any source. A surcharge (currently \$50) is applied for rush orders; if this is a rush order, please check the blank below. Fees subject to change. A fee schedule is available upon request. Please do <u>not</u> include payment with your request; an invoice will be sent to you.

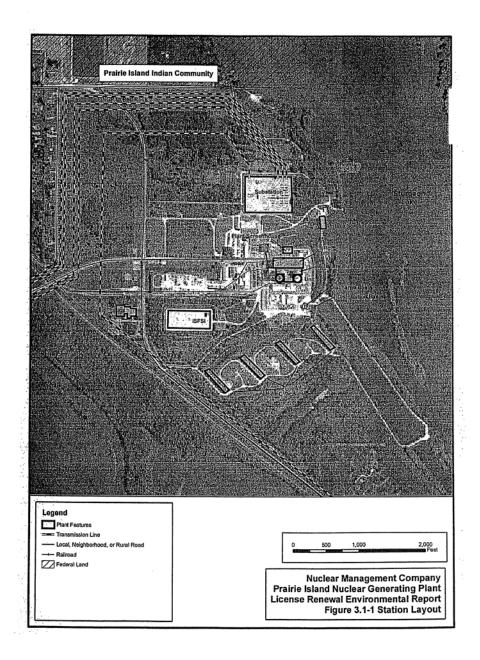
_____ Rush

"The information supplied above is complete and accurate. I understand that material supplied to me from the Minnesota Natural Heritage Information System is copyrighted and that I am not permitted to reproduce or publish any of this copyrighted material without prior written permission from the Minnesota DNR. Further, if permission to publish is given, I understand that I must credit the Minnesota Natural Heritage and Nongame Research Program, Minnesota Department of Natural Resources as the source of the material."

Mail or email completed forms to:		For further information call:
Endangered Species Environmental Review Coordinator Sarah wren@dnr.state.mn.us	(for project reviews) e.g. EAWs	(651) 259-5107 or 259-5109
or Assistant Database Manager <u>Sharron,nelson@dnr.state.mn.us</u>	(for general requests)	(651) 259-5123
at Natural Heritage and Nongame Research Program Minnesota Department of Natural Resources		


500 Lafayette Road, Box 25 St. Paul, Minnesota 55155


Or FAX completed forms to: (651) 296-1811


Additional information about the Natural Heritage & Nongame Research Program is available at http://www.dnr.state.mn.us/ecological_services/nhnrp/index.html

For Agency Use Only	у:	 		
EO's requiring comm	nent			
Sources contacted	Торіс	 Response		
Response Summary				
			1	
		R	esponder _	
Revised 09/06				

ATTACHMENT C

Minnesota Department of Natural Resources

Natural Heritage and Nongame Research Program, Box 25 500 Lafayette Road St. Paul, Minnesota 55155-40___ Phone: (651) 259-5109 Fax: (651) 296-1811 E-mail: lisa.joyal@dnr.state.mn.us

June 15, 2007

Mr. James Holthaus Nuclear Management Company 13-Plex 1717 Wakonade Dr. E. Welch, MN 55089

Re: Request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant (license renewal), T113N R15W Sections 4 & 5, Goodhue County NHNRP Contact #: ERDB 20070820

Dear Mr. Holthaus,

The Minnesota Natural Heritage database has been reviewed to determine if any rare plant or animal species or other significant natural features are known to occur within an approximate one-mile radius of the area indicated on the map enclosed with your information request. Based on this review, there are 73 known occurrences of rare species or native plant communities in the area searched. For details, please see the enclosed database printouts and the explanation of selected fields.

The Natural Heritage database is maintained by the Natural Heritage and Nongame Research Program, a unit within the Division of Ecological Services, Department of Natural Resources. It is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. Its purpose is to foster better understanding and protection of these features.

Because our information is not based on a comprehensive inventory, there may be rare or otherwise significant natural features in the state that are not represented in the database. A county-by-county survey of rare natural features is now underway, and has been completed for Goodhue County. Our information about native plant communities is, therefore, quite thorough for that county. However, because survey work for rare plants and animals is less exhaustive, and because there has not been an on-site survey of all areas of the county, ecologically significant features for which we have no records may exist on the project area.

The enclosed results of the database search are provided in two formats: short record report and long record report. To control the release of locational information, which might result in the damage or destruction of a rare element, both printout formats are copyrighted.

The <u>short record report</u> provides rare feature locations only to the nearest section, and may be reprinted, unaltered, in an Environmental Assessment Worksheet, municipal natural resource plan, or report compiled by your company for the project listed above. If you wish to reproduce the short record report for any other purpose, please contact me to request written permission. The <u>long record report includes more</u> detailed locational information, and is for your personal use only. If you wish to reprint the long record report for any purpose, please contact me to request written permission.

Please be aware that review by the Natural Heritage and Nongame Research Program focuses only on *rare natural features*. It does not constitute review or approval by the Department of Natural Resources as a whole. If you require further information on the environmental review process for other natural resource-related issues, you may contact your Regional Environmental Assessment Ecologist, Wayne Barstad, at (651) 772-7940.

DNR Information: 651-296-6157 • 1-888-646-6367 • TTY: 651-296-5484 • 1-800-657-3929

An Equal Opportunity Employer

Printed on Recycled Paper Containing a Minimum of 10% Post-Consumer Waste An invoice in the amount of \$85.48 will be mailed to you under separate cover within two weeks of the date of this letter. You are being billed for map and database search and staff scientist review. Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources.

Sincerely,

aisa Joyal

Lisa A. Joyal Endangered Species Environmental Review Coordinator

encl: Database search results

Rare Feature Database Print-Outs: An Explanation of Fields

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant License Renewal T113N R15W Sections 4 & 5 Goodhue County	ngame Resear rrences within g Plant Licen tions 4 & 5 wuty	ch Program 1 mile radius of: se Renewal				Page 1 of 6
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota, Goodhue, Wabasha County, MN						
<u>Polyodon spathula</u> (Paddlefish) #2 Location Description: Legal description is too lengthy to fit in allotted space.	1	THR	83	G4	2000-10	16507
Dakota, Goodhue, Washington County, MN						
<u>Ligumia recta</u> (Black Sandshell) #405 Loccation Description: Logal description is too lengthy to fit in allotted space.		SPC	S3	33		33850
Obovaria olivaria (Hickorynut) #138 Location Description: Legal description is too lengthy to fit in allotted space.		SPC	S3	G4	2005-09-07	33655
<u>Polyodon spathula</u> (Paddlefish) #1 Location Description: Legal description is too lengthy to fit in allotted space.		THR	S2	G4	2006-06-24	16529
Goodhue County, MN						
Aci <u>penser fulvescens</u> (Lake Sturgeon) #86 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	G3G4	1997-10-23	20145
Acipenser filvescens (Lake Sturgeon) #153 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	G3G4	2000-05-26	27745
<u>Actionnser fulvescens</u> (Lake Sturgeon) #206 Location Description: T114N R15W S29, T114N R15W S32		SPC	S3	G3G4	2002-09-08	30098
Actinonaias ligamentina. (Mucket) #115 Location Description: T113N R15W S9, T113N R15W S11, T114N R15W S30, T113N R15W S10, T113N R15W S13, T113N R15W S14, T113N R15W S12		THR	S2	GS	2004-07-09	21135
Actinonaias ligamentina. (Mucket) #158 Location Description: T113N R15W S4, T113N R15W S9, T113N R15W S8, T113N R15W S5, T114N R15W S32, T114N R15W S33		THR	22	ß	1980-09-17	25515
<u>Alasmidonta marginata</u> (Elktoe) #116 Location Description: T114N R15W S31, T114N R15W S30, T114N R15W S32, T113N R15W S10, T114N R15W S29		THR	S2	G4	2004-08-02	31515
<u>Alosa chrysochloris</u> (Skipjack Herring) #17 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	GS	1993-08-23	6478
<u>Ammocrypta asprella</u> (Crystal Darter) #23 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	ខ	1995-06-16	21031
Copyright 2007 State of Minnesota DNR	Minnesota DN	Ж			Printed 6/15/2007	007

Prairie Island Nuclear Generating Plant License Renewal T113N R15W Sections 4 & 5 Goodine County	TI13N R15W Sections 4 & 5 Goodhue County					
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN		•				
A <u>palone mutica</u> (Smooth Softshell) #13 Location Description: T113N R15W S10		SPC	S3	65	1998-06-22	30177
Apslome mutica. (Smooth Softshell) #18 Location Description: T113N R15W S9, T113N R15W S10		SPC	S	65	1996-06-19	30178
<u>Arcidens confragosus</u> (Rock Pocketbook) #17 Location Description: Legal description is too lengthy to fit in allotted space.		END	SI	. G4	2004-07-09	25720
<u>Clemmys insculpta</u> (Wood Turtle) #22 Location Description: T113N R15W 816, T113N R15W 815		THR	S2	G4	1973-06-	1494
<u>Cycleptus elongatus</u> (Blue Sucker) #30 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	G3G4	1992-10-14	16098
<u>Cveleptus elongatus</u> (Blue Sucker) #56 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	G3G4	1995-09-05	6434
<u>Cycleptus elongatus</u> (Biue Sucker) #82 Location Description: T114N R15W S29, T114N R15W S28, T114N R15W S32, T114N R15W S33	S33	SPC	S3	G3G4	1997-05-22	23206
<u>Cvelonaias tuberculata</u> (Purpie Wartyback) #34 Location Description: T113N R15W S14, T113N R15W S12, T113N R15W S11, T113N R15W S13, T113N R15W S10	S13,	THR	S2	GS	2004-07-09	21140
<u>Dendroica cemtea</u> (Cerntean Warbler) #40 Location Description: T113N R16W S1, T113N R15W S6		SPC	S3B	G4	1990-05-31	17191
<u>Dendroica cerulea</u> (Cerulean Warbler) #41 Location Description: T113N R15W S16, T113N R15W S8, T113N R15W S9		SPC	S3B	G4	1990-07-05	17189
<u>Dendroica cerulea</u> (Cerulean Warbler) #44 Location Description: T113N R15W S16, T113N R15W S9		SPC	S3B	G4	1996-07-05	16976
<u>Dendroica cemica</u> (Cerulean Warbler) #45 Location Description: T113N R15W S10		SPC	S3B	G4	1990-06-13	16975
<u>Dendroica cerulea</u> (Cerulean Warbler) #47 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3B	G4	1990-06-13	16973
Dry Sand - Gravel Oak Savanna (So Location Description: T113N R15*		N/A	S2	GNR	1992	14964
Copyright 20	Copyright 2007 State of Minnesota DNR	NR			Printed 6/15/2007	002

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant License Renewal T113N RJ5W Sections 4 & 5 Goodhue County	Nongame Resea currences within ting Plant Licer tections 4 & 5 County	rrch Program a 1 mile radius (nse Renewal	ų		-	Page 3 of 6
Element Name and Occurrence Number	Federal Status	MIN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN	,					
<u>Ellipsaria lineolata</u> (Butterfly) #27 Location Description: T113N R15W S10		THR	S2	G4	1999-07-	26065
<u>Ellipsaria lineolata</u> (Butterfly) #46 Location Description: T113N R15W S9, T113N R15W S10		THR	S2	G4	2003-Pre	31484
<u>Elliptio crassidens</u> (Elephant-ear) #4 Location Description: Legal description is too lengthy to fit in allotted space.		END	S1	GS	1944-Pre	21139
<u>Elliptio dilatata</u> (Spike) #113 Location Description: T113N R15W S13, T113N R15W S11, T113N R15W S10		SPC	ß	GS	2004-07-09	25825
<u>Elliptio dilatata</u> (Spike) #129 Location Description: T113N R15W S4, T113N R15W S9, T113N R15W S8, T113N R15W S5, T114N R15W S32, T114N R15W S33		SPC	S	GS	1980-09-17	25514
Elliptio dilatata, (Spike) #130 Location Description: T113N R15W S10		SPC	S3	GS	1999-07-	26069
<u>Elliptio dilatata</u> (Spike) #202 Location Description: T113N R15W S9, T114N R15W S30, T113N R15W S4, T113N R15W S10		SPC	S3	S	2000-07-PRE	33669
<u>Emveloidea blandingii</u> (Blanding's Turtle) #718 Location Description: T114N R15W 832, T113N R15W 85, T113N R15W 85, T114N R15W 831		THR	S2	G4	-1989-07-	17731
<u>Falco peregrinus</u> (Peregrine Falcon) #66 Location Description: T113N R15W S5	No Status	THR	S2B	G4	2006-06-07	2788
Fusconaia ebena (Booryshell) #11 Location Description: 7113N R15W S11, 7113N R15W S12, 7113N R15W S13, 7113N R15W S14, 7113N R15W S9, 7114N R15W S33, 7114N R15W S29, 7114N R15W S28, 7113N R15W S4, 7114N R15W S32, 7114N R15W S30, 7114N R15W S31, 7113N R15W S10		END	SI	G4G5	2004-07-PRE	21138
<u>Haliaeetus ieucocephalus</u> (Bald Eagle) #1532 Location Description: T113N R15W S8	LT,PDĽ	SPC	S3B,S3N	65	2000	21811
<u>Haliaeetus ieucocephalus</u> (Bald Eagle) #1722 Location Description: T113N R15W S6	LT,PDL	SPC	S3B,S3N	GS	2005-03-23	24292
<u>Haliaeetus ieucocephalus</u> (Bald Eagle) #2142 Location Description: T113N R15W S6	LT,PDL	SPC	S3B,S3N	G5	1999	27180
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #2348 Location Description: T113N R15W S10	LT,PDL	SPC	S3B,S3N	GS	2004-Pre	31907
Copyright 2007 State of Minnesota DNR	of Minnesota DN	К			Printed 6/15/2007	07

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant License Renewal T113N R15W Sections 4 & 5 Goodhue County	vongame Resea urrences withi ing Plant Lice cotions 4 & 5 County	urch Program n 1 mile radius of nse Renewal				Page 4 of 6
<u>Element Name and Occurrence Number</u>	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN						
<u>Hesperia leonarduus leonarduus</u> (Leonard's Skipper) #14 Location Description: T113N R16W S1, T113N R15W S6		N/A	S3	G4T4	1967-09-16	26346
<u>Ictiobus niger</u> (Black Buffalo) #17 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	ભુ	2000-09-25	24744
<u>(ctiobus niger</u> (Black Buffalo) #19 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	GS	2002-10-09	30518
Lampsilis higgins [Higgins Eye) #13 Location Description: T113N RLSW S9, T113N RLSW S11, T114N RLSW S30, T113N RLSW S10, T113N RLSW S13, T112N RL3W S1, T112N RL3W S12, T113N RL4W S26, T113N RL4W S27, T113N RL5W S14, T113N RL5W S12	LE	END	IS	GI	2004-07-09	21134
<u>Lampsilis higgins</u> (Higgins Eye) #28 Location Description: Legal description is too lengthy to fit in allotted space.	LB	END	SI .	GI	2004-07-08	31904
L <u>ampsilis higeins</u> i (Higgins Eye) #36 Location Description: T113N R15W S5, T113N R15W S4, T114N R15W S32, T114N R15W S33	LE	END	SI	GI	2005-09-29	33180
Lampsilis teres (Yellow Sandshell) #19 Location Description: T113N R15W S4, T114N R15W S30, T114N R16W S13, T113N R15W S10, T114N R15W S33, T114N R15W S32		END	SI	8	2004-08-02	31366
<u>Ligumia recta</u> (Black Sandshell) #203 Location Description: T113N R15W S10, T113N R15W S11, T114N R15W S30		SPC	S3	GS	2004-08-02	26070
<u>Megalonaias nervosa</u> (Washboard) #13 Location Description: T113N R15W S10		THR	S2	65	2004-07-09	26030
Megalonaias nervosa (Washboard) #19 Location Description: T113N R15W S9, T113N R15W S10, T114N Ř15W S32, T113N R15W S5, T113N R15W S4, T114N R15W S33		THR	S2	ß	2005-09-07	31491
Native Plant Community. Undetermined Class #856 Location Description: T114N R15W S31, T114N R15W S30		N/A	SNR	GNR	1992-09-01	14790
Native Plant Community. Undetermined Class #1058 Location Description: T113N R15W 86		N/A	SNR	GNR	1992-08-19	14959
Native Plant Community. Undetermined Class #1860 Location Description: T113N R15W S8, T113N R15W S7		N/A	SNR	GNR	1991-09-17	13269
Copyright 2007 State of Minnesota DNR	Minnesota DN	R			, Printed 6/15/2007	07

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant License Renewal T113N R15W Sections 4 & 5 Goodhue County	ongame Reser irrences withi ng Plant Lice ctions 4 & 5 ounty	arch Program n 1 mile radius o nse Renewal	ų			Page 5 of 6
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Goodhue County, MN						
<u>Native Plant Community. Undetermined Class</u> #1895 Location Description: T113N R15W S6		N/A	SNR	GNR	1992-08-19	14958
<u>Notropis amnis</u> (Pallid Shiner) #11 Location Description: T113N R15W S0, T113N R15W S10		SPC	S3	5	1949	16054
<u>Obovaria olivaria</u> (Hickorynut) #78 Location Description: T113N R15W S10		SPC	S	G4	2004-07-09	26071
Panax quinquefolius (American Ginseng) #83 Location Description: T113N R16W S1, T113N R15W S6		SPC	S3	G3G4	1991-08-09	12945
<u>Panax quinquefolius</u> (American Ginseng) #34 Location Description: T113N R15W S8, T113N R15W S7		SPC	83	G3G4	1991-09-17	12946
<u>Plethobasus cyphyns</u> (Sheepnose) #2 Location Description: Legal description is too lengthy to fit in allotted space.	U	END	SI	ß	1944-Pre	21137
Pleuroberna coccineum. (Round Pigtoe) #77 Location Description: T113N R15W S13, T113N R15W S10, T113N R15W S9, T113N R14W S27, T113N R14W S26		THR	S2	G4	2004-07-09	26072
<u>Pleurobema coccineum</u> (Round Pigtoe) #123 Location Description: T114N R16W S13, T114N R15W S30		THR	S 2	G4	2004-08-02	31707
<u>Quadrula metanevra</u> (Monkeyface) #29 Locetion Description: T113N R15W S14, T113N R15W S9, T113N R15W S11, T113N R15W S10, T113N R15W S12, T113N R15W S13		THR	S2	G4	2004-07-09	21136
<u>Quadrula metanevra</u> (Monkeyface) #37 Location Description: T113N R15W S10		THR	S2	G4	2000-07-20	26060
<u>Ouadrula metanevra</u> (Monkeyface) #62 Location Description: T114N R15W S30		THR	S2	G4	2000-Pre	31546
<u>Ouadrula nodulata</u> (Waryback) #20 Location Description: T113N R15W S10		END	SI	G4	1999-07-17	26073
<u>Silver Maple - (Virginia Creeper) Floodplain Forest Type</u> #1 Location Description: T113N R15W S16, T113N R15W S9		N/A	S3	GNR	1990-08-08	11936
<u>Tritogonia verrucosa</u> (Pistolgrip) #37 Location Description: T113N R15W S10	. •	THR	82	G4G5	-1999-07-	26074
Copyright 2007 State of Minnesota DNR	Minnesota Dl	VR			Printed 6/15/2007	107

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant License Renewal T113N R15W Sections 4 & 5 Goodhue County	ural Heritage & Nongame Resea t of Element Occurrences within Nuclear Generating Plant Licen 1113N R15W Sections 4 & 5 Goodhue County	rch Program 1 mile radius of 1se Renewal			μ	Page 6 of 6
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Non-MN County - Located just outside Minnesota in adjacent jurisdiction(s).						
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #575 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	GS	1990	8201
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #984 Location Description: Just outside Minnesota in adjacent juristiction(s).	LT,PDL	SPC	S3B,S3N	GS	1991	13047
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #1125 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	G	1994	15405
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #1264 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	ß	1994	17000
<u>Haliaeetus lencocophalus</u> (Bald Bagle) #1524 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	ß	. 1998	21803
<u>Tritogonia verrucosa</u> (Pistolgrip) #63 Location Description: Just outside Minnesota in adjacent jurisdiction(s).		THR	S2	G4G5	2000-Pre	31493
Records Printed = 73						

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

.

Printed 6/15/2007

Copyright 2007 State of Minnesota DNR

Minnesota Department of Natural Resources

Natural Heritage and Nongame Research Program, Box 25

500 Lafayette Road St. Paul, Minnesota 55155-4025

Phone: (651) 259-5109 Fax: (651) 296-1811 E-mail: lisa.joyal@dnr.state.mn.us

August 9, 2007

Mr. James Holthaus Nuclear Management Company 13-Plex 1717 Wakonade Drive East Welch, MN 55089

Re: Request for Natural Heritage information for vicinity of proposed Prairie Island Nuclear Generating Plant – **Transmission Lines** (license renewal), Scott, Dakota, Goodhue, and Washington Counties NHNRP Contact #: ERDB 20070820-0002

Dear Mr. Holthaus,

The Minnesota Natural Heritage database has been reviewed to determine if any rare plant or animal species or other significant natural features are known to occur within an approximate one-mile radius of the area indicated on the map enclosed with your information request. Based on this review, there are 367 known occurrences of rare species or native plant communities in the area searched. For details, please see the enclosed database printouts and the explanation of selected fields.

The Natural Heritage database is maintained by the Natural Heritage and Nongame Research Program, a unit within the Division of Ecological Resources, Department of Natural Resources. It is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. Its purpose is to foster better understanding and protection of these features.

Because our information is not based on a comprehensive inventory, there may be rare or otherwise significant natural features in the state that are not represented in the database. A county-by-county survey of rare natural features is now underway, and has been completed for Scott, Dakota, Goodhue, and Washington Counties. Our information about native plant communities is, therefore, quite thorough for those counties. However, because survey work for rare plants and animals is less exhaustive, and because there has not been an on-site survey of all areas of each county, ecologically significant features for which we have no records may exist on the project area.

The enclosed results of the database search are provided in two formats: short record report and long record report. To control the release of locational information, which might result in the damage or destruction of a rare element, both printout formats are copyrighted.

The <u>short record report</u> provides rare feature locations only to the nearest section, and may be reprinted, unaltered, in an Environmental Assessment Worksheet, municipal natural resource plan, or report compiled by your company for the project listed above. If you wish to reproduce the short record report for any other purpose, please contact me to request written permission. The <u>long record report includes more detailed locational information</u>, and is for your personal use only. If you wish to reprint the long record report for any purpose, please contact me to request written permission.

Please be aware that review by the Natural Heritage and Nongame Research Program focuses only on *rare natural features*. It does not constitute review or approval by the Department of Natural Resources as a whole. If you require further information on the environmental review process for other natural resource-related issues, you may contact your Regional Environmental Assessment Ecologist, Wayne Barstad, at (651) 772-7940.

DNR Information: 651-296-6157

1-888-646-6367
 TTY: 651-296-5484

An Equal Opportunity Employer Who Values Diversity

1-800-657-3929

An invoice in the amount of \$250.55 will be mailed to you under separate cover within two weeks of the date of this letter. You are being billed for the database search and printouts. Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources.

Sincerely,

disa Joyal

Lisa Joyal Endangered Species Environmental Review Coordinator

encl: Database search results Rare Feature Database Print-Outs: An Explanation of Fields

Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ithin 1 mile radius of ransmission Lines ton Counties	ų			
Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Edement name and Occurrence runnoer Bhe Earth. Brown. Carver. Chippewa, Dakota, Hennepin, Le Sueur, Nicollet, Ramsey, Redwood, Renville, Scott, Sibley, Washington, Yellow Medicine County, MN	ott, Sibley, Washing	gton, Yellow M	fedicine Count	y, MN	
Polyodon spathula (Paddleffsh) #4 Location Description: Legal description is too lengthy to fit in allotted space.	THR	S2	G4	1993-01-14	16501
Blue Earth, Brown, Carver, Dakota, Hennepin, Le Sueur, Nicollet, Ramsey, Scott, Sibley County, MN					
<u>Arcidens confragosus</u> (Rock Pocketbook) #26 Location Description: Legal description is too lengthy to fit in allotted space.	END	S1	G4	2006-11-PRE	33200
<u>Lampsilis teres</u> (Yellow Sandshell) #10 Location Description: Legal description is too lengthy to fit in allotted space.	END	SI	GS	1989-10-09	17146
Chisago, Dakota, Washington County, MN					
<u>Pleurobema coccineum</u> (Round Pigtoe) #106 Location Description: Legal description is too lengthy to fit in allotted space.	THR	S2	G4	2003-08-06	30010
Dakota County, MN					
<u>Actinonaias ligamentina</u> (Mucket) #249 Location Description: T28N R22W S35	THR	82	39	2001-Pre	9//16
<u>Agalinis auriculata</u> (Eared False Foxglove) #1 Location Description: T27N R24W S33, T27N R24W S32	END	SI	B	1956-10-01	3359
<u>Aristida tuberculosa</u> (Sea-beach Needlegrass) #29 Location Description: T114N R17W S11	SPC	S3	G5	1992-08-14	13916
<u>Amoglossum plantagineum</u> (Tuberous Indian-plantain) #35 Location Description: T27N R24W S26	THR	S2	G4G5	1993-06-02	17558
<u>Amoglossum plantagineum</u> (Tuberous Indian-plantain) #47 Location Description: T27N R24W S27	THR	S2	G4G5	2003-05-20	26812
<u>Asclepias amplexicaulis</u> (Clasping Milkweed) #13 Location Description: T114N R17W S2, T114N R17W S11	SPC	S 3	GS	1988-08-26	10712
<u>Asclepias sullivantii</u> (Sullivant's Milkweed) #4 Location Description: T27N R24W S33, T27N R24W S32	THR	S2	65	1945-07-25	3546
<u>Besseva bullii</u> (Kitten-tails) #22 Location Description: T114N R17W S31	THR	S2	8	2005-05-17	3785
				Printed 8/9/2007	2007
Copyright 2007 State of Minnesota DNR	ta DNR				

	Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	rences within 1 Plant - Transm RS Washington C	ission Lines ounties				
Plannant Name and Occurrence Number	F S	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota County, MN				ç	ξ	1007.05.19	27111
<u>Besseya bullii</u> (Kitten-tails) #45 Location Description: T115N R17W S34			THR	78	8	01-00-1061	
Besseya bullii (Kritten-tails) #73	N B I GW 233		THR	S2	8	1993-06-11	17281
			THR	S2	ß	1993-06-11	17282
Besseya bullit (Kritten-tails) #65 Location Description: T114N R17W S1					1		
<u>Besseya bullii</u> (Kitten-tails) #94 Location Description: T114N R16W S6			THR	S2	8	00-/0-5661	56607
<u>Buteo lineatus</u> (Red-shouldered Hawk) #42 Location Description: T115N R19W S17, T115 T777N R33W S32	<u>Buteo lineatus</u> (Red-shouldered Hawk) #42 Location Description: T115N R19W S17, T115N R19W S7, T115N R19W S8, T27N R23W S36, T27N R23W S35		SPC	S3B,SNRN	GS	1988-08-27	10289
Buteo lineatus (Red-shouldered Hawk) #107 Location Description: T115N R17W S26, T115	<u>Buteo lineatus</u> (Red-shouldered Hawk) #107 Location Description: T115N R17W S26, T115N R17W S36, T115N R17W S35, T115N R17W S25		SPC	S3B,SNRN	GS	1992-07-08	14014
Buteo lineatus (Red-shouldered Hawk) #173 Location Description: T115N R17W S25, T115N R17W S36	N R17W S36		SPC	S3B,SNRN	. 3 2	1993-06-10	11961
Calcareous Fen (Southeastern) Type #9 Location Description: T27N R24W S34, T27N R24W S27	R24W S27		N/A	SI	GNR	1980-06-	747
Calcareous Fen (Southeastern) Type #18 Location Description: T27N R24W S34, T27N R24W S27	R24W S27		N/A	SI	GNR	1980-06-	143/3
Calcareous Fen (Southeastern) Type #25 Location Description: T27N R23W S19, T27N R24W S24	R24W S24		N/A	SI	GNK	17-/0-5661	00010
Calcareous Fen (Southeastern) Type #46 Location Description: T27N R24W S34, T27N R24W S27	R24W S27		N/A	SI SI	GNR	2003-20-20	62616
Carex sterilis (Sterile Sedge) #7 Location Description: T27N R24W S24, T27N R23W S19, T27N R23W S18	. R23W SI9, T27N R23W SI8		THR	82	6	CI-01-4661	4094
Carex sterilis (Sterile Sedge) #11 Location Description: T27N R24V			THR	82 8	Č4	00-00-001	0911
e) #: NI 24	T27N R24W S28, T27N R24W S34, T27N R24W S29, 5N R21W S13, T115N R21W S14, T115N R21W S12,		SPC	ŝ	3	C7-10-C461	6014
T115N R21W S10, T115N	Copyright 2007 State of Minnesota DNR	f Minnesota DN	ΥR			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Researd irrences within Plant - Transm TRS I Washington C	ch Program 1 mile radius of: iission Lines Counties			Ра	Page 3 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota County, MN						
Cladium mariscoides (Twig-rush) #5 Location Description: T27N R24W S34, T27N R24W S27		SPC	S3	63	1981-03-28	4198
Colonial Waterbird Nesting Area (Colonial Waterbird Nesting Site) #189 Location Description: T115N R17W S25, T115N R17W S36		No Status	SNR	GNR	1977	594
Coluber constrictor (Eastern Racer) #20 Location Description: T114N R17W S12, T114N R17W S11		SPC	S3	GS	1983-08-	1569
<u>Cristatella jamesii</u> (James' Polanisia) #1 Location Description: T114N R17W S2, T114N R17W S11, T114N R17W S14		END	SI	GS	2005-07-27	5328
<u>Cristatella jamesii</u> (James Polanisia) #13 Location Description: T114N R16W S16		END	SI	GS	1993-08-25	18036
Cypripedium candidum (Small White Lady's-slipper) #20 Location Description: T27N R24W S34, T27N R24W S27		SPC	S3	G4	1980-06-08	4302
Cypripedium candidum (Small White Lady's-slipper) #21 Location Description: T27N R24W S34, T27N R24W S27		SPC	S3	G4	1980-06-08	4303
<u>Cypripedium candidum</u> (Small White Lady's-slipper) #23 Location Description: T27N R24W S34, T27N R24W S27		SPC	S3	G4	1982-05-18	4305
<u>Cypripedium candidum</u> (Small White Lady's-slipper) #218 Location Description: T27N R24W S26		SPC	S3	G4	1993-06-04	17299
Dry Barrens Prairie (Southern) Type #11 Location Description: T114N R17W S2		N/A	S2	GNR	1992-08-15	2840
Dry Barrens Prairie (Southern) Type #14 Location Description: T114N R17W S2, T114N R17W S11		N/A	S2	GNR	1992-08-13	14048
<u>Dry Bedrock Bluff Prairie (Southern) Type</u> #137 Location Description: T114N R16W S33		N/A	S3	GNR	1993-08-04	18030
Dry Bedrock Bluff Prairie (Southern) Type #138 Location Description: T114N R16W S33, T114N R16W S28		N/A	S3	GNR	1993-08-04	18032
Dry Bedrock Bluff Prairie (Southern) Type #139 Location Description: T114N R16W S33		N/A	S3	GNR	1993-08-04	18029
Dry Bedrock Bluff Prairie (Southern) Type #140		N/A	S3	GNR	1993-08-04	18033
Location Description: 11144N K10W 525, 11144N K10W 526, 11144N K10W 555, 11144N K10W 555, 525 Copyright 2007 State of Minnesota DNR	of Minnesota DN	R			Printed 8/9/2007	10

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Researe urrences within g Plant - Transn TRS d Washington C	ch Program 1 mile radius of: nission Lines Counties			Pa	Page 4 of 27
	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Element Name and Occurrence Number Dakota County, MN			ç		1007-00-17	260
Dry Bedrock Bluff Prairie (Southern) Type #276 Location Description: T114N R17W S32, T114N R17W S31		N/A	8		00 90 0001	6590
Dry Sand - Gravel Oak Savanna (Southern) Type #13 Location Description: T115N R17W S34		N/A	75		30 00 0001	2001
Dry Sand - Gravel Oak Savanna (Southern) Type #37 Location Description: T114N R16W S17, T114N R16W S20		N/A	82	UNK CONK	72-00-5261	18027
Dry Sand - Gravel Prairie (Southern) Type #214 Location Description: T114N R16W S17, T114N R16W S16, T114N R16W S20, T114N R16W S21		N/A	70 53	and	1993-08-27	18012
Dry Sand - Gravel Prairie (Southern) Type #215 Location Description: T114N R17W S1		N/A	76 53	AND AND	1993-08-27	18011
Dry Sand - Gravel Prairie (Southern) Type #216 Location Description: T115N R17W S36, T114N R17W S1		A/N	70 53		1003-08-11	20984
Dry Sand - Gravel Prairie (Southern) Type #223 Location Description: T115N R18W S18		NA	76 5	200	1988-04-	8998
<u>Emydoidea blandingii</u> (Blanding's Turtle) #346 Location Description: T27N R23W S29, T27N R23W S31, T27N R23W S30, T27N R23W S32		THR	70	5 8	1089-07-11	11194
Envdoidea blandingii (Blanding's Turtle) #474 Location Description: T115N R20W S7, T115N R21W S12, T115N R20W S18, T115N R21W S13, T27N R24W S34		THK	76 5	to 0	1993-04-30	16935
Emydoidea blandingii (Blanding's Turtle) #677 Location Description: T115N R20W S13, T115N R20W S12, T27N R23W S33, T27N R23W S34		YHI U	70 53	5 8	1992-09-15	14020
Eryngium yuccifolium (Rattlesnake-master) #53 Location Description: T114N R18W S34, T114N R18W S33		SPC	сс цо	3 3	20-90-9006	16125
<u>Falco peregrinus</u> (Peregrine Falcon) #56 I continu Description: 127N R24W S23	No Status	XHI.	970	5		11300
Falcoperations for the falcon) #89 reaction Descriptions (Peregrine Falcon) #89 reaction Descriptions (P1150, B190, S13	No Status	THR	S2B	G4	2006	11666
Haliacetus leucocephalus (Baid Eagle) #1304 Location Description: T114N R16W S16	LT,PDL	SPC	S3B,S3N	63	2004	18/89
Copyright 2007 State of Minnesota DNR	te of Minnesota I	DNR			Printed 8/9/2007	2007

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Researc rrences within 1 Plant - Transm [RS] [Washington C	h Program mile radius of: ission Lines ounties			Pa	Page 5 of 27
Flamout Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota County, MN Haliacetus leucocephalus (Baid Eagle) #2108	LT,PDL	SPC	S3B,S3N	G5	2005-05-06	26991
Location Description: 1/11/N/L1/W 524, 1/11/N/L1/W 525 Haliacetus leucoccephalus (Badd Eagle) #2487 1 consider Description: T238N R22W 526	LT,PDL	SPC	S3B,S3N	65	2005-04-20	33027
<u>Hudsonia tomentosa</u> (Beach-heather) #14 Location Description: T114N R17W S32, T114N R17W S31, T113N R17W S6		SPC	S3	GS	1977-06-19	18057
Juniperus horizontalis (Creeping Juniper) #14 Location Description: T115N R18W S18		SPC		G5	1993-08-06	17548
Lanius Iudovicianus (Loggerhead Shrike) #86 Location Description: T114N R18W S25, T114N R17W S19, T114N R17W S18, T114N R18W S24	No Status	THR	S2B	G4	1994-07-15	12338
<u>Mesic Prairie (Southern) Type</u> #28 Location Description: T27N R23W S28, T27N R23W S27		N/A	S2	GNK	1994-00-18	2019
<u>Mesic Prairie (Southern) Type</u> #374 Location Description: T27N R24W S34, T27N R24W S27		N/A	23 S	GNK	10-60-0001	5001
<u>Mesic Prairie (Southern) Type</u> #392 Location Description: T114N R18W S34, T114N R18W S33		N/A	82	CUK	07-00-7661	14000 1961
<u>Native Plant Community. Undetermined Class</u> #84 Location Description: T115N R17W S26, T115N R17W S27		N/A	SNR	CUK	01-/0-4661	1007
Native Plant Community. Undetermined Class #89 Location Description: T114N R16W S21		N/A	SNK		07-00-1661	1107
Native Plant Community. Undetermined Class #207 Location Description: T115N R17W S36, T115N R16W S31		N/A	SNK	CUNK	20-10-0661	+6607
<u>Native Plant Community. Undetermined Class</u> #208 Location Description: T115N R17W S36		NA	SNR	GNK	0C P0 P001	C6607
<u>Native Plant Community. Undetermined Class</u> #291 Location Description: T115N R17W S34, T115N R17W S27		N/A	SNR	GNK	1994-04-28	1292
Native Plant Community. Undetermined Class #292 Location Description: T115N R17W S34		NA	SNK	NIN	07-00-1661	1007
Native Plant Community. Undetermined Class #484		N/A	SNR	GNK	00-/0-7661	14000
Location Description: 1114N K18W 530 Copyright 2007 State of Minnesota DNR	of Minnesota DI	NR			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Researc arrences within g Plant - Transn TRS d Washington C	ch Program 1 mile radius of: nission Lines Counties			Pa	Page 6 of 27
	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Element Name and Occurrence Autooct Dakota County, MN			GND	GNR	1992-09-15	14052
<u>Native Plant Community. Undetermined Class</u> #884 Location Description: T114N R17W S32, T114N R17W S31		NA	VINC		00 00 0001	2002
Native Plant Community, Undetermined Class #1183 Location Description: T115N R17W S34, T115N R17W S27		N/A	SNR	GNK	1994-04-20	C707
Native Plant Community. Undetermined Class #1311 1 constion Description: T115N R17W S26, T115N R17W S34, T115N R17W S27, T115N R17W S35		N/A	SNR	GNR	77-60-5661	8400
Native Plant Community. Undetermined Class #2128 Location Description: T27N R24W 527		N/A	SNR	GNR	1994-09-01	2888
Native Plant Community. Undetermined Class #2133 Location Description: 127N R24W S24		NA	SNR	GNK	C1-01-994-10-12	2002 80781
Native Plant Community. Undetermined Class #2141 Location Description: T114N R16W S33, T114N R16W S32		NA	SNK		C1-00-CCC1	18075
<u>Native Plant Community. Undetermined Class</u> #2146 Location Description: T115N R17W S35		NA	ANK		1003-08-17	15061
<u>Native Plant Community. Undetermined Class</u> #2154 Location Description: T113N R17W S6		N/A	SNK		11-00-0661	10001
<u>Native Plant Community. Undetermined Class</u> #2161 Location Description: T113N R17W S6, T113N R17W S5		NA	NIC	3000	10.07-01	5001
<u>Oenothera rhombipetala</u> (Rhombic-petaled Evening Primrose) #7 Location Description: T114N R17W S2, T114N R17W S11		SPC	3 8	60+D	10-00-2001	12060
<u>Orobanche fasciculata</u> (Clustered Broomrape) #17 Location Description: T114N R17W S11		SPC	6 5	5	1993-09-22	18039
Panax quinquefolius (American Ginseng) #134 Location Description: T115N R17W S35		SPC	8 8	+D 50	90-50-2001	00800
Pituophis catenifer (Gopher Snake) #86 Location Description: T114N R17W S12, T114N R17W S11		SPC	8	6 8	91-80-001	20002
Rhynchospora capillacea (Hair-like Beak-rush) #1 1 ocation Description: T27N R24W S13, T27N R23W S18, T27N R24W S24, T27N R23W S19		THR	76	5		
Rhynchospora capillacea (Hair-iike Beak-rush) #7		THR	S2	G4	1981-07-20	cc4c
Location Description: T27N R24W S34, T27N R24W S27 Copyright 2007 State of Minnesota DNR	e of Minnesota I)NR			Printed 8/9/2007	2007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Nongame Resear currences within ng Plant - Transt e TRS nd Washington (ch Program 1 mile radius of: nission Lines Counties			Pa	Page 7 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota County, MN			53	35	1041-00-10	5563
<u>Scleria verticillata</u> (Whorled Nut-rush) #1 Location Description: T27N R24W S13, T27N R23W S18, T27N R24W S24, T27N R23W S19		XH1	70	6		0000
<u>Scleria verticillata</u> (Whorled Nut-rush) #7 Location Description: T27N R24W S34, T27N R24W S27		THR	S2	9	07-/0-1961	00000
<u>Silver Maple - (Virginia Creeper) Floodplain Forest Type</u> #55 Location Description: T114N R16W S21, T114N R16W S16		N/A	S3	GNK	07-00-/ 661	C+07
<u>Spikerush - Bur Reed Marsh (Prairie) Type</u> #44 Location Description: T114N R16W S21		N/A	S3	GNK	07-00-/ 661	7942
<u>Tamarack Swamp (Southem) Type</u> #48 Location Description: T27N R23W S35, T27N R23W S27, T27N R23W S26, T27N R23W S34		N/A	S3	GNR	1995-09-08	18049
Trillium nivale (Snow Trillium) #8 Location Description: T115N R17W S34		SPC	S3	G4	2007-04-22	48/C
<u>Valeriana edulis ssp. ciliata</u> (Valerian) #10 Location Description: T27N R24W S34, T27N R24W S27		THR	22	c1 c5	07-00-0007	11221
<u>Valeriana edulis ssp. ciliata</u> (Valerian) #50 Location Description: T27N R24W S24		THR	82	(1513)	c0-00-c261	71221
<u>Valeriana edulis ssp. ciliata</u> (Valerian) #51 Location Description: T27N R24W S26		THR	25	C100	F0-00-6661	016/1
<u>Valeriana edulis ssp. ciliata</u> (Valerian) #77 Location Description: T115N R21W S15		THR	22	5100	10-00-0661	74701
Dakota, Goodhue County, MN		THR	S2	89	1993-08-02	13005
<u>Besseya bullii</u> (Ktiten-tails) #61 Location Description: T114N R16W S33, T113N R16W S4			6	8	1001-00-26	13118
Cirsium hillii (Hill's Thistle) #34 Location Description: T114N R16W S33, T113N R16W S4		SPC	8 8	8	96-00-1001	12777
Dry Bedrock Bluff Prairie (Southern) Type #7 Location Description: T114N R16W S33, T113N R16W S4		NA	8		NO 00 0001	71701
Dry Bedrock Bluff Prairie (Southern) Type #136 Location Description: T114N R16W S33, T113N R16W S4		N/A	S	GNK	+0-00-CZZI	1 COOT
Copyright 2007 State of Minnesota DNR	te of Minnesota I	NR			Printed 8/9/2007	:007

ATTACHMENT C

Federal Status MN State Status Global Rank Las Rank Global Rank Las Rank Las Rank Las Rank Las Rank State Rank Global Rank Las Rank Global Rank Las Rank Global Rank Las Rank Las Rank Las Rank Las Rank <thlas Rank Las Rank <thla< th=""><th>Federal status MN Sure Rank Color bark Date bark <thdate bark Date bark <thdate bark Date bark <thda< th=""><th>Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties</th><th>ngame Researd rences within Plant - Transm RS Washington C</th><th>th Program I mile radius of: hission Lines counties</th><th></th><th></th><th>В</th><th>Page 8 of 27</th></thda<></thdate </thdate </th></thla<></thlas 	Federal status MN Sure Rank Color bark Date bark Date bark <thdate bark Date bark <thdate bark Date bark <thda< th=""><th>Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties</th><th>ngame Researd rences within Plant - Transm RS Washington C</th><th>th Program I mile radius of: hission Lines counties</th><th></th><th></th><th>В</th><th>Page 8 of 27</th></thda<></thdate </thdate 	Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ngame Researd rences within Plant - Transm RS Washington C	th Program I mile radius of: hission Lines counties			В	Page 8 of 27
NIA SNR GNR 1991-09-26 1 THR S2 G4 2000-10 1 SPC S3 G5 3 3 SPC S3 G4 2000-10 1 SPC S3 G4 2000-10 1 SPC S3 G4 2000-00-07 3 SN THR S2 G4 2000-06-24 1 SN THR S2 G4 2001-08-07 3 SN THR S2 G4 2001-08-07 3 SN THR S2 G4 2001-08-07 3 THR S2 G5 1989-10-09 3 3 SPC S3 G5 1989-10-09 3 <t< th=""><th>NIA SNR GNR 1991-09-26 1 THR S2 G4 2000-10 1 SPC S3 G5 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-06-07 3 SNA THR S2 G4 2006-06-28 SNA THR S2 G4 2001-08-07 SNA THR S2 G5 1989-10-09 THR S2 G4 1</th><th>то алд Олонгалов Митрег</th><th>Federal Status</th><th>MN Status</th><th>State Rank</th><th>Global Rank</th><th>Last Observed Date</th><th>EO ID #</th></t<>	NIA SNR GNR 1991-09-26 1 THR S2 G4 2000-10 1 SPC S3 G5 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-09-07 3 SPC S3 G4 2005-06-07 3 SNA THR S2 G4 2006-06-28 SNA THR S2 G4 2001-08-07 SNA THR S2 G5 1989-10-09 THR S2 G4 1	то алд Олонгалов Митрег	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
THR S2 G4 2000-10 1 SPC S3 G5 3 3 SPC S3 G4 2005-09-07 3 THR S2 G4 2005-09-07 3 THR S2 G4 2005-09-07 3 THR S2 G4 2006-06-24 1 THR S1 G4 2001-08-07 3 THR S2 G5 1939-10-09 3 THR S2 G4 1939-10-09 3 THR S2 G5 1399-10-09 3 THR S2 G4 1999-10-01 3 THR S2 G4 1999-10-01	THR S2 G4 2000-10 1 SPC S3 G5 2005-09-07 3 SPC S3 G4 2005-09-07 3 THR S2 G4 2005-09-07 3 SPC S3 G4 2005-09-07 3 THR S2 G4 2005-06-07 3 S13 THR S2 G4 2006-06-24 1 THR S1 G4 2001-08-07 1 THR S2 G5 1989-10-09 1 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G4 1989-10-09 THR S2 G5 1989-10-09 THR S2 G4 1989-10-09 THR S2 <td< td=""><td>ar, foodhue County, MN 2, Goodhue County, MN 2, Plant Community, Undetermined Class #711 on Description: T114N R16W S34, T114N R16W S33, T113N R16W S4, T113N R16W S3</td><td></td><td>N/A</td><td>SNR</td><td>GNR</td><td>1991-09-26</td><td>13273</td></td<>	ar, foodhue County, MN 2, Goodhue County, MN 2, Plant Community, Undetermined Class #711 on Description: T114N R16W S34, T114N R16W S33, T113N R16W S4, T113N R16W S3		N/A	SNR	GNR	1991-09-26	13273
SPC S3 G5 3 SPC S3 G4 2005-09-07 3 THR S2 G4 2005-06-24 1 THR S2 G4 2001-08-07 3 S21, T1ISN RI6W S32, T26N R2IW S4, T27N BND S1 G4 2001-08-07 BND S1 G4 2001-08-07 1 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 S3 THR S2 G5 1989-10-09 3 THR S2 G4 1989-10-09 4 THR S2 G4 1989-10-09	SPC S3 G5 3 SPC S3 G4 2005-09-07 3 THR S2 G4 2005-09-07 3 THR S2 G4 2005-09-07 3 S21, T115N R16W S32, T26N R21W 54, T27N END S1 G4 2001-08-07 S21, T115N R16W S32, T26N R21W 54, T27N END S1 G4 2001-08-07 S3 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 3 THR S2 G5 1989-10-09 3 THR S2 G5 1989-10-09 3 THR S2 G4 1989-10-09 3 THR S2 G4 1989-10-09 4 THR S2 G4 1989-10-09 7 THR S2 G4 1989-10-09 3 THR S2 G4 1989-10-09 4 THR S2 G4 1989-10-09 5 G4 1989-10-09 G6 1989-10-09	a, Goodhue, Wabasha County, MN <u>don spathula</u> (Paddlefish) #2 on Description: Legal description is too lengthy to fit in allotted space.		THR	S2	G4	2000-10	16507
SPC S3 G4 2005-09-07 3 THR S2 G4 2006-06-24 1 S21, T115N R16W S33, T26N R21W S4, T27N BND S1 G4 2001-08-07 S21, T115N R16W S33, T26N R21W S4, T27N BND S1 G4 2001-08-07 S21, T115N R16W S33, T26N R21W S4, T27N BND S1 G4 2001-08-07 S21, T115N R16W S33, T26N R21W S4, T27N BND S1 G5 1989-10-09 S31 THR S2 G5 1989-10-09 3 THR S2 G5 1899-07-01 3 THR S2 G4 1989-10-09 3 THR S2 G4 1989-10-09 3 THR S2 G4 1989-10-09 4 THR S2 G4 1989-10-09	SPC S3 G4 2005-09-07 3 THR S2 G4 2006-06-24 1 S21, T15N R16W S32, T26N R21W S4, T27N BND S1 G4 2001-08-07 2 S21, T15N R16W S32, T26N R21W S4, T27N BND S1 G4 2001-08-07 2 S21, T15N R16W S32, T26N R21W S4, T27N BND S1 G5 2006-06-28 2 S3 THR S2 G5 1989-10-09 2 2 3 SPC SPC S2 G5 1989-10-09 2 3 SPC SPC S2 G5 1989-10-09 2 3 THR S2 G4 1989-10-09 2 2 3 THR S2 G4 1989-10-09 2 2 3 THR S2 G4 1989-10-09 2<	12, Goodhue, Washington County, MN 14 mores (Rlack Sandshell) #405		SPC	S3	65		33850
THR S2 G4 2006-06-24 END S1 G4 2001-08-07 END S1 G4 2001-08-07 THR S1 G5 2006-06-28 THR S1 G5 2006-06-28 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1899-07-01 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09	THR S2 G4 2006-06-24 THR S2 G4 2006-06-24 THR S2 G4 2006-06-28 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1899-07-01 THR S2 G4 1989-10-09 THR S2 G4	ion Description: Legal description is too lengthy to fit in allotted space.		Jas	S	G4	2005-09-07	33655
IHK 52 64 2001-08-07 END S1 64 2001-08-07 END S1 65 2006-06-28 THR S2 65 1989-10-09 THR S2 65 1989-10-09 THR S2 65 1989-10-09 THR S2 65 1989-10-09 THR S2 65 1899-07-01 THR S2 64 1989-10-09 THR S2 64 1989-10-09 THR S2 64 1989-10-09	IHK 52 64 2001-08-07 23 END S1 G4 2001-08-07 23 END S1 G5 2006-06-28 29 THR S2 G5 1989-10-09 23 THR S2 G5 1989-10-09 24 THR S2 G5 1989-10-09 24 THR S2 G5 1989-10-09 26 THR S2 G5 1989-10-09 26 THR S2 G5 1989-10-09 26 THR S2 G4 1989-10-09 26 THR	<u>aria olivaria</u> (Hickorynut) #138 ion Description: Legal description is too lengthy to fit in allotted space.			3 8	5 8	2006-06-24	16529
END S1 G4 Z001-100-01 THR S1 G5 2006-06-28 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 FR S3 G5 1899-07-01 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09	END SI G4 Z001-00-01 END S1 G5 2006-06-28 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 G5 1999-10-09 THR S2 G4 1989-10-09	<u>don spathula</u> (Paddlefish) #1 ion Description: Legal description is too lengthy to fit in allotted space.		THK	76 37	5 3		31400
#25 END S1 G5 2006-06-28 THR S2 G5 1989-10-09 THR S2 G5 1989-10-09 THR S2 C6 1989-10-09 THR S2 TTR S24W S21 TTR S24W S23 TTHR S2 TTR S24W S23 TTHR S2 C6 11-PRE SPC S3 C6 11-PRE TTR S22 TTR N24W S23 TTHR S22 TTR N24W S23 TTHR S2 C6 1989-10-09 THR S2 C6 1989-10-09 THR S2 C6 1989-10-09 TTR S4W S23 T	#25 END S1 G5 2006-06-28 THR S2 C06-06-28 THR S2 C06-06-28 TTRR S2 C06-06-28 TTRR S2 C06-06-28 TTRR S2 C06-06-28 TTRR S2 C06-06 TTRR S2 C06-01 TTRR S2 C06-06 THR S2 C06-01 TTRR S2 C06-06 TTRR S2 C06-07 C01 TTRR S2 C06-07 C06 TTRR S2 C06-07 C06-07 C06-07 C06 TTRR S2 C06-07 C	ula nodulata. (Wartyback) #28 ion Description: T115N R17W S25, T114N R16W S13, T115N R17W S21, T115N R16W S32, R20W S7, T115N R17W S23, T115N R17W S24, T115N R18W S14, T26N R21W S4, T27N / S35, T26N R22W S2, T26N R21W S5, T26N R20W S8		END	8	5		00110
#25 THR S2 G5 1989-10-09 T27N R24W S27 TTHR 24W S22, T27N R24W S23 TTHR S2 G5 2006-11-PRE 8 TTHR S2 G5 1899-07-01 #2 TTHR S2 G4 1989-10-09 TTHR S2 G4 1989-10-09 TTHR S2 G4 106-11-PRE TTHR S2 TT S2 G4 106-11-PRE	#25 TTHR S2 G5 1989-10-09 T27N R24W S27 T27N R24W S23 T27N R24W S23, T27N R24W S23 T27N R24W S23, T27N R24W S23 T27N R24W S29, T27N R24W S23 THR S2 G4 1989-10-09 THR S2 G4 1989-10-09 THR S2 G4 1066-11-PRE THR S2 G4 1066-11-PRE			FND	SI	65	2006-06-28	25374
TTN R24W S27 TTH R24W S27 TTH R24W S22, T27N R24W S23 T27N R24W S29, T27N R24W S33 T27N R24W S29, T27N R24W S33 TTH R24W S29, T27N R24W S33 TTH R24W S27 TTH R24W S23, T	T27N R24W S27 T27N R24W S27, T27N R24W S23 T27N R24W S22, T27N R24W S23 #2 T27N R24W S29, T27N R24W S33 T27N R24W S29, T27N R24W S33 T27N R24W S27 T7HR S24W S23, T T7HR S24W S23, T T7HR S24W S23, T T7HR S24W S23, T T7H R24W S23, T T7N R24W S24W S24W S24W S24W S24W S24W S24W S				ទ	SD SD	1989-10-09	28558
THR 52 000-11-100 10 2000-11-100 2000-11-100 11 11 11 11 11 11 11 11 11 11 11 11	THR 52 000-11-100 2000-11-100 2000-11-100 2000-11-100 2000-11-100 2000-11-100 2000-11-100 2000-11-100 2000-11-100 2000 20	o <u>naias ligamentina</u> (Mucket) #162 ion Description: T27N R24W S28, T27N R24W S27		YHT	70 00	3 8	Had_11_Annc	37176
#2 SPC 55 G3 10201000 1127N R24W S33 THR S2 G4 1989-10-09 127N R24W S29, T27N R24W S27 THR S2 G4 1989-10-09 127N R24W S27 THR S2 G4 1006-111-PRE 127N R24W S23 T · ·	#2 T27N R24W S29, T27N R24W S33 T27N R24W S29, T27N R24W S33 T27N R24W S27 T27N R24W S27 T27N R24W S23, T · Copyright 2007 State of Minnesota DNR	onaias ligamentina (Mucket) #268 tion Description: T27N R24W S29, T27N R24W S22, T27N R24W S23		THR	75	6 8	10-20 0001	80117
228, T27N R24W S27 229, T27N R24W S23, T · · · · · · · · · · · · · · · · · ·	228, T27N R24W S27 528, T27N R24W S27 52, G4 2006-11-PRE 529, T27N R24W S23, T . Copyright 2007 State of Minnesota DNR 75, 52, 52, 52, 52, 52, 52, 52, 52, 52, 5	<u>a chrysochloris</u> (Skipjack Herring) #2 tion Description: T27N R24W S28, T27N R24W S33		SPC	8 6	6 19	1989-10-09	28716
THR S2 G4 :000-11-FXG T27N R24W S23, T ·	THR S2 G4 2000-11-FAG T27N R24W S23, T . Copyright 2007 State of Minnesota DNR Printed 8/9/2007	S28,		NHI	70	5 8		00176
	Copyright 2007 State of Minnesota DNR			THR	S2	5	GN1-11-000;	06140

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Vongame Resea urrences within g Plant - Trans TRS d Washington	rch Program 1 mile radius of: mission Lines Counties			Ра	Page 9 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota, Hennepin County, MN		040	50	20	1000 10 00	01700
Elliptio dilatata (Spike) #134 Location Description: T27N R24W S28, T27N R24W S22, T27N R24W S27		SPC	8	9	60-01-6961	61/07
<u>Elliptio dilatata</u> (Spike) #230 Location Description: T27N R24W S29, T27N R24W S23, T27N R24W S22		SPC	S3	GS	2006-11-PRE	34207
Freshwater Mussel Concentration Area (Mussel Sampling Site) #140 Location Description: T27N R24W S28, T27N R24W S27		No Status	SNR	GNR	1989-08-28	14980
<u>Ictiobus niger</u> (Black Buffalo) #18 Location Description: T27N R24W S13, T27N R24W S24		SPC	S3	G5	2002-09-13	30131
Lampsilis higginsi (Higgins Eye) #18 Location Description: T27N R24W S28, T27N R24W S27	LE	END	SI	GI	1989-Pre	28601
Lasmigona costata. (Fluted-shell) #221 Location Description: T27N R24W S29, T27N R24W S23		SPC	S3	GS	2006-11-PRE	34236
Ligumia recta (Black Sandshell) #521 Location Description: T27N R24W S29, T27N R24W S22, T27N R24W S23		SPC	S3	G5	2006-11-PRE	34248
Megalonaias nervosa (Washboard) #11 Location Description: T27N R24W S28, T27N R24W S27		THR	S2	GS	1989-10-09	28717
<u>Megalonaias nervosa</u> (Washboard) #26 Location Description: T27N R24W S29, T27N R24W S23, T27N R24W S22		THR	S2	65	2006-11-PRE	34259
Native Plant Community. Undetermined Class #1359 Location Description: T27N R24W S27, T27N R24W S22		N/A	SNR	GNR	1995-06-22	21565
<u>Obovaria olivaria</u> (Hickorynut) #87 Location Description: T27N R24W S28, T27N R24W S27		SPC	S3	G4	1989-10-09	28632
<u>Obovaria olivaria</u> (Hickorynut) #149 Location Description: T27N R24W S29, T27N R24W S23, T27N R24W S22		SPC	S3	G4	2006-11-PRE	34263
Pleuroberna coccineum (Round Pigtoe) #89 Location Description: T27N R24W S28, T27N R24W S27		THR	S2	G4	1989-10-09	28556
<u>Pleurobema coccineum</u> (Round Pigtoe) #156 Location Description: T27N R24W S29, T27N R24W S23,		THR	S2	G4	2006-11-PRE	34270
Quadrula fragosa (Winged Mapleleat) #8	LE	END	SI	GI	1989-10-Pre	28555
Location Description: 12/1N K24 W 326, 12/1N K24 W 325, 12/1N K24 W 325, 12/1N K24 W 326, 12/1N K24 W 326, 12/1N	: of Minnesota D	NR			Printed 8/9/2007	00

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	vongame Researc urrences within : g Plant - Transm TRS d Washington C	ch Program 1 mile radius of: nission Lines Counties			Pag	Page 10 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota, Hennepin County, MN		THR	S2	G4	2006-11-PRE	34280
<u>Quadrula metanevra</u> (Monkeyriace) #70 Location Description: T27N R24W S29, T27N R24W S22, T27N R24W S22					00 01 0001	02121
<u>Tritogonia verrucosa</u> (Pistolgrip) #28 Location Description: T27N R24W S28, T27N R24W S27		THR	82	C040	60-01-6861	001/1
Dakota, Hennepin, Ramsey, Scott County, MN			į	2	00 00 00 0000	20121
<u>Arcidens confragosus</u> (Rock Pocketbook) #11 Location Description: T115N R21W 89, T27N R23W S5, T28N R23W S28, T28N R23W S22, T27N R24W S27, T27N R24W S28, T28N R23W S20		END	SI	64	50-90-50-C007	001/1
Fusconaia ebena (Ebonyshell) #8		END	SI	G4G5	2001-07-PRE	17119
Location Description: T28N R23W S22, T28N R23W S27, T27N R24W S13, T115N R21W S6, T27N R24W S28, T115N R21W S9, T27N R24W S27, T28N R23W S23, T28N R23W S28, T28N R23W S21, T27N R24W S29, T27N R24W S23, T27N R24W S22			ē	5	11-01-0000	17121
Quadrula nodulata (Wartyback) #10 Location Description: T28N R23W S28, T28N R23W S14, T27N R24W S27, T28N R22W S6, T28N R23W S21, T28N R23W S23, T27N R24W S28, T28N R23W S20, T115N R21W S9, T115N R21W S6, T27N R24W S22, T28N R23W S22, T27N R24W S13, T27N R24W S29, T27N R24W S23		END	16	5	11-01-000	
Dakota, Hennepin, Scott County, MN			ā	ð	1077 Bee	12100
Elliptio crassidens (Elephant-ear) #7 Location Description: T27N R24W S13, T27N R24W S28, T115N R21W S9, T27N R24W S29, T27N R24W S23, T27N R24W S22		END	SI	9	217-1161	+0107
Dakota, Ramsey County, MN		040	NC9 009	YU.	1987	20460
Haliaeetus leucocephalus (Bald Eagle) #2257 Location Description: T28N R22W S23, T28N R22W S26, T28N R22W S22	LI,PDL	src	NICC'ACC	3		
Native Plant Community, Undetermined Class #1252 Location Description: T28N R22W S23, T28N R22W S15, T28N R22W S14, T28N R22W S22		N/A	SNR	GNR	1975	1091
Dakota, Scott County, MN				2	01 20 2000	24101
<u>Cyenus buccinator</u> (Trumpeter Swan) #82 Location Description: T114N R22W S13, T114N R22W S12, T114N R22W S11, T27N R23W S32, T27N R23W S30, T27N R23W S29, T27N R23W S31		THR	S2B	50	01-00-1007	101+0
Copyright 2007 State of Minnesota DNR	e of Minnesota D	NR			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Nongame Resea currences within g Plant - Trans ; TRS nd Washington	urch Program n 1 mile radius of: smission Lines Counties			Pag	Page 11 of 27	
n	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #	
Externent varue and Occur ence varues Dakota, Scott County, MN Errydoidea blandingii (Blanding's Turtle) #228 Location Description: T27N R24W S32, T115N R21W S10, T115N R21W S15, T27N R24W S31, T115N R21W S16		THR	S2	G4	1997-06-	7396	
Dakota, Washington County, MN <u>Acipenser fulvescens</u> (Lake Sturgeon) #95 Location Description: T115N R17W S24, T26N R20W S9		SPC	S3	G3G4	1993-04-	20804	
Actinonaias ligamentina (Mucket) #118 Location Description: T26N R20W S9, T26N R20W S4, T26N R20W S7, T115N R17W S24, T115N D17W C57 T115N R17W S21, T115N R17W S25, T27N R20W S14		THR	S2	65	2001-09-18	22053	
Alasmidonta marginata (Elktoc) #115 Location Description: T115N R17W S21, T16N R20W S7, T26N R20W S8		THR	S2	G4	2000-Pre 2007-06-19	31514	
Arcidens confragosus (Rock Pocketbook) #22 Location Description: T115N R17W S23, T26N R20W S8, T26N R20W S7, T115N R17W S21, T115N R17W S22		END	81	*D 050	02-00-2002	94410	
Cycleptus elongatus (Blue Sucker) #53 Location Description: T28N R22W S26, T28N R22W S35		SPC	6 8		7C-80-7001	2007	
		SPC	S S	G3G4	1996-09-30	6424	
<u>Cycleptus elongatus</u> (Blue Sucker) #68 Location Description: T28N R22W S26			8 8	S	1988	16548	
<u>Cyclonaias tuberculata</u> (Purple Wartyback) #36 Location Description: T115N R17W S24, T26N R20W S9		THK	76 53	6 8	2002-09-26	16545	
Ellipsaria lineolata (Butterfly) #18 Location Description: T115N R17W S25, T115N R17W S22, T26N R20W S7, T26N R20W S8, T26N R20W S9, T115N R17W S24			76	5 8	2004-08-04	16547	
Elliptic crassidems (Elephant-ear) #5 Location Description: T115N R17W S23, T115N R17W S21, T115N R17W S22, T26N R20W S8, T26N R20W S7, T26N R21W S5, T26N R21W S6, T27N R21W S32, T26N R20W S9, T115N R 17W S74		END	10	6			
Elliptio dilatata (Spike) #60 Location Description: T115N R17W S24, T26N R20W S9		SPC	S3	63	-90-0661	04001	
Copyright 2007 State of Minnesota DNR	te of Minnesota	DNR			Printed 8/9/2007	2007	

State Global Rank Rank	al Last Observed c Date	EO ID #
50	90-80-200C	13670
8		
S2 G3	2002-Pre	31486
S2B G4	2006	26781
		26815
C1405	t0-90-t007 C	++cor
9	7	31386
3N		29876
		2483
		10166
		40/0
		666/1
		09091
		00001
	Printed 8/9/2007	2007
83 83 83	8 8 8	G5 2004-08-04 G5 2003-08-06 G4 1926-08-19 Printed 8/9

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	vongame Resea urrences withir g Plant - Trans TRS d Washington	rch Program 1 1 mile radius of: mission Lines Counties			Pag	Page 13 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Dakota, Washington County, MN			;	2	20 00 F000	01221
<u>Obovaria olivaria</u> (Hickorynut) #38 Location Description: T115N R17W S24, T26N R20W S9, T26N R20W S7, T26N R20W S8, T115N R17W S22		SPC	S	5	cu-ou-+007	7400
Plethobasus cyphyns (Sheepnose) #3 Location Description: T26N R20W S9, T26N R20W S7, T26N R21W S12, T115N	U	END	SI	8	1988-11	16541
R17W S23, T115N K1/W S21, T115N K1/W S22, T115N K1/W S22, T115N K1/W S23, T115N K1/W S23, T115N K1/W S23, T15N	C	END	SI	G3	2001-Pre	31380
<u>Pleurobema coocineum</u> (Round Pigtoe) #55 Location Description: T115N R17W S24, T26N R20W S9		THR	S2	G4	2004-08-03	16540
Quadrula fragosa (Winged Mapleleaf) #17 Quadrula fragosa (Winged Mapleleaf) #17 Location Description: T115N R17W S22, T115N R17W S21, T26N R20W S7, T26N R20W S8	LE	END	SI	ß	2002-Pre	31384
Quadrula metanevra. (Monkeyface) #30 Location Description: T26N R20W S9, T26N R20W S8, T115N R17W S21, T115N R16W S32, T26N R21W S12, T115N R17W S22, T115N R17W S24, T26N R20W S7, T115N R17W S25		THR	S2	G4	2004-08-04	16039
<u>Ouadrula nodulata</u> (Wartyback) #22 Location Description: Legal description is too lengthy to fit in allotted space.		END	SI	5	2003-08-13	1/607
<u>Silver Maple - (Virginia Creeper) Floodplain Forest Type</u> #14 Location Description: T115N R17W S23, T26N R20W S8, T115N R17W S22		N/A	S3	GNR	1987-07-08	7494
<u>Silver Maple - (Virginia Creeper) Floodplain Forest Type</u> #32 Location Description: T27N R22W S2, T28N R22W S35		N/A	S3	GNR	1994-08-09	21002
Silver Maple - (Virginia Creeper) Floodplain Forest Type #53 Location Description: T26N R20W S9, T115N R17W S25, T115N R17W S24		N/A	S3	GNR	1994-08-20	7027
<u>Tritogonia vernucosa</u> (Pistolgrip) #34 Location Description: T115N R17W S24, T115N R17W S22, T115N R17W S21, T26N R20W S7, T26N R20W S8, T26N R20W S9		THR	S2	G4G5	-11-8861	10184
Goodhue County, MN Acipenser fulvescens (Lake Sturgeon) #86		SPC	S3	G3G4	1997-10-23	20145
Location Description: T113N R15W S9, T113N R15W S10 <u>Acipenser fulvescens</u> (Lake Sturgeon) #153		SPC	S3	G3G4	2000-05-26	27745
Location Description: T113N R15W S9, T113N R15W S10 Copyright 2007 State of Minnesota DNR	e of Minnesota]	DNR			Printed 8/9/2007	007

Prairie Island Nuclear Generating Plant License Renewal Application Appendix E - Environmental Report

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Resear irrences within g Plant - Transr TRS i Washington (ch Program 1 mile radius of: nission Lines Counties			Pag	Page 14 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Goodhue County, MN			5	1000	00 00 0000	00006
Acipenser fulvescents (Lake Sturgeon) #206 Location Description: T114N R15W S29, T114N R15W S32		SPC	8	6364	00-60-7007	06006
<u>Actinonaias ligamentina</u> (Mucket) #115 Location Description: T113N R15W S9, T113N R15W S11, T114N R15W S30, T113N R15W S10, T113N R15W S13, T113N R15W S14, T113N R15W S12		THR	82	9	2004-07-09	C6112
<u>Actinonaias ligamentina</u> (Mucket) #158 Location Description: T113N R15W S4, T113N R15W S9, T113N R15W S8, T113N R15W S5, T114N R15W S32, T114N R15W S33		THR	S2	3	1.1-60-0861	C1 CC7
<u>Alasmidonta marginata</u> (Elktoc) #77 Location Description: Legal description is too lengthy to fit in allotted space.		THR	S2	G4	2004-07-09	26244
<u>Alasmidonta marginata</u> (Elktoe) #116 Location Description: T114N R15W S31, T114N R15W S30, T114N R15W S32, T113N R15W S10, T114N R15W S29		THR	S2	G4	2004-08-02	31515
<u>Alosa chrysochloris</u> (Skipjack Herring) #17 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	8	1993-08-23	64/8
<u>Ammocrypta asprella</u> (Crystal Darter) #23 Location Description: T113N R15W S9, T113N R15W S10		SPC	S	8	1995-06-16	21051
Apalone mutica (Smooth Softshell) #13 Location Description: T113N R15W S10		SPC	S3	6	77-00-9661	1/100
<u>Apalone mutica</u> (Smooth Softshell) #18 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	3	61-00-0661	8/ IOS
<u>Arcidens confragosus</u> (Rock Pocketbook) $\#17$ Location Description: Legal description is too lengthy to fit in allotted space.		END	SI	5 5	2004-0-10-4002	07/C7
<u>Besseya bullii</u> (Kitten-tails) #107 Location Description: T113N R15W S27		THR	82	3	20-71-/661	04677
<u>Buteo lineatus</u> (Red-shouldered Hawk) #52 Location Description: T113N R15W S22		SPC	S3B,SNRN	33	1990-06-13	C1411
<u>Buteo lineatus</u> (Red-shouldered Hawk) #53 Location Description: T113N R15W S22, T113N R15W S21		SPC	S3B,SNRN	3	c1-00-0661	11414
<u>Buteo lineatus</u> (Red-shouldered Hawk) #181 1iton Dascriation: T113N R15W S21		SPC	S3B,SNRN	3	1995-05-18	20803
Locatori Description. A set of Minnesota DNR Copyright 2007 State of Minnesota DNR	of Minnesota D	NR			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Research Irrences within 1 (Plant - Transmi TRS I Washington Cc	h Program mile radius of: ission Lines ounties			Pag	Page 15 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Goodhue County, MN						
Calcareous Fen (Southeastern) Type #21 Location Description: T113N R15W S21, T113N R15W S28		N/A	SI	GNR	1992-06-	143/8
<u>Clemmys insculpta</u> (Wood Turtle) #7 Location Description: T113N R15W S22, T113N R15W S21		THR	S2	G4	1988-06-16	1480
<u>Clemmys insculpta</u> (Wood Turtle) #22 Location Description: T113N R15W S16, T113N R15W S15		THR	S2	G4	1973-06-	1494
<u>Clemmys insculpta</u> (Wood Turtle) #26 Location Description: T113N R15W S21, T113N R15W S20		THR	S2	G4	1973-06	1498
<u>Clemmys insculpta</u> (Wood Turtle) #27 Location Description: T113N R15W S21, T113N R15W S28		THR	S2	G4	1988-06-09	1499
Crotatus horridus (Timber Rattlesnake) #178 Location Description: T113N R16W S1, T113N R15W S21, T113N R15W S16, T113N R15W S20		THR	S2	G4	2005-05-08	33383
Cveleptus elongatus (Blue Sucker) #30 Location Description: T113N R15W S9, T113N R15W S10		SPC	S	G3G4	1992-10-14	16098
Cycleptus elongatus (Blue Sucker) #56 Location Description: T113N R15W S9, T113N R15W S10		SPC	S	G3G4	1995-09-05	6434
Cveleptus elongatus (Blue Sucker) #82 Location Description: T114N R15W S29, T114N R15W S28, T114N R15W S33		SPC	S3	G3G4	1997-05-22	23206
Cyclonaias tubeculata (Purple Wartyback) #34 Location Description: T113N R15W S14, T113N R15W S12, T113N R15W S11, T113N R15W S13, T113N R15W S10		THR	S2	ß	2004-0-10-	21140
<u>Denároica cerulea</u> (Cerulean Warbler) #40 Location Description: T113N R16W S1, T113N R15W S6		SPC	S3B	G4	1990-05-31	16171
Dendroica cerulea (Cerulean Warbler) #41 Location Description: T113N R15W S16, T113N R15W S8, T113N R15W S9		SPC	S3B	G4	1990-07-05	17189
<u>Dendroica cerulea</u> (Cerulean Warbler) #43 Location Description: T113N R15W S21, T113N R15W S20		SPC	S3B	G4	1990-06-13	16977
Dendroica cerulea (Cerulean Watolier) #44 Location Description: T113N R15W S16, T113N R15W S9		SPC	S3B	G4	1996-07-05	16976
Copyright 2007 State of Minnesota DNR	of Minnesota DN	Я			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	mgame Resear rrences within Plant - Transr RS Washington (ch Program 1 mile radius of: nission Lines Counties			Pag	Page 16 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN						
<u>Dendroica cerulea</u> (Cerulean Warbler) #45 Location Description: T113N R15W S10		SPC	S3B	G4	1990-06-13	16975
Dendroica cerulea (Cerulean Warbler) #47 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3B	G4	1990-06-13	16973
Dendroica cerulea (Cerulean Warbler) #48 Location Description: T113N R15W S22, T113N R15W S14, T113N R15W S23, T113N R15W S15		SPC	S3B	G4	1990-06-13	16972
Dry Bedrock Bluff Prairie (Southem) Type #100 Location Description: T113N R16W S9, T113N R16W S4		N/A	S3	GNR	1990-10-10	11771
<u>Dry Sand - Gravel Oak Savanna (Southern) Type</u> #28 Location Description: T114N R16W S27, T114N R16W S23, T114N R16W S26		N/A	S2	GNR	1990-10-04	15932
<u>Dry Sand - Gravel Oak Savanna (Southern) Type</u> #29 Location Description: T114N R16W S36		N/A	S2	GNR	1990-10-04	15933
Dry Sand - Gravel Oak Savanna (Southern) Type #36 Location Description: T113N R15W S5		N/A	S2	GNR	1992	14964
Dry Sand - Gravel Prairie (Southern) Type #167 Location Description: T113N R15W S22, T113N R15W S28, T113N R15W S27, T113N R15W S21		N/A	S2	GNR	1991-10-14	13107
Dry Sand - Gravel Prairie (Southern) Type #177 Location Description: T113N R15W S21, T113N R15W S28		N/A	S2	GNR	1992	15302
Ellipsaria lineolata (Butterfly) #27 Location Description: T113N R15W S10		THR	S2	G4	1999-07-	26065
Ellipsaria lineolata (Butterfly) #46 Location Description: T113N R15W S9, T113N R15W S10		THR	S2	G4	2003-Pre	31484
<u>Elliptio crassidens</u> (Elephant-ear) #4 Location Description: Legal description is too lengthy to fit in allotted space.		END	SI	GS	1944-Pre	21139
<u>Elliptio dilatata</u> (Spike) #113 Location Description: T113N R15W S13, T113N R15W S11, T113N R15W S10		SPC	S 3	ß	2004-07-09	25825
<u>Elliptio citatata</u> (Spike) #129 Location Description: T113N R15W S4, T113N R15W S9, T113N R15W S8, T113N R15W S5, T114N R15W S32, T114N R15W S33		SPC	S3	GS	1980-09-17	25514
Copyright 2007 State of Minnesota DNR	f Minnesota D?	ИR			Printed 8/9/2007	01

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lincs Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Nongame Resear currences within ug Plant - Transı 7 TRS nd Washington (ch Program 1 mile radius of nission Lines Counties			Pag	Page 17 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Goodhue County, MN						
Elliptio dilatata (Spike) #130 Location Description: T113N R15W S10		SPC	S3	GS	1999-07-	26069
<u>Elliptio dilatata</u> (Spike) #202 Location Description: T113N R15W S9, T114N R15W S30, T113N R15W S4, T113N R15W S10		SPC	S3	GS	2000-07-PRE	33669
<u>Emvdoidea blandingii</u> (Blanding's Turtle) #718 Location Description: T114N R15W S32, T113N R15W S6, T113N R15W S5, T114N R15W S31		THR	S2	G4	-10-689-07-	17731
<u>Emydoidea blandingii</u> (Blanding's Turtle) #811 Location Description: T113N R15W S22, T113N R15W S28, T113N R15W S27, T113N R15W S21		THR	S2	G4	1996-06-19	23266
<u>Falco peregrinus</u> (Peregrine Falcon) #66 Location Description: T113N R15W S5	No Status	THR	S2B	G4	2006-06-07	2788
<u>Fusconaia ebena</u> (Ebonyshell) #11 Location Description: T113N R15W S11, T113N R15W S12, T113N R15W S13, T113N R15W S14, T113N R15W S93, T114N R15W S29, T114N R15W S28, T113N R15W S4, T114N R15W S32, T114N R15W S30, T114N R15W S31, T113N R15W S10		END	SI	G4G5	2004-07-PRE	21138
<u>Haliacetus leucocephalus</u> (Baid Eagle) #1124 Location Description: T114N R16W S34, T114N R16W S26, T114N R16W S35, T114N R16W S27	LT,PDL	SPC	S3B,S3N	ß	1996	15403
Haliacetus leucocephalus (Baid Eagle) #1532 Location Description: T113N R15W S8	LT,PDL	SPC	S3B,S3N	GS	2000	21811
<u>Haliacetus leucocephalus</u> (Bald Eagle) #1705 Location Description: T114N R16W S27	LT,PDL	SPC	S3B,S3N	GS	1998	23270
<u>Haliacetus leucocephatus</u> (Bald Eagle) #1722 Location Description: T113N R15W S6	LT,PDL	SPC	S3B,S3N	GS	2005-03-23	24292
Haliacetus leucocephalus (Baid Eagle) #2142 Location Description: T113N R15W S6	LT,PDL	SPC	S3B,S3N	GS	1999	27180
<u>Haliacetus leucoccephalus</u> (Bald Eagle) #2165 Location Description: T113N R15W S15	LT,PDL	SPC	S3B,S3N	ß	2001-Pre	28523
Haliacetus leucoccephalus (Bald Eagle) #2167 - Location Description: T114N R16W S27	LT,PDL	SPC	S3B,S3N	GS	2005-04-20	28572
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #2335 Location Description: T113N R15W S23	LT,PDL	SPC	S3B,S3N	GS	2004-03-27	31864
Copyright 2007 State of Minnesota DNR	of Minnesota D	NR			Printed 8/9/2007	07

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ıgame Researe rences within Plant - Transın RS Washington C	ch Program I mile radius of: iission Lines counties			Pag	Page 18 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
agle) #2348	LT,PDL	SPC	S3B,S3N	G5	2004-Pre	31907
Location Description: 1115/ KL5 W 510 Hesperia leonardus leonardus (Leonard's Skipper) #14 I coefion Description: T113/N R16W S1, T113/N R15W S6		N/A	S3	G4T4	1967-09-16	26346
letiobus niger. (Black Buffalo) #17 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	ß	2000-09-25	24744
<u>Ictiobus niger</u> (Black Buffalo) #19 Location Description: T113N R15W S9, T113N R15W S10		SPC	S3	GS	2002-10-09	30518
Lampsilis higgins (Higgins Eye) #13 Location Description: T113N R15W S9, T113N R15W S11, T114N R15W S30, T113N R15W S10, T113N R15W S13, T112N R13W S1, T112N R13W S12, T113N R14W S26, T113N R14W S27, T113N R15W S14, T113N R15W S12	LE	END	SI	19	2004-07-09	21134
Lampsilis higginsi (Higgins Eye) #28 Location Description: Legal description is too lengthy to fit in allotted space.	LE	END	SI	ß	2004-07-08	31904
Lampsilis higeinsi (Higgins Eye) #36 Location Description: T113N R15W S5, T113N R15W S4, T114N R15W S32, T114N R15W S33	LE	END	SI	ßI	2005-09-29	33180
Lampsilis tercs (Yellow Sandshell) #19 Location Description: T113N R15W S4, T114N R15W S30, T114N R16W S13, T113N R15W S10, T114AY R15W S33, T114N R15W S32		END	SI	33	2004-08-02	31366
Lesquerella ludoviciana (Bladder Pod) #15 Location Description: T113N R15W S21		END	SI	ß	1991-10-14	32251
Lesquerella ludoviciana (Bladder Pod) #16 Location Description: T113N R15W S27		END	SI	ß	1993-07-19	32252
<u>Ligumia recta</u> (Black Sandshell) #203 Location Description: T113N R15W S10, T113N R15W S11, T114N R15W S30		SPC	S3	S	2004-08-02	26070
Megalonaias nervosa (Washboard) #13 Location Description: T113N R15W S10		THR	S2	GS	2004-07-09	26030
Megalonaias nervosa (Washboard) #19 Location Description: T113N R15W S9, T113N R15W S10, T114N R15W S32, T113N R15W S4, T114N R15W S33		THR	S2	GS	2005-09-07	31491
Copyright 2007 State of Minnesota DNR	Minnesota DI	R			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Resear Irrences within Ç Plant - Transu TRS İ Washington (ch Program 1 mile radius of: nission Lines Counties			Pag	Page 19 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN						
Minuartia dawsonensis (Rock Sandwort) #13 Location Description: T113N R16W S9, T113N R16W S4		SPC	S3	33	1990-10-04	11742
Native Plant Community, Undetermined Class #400 Location Description: T113N R16W S4		N/A	SNR	GNR	1990-10-10	11927
Native Plant Community, Undetermined Class #672 Location Description: T114N R16W S27		N/A	SNR	GNR	1991-09-26	13274
Native Plant Community, Undetermined Class #699 Location Description: T113N R15W S21		N/A	SNR	GNR	1991-09-04	13337
Native Plant Community, Undetermined Class #856 Location Description: T114N R15W S31, T114N R15W S30		N/A	SNR	GNR	1992-09-01	14790
<u>Native Plant Community, Undetermined Class</u> #859 Location Description: T113N R15W S21, T113N R15W S16		N/A	SNR	GNR	1990-05-22	12012
Native Plant Community, Undetermined Class #1051 Location Description: T1130 R15W S24, T1130 R15W S23		N/A	SNR	GNR	1991-09-04	14618
Native Plant Community, Undetermined Class #1058 Location Description: T113N R15W S6		N/A	SNR	GNR	1992-08-19	14959
Native Plant Community. Undetermined Class #1233 Location Description: T113N R15W S27		N/A	SNR	GNR	1991-10-14	13110
Native Plant Community. Undetermined Class #1324 Location Description: T113N R16W S2, T114N R16W S36, T114N R16W S35, T113N R16W S1		N/A	SNR	GNR	1991-08-09	13271
Native Plant Community. Undetermined Class #1498 Location Description: T113N R16W S12, T113N R16W S11		N/A	SNR	GNR	1991-10-14	13270
<u>Native Plant Community. Undetermined Class</u> #1793 Location Description: T113N R16W S2, T114N R16W S35		N/A	SNR	GNR	1991-08-09	14681
Native Plant Community. Undetermined Class #1860 Location Description: T113N R15W S8, T113N R15W S7		N/A	SNR	GNR	1991-09-17	13269
Native Plant Community. Undetermined Class #1875 Location Description: T114N R16W S34, T114N R16W S26, T114N R16W S35, T114N R16W S27		N/A	SNR	GNR	1990-10-04	14963
Native Plant Community. Undetermined Class #1895 1 annion Disorinion: T113N B15W S6		N/A	SNR	GNR	1992-08-19	14958
Locaton Description. 1113 AVA W Construction Description Description 2007 State of Minnesota DNR	of Minnesota D	AR			Printed 8/9/2007	007

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ongame Resear rrences within Plant - Transn FRS I Washington C	ch Program 1 mile radius of: nission Lines Counties			Pag	Page 20 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Goodhue County, MN						
Native Plant Community. Undetermined Class #2001 Location Description: T113N R15W S16, T113N R15W S15		N/A	SNR	GNR	1991-09-04	15339
<u>Notropis annis</u> (Pallid Shiner) #11 Location Description: T113N R15W S0, T113N R15W S10		SPC	S3	G4	1949	16054
<u>Obovaria olivaria</u> (Hickorynut) #78 Location Description: T113N R15W S10		SPC	S3	G4	2004-07-09	26071
Panax quinquefolius (American Ginseng) #76 Location Description: T113N R15W S21, T113N R15W S16		SPC	S3	G3G4	1990-05-22	12108
<u>Panax quinquefolius</u> (American Ginseng) #83 Location Description: T113N R16W S1, T113N R15W S6		SPC	S 3	G3G4	1991-08-09	12945
Panax quinquefolius (American Ginseng) #84 Location Description: T113N R15W S8, T113N R15W S7		SPC	S3	G3G4	1991-09-17	12946
<u>Plethobasus cyphyus</u> (Sheepnose) #2 Location Description: Legal description is too lengthy to fit in allotted space.		END	SI	8	1944-Pre	21137
<u>Pleurobema coccineum</u> (Round Pigtoe) #77 Location Description: T113N R15W S13, T113N R15W S10, T113N R15W S9, T113N R14W S27, T113N R14W S26		THR	S2	G4	2004-07-09	26072
<u>Pleurobema coccineum</u> (Round Pigtoe) #123 Location Description: T114N R16W S13, T114N R15W S30		THR	S2	G4	2004-08-02	31707
Quadrula metanevra (Monkeyface) #29 Location Description: T113N R15W S14, T113N R15W S9, T113N R15W S10, T113N R15W S12, T113N R15W S13		THR	S2	G4	2004-07-09	21136
<u>Quadrula metanevra</u> (Monkeyface) #37 Location Description: T113N R15W S10		THR	S2	G4	2000-07-20	26060
<u>Quadrula metanevra</u> (Monkeyface) #62 Location Description: T114N R15W S30		THR	S2	G4	2000-Pre	31546
<u>Quadrula nodulata</u> (Wartyback) #20 Location Description: T113N R15W S10		END .	SI	G4	1999-07-17	26073
Silver Maple - (Virginia Creeper) Floodplain Forest Type #1 Location Description: T113N R15W S16, T113N R15W S9		N/A	S3	GNR	1990-08-08	11936
Copyright 2007 State of Minnesota DNR	f Minnesota DN	ΛR			Printed 8/9/2007	0

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Nongame Resea currences within g Plant - Trans : TRS d Washington	cch Program 1 mile radius of: mission Lines Counties			Pag	Page 21 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Goodhue County, MN						
Silver Maple - (Virginia Creeper) Floodplain Forest Type #10 Location Description: T113N R15W S21, T113N R15W S28		N/A	S3	GNR	1991-09-04	13338
<u>Silver Meple - (Virginia Creeper) Floodplain Forest Type</u> #23 Location Description: T113N R15W S15		N/A	S3	GNR	1991-09-04	14955
<u>Tritogonia verrucosa</u> (Pistolgrip) #37 Location Description: T113N R15W S10		THR	S2	G4G5	1999-07-	26074
Hennepin County, MN						
Native Plant Community. Undetermined Class #1426 Location Description: T115N R21W S5, T115N R21W S8		N/A	SNR	GNR	1995-07-06	21569
Hennepin, Scott County, MN						
Actinonaias ligamentina (Mucket) #161 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		THR	S2	33	1977-03-25	28165
Colonial Waterbird Nesting Area (Colonial Waterbird Nesting Site) #249 Location Description: T115N R21W S7, T115N R22W S1, T115N R22W S12, T115N R21W S6		No Status	SNR	GNR	1981-06-	638
<u>Ellipsaria lineolata</u> (Butterfly) #30 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		THR	S2	G4	1977-03-25	28166
<u>Elliptio dilatata</u> (Spike) #133 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		SPC	S3	GS	1977-03-25	28163
Freshwater Mussel Concentration Area (Mussel Sampling Site) #139 Location Description: T115N R21W S7, T115N R21W S8		No Status	SNR	GNR	1989-08-25	14979
<u>Lasmigona costata</u> (Fluted-shell) #117 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		SPC	S3	GS	1977-03-25	28169
<u>Ligumia recta</u> (Black Sandshell) #224 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		SPC	S3	GS	1977-03-25	28168
<u>Megalonaias nervosa</u> (Washboard) #10 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31		THR	S2	GS	1977-03-25	28158
Native Plant Community. Undetermined Class #1391 Location Description: T115N R21W S4, T115N R21W S5, T115N R21W S9, T115N R21W S8		N/A	SNR	GNR	1995-06-20	21570
Copyright 2007 State of Minnesota DNR	of Minnesota D	NR			Printed 8/9/2007	007

Short Record Report of Internation Counteness must a must a must and on Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	es within 1 in - Transmiss hington Cou	ion Lines nties				
Federal Status Status		MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Hennepin, Scott County, MN						
<u>Obovaria olivaria</u> (Hickorynu) #86 Location Description: T115N R21W S4, T115N R21W S8, T27N R24W S31		SPC	S3	G4	1977-03-25	28167
Pituophis catenifer (Gopher Snake) #10 Location Description: T115N R21W S7, T115N R21W S18, T115N R21W S17, T115N R21W S8, T115N R22W S12, T115N R22W S13		SPC	S3	GS	1954-05-06	8235
<u>Pleurobema coccineum</u> (Round Pigtoe) #88 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31	E.	THR	S2	G4	1977-03-25	28162
<u>Spikerush - Bur Reed Marsh (Prairie) Type</u> #1340 Location Description: T115N R21W S6		N/A	S3	GNR	1995-06-30	21483
Tritogonia verucosa (Pistolgrip) #43 Location Description: T115N R21W S4, T115N R21W S9, T115N R21W S8, T27N R24W S31	ţ	THR	S2	G4G5	1977-03-25	28159
Ramsey County, MN						
<u>Colonial Waterbird Nesting Area</u> (Colonial Waterbird Nesting Site) #90 Location Description: T28N R22W S23, T28N R22W S22	No	No Status	SNR	GNR	1980	532
<u>Haliacetus leucocephalus</u> (Bald Eagle) #1291 Location Description: T28N R22W S23, T28N R22W S22		SPC	S3B,S3N	GS	1994	18700
<u>Scirpus clintonii</u> (Clinton's Bulrush) #6 Location Description: T28N R22W S24		SPC	S3	G4	1981-05-25	11131
Scott County, MN						
<u>Besseva bullii</u> (Kitten-tails) #96 Location Description: T115N R21W S21, T115N R21W S16		THR	S2	8	2000-09-19	21468
<u>Besseva bullii</u> (Kitten-tails) #121 Location Description: T115N R22W S13		THR	S2	ß	2002-09-17	30167
Calcarcous Fen (Southeastern) Type #8 Location Description: T115N R21W S17, T115N R21W S16		N/A	SI	GNR	1980-07-	241
Calcareous Fen (Southeastern) Type #19 Location Description: T115N R21W S17, T115N R21W S16		N/A	SI	GNR	1992	14375
Calcareous Fen (Southeastern) Type #20 Location Description: T115N R21W S17		N/A	SI	GNR	1992	14374
Copyright 2007 State of Minnesota DNR	nesota DNR				Printed 8/9/2007	207

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	(ongame Resea urrences within g Plant - Trans TRS d Washington	ch Program 1 mile radius of: mission Lines Counties			Pag	Page 23 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Scott County, MN						
Carex sterilis (Sterile Sedge) #4 Location Description: T115N R21W S17, T115N R21W S16		THR	S2	G4	1987-08-31	4097
<u>Cirsium hilli</u> (Hill's Thistle) #58 Location Description: T115N R21W S22, T115N R21W S21, T115N R21W S15, T115N R21W S16		SPC	S3	8	1995-08-21	21469
<u>Cirsium hillii</u> (Hill's Thistle) #68 Location Description: T115N R21W S22, T115N R21W S21, T115N R21W S15, T115N R21W S16		SPC	S3	8	2000-09-19	27330
Cladium mariscoides (Twig-rush) #9 Location Description: T115N R21W S17, T115N R21W S16		SPC	S3	33	1980-09-07	4202
Cladium mariscoides (Twig-rush) #50 Location Description: T115N R21W S17		SPC	S3	GS	1987-07-15	23012
Colonial Waterbird Nesting Area (Colonial Waterbird Nesting Site) #561 Location Description: T115N R22W S1, T115N R22W S12		No Status	SNR	GNR	1982	823
Cypripedium candidum (Small White Lady's-slipper) #101 Location Description: T115N R21W S17, T115N R21W S9, T115N R21W S16		SPC	S3	G4	1981-05-25	4383
Cypripedium candidum (Small White Lady's-slipper) #102 Location Description: T115N R21W S17, T115N R21W S9, T115N R21W S16		SPC	S 3	G4	1980-06-08	4384
Cypripedium candidum (Small White Lady's-slipper) #133 Location Description: T115N R21W S16		SPC	S 3	G4	1984-05-29	4415
Dry Barrens Prairie (Southern) Type #12 Location Description: T115N R22W S11		N/A	S2	GNR	1997-12-01	22715
Dry Sand - Gravel Oak Savanna (Southern) Type #4 Location Description: T115N R21W S7, T115N R22W S12		N/A	S2	GNR	1995-06-30	1205
Dry Sand - Gravel Prairie (Southern) Type #226 Location Description: T115N R21W S16, T115N R21W S22, T115N R21W S15		N/A	S2	GNR	1995-08-21	21467
<u>Eleocharis rostellata</u> (Beaked Spike-rush) #9 Location Description: T115N R21W S17		THR	S2	GS	1987-07-15	10693
Mesic Prairie (Southern) Type #17 Location Description: T115N R21W S17, T115N R21W S9, T115N R21W S16		N/A	S2	GNR	1980-11-	1270
Native Plant Community, Undetermined Class #1567 1 contiser Discontinet TOTAN DARW C31 TELLS N D31W S16 TELLS N R21W S17		N/A	SNR	GNR	1980-10-25	8480
Location Description. LEVIN ACT W GOL, LILLIN ACT W GIV, LILLING ALL W GIV, LILLING ALL W GIVEN ACT W GIVEN ACT	of Minnesota D	NR			Printed 8/9/2007	20

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ngame Resear rences within Plant - Transı RS Washington (ch Program 1 mile radius of: mission Lines Counties			Pag	Page 24 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Scott County, MN						
Native Plant Community. Undetermined Class #2081 Location Description: T115N R21W S18, T115N R21W S17		N/A	SNR	GNR	1995-05-	17668
<u>Ocnothera rhombipetala</u> (Rhombic-petaled Evening Primrose) #19 Location Description: T115N R22W S14, T115N R22W S11		SPC	S3	G4G5	1995-08-15	21479
<u>Perognathus flavescens</u> (Plains Pocket Mouse) #20 Location Description: T115N R21W S18, T115N R21W S17		SPC	S3	65	1997-06-25	22600
<u>Perognathus flavescens</u> (Plains Pocket Mouse) #21 Location Description: T115N R22W S14, T115N R22W S11		SPC	S3	GS	1997-07-24	22601
<u>Pituophis catentifer</u> (Gopher Snake) #98 Location Description: T115N R21W S7		SPC	S3	65	1997-07-28	22477
<u>Pituophis catenifer</u> (Gopher Snake) #99 Location Description: T115N R22W S11, T115N R22W S10		SPC	S3	65	1997-10-18	22479
Pituophis catenifer (Gopher Snake) #105 Location Description: T115N R21W S7, T115N R21W S18, T115N R22W S13		SPC	S3	65	1997-07-10	27439
Rhynchospora capillacea (Hair-like Beak-rush) #2 Location Description: T115N R21W S17, T115N R21W S9, T115N R21W S8, T115N R21W S16		THR	S2	G4	1924-09-19	5428
<u>Rhynchospora capillacea</u> (Hair-like Beak-rush) #66 Location Description: T115N R21W S17		THR	S 2	G4	1987-08-31	23015
<u>Scleria verticillata</u> (Whorled Nut-rush) #6 Location Description: T115N R21W S17, T115N R21W S16		THR	S 2	GS	1981-09-06	5567
<u>Scleria verticillata</u> (Whorled Nut-rush) #25 Location Description: T115N R21W S17		THR	S2	65	1987-08-31	23014
<u>Speveria idalia</u> (Regal Fritillary) #40 Location Description: T115N R22W 81, T115N R22W 813, T115N R22W 812, T115N R22W 811, T115N R22W 814, T115N R22W 82, T115N R21W 87, T115N R21W 818		SPC	S3	G3	1965-09-09	23534
<u>Sterna forster</u> i (Forster's Tern) #31 Location Description: T115N R21W S7, T115N R21W S6		SPC	S3B	ß	1981-06-13	25159
<u>Valeriana edulis ssp. ciliata</u> (Valerian) #14 Location Description: T115N R21W S17, T115N R21W S16		THR	S2	G5T3	1987-08-31	5839
Copyright 2007 State of Minnesota DNR	[Minnesota D]	NR			Printed 8/9/2007	07

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Nongame Resear currences within ng Plant - Transı s TRS nd Washington (rch Program 1 mile radius of mission Lines Counties			Pag	Page 25 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Scott County, MN <u>Wilsonia citrina</u> (Hooded Warbler) #10 Location Description: T27N R24W S31, T115N R21W S16, T115N R21W S9, T115N R21W S10,		SPC	S3B	GS	1980-05-19	25065
T115N R21W S15 Woekhineton County MN						
Acipenser fulvescens (Lake Sturgeon) #200 Location Description: T26N R20W S4		SPC	S3	G3G4	1992-08-	29794
<u>Aflexia rubranura</u> (Red Tailed Prairie Leafhopper) #9 Location Description: T27N R20W S29, T27N R20W S28	No Status	SPC	S3	62	1993-08-12	27585
<u>Besseva bullii</u> (Kitten-tails) #20 Location Description: T26N R20W S4		THR	S2	G3	1987-05-08	7431
<u>Besseya bullii</u> (Kitten-tails) #100 Location Description: T27N R20W S28		THR	S2	C3	1994-05-25	22159
<u>Besseva bullii</u> (Kitten-tails) #110 Location Description: T27N R21W S6		THR	S2	63	1998-09-18	23836
<u>Botrychium oneidense</u> (Blunt-lobed Grapefern) #22 Location Description: T27N R20W S29		END	SI	G4Q	1997-08-17	22521
<u>Botrychium rugulosum</u> (St. Lawrence Grapefern) #30 Location Description: T27N R20W S29		THR	S2	63	1995-10-22	22913
<u>Buteo lineatus</u> (Red-shouldered Hawk) #28 Location Description: T26N R20W S8, T26N R20W S7		SPC	S3B,SNRN	GS	1988-06-21	8758
<u>Buteo lineatus</u> (Red-shouldered Hawk) #29 Location Description: T26N R20W S4, T27N R20W S33		SPC	S3B,SNRN	GS	1981	8777
<u>Cirsium hilli</u> (Hill's Thistle) #31 Location Description: T27N R20W S29, T27N R20W S28		SPC	S3	63	1990-07-12	10564
Coluber constrictor (Eastern Racer) #42 Location Description: T28N R21W S31		SPC	S3	G5	1994-05-30	18910
Cveleptus elongatus (Blue Sueker) #73 Location Description: T26N R20W S4		SPC	S3	G3G4	1997-08-19	23197
<u>Cycleptus elongatus</u> (Blue Sucker) #99 I continu Descritivitan: T26N R201W S4		SPC	S3	G3G4	1997-08-19	29809
Copyright 2007 State of Minnesota DNR	of Minnesota DN	K			Printed 8/9/2007	20

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	Vongame Resear urrences within g Plant - Transı TRS d Washington (ch Program 1 mile radius of: nission Lines Counties			Pag	Page 26 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Washington County, MN						
<u>Dry Bedrock Bluff Prairie (Southern) Type</u> #110 Location Description: T27N R20W S28, T27N R20W S20, T27N R20W S21, T27N R20W S29		N/A	S3	GNR	1987-05-08	7470
Dry Bedrock Bluff Prairie (Southern) Type #112 Location Description: T27N R20W S28		N/A	S3	GNR	1987-08-24	7469
Dry Bedrock Bluff Prairie (Southern) Type #113 Location Description: T27N R20W S21		N/A	S3	GNR	1987-08-24	7472
Dry Bedrock Bluff Prairie (Southern) Type #114 Location Description: T27N R20W S17, T27N R20W S16		N/A	S3	GNR	1987-08-27	7464
Dry Bedrock Bluff Prairie (Southern) Type #118 Location Description: T27N R21W S8, T27N R21W S7		N/A	S3	GNR	1987-08-19	7476
Dry Sand - Gravel Prairie (Southern) Type #15 Location Description: T27N R21W S16, T27N R21W S15		N/A	S2	GNR	1987-09-22	7488
Dry Sand - Gravel Prairie (Southern) Type #16 Location Description: T27N R21W S23, T27N R21W S22		N/A	S2	GNR	1987-09-22	7461
Dry Sand - Gravel Prairie (Southern) Type #17 Location Description: T27N R21W S27, T27N R21W S23, T27N R21W S22, T27N R21W S26		N/A	S2	GNR	1987-09-22	7485
<u>Dry Sand - Gravel Prairie (Southern) Type</u> #22 Location Description: T26N R20W S5		N/A	S2	GNR	1987-05-16	7468
Dry Sand - Gravel Prairie (Southern) Type #187 Location Description: 728N R22W S36		N/A	S2	GNR	1987-08-19	7489
<u>Emydoidea blandingii</u> (Blanding's Turtle) #664 Location Description: T28N R22W S26, T28N R22W S25		THR	S2	G4	1991-05-16	18822
<u>Emydoidea blandingii</u> (Blanding's Turtle) #1012 Location Description: T27N R21W S27, T27N R21W S23, T27N R21W S22, T27N R21W S26		THR	S2	G4	2002-05-17	30032
<u>Haliacetus leucoccephalus</u> (Bald Eagle) #942 Location Description: T26N R20W S8	LT,PDL	SPC	S3B,S3N	GS	1991-Pre	12122
<u>Juniperus horizontalis</u> (Creeping Juniper) #35 Location Description: T26N R20W S4		SPC	S3	10	1976-11-13	6166
Minuartia dawsonensis (Rock Sandwort) #10 Location Description: T27N R20W S29, T27N R20W S28		SPC	L	10	1987-05-08	7410
Copyright 2007 State of Minnesota DNR	of Minnesota DN	JR			Printed 8/9/2007	07

Minnesota Natural Heritage & Nongame Research Program Short Record Report of Element Occurrences within 1 mile radius of: Prairie Island Nuclear Generating Plant - Transmission Lines Multiple TRS Scott, Dakota, Goodhue, and Washington Counties	ritage & Nongame Resear ment Occurrences within Generating Plant - Transı Multiple TRS odhue, and Washington (ch Program 1 mile radius of: nission Lines Counties			Pag	Page 27 of 27
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID#
Washington County, MN						
<u>Minuartia dawsonensis</u> (Rock Sandwort) #11 Location Description: T27N R20W S21		SPC	S3	GS	1987-08-24	7449
<u>Minuartia dawsonensis</u> (Rock Sandwort) #12 Location Description: T27N R20W S17, T27N R20W S16		SPC	S3	GS	1987-08-27	7448
Native Plant Community. Undetermined Class #475 Location Description: T27N R21W S27, T27N R21W S23, T27N R21W S22, T27N R21W S26		N/A	SNR	GNR	1988-07-20	8665
<u>Oak - (Red Maple) Woodland Type</u> #1174 Location Description: T28N R22W S25, T28N R22W S36, T28N R21W S30, T28N R21W S31		N/A	S4	GNR	1971-05-21	9375
<u>Opuntia macrothiza</u> (Plains Prickly Pear) #19 Location Description: T27N R20W S29, T27N R20W S28		SPC	S3	GS	1991-03-20	11900
<u>Panax quinquefolius</u> (American Ginseng) #41 Location Description: T26N R20W S4		SPC	S3	G3G4	1988-06-08	8522
Non-MN County - Located just outside Minnesota in adjacent jurisdiction(s).						
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #575 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	G5	1990	8201
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #984 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	GS	1991	13047
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #1125 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	G	1994	15405
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #1264 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	G5	1994	17000
<u>Haliaeetus leucocephalus</u> (Bald Eagle) #1524 Location Description: Just outside Minnesota in adjacent jurisdiction(s).	LT,PDL	SPC	S3B,S3N	G5	1998	21803
${ m Tritogonia \ vertucosa}$ (Pistolgrip) #63 Location Description: Just outside Minnesota in adjacent jurīsdiction(s).		THR	S2	G4G5	2000-Pre	31493
Records Printed = 367						
Copyright 2007 State of Minnesota DNR	e of Minnesota DN	Ж			Printed 8/9/2007	2

January 25, 2008

Ms. Lisa Joyal Endangered Species Environmental Review Coordinator Natural Heritage and Nongame Research Program Division of Ecological Resources Minnesota Department of Natural Resources 500 Lafayette Road, Box 25 St. Paul, Minnesota 55155

SUBJECT:

Prairie Island Nuclear Generating Plant License Renewal Request for Information on Threatened and Endangered Species

Dear Ms. Joyal:

Nuclear Management Company (NMC), acting on behalf of Northern States Power Company, a wholly-owned subsidiary of Xcel Energy, would like to thank the Minnesota Department of Natural Resources (MNDNR) Natural Heritage and Nongame Research Program for providing information regarding rare plant or animal species, and other significant natural features present on or within the vicinity of the Prairie Island Nuclear Generating Plant (PINGP) site and associated transmission lines on June 15 and August 9, 2007, respectively. This information provided by MNDNR concerning occurrences of rare species and natural communities on the PINGP site and associated transmission corridors has been utilized in order to assess potential impacts on threatened and endangered species, should PINGP continue to operate for an additional twenty years.

PINGP is finalizing its application to the U.S. Nuclear Regulatory Commission (NRC) to renew the operating licenses for PINGP, which expire in 2013 (Unit 1) and 2014 (Unit 2). As part of the license renewal process, the NRC requires license applicants to "assess the impact of the proposed action on threatened and endangered species in accordance with the Endangered Species Act" and will almost certainly seek your agency's assistance in the identification of important species and habitats in the project area. By contacting you in advance, we hope to identify any issues that need to be addressed or any information your office may need to expedite the NRC consultation.

Renewal of the PINGP operating licenses would not involve any land disturbance, any changes to plant operations, or any modifications of the transmission system that connects the plant to the regional electric grid. There are plans, however, to replace the Unit 2 steam generators in the fall of 2013, one year before the Unit 2 operating license expires. The steam generators would arrive by barge, and would be installed within the Unit 2 containment structure. Temporary buildings and parking areas would be necessary, but these facilities would be constructed in previously-disturbed areas. Because, in all likelihood, Northern States Power would not replace the steam considered environmental impacts of steam generator replacement in the Environmental Report we are submitting to the NRC. In NEPA parlance, it is a "connected action" (40 CFR 1508.25). We would therefore appreciate your taking steam generator replacement into consideration when you conduct your review of the project's potential effect on threatened or endangered species.

NMC would appreciate your review of the following assessment summary, and transmittal of written concurrence, or concerns, relative to the following conclusions that continued operation of

PINGP would have little or no adverse effect on threatened and endangered species in the vicinity of the site. NMC does not expect renewal of the PINGP operating license to negatively impact state or federally listed threatened and endangered species, jeopardize the continued existence of such species, or result in destruction or adverse alteration of any critical natural habitats.

Area of Concern

The PINGP site, located in Goodhue County, Minnesota, consists of 578 acres on the west bank of the Mississippi River, within the city limits of Red Wing, Minnesota (Figure 1). The City of Hastings is located approximately 13 miles northwest (upstream) of the plant. Minneapolis is located approximately 39 miles northwest and St. Paul is located approximately 32 miles northwest of the plant. At the plant location, the Mississippi River serves as the state boundary between Minnesota and Wisconsin. PINGP is located on the western shore of Sturgeon Lake, a backwater area located one mile upstream from the U.S. Army Corps of Engineers (USACE) Lock and Dam No. 3. The Vermillion River lies just west of PINGP and flows into the Mississippi River approximately two miles downstream of Lock and Dam No. 3.

Figure 2 shows the property boundary and exclusion zone, which is restricted by a perimeter fence with "No Trespassing" signs. Access to the exclusion zone by water is not restricted by a fence; however, "No Trespassing" signs are placed at intervals along the shoreline of the river. East of the plant the exclusion zone boundary extends to the main channel of the Mississippi River. Islands within this boundary as well as a small strip of land northeast of the plant are owned by the Corps of Engineers.

Directly north of Xcel property lies the Prairie Island Indian Community and Reservation, a federally recognized Indian Tribe organized under the Indian Reorganization Act. The Prairie Island Indian Community owns and operates the Treasure Island Resort and Casino, a 250-room hotel and convention center that is currently being expanded. It offers gaming, dining, live entertainment, an RV park, a 137-slip marina to accommodate visitors arriving by the Mississippi River, and sightseeing and dinner cruises on their river boat.

Five transmission lines connect PINGP to the regional electric system. The transmission system is depicted in Figures 3 and 4. The output of PINGP is delivered to the substation just north of the generating facilities with 345-kV and 161-kV switchyards, where five transmission lines leave via three transmission corridors. The transmission lines include two 2.5 mile (Red Rock 1 and Adams) transmission connections, the Red Rock 2 connection to the Red Rock Substation in St. Paul, the Blue Lake Substation connection, and the Spring Creek Substation connection.

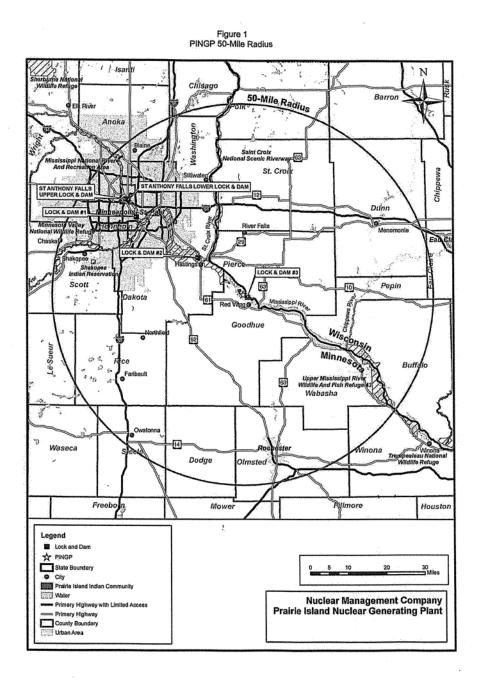
Transmission corridors are maintained by Xcel Energy and Great River Energy using an Integrated Vegetation Management (IVM) approach that includes both mechanical and chemical control methods. In particular, both wetland and upland habitats are maintained in low-growing vegetation through the use of manual cutting and the selective application of EPA-approved herbicides resulting in the open habitats preferred by threatened or endangered species.

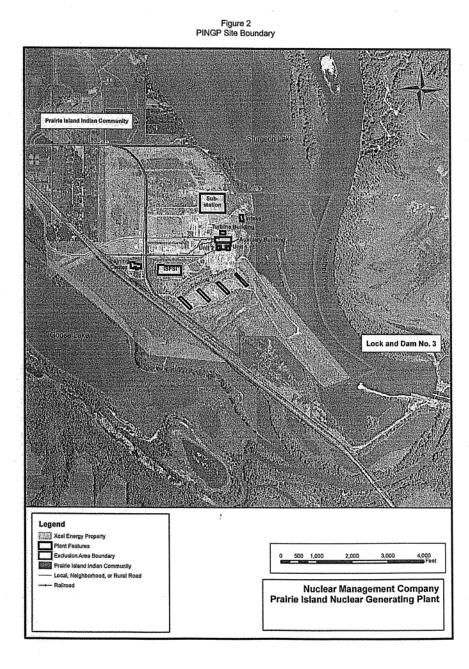
NMC does not expect PINGP operations through the period of extended operation (an additional 20 years) to significantly affect any threatened or endangered species in the area. Nor does NMC expect steam generator replacement to adversely impact ecological resources on site because the project will not involve ground disturbing activities in any previously undisturbed areas.

We would appreciate your sending a letter detailing any concerns you may have about potential impacts to threatened or endangered species (or their habitats) in the area of PINGP or confirming NMC's conclusion that operation of PINGP over the license renewal term would have no effect on these species. NMC will include a copy of this letter and your response in the license renewal application that we submit to the NRC.

Again, thank you for your previous assistance providing PINGP with rare and threatened species and habitat information. We look forward to continuing to work with the MNDNR through the license renewal process. Please direct any requests for additional information, questions and your response to:

> James J. Holthaus, PMP Environmental Project Manager Prairie Island Nuclear Generating Plant 1717 Wakonade Drive East 13 – Plex (License Renewal) Welch, MN 55089 651-388-1121 ext 7268


> > 3


Sincerely,

Mike Walle

Mike Wadley () Prairie Island Site Vice President Nuclear Management Company

Enclosures: Figure 1 Figure 2 Figure 3 Figure 4

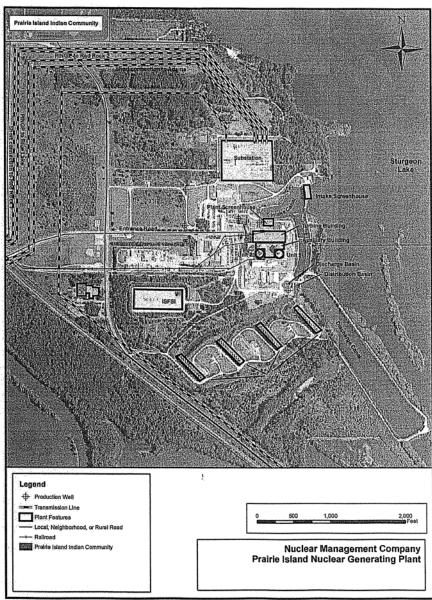
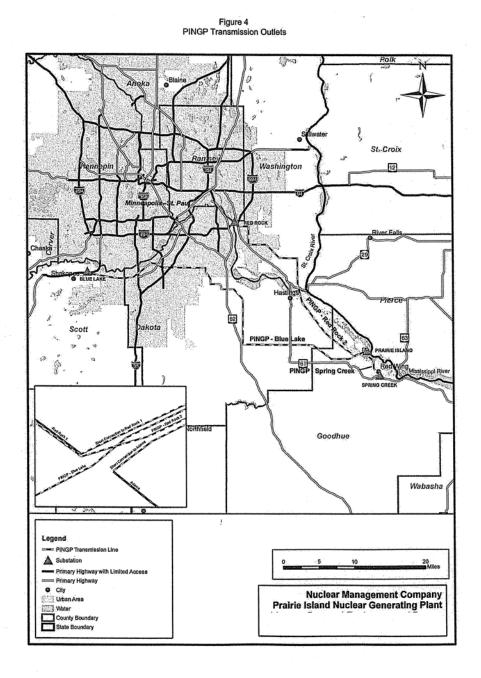



Figure 3 PINGP Site Transmission Line Layout

ATTACHMENT C

ATTACHMENT D

STATE HISTORIC PRESERVATION OFFICER CORRESPONDENCE

Table of Contents

Letter	^D age
Mike Wadley (Nuclear Management Company) to Dennis Gimmestad (State Historic	2
Preservation Office, Minnesota Historical Society)	D-3

Xcel Energy

March 24, 2008

Mr. Dennis A. Gimmestad Government Programs and Compliance Officer State Historic Preservation Office Minnesota Historical Society 345 Kellogg Boulevard West Saint Paul, Minnesota 55102-1903

SUBJECT:

Prairie Island Nuclear Generating Plant License Renewal Project Goodhue County SHPO Number: 2007-1880

Dear Mr. Gimmestad:

Nuclear Management Company ("NMC"), acting on behalf of Northern States Power Company, a Minnesota corporation ("Xcel Energy" or "the Company") would like to thank the Minnesota State Historic Preservation Office (SHPO) for providing comments on the April 30, 2007 letter regarding renewal of the Prairie Island Nuclear Generating Plant ("PINGP") operating license. We appreciate the time your agency has taken to review the letter as well as identify concerns pertaining to Section 106 requirements and asking about how cultural resource issues will be addressed in the environmental review. Below we are providing additional information on the issues raised in your June 7, 2007 letter.

The Nuclear Regulatory Commission ("NRC") will formally consult with your office at a later date under Section 106 of the *National Historic Preservation Act* of 1966, as amended (16 USC 470), and Federal Advisory Council on Historic Preservation regulations (36 CFR 800). In order to expedite the formal process and to foster an integrated approach, we would like to work with you now to identify any issues that should be addressed or any information your office may need to expedite the NRC consultation.

The cultural resource issues addressed in the Environmental Report (Chapter 2 and Chapter 4) were researched in the environmental review process, and will continue to be reviewed as the License Renewal process moves forward. NMC contracted with a company named The 106 Group Ltd. to perform a cultural resources assessment of the PINGP site to document past studies and to provide information that would assist NMC with planning and avoidance of known resources. Their records search revealed that four professional archeological surveys and one testing project have been conducted within plant boundaries (Figure 1). Within the plant boundaries, seven archeological sites have been recorded. One site, the Bartron Site, is listed on the National Register of Historic Places. Within one mile of the plant boundary, 16 archeological sites have been recorded (15 are on the Minnesota side of the Mississippi River). The assessment also identified areas that are thought to be previously disturbed from original construction of the PINGP. The cultural resources assessment prepared by The 106 Group is included as Attachment 1 to this letter.

The Prairie Island Indian Community (PIIC) Reservation is located directly north of the PINGP. The PIIC is a sovereign nation federally recognized under the Indian Reorganization Act. NMC and the PINGP staff have a long-standing relationship with and history of consulting with PIIC's tribal council and technical staff regarding community concerns, business proposals, emergency planning, plant operations, and other items of mutual interest. NMC is consulting with the PIIC regarding the proposed license renewal and refurbishment activities (addressed later in this letter) at PINGP.

Consultation was initiated by Xcel Energy and NMC via a letter sent July 25, 2007 requesting PIIC's participation in the license renewal application process and seeking input regarding any concern PIIC has for historical, archaeological, cultural or other environmental resources. Xcel Energy and NMC management met with the PIIC tribal council on September 24, 2007 to discuss the license renewal application process, and license renewal and PINGP site staff met with PIIC technical staff on November 8, 2007.

On February 7, 2008, PIIC submitted a letter to PINGP detailing their comments and concerns with regard to environmental issues. PIIC has requested a copy of the cultural resource assessment, which will be provided to them along with your response to this consultation request. They have requested that a buffer be instituted around all known archeological resources to prevent future disturbance. The PIIC is concerned about two sites that may have been impacted previously during original construction of the plant. They have requested implementation of a collaborative program of surveying on the plant site to record all cultural resources and their condition; identification of restoration activities for cultural resources previously impacted; and access to a burial site by tribal members for ceremonial purposes. The PINGP will continue consultation with the PIIC to address their requests.

In addition to the aforementioned efforts, NMC and Xcel Energy are working with Minnesota State University - Mankato ("Mankato State") to perform further studies on the Bartron Site during Summer 2008. Mankato State plans to hold a field school to do the initial digs and documentation, with a formal write-up and necessary follow-up work performed through a Master's thesis by a graduate student(s). The PIIC is aware of these efforts and has supported Mankato State's efforts financially.

At this time there are no plans for PINGP site alteration due to the license renewal project. Any future site alterations will comply with permitting requirements administered by the City of Red Wing, Goodhue County and the State of Minnesota. However, there are plans to replace the Unit 2 steam generators in the fall of 2013, one year before Unit 2's current operating license expires. Because, in all likelihood, the Company would not replace the steam generators were it not seeking approval for an additional 20 years of operation, we have considered environmental impacts of steam generator replacement in the Environmental Report we are submitting to the NRC. We believe that in NEPA parlance, this is a "connected action" (40 CFR 1508.25). Therefore, we believe it is reasonable for your agency to consider the steam generator replacement at Unit 2 when you conduct your review of the project's potential effect on historic and cultural resources.

The steam generators are planned to arrive at the PINGP loading dock by barge and transported to the Unit 2 containment building by truck on an existing paved road (Figure 2). The old generators will be removed from the Unit 2 containment building and the new ones installed in the same location inside the Unit 2 containment building. The new generators are similar in size and mass as the originals and have the same function. Temporary construction facilities, such as mobile trailers, a staging area, and parking area, would be necessary, but these temporary facilities would be located nearby in previously disturbed areas and away from known cultural resources. These areas have been identified in the attached cultural resource assessment (see specifically Figure 2 of the attached cultural resources assessment) as previously disturbed, with little to no potential for intact

The Company has concluded that renewal of the PINGP operating licenses and activities planned during the 20-year term of the new licenses, including replacement of the Unit 2 steam generators, will result in no adverse effects on historic and archaeological resources. PINGP will continue to follow established procedures for avoidance and protection of archaeological, historic, and cultural resources (see Appendix A of the attached cultural resources assessment). As stated previously, refurbishment activities will be conducted within previously disturbed areas of the site. However, during ground-disturbing activities, if archaeological materials are discovered in the work area, activities in the vicinity of the discovery would stop and the Company will have the discovery assessed by a professional archaeologist and will consult with your office.

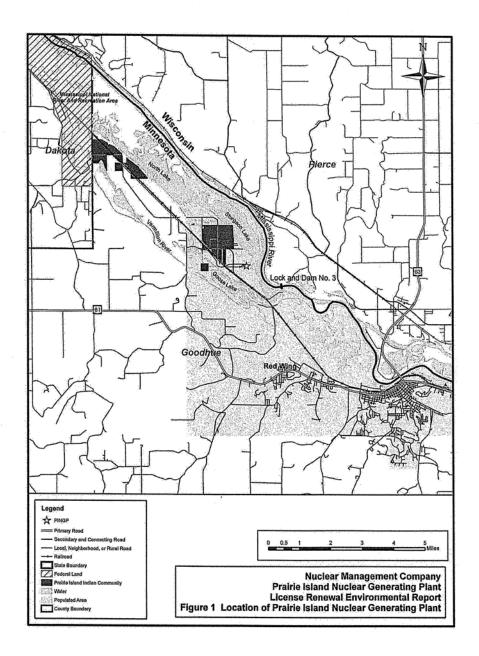
2

Since we will included a copy of this letter in the license renewal application that we submit to the NRC, it would greatly assist our application to the NRC if we could receive a a written response from your office detailing any concerns you may have about potential adverse effects to historic and archaeological resources, or confirming the Company's conclusion that operation of PINGP over the license renewal term would have no adverse effects to historic and archaeological resources.

If you have any questions or require any additional information to review the proposed action, please feel free to contact Mr. James Holthaus, Environmental Project Manager, at 651-388-1121, ext. 7268, or via email at james.holthaus@nmcco.com.

Sincerely,

Mike Walley


Mike Wadley Site Vice President Prairie Island Nuclear Generating Plant

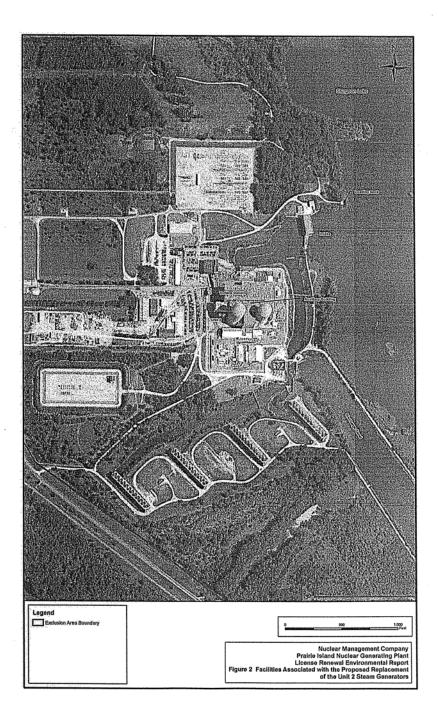

Enclosures:

Figure 1 – Location of Prairie Island Nuclear Generating Plant Figure 2 – Facilities Associated with the Proposed Replacement of the Unit 2 Steam Generators Attachment 1 – *Cultural Resources Assessment for the Prairie Island Nuclear Generating Plant, Goodhue County, Minnesota,* January 2008, The 106 Group Ltd.

cc w/encl.: President, Prairie Island Indian Community

3

ATTACHMENT E

PUBLIC HEALTH AGENCY CORRESPONDENCE

Table of Contents

<u>Letter</u>	<u>Page</u>
Mike Wadley (Nuclear Management Company) to John Linc Stine (Minnesota	
Department of Health, Environmental Health Division)	E-3

January 25, 2008

Mr. John Linc Stine, Director Environmental Health Division Minnesota Department of Health 625 Robert Street St. Paul, Minnesota 55164-0975

SUBJECT:

Prairie Island Nuclear Generating Plant License Renewal Request for Information on Thermophilic Microorganisms

Dear Mr. Stine:

Nuclear Management Company (NMC), acting on behalf of Northern States Power Company, a whollyowned subsidiary of Xcel Energy, is preparing an application to the U.S. Nuclear Regulatory Commission (NRC) to renew the operating licenses for Prairie Island Nuclear Generating Plant (PINGP), which expire in 2013 (Unit 1) and 2014 (Unit 2). As part of the license renewal process, NRC requires license applicants to provide "... an assessment of the impact of the proposed action {license renewal} on public health from thermophilic organisms in the affected water." Organisms of concern include the enteric pathogens *Salmonella* and *Shigella*, the *Pseudomonas aeruginosa* bacterium, thermophilic Actinomycetes ("fungi"), the many species of *Legionella* bacteria, and pathogenic strains of the free-living *Naegleria* amoeba.

As part of the license renewal process, NMC is consulting with your office to determine whether there is any concern about the potential occurrence of these organisms in the Mississippi River at the location of PINGP. On June 14, 2007 your office indicated there were no concerns at that time. As stated in the September 7, 2007 letter from James Holthaus, we are currently seeking your input on any specific concerns the Department may have regarding thermophilic microorganisms. By contacting you, we hope to identify any issues that need to be addressed or any information your office may need to expedite the NRC consultation.

The PINGP site, located in Goodhue County, Minnesota, consists of 578 acres on the west bank of the Mississippi River (Figure 1), within the city limits of Red Wing, Minnesota. The Vermillion River lies just west of PINGP and flows into the Mississippi River approximately two miles downstream of Lock and Dam No. 3 (Figure 2). NRC regulations specify that if discharges are made to a small river with an average annual flow rate of less than 3.15×10^{12} cubic feet per year, the applicant must assess the public health impacts of the proposed action regarding potential proliferation of thermophilic microbiological organisms in the affected waters. As a component of its operation, PINGP discharges cooling water into the Mississippi River. The Mississippi River has an average flow of 5.8 x 10¹¹ cubic feet per year in the vicinity of PINGP, conforming to the NRC definition for consideration as a small river. This issue is therefore applicable to PINGP license renewal and will be addressed in the Environmental Report.

To determine the ambient river water temperature, assess the plant's thermal output, and assure compliance with NPDES thermal discharge requirements, river water is monitored by PINGP at multiple locations. Temperatures are monitored in the main river channel (upstream), Sturgeon Lake (upstream), the plant intake structure, the discharge canal, and immediately downstream of Lock and Dam Number 3. The highest temperature at the station upstream of the plant intake structure during the period of 2000-2005 was 86.0°F in 2001 (August 8). The highest temperature measured over the same period downstream of the plant at the Lock and Dam Number 3 monitoring station was 86.4°F in 2001 (August 9). The highest daily maximum temperature measured at the plant's discharge canal from January 2003 through December 2004 was 99.0°F, recorded on July 28, 2003. The entire length of the discharge canal

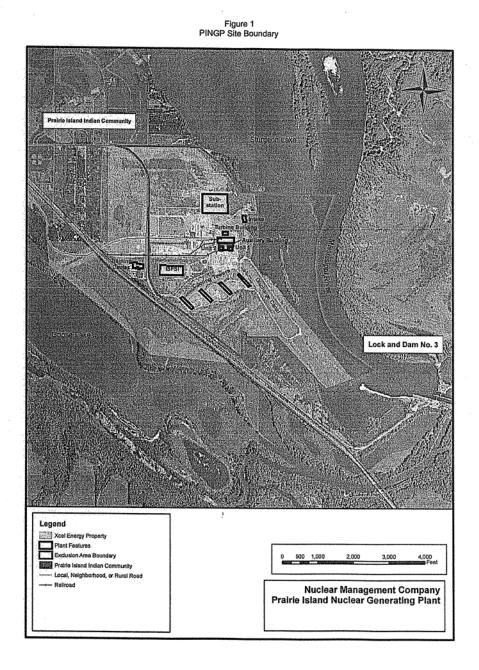
and adjoining portions of the Mississippi River are within the plant's exclusion zone, however, and there is no public access to these areas. Water at these temperatures could, in theory, allow limited survival of thermophilic microorganisms, but are well below the optimal temperature range for growth and reproduction of thermophilic microorganisms. Thermophilic bacteria generally occur at temperatures from 77°F to 176°F, with maximum growth at 122°F to 140°F. The probability of the presence of thermophilic microorganisms due to plant operations is low.

During the early 1980s, PINGP identified the presence of the parasitic amoeba *Naegleria* at high population densities within the plant's circulating water system. In cooperation with the Minnesota Pollution Control Agency and Minnesota Department of Natural Resources, PINGP conducted chlorination and subsequent dechlorination of the circulating water system in August 1980, September 1981, and August 1983. The chlorination processes were successful in controlling and reducing the populations of the organisms; however, the dechlorination process does impact the fish populations in the Mississippi River. Although the Minnesota Department of Health did not consider the presence of the organism to be a public health threat, it was recognized as an occupational health hazard and plant personnel were instructed to wear protective equipment when in contact with the circulating water system components. PINGP continues to periodically chlorinate the circulating water system to control microbiological organisms and zebra mussels in accordance with the NPDES permit requirements.

Given the thermal characteristics at the PINGP discharge and the fact that NMC periodically chlorinates the circulating water system, NMC does not expect PINGP operations to stimulate growth or reproduction of thermophilic microorganisms. Under certain circumstances, these organisms might be present in limited numbers in the station's discharge, but would not be expected in concentrations high enough to pose a threat to recreational users of the Mississippi River.

We appreciate your earlier response to general License Renewal issues. We would appreciate a letter detailing any concerns you may have about thermophilic microorganisms in the area of PINGP or confirming NMC's conclusion that operation of PINGP over the license renewal term would not stimulate growth of thermophilic pathogens. NMC will include a copy of this letter and your response in the license renewal application that we submit to the NRC.

Please direct any requests for additional information, questions and your response to:


James J. Holthaus, PMP Environmental Project Manager Prairie Island Nuclear Generating Plant 1717 Wakonade Drive East 13 – Plex (License Renewal) Welch, MN 55089 651-388-1121 ext 7268 James.holthaus@nmcco.com

Sincerely,

MikeWalle

Mike Wadley V Prairie Island Site Vice President Nuclear Management Company

Enclosures: Figure 1 Figure 2

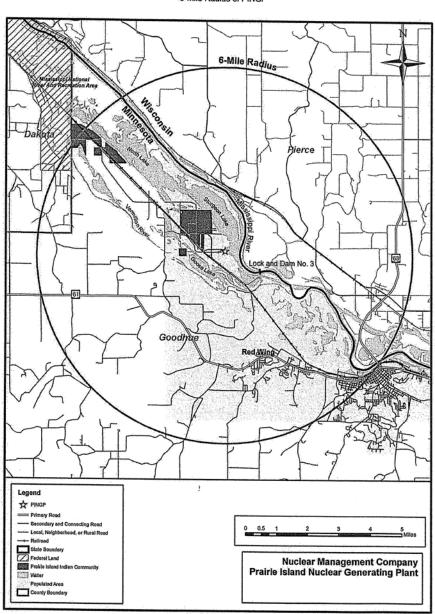


Figure 2 6-Mile Radius of PINGP

ATTACHMENT F

SEVERE ACCIDENT MITIGATION ALTERNATIVES

TABLE OF CONTENTS

Section

Page

F.1	Methodo	logy		F.1-1
F.2				
	F.2.1	History of	PINGP PRA Model Development	F.2-1
		F.2.1.1		
		F.2.1.2	Level 1 Model Revisions since the IPE	
		F.2.1.3	Level 2 Model Revisions since the IPE	F.2-14
	F.2.2	PINGP Le	vel 1 PRA Model	F.2-22
		F.2.2.1	Unit 1, Level 1 Rev. 2.2 (SAMA)	
		F.2.2.2	Unit 2, Level 1 Rev. 2.2 (SAMA)	
	F.2.3	PINGP Le	vel 2 PRA Model	
		F.2.3.1	Unit 1, Level 2 Rev. 2.2 (SAMA)	F.2-25
		F.2.3.2	Unit 2, Level 2 Rev. 2.2 (SAMA)	
	F.2.4	PINGP Le	vel 2 Release Categories	
		F.2.4.1	Containment Intact (Release Categories	
			X-XX-X, L-XX-X, H-XX-X)	
		F.2.4.2	Release Category L-CC-L	
		F.2.4.3	Release Category L-CI-E	
		F.2.4.4	Release Category L-DH-L	
		F.2.4.5	Release Category L-H2-E	
		F.2.4.6	Release Category H-DH-L	
		F.2.4.7	Release Category H-H2-E	
		F.2.4.8	Release Category H-OT-L	
		F.2.4.9	Release Category X-CI-E	
		F.2.4.10	Release Category X-H2-E	
		F.2.4.11	Release Category GEH	
		F.2.4.12	Release Category GLH	
		F.2.4.13	Release Category L-SR-E	
		F.2.4.14	Release Category ISLOCA	
F.3	Level 3 F	PRA Analysi	S	
	F.3.1			
	F.3.2		1	
	F.3.3			
	F.3.4	Food and	Agriculture	F.3-3
	F.3.5		elease	
	F.3.6	Evacuation	٦	F.3-4
	F.3.7	Meteorolog	gy	F.3-5
	F.3.8		Results	
F.4	Baseline		ization	
	F.4.1	Off-Site Ex	kposure Cost	F.4-1
	F.4.2		onomic Cost Risk	
	F.4.3		kposure Cost Risk	
	F.4.4		eanup and Decontamination Cost	
	F.4.5		ent Power Cost	

	F.4.6	Total Cost	-Risk	F.4-5
F.5	Phase I	SAMA Analy	/sis	F.5-1
	F.5.1	SAMA Ide	ntification	F.5-1
		F.5.1.1	Level 1 PINGP Importance List Review	F.5-2
		F.5.1.2	Level 2 PINGP Importance List Review	F.5-2
		F.5.1.3		
		F.5.1.4	Industry SAMA Analysis Review	
		F.5.1.5	PINGP IPE Plant Improvement Review	
		F.5.1.6	PINGP IPEEE Plant Improvement Review	
		F.5.1.7	Use of External Events in the PINGP SA	
			Analysis	F.5-9
		F.5.1.8	Quantitative Strategy for External Events	
	F.5.2	Phase I Sc	creening Process	
		F.5.2.1	SAMA 6 (Install Equipment to Automatic	ally
			Isolate Auxiliary Building Flooding):	
		F.5.2.2		
		F.5.2.3	SAMA 8 (Install Additional Die	
			Generator):	
		F.5.2.4	SAMA 13 (Install Automatic Sump Pump	
			Zone 7 AB Flooding):	
F.6	Phase II	I SAMA Anal	ysis	
	F.6.1	SAMA 2:	Alternate Cooling Water (CL) Supply	F.6-2
	F.6.2		Provide Alternate Flow Path from RWST	
		Charging F	Pump Suction	F.6-6
	F.6.3		Diesel-Driven HPI Pump	
	F.6.4	SAMA 9:	Analyze Room Heat-up for Natural/For	ced
			(Screenhouse Ventilation)	
	F.6.5	SAMA 12:	Alternate Component Cooling Water Suppl	yF.6-14
	F.6.6	SAMA 15:	Portable DC Power Source	F.6-19
	F.6.7		: Upgrade RHR Suction Piping and Ins	
		Containme	ent Isolation Valve	F.6-22
	F.6.8	SAMA 20:	Close Low Head Injection MOVs to Prev	rent
			flow to SI System	
	F.6.9		2: Provide Compressed Air Backup	
			Air to Containment	
	F.6.10			
F.7				
	F.7.1		ount Rate	
	F.7.2		ntile PRA Results	
		F.7.2.1	Phase I Impact	
		F.7.2.2	Phase II Impact	
		F.7.2.3	Summary	
	F.7.3		nput Variations	
		F.7.3.1	Meteorological Sensitivity	
		F.7.3.2	Population Sensitivity	
		F.7.3.3	Evacuation Sensitivity	F.7-23

		F.7.3.4 F.7.3.5	Radioactive Release Sensitivity Intermediate Phase Duration Sensitivity	F.7-24
		F.7.3.6	Impact on SAMA Analysis	
	F.7.4	Unit 2 Cor	ntainment Sump Sensitivity Analysis	F.7-25
F.8	Conclusi	ons		F.8-1
	F.8.1	Unit 1 Cor	nclusions	F.8-1
	F.8.2	Unit 2 Cor	nclusions	F.8-2
F.9	Tables			F.9-1
F.10	Figures.			F.10-1
F.11	•			

Addendum 1 - Selected Previous Industry SAMAs

List of Tables

Table F.3-1 Estimated Population Distribution within a 10-Mile Radius of PINGP, Year 2034⁽²⁾......F.9-1 Table F.3-2 Estimated Population Distribution within a 50-Mile Radius of PINGP, Year Table F.3-3 Comparison of PINGP MACCS2 Core Inventory and Sample Problem AF.9-3 Table F.3-4 MACCS2 Release Categories vs. PINGP Release Categories......F.9-4 Table F.3-5 Representative MAAP Level 2 Case Descriptions and Key Event Timings Table F.3-6 Prairie Island Source Term SummaryF.9-7 Table F.3-7 MACCS2 Base Case Mean Results......F.9-11 Table F.5-3 PINGP Phase I SAMA List Summary......F.9-57 Table F.6-1 PINGP Phase II SAMA List Summary......F.9-68

Table

Page

List of Figures

FigurePageFigure F.2-1 Contribution to Unit 1 CDF by InitiatorF.10-1Figure F.2-2 Contribution to Unit 2 CDF by InitiatorF.10-1Figure F.2-3 Contribution to Unit 1 LERF by InitiatorF.10-2Figure F.2-4 Contribution to Unit 2 LERF by InitiatorF.10-2Figure F.2-5 Unit 1 Containment Failure ModesF.10-3Figure F.2-6 Unit 2 Containment Failure ModesF.10-3

Acronyms Used in Attachment F

AFW	auxiliary feedwater
AOP	abnormal operating procedure
AOV	air operated valve
ASME	American Society of Mechanical Engineers
ATWS	anticipated transient without scram
BAST	boric acid storage tank
BE	basic event
BWR	boiling water reactor
CAP	corrective action program
CC	component cooling
CCF	common cause failure
CCFP	conditional containment failure probability
CD	core damage
CDB	core damage bin
CDF	core damage frequency
CET	containment event tree
CL	cooling water system
CRD	control rod drive
CS	containment spray
CST	condensate storage tank
CVCS	chemical and volume control system
DDCLP	diesel-driven cooling water pump
DDFP	Diesel-driven fire pump
ECCS	emergency core cooling system
EDG	emergency diesel generator
EOF	emergency operations facility
EOP	emergency operating procedure
EPRI	electric power research institute
EPZ	emergency planning zone
F&O	fact and observation
FA	fire area
FC	fail closed
FHA	fuel handling accident
FIVE	Fire Induced Vulnerability Evaluation
FP	fire protection
FPS	fire protection system
FT	fault tree
FTC	fails to close
FTO	fails to open
FTRC	fails to remain close
FTRO	fails to remain open
FTR	fails to run
FTS	fails to start

Acronyms Used in Attachment F

GDC	general design criteria
GIS	geographic information system
HEP	human error probability
HHSI	high head safety injection
HPI	high pressure injection
HRA	human reliability analysis
HVAC	heating ventilation and air-conditioning
IA	instrument air
IPE	individual plant examination
IPEEE	individual plant examination – external events
IPEM	individual plant evaluation methodology
ISLOCA	interfacing system LOCA
LERF	large early release frequency
LOCA	loss of coolant accident
LODC	loss of DC power
LOOP	loss of off-site power
MAAP	modular accident analysis program
MACCS2	MELCOR accident consequences code system, version 2
MACR	maximum averted cost-risk
MCC	motor control center
MDAFW	motor driven AFW pump
MMACR	modified maximum averted cost-risk
MSLB	main steam line break
MSPI	Mitigating Systems Performance Index
MOV	motor operated valve
MSIV	main steam isolation valve
NEI	Nuclear Energy Institute
NMC	Nuclear Management Company
NPSH	net positive suction head
NRC	U.S. Nuclear Regulatory Commission
NSP	Northern States Power
OECR	off-site economic cost risk
PINGP	Prairie Island Nuclear Generating Plant
PRA	probabilistic risk assessment
PORV	pressure operated relief valve
PWR	pressurized water reactor
PZR	pressurizer
RAI	request for additional information
RCP	reactor coolant pump
RCS	reactor coolant system
RDR	real discount rate
RHR	residual heat removal
RPV	reactor pressure vessel

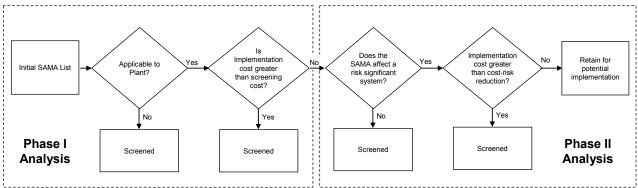
Acronyms Used in Attachment F

	-
RRW	risk reduction worth
RWST	refueling water storage tank
SAMA	severe accident mitigation alternative
SBO	station blackout
SCBA	self-contained breathing apparatus
SETS	set equation transformation system
SG	steam generator
SGTR	steam generator tube rupture
SI	safety injection
SQUG	Seismic Qualification Utility Group
SRV	safety relief valve
SSD	safe shutdown
SSE	safe shutdown earthquake
SW	service water
SWGR	switchgear
TD	turbine driven
TDAFW	turbine driven auxiliary feedwater pump
TS	technical specifications
TSC	technical support center
USI	unresolved safety issue
VCT	volume control tank
WOG	Westinghouse Owners Group

SEVERE ACCIDENT MITIGATION ALTERNATIVES

The severe accident mitigation alternatives (SAMA) analysis discussed in Section 4.17 of the Environmental Report is presented below.

F.1 METHODOLOGY


The methodology selected for this analysis involves identifying SAMA candidates that have potential for reducing plant risk and determining whether or not the implementation of those candidates is beneficial on a cost-risk reduction basis. The metrics chosen to represent plant risk include the core damage frequency (CDF), the dose-risk, and the offsite economic cost-risk. These values provide a measure of both the likelihood and consequences of a core damage event.

The SAMA process consists of the following steps:

- **PINGP Probabilistic Risk Assessment (PRA) Model** Use the PINGP Internal Events PRA model as the basis for the analysis (Section F.2). Incorporate External Events contributions as described in Section F.5.1.8.
- Level 3 PRA Analysis Use PINGP Level 1 and 2 Internal Events PRA output and site-specific meteorology, demographic, land use, and emergency response data as input in performing a Level 3 PRA using the MELCOR Accident Consequences Code System Version 2 (MACCS2) (Section F.3). Incorporate External Events contributions as described in Section F.5.1.8.
- Baseline Risk Monetization Use U.S. Nuclear Regulatory Commission (NRC) regulatory analysis techniques to calculate the monetary value of the unmitigated PINGP severe accident risk. This becomes the maximum averted cost-risk that is possible (Section F.4).
- Phase I SAMA Analysis Identify potential SAMA candidates based on the PINGP PRA Individual Plant Examination – External Events (IPEEE), and documentation from the industry and the NRC. Screen out SAMA candidates that are not applicable to the PINGP design or are of low benefit in pressurized water reactors (PWRs) such as PINGP, candidates that have already been implemented at PINGP or whose benefits have been achieved at PINGP using other means, and candidates whose estimated cost exceeds the maximum possible averted cost-risk (Section F.5).
- **Phase II SAMA Analysis** Calculate the risk reduction attributable to each of the remaining SAMA candidates and compare to a more detailed cost analysis to identify the net cost-benefit. PRA insights are also used to screen SAMA candidates in this phase (Section F.6).

- **Uncertainty Analysis** Evaluate how changes in the SAMA analysis assumptions might affect the cost-benefit evaluation (Section F.7).
- Conclusions Summarize results and identify conclusions (Section F.8).

The steps outlined above are described in more detail in the subsections of this appendix. The graphic below summarizes the high level steps of the SAMA process.

SAMA Screening Process

Environmental impact statements and environmental reports are prepared using the graded approach in which impacts of greater concern and mitigation measures of greater potential value are studied with correspondingly greater effort and rigor. Accordingly, NMC used screening methods and less detailed feasibility investigative and cost estimation techniques for SAMA candidates having disproportionately high cost or low benefits. High level initial cost estimates for all Phase 1 SAMAs were developed by PINGP project department using plant basis and industry information.

F.2 PINGP PRA MODEL

The SAMA analysis is based on the 2006 PINGP Level 1 and Level 2, Revision 2.2 PRA models for internal events. The original Individual Plant Examination (IPE) model submitted in 1994 has received a number of technical updates to maintain design fidelity with the operating plant and reflect the latest PRA technology. This section provides an overview of the model revisions and technical upgrades, and provides a basis for conclusion that the PRA scope and quality is sufficient for this application.

The PINGP PRA model peer review was conducted in September 2000. The final report was prepared by Westinghouse, which was the lead in performing the PWR Utility peer assessment. The peer assessment identified five Level A Facts & Observations (F&Os) and 32 Level B F&Os. All A and B Level F&Os have been addressed and closed.

The following subsections provide more detailed information related to the evolution of the PINGP internal events PRA model and the current results. These topics include:

- PRA changes since the IPE
- Level 1 model overview
- Level 2 model overview
- PRA model review summary

Section F.5.1.8 provides a description of the process used to integrate external events contributions into the PINGP SAMA process; therefore, no specific discussion of the external events models is included in this section.

F.2.1 History of PINGP PRA Model Development

This section describes the IPE and identifies subsequent model changes that were implemented. The IPE, which included both Level 1 and Level 2 PRA analyses for Unit 1 only, is discussed in Section F.2.1.1. Revisions to the Level 1 PRA model since the IPE are discussed in Section F.2.1.2. Revisions to the Level 2 PRA model since the IPE are discussed in Section F.2.1.3. The current Level 1 and Level 2 (Rev. 2.2 (SAMA)), which was used for the SAMA evaluation, is described in Sections F.2.2 and F.2.3, respectively. Detailed descriptions of the changes for each revision are maintained as plant model documentation.

PINGP Model	Model Revision Date	Unit 1 CDF (per rx-yr)	Unit 2 CDF (per rx-yr)	Unit 1 LERF (per rx-yr)	Unit 2 LERF (per rx-yr)
IPE (Rev. 0)	1994	5.0E-05	NA	NA	NA
Rev. 1.0	1996	2.4E-05	NA	3.8E-07	NA
Rev. 1.1	1999	2.35E-05	NA	3.8E-07	NA
Rev. 1.2	2001	2.20E-05	NA	6.9E-07	NA
Rev. 2.0	2002	2.19E-05	2.52E-05	3.88E-07	3.90E-07
Rev. 2.1	2005	1.47E-05	1.63E-05	5.74E-07	5.74E-07
Rev. 2.2	2006	9.81E-06	1.13E-05	5.14E-08	1.35E-07
Rev. 2.2 (SAMA)	2006	9.79E-06	1.21E-05	8.79E-08	1.75E-07

The historical nominal CDF and large early release frequency (LERF) results for PINGP are as follows:

This section reviews the PRA model development from the IPE to the current Revision 2.2 model, including model enhancements and dominant accident classes.

F.2.1.1 IPE (Level 1 and Level 2, Revision 0)

The PINGP IPE was submitted to the NRC by letter dated March 1, 1994 to respond to Generic Letter 88-20, "Individual Plant Examination for Severe Accident Vulnerabilities – 10CFR 50.54(f)." The NRC sent requests for additional information (RAI) to Northern States Power Company on December 21, 1995. The NRC accepted the IPE by letter dated May 16, 1997. The NRC letters noted that the IPE submittals met the intent of Generic Letter 88-20, "Individual Plant Examination for Severe Accident Vulnerabilities – 10CFR 50.54(f)", dated November 23, 1988.

The first full-scope PRA analysis done for PINGP was that performed to satisfy the IPE requirements, and was completed in February 1994. This was a study to determine vulnerabilities to severe accidents from at-power operation. It was based on a Level 1 and Level 2 PRA model performed for Unit 1. Unit 2 vulnerabilities were qualitatively evaluated based on the Unit 1 results and consideration of asymmetries in plant design and operation that exist between the units. The study found no vulnerabilities to severe accidents at the PINGP. Previously, a limited-scope Individual Plant Evaluation Methodology (IPEM) analysis was completed in 1992. The IPE PRA analysis started with the models built for the IPEM study, and additional details, including the Level 2 portions, were added to arrive at the full scope analysis. The initial data collection effort for that analysis was performed for the period 1978 – 1987, except for the initiating event frequency analysis, which used plant trip information over the period 1975 – 1987. The IPE is now considered to be Revision 0 of the Level 1 and 2 PRA models.

The core damage frequency (CDF) calculated for the IPE was 5.0E-5/rx-yr. The contributions by initiating event were:

- Loss of coolant accident (LOCAs) (24%);
- Loss of off-site power (LOOP) including station blackout (SBO) (22%);
- Internal Flooding (21%);
- Transients excluding LOOP (19%); and
- Steam generator tube rupture (SGTR) (13%).

LERF was not quantified for the IPE. The total release frequency (the frequency of core damage followed by containment failure) was calculated to be 2.0E-5/rx-yr, giving a conditional containment failure probability (CCFP) of approximately 40% (69% including induced SGTR, which was addressed by an Emergency Operating Procedure (EOP) change almost as soon as the IPE was submitted). The dominant contributors to the CCFP were:

- Late containment failure due to overpressure following early core damage and vessel failure at high pressure (55%); and
- SGTR (35%)
- Other (10%).

F.2.1.2 Level 1 Model Revisions since the IPE

F.2.1.2.1 Level 1, Revision 1.0

Revision 1.0 of the Unit 1, Level 1 PRA model was completed in 1996. In addition to adding modeling for a few additional balance-of-plant systems (for example, the non-safeguards station air system and the steam dump and circulating water systems), this update included modeling for a number of significant changes to the plant safeguards electrical systems that were not installed at the time of the IPE submittal. Examples include elimination of sub-fed 480V motor control centers (MCCs), division of the two Unit 1 safeguards 480 V AC buses into four buses and relocation of those buses within the plant; and significant reliability upgrades for the DC power system. Component failure and unavailability data for six key systems were updated for the period 1986 through 1995, as were the initiating event frequencies. LOCA frequencies were

reanalyzed to make them more plant-specific, using a pipe failure study technique developed by the Electric Power Research Institute (EPRI).

The CDF calculated for the Revision 1.0 PRA model was 2.4E-5/rx-yr. The contributions by initiating event were:

- LOCAs (5%);
- LOOP including SBO (34%);
- Internal Flooding (36%);
- Transients excluding LOOP (10%);
- SGTR (14%); and
- Other (1%).

The decline in the CDF compared with the Revision 1.0 (IPE) model results was primarily due to the development of plant-specific LOCA initiating event frequencies, credit given for the station air to instrument air cross-tie capability, and credit given for an electrical system upgrade and equipment relocation on Unit 1 that effectively eliminated the 480 V safeguards bus dependency on room ventilation.

F.2.1.2.2 <u>Level 1, Revision 1.1</u>

Revision 1.1 of the Unit 1, Level 1 model was completed in 1999. This was essentially the same model as Revision 1.0; however, a single top fault tree approach to the quantification of overall CDF was used, as was a standard truncation level of 1E-10. Previously, the PRA models were quantified using Set Equation Transformation System (SETS) software, which allowed different truncation levels for each individual core damage sequence. The total CDF for the Revision 1.1 model was calculated to be 2.35E-5/rx-yr, and the breakdown of the CDF by initiating event was similar to the Revision 1.0 model.

F.2.1.2.3 <u>Level 1, Revision 1.2</u>

Revision 1.2 of the Unit 1, Level 1 model was completed in 2001. Significant changes were incorporated during this revision. Many of these changes were based on comments received by the Westinghouse Owners Group (WOG) PRA Certification Team Review that took place in September 2000. Changes included:

- New LOCA break size groupings (small LOCA, medium LOCA, large LOCA);
- New LOCA break size frequencies based on generic data from NUREG/CR-5750;
- Update to several initiating event frequencies (LOOP, loss of DC (LODC));
- Inclusion of Offsite Power recovery actions for non-SBO events;
- Creation of initiating event trees for the cooling water system (CL), component cooling system (CC), and Instrument Air systems;
- Power operated relief valve (PORV) LOCA events were added;
- Changes to SBO success criteria (removal of diesel generator recovery);
- Random reactor coolant pump (RCP) Seal Failure initiating event was added;
- Updates to several system fault trees;
- Credit for the pressurizer PORV accumulator;
- Upgrade to the Human Reliability Analysis (key operator actions); and
- The mission time for the emergency diesel generators (EDG) and CL pumps were changed from 6 hours to 24 hours since offsite power recovery is credited.

The component failure rates from the 1995 update were reviewed against generic data. If significant differences were found and there was a large impact on the CDF, the component failure rate was updated. Only a few changes were made. Specifically, EDG D5 and D6 failure and unavailability data were changed based on the limited amount of operating experience available during the update period. Generic failure rates from NUREG/CR-4550 were used for the D5 and D6 EDGs.

The CDF calculated for the Revision 1.2 PRA model was 2.20E-5/rx-yr. The contributions by initiating event were:

- LOOP including SBO (23.9%);
- LOCAs (23.8%);
- Internal Flooding (22.5%);
- SGTR (14.8%); and
- Transients excluding LOOP (15.0%).

There was not a significant change in the overall CDF value compared with the Revision 1.1 model. However, the distribution of the accident sequences has changed significantly. The LOOP contribution decreased due to crediting offsite power recovery for the non-SBO sequences. The SGTR contribution increased due to re-analysis of the human error actions associated with this event. The LOCA contribution increased due to redefining the LOCA break sizes and the use of generic LOCA frequencies. The internal flooding contribution decreased due to crediting the Pressurizer PORV accumulator. The transient contribution increased due to several reasons since it encompasses many initiating events.

- The loss of feedwater transient increased due to changes in the human reliability analysis (HRA). (Key operator actions were re-analyzed based on conditional events, which resulted in a higher probability of failure. A key operator action in the loss of feedwater water transient affected by this includes: establishing feed and bleed conditional on restoring feedwater.);
- The normal transient contribution increased due to the modeling addition of challenging a pressurizer PORV during the transient and resulting in a PORV LOCA; and
- The contribution from a loss of CC and CL transients increased due to the addition of initiating event tree modeling for CL and CC systems.

F.2.1.2.4 Unit 1 and Unit 2 Level 1, Revision 2.0

Level 1, Revision 2.0 PRA model update was performed in order to obtain a working PRA model for Unit 2. Previously, all probabilistic risk analysis for Unit 2 have involved application of the Unit 1 model results, with modifications that attempted to consider the impact of asymmetries between the units. The update was also performed to correct some errors and make some enhancements to the existing Revision 1.2 PRA model. The model update was completed in 2002 and was built upon the Level 1 Revision 1.2 model. Major model changes included with this update are:

- Addition of Unit 2 frontline and support system logic modeling;
- Addition of Unit 2 accident sequence logic modeling;
- Inclusion of CDF and LERF calculations for Unit 2;
- Removal of the boric acid storage tank (BAST) input to the safety injection (SI) pumps suction logic. The primary suction supply is now only the refueling water storage tank (RWST);

- Enhancement of the existing quantification methodology, including incorporation of fault tree-based deletion of mutually exclusive events, including multiple initiating events;
- Modification to the charging pump system fault tree logic to include an operator action to restart the pumps after a LOOP event since they are not included in the sequencer logic;
- Use of the same common cause failure (CCF) event for the residual heat removal (RHR) pump discharge check valves in the injection, recirculation, and shutdown cooling modes;
- A new operator action to prevent load sequencer failure due to loss of cooling to the 4KV safeguards bus rooms (Bus 15, Bus 16, Bus 25, and Bus 26 rooms) were incorporated into the model. In conjunction with this change, a factor for the sequencer failure at elevated temperatures was added to the fault tree logic for the safeguards bus;
- Update to the logic modeling for the supply/exhaust fans 21, 22, 23, 24 which supply air to the Unit 2 safeguards bus rooms. The original modeling assumed that none of the fans were running (but one train is normally running). This modeling change assumed supply/exhaust fan sets 21 and 22 are normally running and supply/exhaust 23 and 24 are in standby. Therefore, the failure to start logic was only included for sets 23 and 24. The CCF to start basic events (BEs) for all four sets was removed from the model; and
- An incorrect and non-conservative mutually exclusive event related to the Screenhouse Flood Zone 2 Initiating event (I-SH2FLD) was removed from the logic. This resulted in an increase in the contribution of the Screenhouse Flood Zone 2 (SH2FLD) event to the overall results.

The CDF calculated for the Unit 1 Revision 2.0 PRA model was 2.19E-5/rx-yr. The contributions by initiating event were:

- LOOP including SBO (26.0%);
- LOCAs (22.4%);
- Internal Flooding (23.2%);
- SGTR (13.2%); and
- Transients excluding LOOP (15.2%).

There was not a significant change in the overall CDF value compared with the Revision 1.2 model. There were some changes in the distribution of the accident sequences. The LOOP contribution increased due to the additional cutsets (with higher probabilities) related to the LOOP event with a failure of the operator to start a charging pump and a loss of the CL pumps which lead to a RCP seal LOCA. The small LOCA contribution decreased (which results in a decrease in the LOCA contribution) due to the removal of the BAST as a supply source to the SI pumps. The SGTR contribution decreased due to preventative maintenance on Emergency Diesel Generator (EDGs). The flood contribution increased due to the removal of a mutually exclusive event related to the Screenhouse Flood Zone 2 initiating event.

The CDF calculated for the Unit 2 Revision 2.0 PRA model was 2.52E-5/rx-yr. The contributions by initiating event were:

- LOOP including SBO (25.6%);
- LOCAs (19.4%);
- Internal Flooding (20.1%);
- SGTR (11.8%); and
- Transients excluding LOOP (23.1%).

There is not a previous Unit 2 model to which the results can be compared; however, Unit 2 can be compared to the Unit 1 results. Unit 2 CDF value is higher than the Unit 1 result, due to an increase in the LOOP and LODC Power Train A initiating events. The LOOP initiating event increase is due to the Unit 2 asymmetries associated with the auxiliary feedwater (AFW) system (Unit 2 motor driven AFW (MDAFW) pump powered from Train A verses Unit 1 MDAFW pump powered from Train B) and the emergency diesel generators system (D5 and D6 have higher CCF to start probability verses D1 These asymmetries result in LOOP event cutsets that have higher and D2). probabilities than the Unit 1 results. Also, since the Unit 2 MDAFW pump is powered from Train A, the LODC power Train A event has a larger impact on the Unit 2 CDF results (contributes almost 9% to the overall CDF). This initiator causes the transient portion of the Unit 2 CDF to increase to 23.1% verses 15.2% in the Unit 1 results. The internal flooding event probability remains virtually the same between the Unit 2 and Unit 1 results; however, due to the increase in Unit 2 CDF value, the contribution in the Unit 2 result is lower. This is also the case for the SGTR event.

F.2.1.2.5 Unit 1 and Unit 2 Level 1, Revision 2.1

Revision 2.1 of the Unit 1 and Unit 2, Level 1 model was completed in early 2005. Significant changes were incorporated during this revision. Changes include:

- Update to LOOP initiating event frequency including the addition of consequential LOOP;
- Updates to the RHR, SI, AFW, CL, CC, 125 VDC system, EDG, and instrument power system fault trees;
- Upgrade to the HRA for key operator actions and inclusion of misalignment and miscalibration events;
- Correction to the process used to model pre-initiator latent errors;
- Additional modeling of 120 V AC panel faults;
- Updated failure data for the EDG and AFW systems;
- Updated common cause values for the EDG and AFW systems; and
- Updated internal flooding analysis.

The CDF calculated for the Unit 1 Revision 2.1 PRA model was 1.47E-5/rx-yr. The contributions by initiating event were:

- LOCAs (53.5%);
- Transients excluding LOOP (20.8%);
- SGTR (14.2%);
- LOOP, including SBO (9.8%); and
- Internal flooding (1.7%).

There was a significant change in the overall Unit 1 CDF value compared with the Revision 2.0 model. The distribution of the accident sequences changed significantly. The LOOP contribution decreased due to recalculation of the LOOP initiating event frequency and new EDG common cause and failure data. The LOCA contribution increased due to re-analysis of the human error actions associated with these events. The internal flooding contribution decreased due to reanalysis of the pipe break

frequencies and the flows from the break. The transient contribution changed due to several reasons since it encompasses many initiating events:

- Transients increased due to the addition of AFW recirculation line valve failure logic, which was added in the recent fault tree update. This added an extra failure mode for the AFW system;
- The normal transient contribution decreased due to the modeling addition of a factor for the percentage of time that a pressurizer PORV might lift following a transient initiating event; and
- The credit for the pressurizer PORV air accumulator was increased, which reduced the contribution of the loss of instrument air initiating event.

The CDF calculated for the Unit 2 Revision 2.1 PRA model was 1.63E-5/rx-yr. The contributions by initiating event were:

- LOCAs (48.3%);
- Transients excluding LOOP (27.2%);
- SGTR (12.8%);
- LOOP, including SBO (10.2%); and
- Internal flooding (1.5%).

There was a significant change in the overall Unit 2 CDF value compared with the Revision 2.0 model. The distribution of the accident sequences also changed significantly. The LOOP contribution decreased due to recalculation of the LOOP initiating event frequency and new EDG common cause and failure data. The SGTR contribution decreased due to re-analysis of the human error actions associated with this event. The LOCA contribution increased due to re-analysis of the human error actions due to reanalysis of the pipe break frequencies and the flows from the break. The transient contribution changed due to several reasons, as it encompasses many initiating events.

- Transients increased due to the addition of AFW recirculation line valve failure logic, which was added in the recent fault tree update. This added an extra failure mode for the AFW system;
- The normal transient contribution decreased due to the modeling addition of a factor for the percentage of time that a pressurizer PORV might lift following a transient initiating event; and

• The credit for the pressurizer PORV air accumulator was increased which reduced the contribution of the loss of instrument air and loss of A train DC initiating events. As the impact of loss of Train A DC is more significant to Unit 2 than it is to Unit 1 (see Section F.2.1.2.4), this change also reduced the difference in contribution to CDF from Transient events between the units.

F.2.1.2.6 Unit 1 and Unit 2 Level 1, Revision 2.2

The most recent major update to the Level 1 PRA models was the Rev. 2.2 model update.

Unit 1 Level 1 Rev. 2.2 Model

The Unit 1 Level 1 Rev. 2.2 model update incorporated a number of model upgrades and enhancements necessary for application of the model to the initial implementation of the Mitigating Systems Performance Index (MSPI) program in 2006, including closure of all remaining open Level B WOG Peer Certification Review findings. The most significant model improvements included:

- Minor updates to the fault tree models for several MSPI systems.
- Update to common cause failure (CCF) parameters using recent data and methodologies.
- Updates to plant and generic failure data, plant maintenance unavailability data, and initiating event frequencies.
- Inclusion of both quantitative and qualitative uncertainty analyses.

In addition, the initiating event frequency update reflected the installation of new steam generators for Unit 1. This change had relatively significant impact on the Level 1 results.

The contribution to core damage frequency (9.81E-06) due to initiating events shows that four initiators contribute 10% or more: Small LOCA – Loop A (25%), Small LOCA – Loop B (25%), Loss of Cooling Water (18%), and Loss of Offsite Power (11%).

The Small LOCA initiating events are the top contributors to the CDF due to their relatively high initiating event frequencies (relative to larger-break LOCAs) and the fact that both methods of mitigation of the event (either Reactor Coolant System (RCS) cool down and depressurization and initiation of RHR shutdown cooling, or transfer to low head Emergency Core Cooling System (ECCS) recirculation) requires operator action. Common cause failures (across both safeguards trains) of component cooling water pumps and valves, and RHR system pumps also are significant contributors to the top Small LOCA sequences.

The CL system (analogous to an emergency service water system at other PWRs) is very important to plant risk at PINGP. CL provides equipment heat removal support for

operation of both the high and low pressure ECCS systems. Any event that results in loss of the CL system (a Loss of CL initiating event) also removes the backup means of providing RCP seal cooling. Therefore, on a Loss of CL initiator, failure of seal injection from the Chemical and Volume Control System (CVCS) charging pumps will result in an unrecoverable RCP seal LOCA.

Loss of offsite AC power is significant due to its relatively high frequency and reliance upon the site emergency diesel generators (EDGs) and their support systems. The EDGs are complex machines that have many subsystems and have relatively high random failure rates (compared to other plant components, i.e., motor-operated pumps or valves, etc.). Typically, core damage sequences following this initiating event are a result of an eventual station blackout (SBO) condition, subsequent RCP seal failures and resulting RCS leakage without makeup capability. In some cutsets, power may be lost on one train, and equipment fails on the energized train, causing a loss of a critical function. Credit is taken for recovery of offsite power based on industry experience with the duration of loss of offsite power events. PINGP has the ability to manually cross-tie same-train 4kV buses across units (from the control room), and the EDGs have the capability to handle the loads that would be expected during a dual-unit LOOP. In addition, the Unit 1 and Unit 2 EDGs have different designs and manufacturers, and require different systems for cooling. Therefore, the contribution due to SBO is not as significant at PINGP as at some other PWRs.

Unit 2 Level 1 Rev. 2.2 Model

The Unit 2 Level 1 Rev. 2.2 model update incorporated all of the model upgrades and enhancements described above for the Unit 1 model, including all of those necessary to implement the MSPI program for Unit 2 in 2006, and closure of all remaining open Level B WOG Peer Certification Review findings. The only significant difference between the update for Unit 1 and the update for Unit 2 was that the initiating event frequency update does not reflect an installation of new steam generators for Unit 2. Steam generator replacement is planned for Unit 2 in 2013.

Unit 1 and Unit 2 are near-mirror images of each other with respect to design and operation. Therefore, as expected, the Level 1 PRA results (CDF and contributions by initiating event) are very similar between the units. The contribution to core damage frequency (1.13E-05) due to initiating events shows that four initiators contribute 10% or more: Small LOCA – Loop A (21%), Small LOCA – Loop B (21%), Loss of Cooling Water (16%), and Loss of Offsite Power (10%). The discussion presented in this section of each of these top contributors to the Unit 1 CDF applies to the Unit 2 results as well.

The most significant asymmetries between the CDF results for Unit 1 and Unit 2 are in the contributions from the SGTR and Loss of Train A DC initiating events. The SGTR contribution for Unit 2 is significantly larger than it is for Unit 1 (10.0% of the total CDF vs. 2.0%, respectively), due to the fact that the steam generators in Unit 1 have undergone replacement recently while Unit 2 is still using its original steam generators. The Loss of Train A DC initiating event is more significant to the Unit 2 results (3.5% of the total CDF) than to the Unit 1 results (0.4% of the total CDF) due to the fact that DC control power for operation of the motor-driven Auxiliary Feedwater pump on Unit 2 is supplied from Train A, whereas control power for operation of the Unit 1 motor-driven AFW pump is supplied from Train B DC. Both units experience a reactor trip with loss of main feedwater on a loss of Train A DC (no loss of main feedwater on loss of Train B DC). Therefore, since AFW is required for secondary heat removal when main feedwater is lost, the Loss of Train A DC initiating event is more severe for Unit 2 than for Unit 1.

F.2.1.2.7 Unit 1 and Unit 2 Level 1, Revision 2.2 (SAMA)

The latest version of the Unit 1 and Unit 2 Level 1 PRA is the Rev. 2.2 model (SAMA). This was the version of the model used for the SAMA evaluation supporting this LRA submittal. For a discussion of the Level 1 Rev. 2.2 model (SAMA), see Section F.2.2.

F.2.1.3 Level 2 Model Revisions since the IPE

F.2.1.3.1 <u>Level 2, Revision 1.0</u>

Revision 1.0 of the Unit 1, Level 2 PRA model was completed in 1999, and was built upon the Level 1 Revision 1.0 model. In addition to the changes incorporated in the revision to the Level 1 model, the Level 2 update reflected credit for the potential for hot leg creep rupture phenomenon to facilitate vessel failure at low pressure for early core damage sequences and credit for a change to the emergency procedures that greatly reduced the risk from induced steam generator (SG) tube creep rupture events (these events were not modeled in the Revision 1.0 analysis). Also, credit for containment spray (CS) recirculation was removed from the model, since procedural guidance for operator initiation of the system in the EOPs was removed (based on a licensing-basis calculation that showed that containment pressure would be below the threshold requiring CS recirculation operation for any analyzed event after the RWST had reached low-low level). The total release frequency (the frequency of core damage followed by containment failure) was calculated to be 8.8E-6/rx-yr, giving a conditional containment failure probability (CCFP) of approximately 38%.

The decline in the total release frequency was primarily due to the decline in the Level 1 CDF (from the Revision 0 to the Revision 1 analysis). The decline was slightly less than that seen in the CDF itself due to the relatively large CDF contribution to both measures from internal flooding events. The contribution of flooding events to the total release frequency remained relatively constant at about 35% (9E-6).

LERF was quantified for the Revision 1 Level 2 model. Early core damage sequences involving containment bypass (SGTR and interfacing system LOCA (ISLOCA) sequences) and containment isolation failure were considered to be those with the potential to produce a large early release. The calculated LERF was 3.8E-7/rx-yr. The contributors to the LERF by initiating event (sub-bullets provide a discussion of dominant sequences within these categories) were:

- ISLOCA (58% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction motor operated valves (MOVs) followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage. (41% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment. (17% of LERF);
- SGTR (15% of LERF),
 - SGTR followed by common cause failure of either the SI pumps (to start or run) or the RWST to SI suction MOVs to open, followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions. (14% of LERF); and
- Transient or LOCA core damage sequences followed by early containment failure (typically through hydrogen combustion) (25% of LERF),
 - AFW Pump/Instrument Air Compressor room internal flood (15% of LERF),
 - RCP seal LOCA involving loss of CL and Train A 4kV AC power (5% of LERF),
 - Loss of secondary heat sink with failure of operator action to perform bleed and feed operation (3% of LERF), and
 - Medium or large LOCA with failure of Emergency Core Cooling System (ECCS) recirculation (1% of LERF).
- Transient or LOCA core damage sequences followed by other early containment failure mechanisms (2% of LERF),

F.2.1.3.2 Level 2, Revision 1.1

No Level 2 or LERF model was developed with this designation (no update to the Level 2 models or to LERF was performed which used the Level 1, Revision 1.1 model as input). The basis for this was the nearly identical nature of the Revision 1.0 and Revision 1.1 Level 1 models, that is, no significant difference in the Level 2 results could exist based solely on the move to the Revision 1.1 model.

F.2.1.3.3 <u>Level 2, Revision 1.2</u>

A full Level 2 revision to correspond with the Level 1, Revision 1.2 model was not performed. However, the LERF results were updated based on the Level 1, Revision 1.2 model, and changes to the LERF calculation were made.

One change made to the Level 1 model incorporated in Revision 1.2 had a significant impact on the LERF results. The human error probability (HEP) for the failure of the operator to cool down and depressurize the RCS to shutdown cooling following a SGTR, originally a screening value with a very low probability, was increased by an order of magnitude. This change shifted the majority of the LERF contribution to SGTR sequences (from Interfacing System LOCA (ISLOCA) sequences).

Other than the changes to the underlying Level 1 model, the following changes were made to the LERF calculation itself:

- 1. Failure of containment isolation was modeled using a fault tree (FT) model for each unscreened containment penetration from the previous analysis. The previous LERF analysis used a point value estimate for the failure of containment isolation.
- 2. Core damage sequences involving early containment failure but without containment bypass (from the full Level 2 analysis) were excluded from the LERF result. As stated previously, a full Level 2 model update based on the Level 1 Revision 1.2 model was not performed. In addition, these sequences had been conservatively added to the LERF calculation in the absence of certainty about whether they met an industry standard definition of large, early release that was still in development. The American Society of Mechanical Engineers (ASME) PRA Standard defines a large early release as "the rapid, unmitigated release of airborne fission products from the containment to the environment occurring before the effective implementation of offsite emergency response and protective actions" (ASME 2005). Under this definition, it is not clear that these early containment failure sequences actually would lead to large early releases, since containment is not directly bypassed. The IPE source term analysis showed only the containment bypass events (induced-SGTR, ISLOCA) to result in the highest releases of volatile (non-noble gas) radionuclides.

SGTR events also involved large releases of volatiles, but was considered to be a late release. Containment isolation failure sequences involved early releases but the magnitude of the volatiles was categorized as medium. Also, the majority of these sequences were assumed to lead to early containment failure due to very conservative treatment of the hydrogen combustion phenomenon. However, position papers created for the IPE conclude that, even assuming worst-case hydrogen production conditions post core damage, pressures developed within the containment following a detonation of the hydrogen would not approach the ultimate failure pressure of the containment shell itself.

Evidence also exists that ignition sources energetic enough for detonation of the hydrogen do not exist within the containment. Even if containment failure were to occur by this mechanism, it is likely that the timing of the failure would be later than that specified in the LERF definition (time for implementation of protective action recommendations from the emergency plan response would be available due to the additional time required to pressurize containment to its ultimate failure pressure).

Therefore, the non-bypass early containment failure sequences were excluded from the LERF calculation (SGTR and containment isolation failure sequences were left in).

The calculated LERF for Revision 1.2 was 6.9E-7/rx-yr. The contributors to the LERF by initiating event were (sub-bullets provide a discussion of dominant sequences within these categories):

- SGTR (87% of LERF),
 - SGTR followed by common cause failure of either the SI pumps (to start or run) or the RWST to SI suction MOVs to open, followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions. (69% of LERF);
- ISLOCA (13% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment. (9% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage. (4% of LERF); and
- Other core damage sequences followed by failure of containment isolation (<1 % of LERF)

F.2.1.3.4 Level 2, Revision 2.0

A full Level 2 revision to correspond with the Level 1, Revision 2.0 model was not performed. However, the LERF results were updated based on the Level 1, Revision 2.0 model, and changes to the LERF calculation were made.

One change made to the Level 1 model incorporated in Revision 2.0 had a significant impact on the LERF results. The removal of the BAST as a supply source to the SI pump suction logic significantly reduced the contribution of the SGTR event to the LERF result.

Other than the changes to the underlying Level 1 model, the following changes were made to the LERF calculation itself:

• The containment isolation failure logic modeling (gate 1CIF and 2CIF) was expanded to include catastrophic leakage from the equipment hatch door, the fuel transfer tube, and open personnel or maintenance airlock doors.

The calculated LERF for the Unit 1 Revision 2.0 was 3.88E-7/rx-yr. The contributors to the LERF by initiating event were (sub-bullets provide a discussion of dominant sequences within these categories):

- SGTR (76% of LERF),
 - STGR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions. (28% of LERF);
- ISLOCA (23% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment. (11% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage. (7% of LERF); and
- Other core damage sequences followed by failure of containment isolation (1% of LERF)

The calculated LERF for Unit 2 Revision 2.0 was 3.90E-7/rx-yr. The contributors to the LERF by initiating event were (sub-bullets provide a discussion of dominant sequences within these categories):

• SGTR (76% of LERF),

- STGR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions. (28% of LERF);
- ISLOCA (23% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment. (11% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage. (7% of LERF); and
- Other core damage sequences followed by failure of containment isolation (1% of LERF)

F.2.1.3.5 <u>Level 2, Revision 2.1</u>

A full Level 2 revision to correspond with the Level 1, Revision 2.1 model was not performed. However, an update to the LERF results based on the Level 1, Revision 2.1 model was performed. Other than the changes to the underlying Level 1 model, there were no changes made to the LERF model.

The calculated LERF for the Unit 1 Revision 2.1 was 5.74E-7/rx-yr. The contributors to the LERF by initiating event were (sub-bullets provide a discussion of dominant sequences within these categories):

- SGTR (54% of LERF),
 - STGR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions; and
- ISLOCA (45% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage, and
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment.
- Other core damage sequences followed by failure of containment isolation (<1% of LERF)

The resulting LERF is higher than the Revision 2.0 model because the HRA updates for the Revision 2.1 model resulted in a higher failure probability for the operator actions to cool down and depressurize the RCS. This resulted in a higher contribution from the ISLOCA sequences, and consequentially a higher LERF value.

The calculated LERF for the Unit 2 Revision 2.1 was 5.74E-7/rx-yr. The dominant contributors to the LERF were:

- SGTR (54% of LERF),
 - STGR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions; and
- ISLOCA (45% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage, and
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment.
- Other core damage sequences followed by failure of containment isolation (<1% of LERF)

The resulting LERF is higher than the Revision 2.0 model because the recent HRA updates for the Revision 2.1 model resulted in a higher failure probability for the operator actions to cooldown and depressurize the RCS. This resulted in a higher contribution from the ISLOCA sequences and consequentially, a higher LERF value.

F.2.1.3.6 <u>Level 2, Revision 2.2</u>

A full Level 2 revision to correspond with the Level 1, Revision 2.2 model was not performed. However, an update to the LERF results based on the Level 1, Revision 2.1 model was performed. Other than the changes to the underlying Level 1 model, there were no changes made to the LERF model.

The calculated LERF for the Unit 1 Revision 2.2 was 5.14E-8/rx-yr. The dominant contributors to the LERF were:

- ISLOCA (63% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve

and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment, and

- Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage.
- SGTR (34% of LERF),
 - STGR followed by common cause failure of the CC pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions; and
 - STGR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions
- Other core damage sequences followed by failure of containment isolation (3% of LERF)

The resulting LERF is lower than the Revision 2.1 model because the several factors including a decrease in the SGTR frequency to account for the new steam generator installation. In addition, the Rev 2.2 model updated the component failure rates and common cause factors which resulted in a decrease in the failure rate associated with catastrophic leaks on containment penetration motor valves, and common cause multipliers associated with the RHR heat exchanger cooling water supply motor valves, RHR pumps and SI pumps, and Containment Isolation (CI) control valves. These components are important for mitigating LERF consequences.

The calculated LERF for the Unit 2 Revision 2.2 was 1.35E-7/rx-yr. The dominant contributors to the LERF were:

- SGTR (75% of LERF),
 - SGTR followed by common cause failure of the SI pumps (to start or run), followed by operator failure to cool down and depressurize the RCS to RHR shutdown cooling conditions; and
- ISLOCA (24% of LERF),
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs followed by operator failure to cool down and depressurize the reactor to limit RHR pump seal leakage, and
 - Catastrophic rupture or transfer open of two series RHR Hot Leg Suction MOVs, or rupture of two series SI injection check valves, or one SI injection check valve and the RHR shutdown cooling isolation MOV, followed by rupture of the low pressure RHR piping outside containment.
- Other core damage sequences followed by failure of containment isolation (1% of

LERF)

The resulting LERF is lower than the Revision 2.1 model because of several factors, including a decrease to the SGTR frequency due to an updated Bayesian analysis. In addition, the Rev 2.2 model updated the component failure rates and common cause factors which resulted in a decrease in the failure rate associated with catastrophic leaks on containment penetration motor valves, and common cause multipliers associated with the RHR heat exchanger cooling water supply motor valves, RHR pumps and SI pumps, and Containment Isolation (CI) control valves. These components are important for mitigating LERF consequences.

The most significant asymmetry between the LERF results for Unit 1 and Unit 2 is in the contribution from the SGTR initiating event. The SGTR contribution is significantly larger for Unit 2 than it is for Unit 1 (75% of the total LERF vs. 34%, respectively), due to the fact that the steam generators in Unit 1 have undergone replacement recently while Unit 2 is still using its original steam generators.

F.2.1.3.7 Level 2, Revision 2.2 (SAMA)

The current version of the Unit 1 and Unit 2 Level 2 PRA is the Rev. 2.2 model (SAMA). This revision, an update of the full Level 2 analysis, was the version of the model used for the SAMA evaluation supporting this LAR submittal. For a discussion of the Rev. 2.2 Level 2 model (SAMA), see Section F.2.3.

F.2.2 PINGP Level 1 PRA Model

The SAMA analysis is based on the PINGP Level 1 PRA Model of Record developed in 2006 (Rev. 2.2). As described in Section F.2.1.2.6, this model includes the changes and analysis that were required to support the Unit 1 steam generator replacement that occurred in 2004. In addition, all Level A and B Westinghouse Peer Certification comments (F&Os) have been dispositioned and those requiring model and/or documentation changes have been addressed with the issuance of this model.

In addition to the Level 1, Rev. 2.2 changes described in Section F.2.1.2.6, two additional changes were made to support the SAMA analysis (described in Sections F.2.2.1 and F.2.2.2). The Level 1 PRA model used for the SAMA evaluation is called the "Rev. 2.2 (SAMA)" model.

F.2.2.1 Unit 1, Level 1 Rev. 2.2 (SAMA)

The latest version of the Unit 1 Level 1 PRA is the Rev. 2.2 model (SAMA). This was the version of the model used for the SAMA evaluation supporting this LRA submittal. This model included one model correction that had a slight impact on Unit 1 CDF (final CDF decreased approximately 2E-8/yr, to 9.79E-6/yr). The correction was made to the Level 1 core damage sequence success logic for the Small LOCA event. As a result, a small number of illogical cutsets (previously retained) were deleted in the CDF metric for the SAMA model quantification.

The changes for Unit 1 only slightly alter the core damage frequency results by initiating event from that described for the Rev. 2.2 model in Section F.2.1.2.6. Four initiators contribute 10% or more: Small LOCA – Loop A (25%), Small LOCA – Loop B (25%), Loss of Cooling Water (18%), and Loss of Offsite Power (11%). This is shown graphically in Figure F.2-1.

The balance of the discussion provided in Section F.2.1.2.6 is also representative of the SAMA model results for Unit 1.

F.2.2.2 Unit 2, Level 1 Rev. 2.2 (SAMA)

The latest version of the Unit 2 Level 1 PRA is the Rev. 2.2 model (SAMA). This was the version of the model used for the SAMA evaluation supporting this LRA submittal. In addition to the model correction described above for Unit 1 (Section F.2.2.1), this model included one additional correction that had a slight impact on Unit 2 CDF (final CDF increased approximately 8E-7/yr, to 1.21E-5/yr).

The changes for Unit 2 only slightly alter the core damage frequency results by initiating event from that described for the Rev 2.2 model in Section F.2.1.2.6. Four initiators contribute 10% or more: Small LOCA – Loop A (22%), Small LOCA – Loop B (22%), Loss of Cooling Water (15%), and Loss of Offsite Power (10%). On Unit 2, the SGTR initiating events for Loop A (5%) and Loop B (5%) (together) also contribute 10% to the CDF. This is shown graphically in Figure F.2-2. The balance of the discussion provided in Section F.2.1.2.6 above is also representative of the SAMA model results for Unit 2.

Note that, at the time of the Rev. 2.2 model update, containment sump strainer modifications to address G.L. 2004-02 on Unit 2 had not been completed. These modifications have now been completed. Section F.7.4 discusses the results of an analysis to address the sensitivity of the SAMA results to this plant configuration change.

F.2.3 PINGP Level 2 PRA Model

The SAMA analysis is based on the PINGP Level 2 PRA Model of Record (Level 2 Revision 2.2 (SAMA)) that was developed in 2006. This model is an update of the Level 2, Rev. 1 model performed in 1999, and incorporates changes and analysis that were required to support the Level 1 Rev. 2.2 (SAMA) model updates. In addition, all PINGP Level A and B PRA model Westinghouse Peer Certification comments (F&Os) have been dispositioned and those requiring model and/or documentation changes have been addressed with the issuance of this model.

The containment response analysis (Level 2) evaluates the best estimate performance of the containment during a severe accident. The status of the containment safeguards systems is modeled to account for the effects of containment cooling and isolation. This model accounts for core damage sequences that cause a direct bypass of containment, such as a SGTR or inter-system LOCA. The design pressure of the PINGP containment is 46 psig, but based on a probabilistic evaluation of the containment structure, the mean expected failure pressure is 150 psig (165 psia). The 5% lower bound and 95% upper bound failure pressures are 136 psia and 191 psia, respectively. Thus the containment is relatively robust against failure due to overpressure.

The dynamic response to core debris expulsion as it is transported through the vessel cavity and through other containment compartments is analyzed to estimate the effects of direct containment heating and subsequent containment pressurization. Other severe accident effects, such as hydrogen generation and ignition are evaluated as to their likelihood in each sequence. The Level 2 analysis is used to predict the ability of the containment to mitigate severe accident challenges and, in the case of failure, to predict the timing of containment failure and subsequent radionuclide release for each release category.

As is typical of most large dry containments, the PINGP containment is robust against severe accident challenges, such as hydrogen burns and the effects of high pressure melt ejection. These failure mechanisms are calculated to produce pressure increases within the capability of the PINGP containment structure, and so are not likely to cause containment failure.

It is important to define a special group of release categories where the radionuclide release from the containment would occur prior to the initiation of evacuation planning and is of such a magnitude that the potential for some measurable health effects cannot be precluded. This variety of release is typically measured by the LERF. A large early release from the containment can occur from containment breach due to containment

failure at the time of reactor vessel break or a bypass of containment due to such events as a steam generator tube rupture (SGTR), ISLOCA, or containment isolation failure. Typically it involves the rapid, unscrubbed release of airborne aerosol fission products to the environment with core damage occurring, or a containment failure pathway of sufficient size to release the contents of the containment within one hour, which occurs before or within 4 hours of vessel breach. One definition of LERF proposed in NUREG/CR-6595 is the "frequency of early failure and bypass containment failure modes that have a release fraction of iodine equal to or greater than about 10%". Based on MAAP source term analysis for PINGP, the only release categories that meet these requirements include core damage with containment bypass scenarios (SGTR and ISLOCA). Pressure- and temperature-induced SGTR sequences are included in the LERF definition, but SGTR sequences that leads to late core damage following SG overfill are not included due to the long time available prior to depletion of the RWST and core uncovery. In addition to these scenarios, PINGP includes the frequencies of containment isolation failure release categories in the definition of LERF, as they represent scenarios involving core damage with early containment bypass.

F.2.3.1 Unit 1, Level 2 Rev. 2.2 (SAMA)

The large early release frequency (LERF) for unit 1 is calculated to be 8.79E-8 per year. Like the CDF, this numeric measure is used when applying the PRA results by evaluating relative changes, and together with CDF, are the two primary "risk metrics" used in describing PRA quantification results.

The dominant contributors to the LERF by initiating event were ISLOCA (36.7%), Small LOCAs (25.4%), and SGTR (18.5%). This is shown graphically in Figure F.2-3. The Small LOCA initiating event category (the dominant Level 1 initiator category) is more significant in the Rev. 2.2 SAMA model LERF analysis due to inclusion of induced SGTR modeling as an additional LERF contributor in this update. The balance of the discussion provided in Section F.2.1.3.6 is also representative of the SAMA model LERF results for Unit 1. The LERF must be understood in context of the overall Level 2 results. The conditional containment failure probability (CCFP) for Unit 1 is 0.26. This equates to a containment failure modes to the Unit 1 CCFP. Early containment bypass failures, occurring near the time of core damage and reactor vessel failure, and resulting in large fission product releases, represent only about 3% of the CCFP. Other non-bypass but early containment failure release classes make up only an additional 2% of the CCFP. Late containment bypass from slow developing SGTR scenarios (release category GLH) make up about 7% of the CCFP. The large majority of

containment failure sequences are late failures that involve a significant time delay between core damage and containment failure of up to several days. Significant time is available to implement emergency measures to protect the public for the most likely severe accident scenarios (>90% of core damage sequences), significant time is available to implement emergency measures to protect the public. The amount of time available to implement emergency measures is significant when evaluating plant conditions using Level 2 results. For cases involving late failure of containment, the dominant cause of containment breach involves core damage sequences that end with the RWST being depleted and no long-term decay heat removal mechanism available. For these sequences, the containment fails due to gradual overpressure of the containment due to steam and non-condensable gas generation. Another significant cause of late containment failure is basemat failure resulting from long-term (greater than 3 days) concrete ablation by molten core material.

F.2.3.2 Unit 2, Level 2 Rev. 2.2 (SAMA)

The Unit 2 large early release frequency (LERF) is calculated to be 1.75E-7 per year. The Unit 2 LERF is larger than the Unit 1 LERF by about a factor of 2, primarily due to the assumed slightly higher potential for a SGTR initiating event on Unit 2. The Unit 1 steam generator replacement project was completed in 2004, while the Unit 2 steam generator replacement is planned for 2013.

The dominant contributors to the LERF by initiating event were SGTR (56.4%), ISLOCA (18.4%) and Small LOCAs (14.4%). This is shown graphically in Figure F.2-4. The Small LOCA initiating event category (the dominant Level 1 initiator category) is more significant in the Rev. 2.2 SAMA model LERF analysis due to inclusion of induced SGTR modeling as an additional LERF contributor in this update. The balance of the discussion provided in Section F.2.1.3.6 is also representative of the SAMA model LERF results for Unit 2.

The conditional containment failure probability (CCFP) for Unit 2 is 0.30. This equates to a containment success probability of 0.70. Figure F.2-6 summarizes the contribution of the containment failure modes, which make up the Unit 2 CCFP. The fraction of the CCFP from early containment bypass failures, about 5%, is slightly higher than for Unit 1 due to the higher SGTR initiating event frequency on Unit 2. The higher SGTR initiating event frequency on Unit 2. The higher SGTR initiating event frequences (28% vs. 7% for Unit 1). The remaining portion of the late containment failure results are similar to that discussed above for Unit 1.

F.2.4 PINGP Level 2 Release Categories

The solution of the numerous event trees results in the generation of a large number of accident sequences. Once developed, the accident sequences must be propagated through the containment safeguards assessment and the containment event tree to develop release categories. To reduce the burden on the analyst, the accident sequences can be grouped, commonly referred to as binning, into accident sequence categories.

The method of binning the accident sequences is much like that used to categorize the transient initiating events. A set of parameters is identified that can be used to define unique accident sequence classes. These parameters are typically defined based on the needs of the containment analysis. For example, one parameter commonly used in the binning process is the RCS pressure (high or low) at the time of core damage. The RCS pressure parameter is critical in the progression of potential Level 2 containment accident sequences. For example, a high pressure core melt sequence was defined as the primary system pressure being high enough to entrain the core debris out of the cavity upon vessel failure. A low pressure sequence was defined as the primary system pressure being low enough at vessel failure for the core debris to be retained in the cavity. This parameter, therefore, is typically chosen for binning accident sequences. Once the important parameters are identified the next step is to determine the physically possible combinations of the parameters. Each combination of the parameters defines an accident class or core damage bin (CDB).

Once the CDBs are finalized, the Level 1 event tree accident sequences are assigned to them by comparing the CDB parameters and the cutsets that comprise the specific accident sequences.

CDB information must be combined with the status of the containment safeguards systems to develop a complete accident sequence definition for containment assessment. This is done in the Containment Event Trees (CETs). The CETs provide a means for interfacing the core damage (Level 1) model with the containment safeguards functions, and the containment phenomenological processes. The CETs address the status of the containment systems to complete the system-level information needed by the Level 2 PRA analyst. The status of the containment systems is important in determining containment pressure challenges, source term composition, and other physical parameters associated with the Level 2 PRA. Additionally, the use of a CET that incorporates fault tree and event tree models allows the core damage sequence cutsets to be linked directly to the CET. The direct linking of the system

model results in containment and core safety system dependencies being identified and explicitly addressed.

The CETs provide a convenient method to identify the various possible outcomes resulting from different combinations of CDBs, containment systems status, and containment phenomenological effects. The CET sequences are solved to determine the conditional probabilities for each CET outcome, each of which are mapped to specific release categories. Each of the release categories are given 4-letter designations identifying whether or not the reactor pressure vessel failed and at what pressure, whether or not the containment failed and by what mechanism, and timing of containment failure (if it occurred). Summing all the CET sequence frequencies for a release category class determines the frequency for that release category.

The CET end states correspond to the outcome of possible severe accident sequences. Each end point defines a different containment state with an associated radionuclide release. Simplifications can be attained by grouping sequences with similar release characteristics into release categories (at PINGP the CET end states and the release categories have similar 4-letter designators, although some release categories are considered bounding for other categories with respect to source term). A set of bounding release categories is defined such that all accidents assigned to the same category are assumed to have the same set of release fractions.

The main characteristics used to define the release categories are release energy, containment isolation failure size, timing of the release, and isotopic consumption.

Specific Modular Accident Analysis Program (MAAP) sequences were developed to mimic CET end states and the estimated releases determined. Like CET end states were grouped to minimize the number of MAAP sequences required. The MAAP code outputs fission product data which is used to group similar sequences according to time of release and radionuclide release. Of the 18 release categories, including 3 release categories in which the containment has remained intact (release of fission products is through containment leakage only), 10 bounding categories for source term analysis were identified.

The following paragraphs define each release category and related assumptions are defined in the following subsections. In addition, those release categories that were grouped with other, bounding categories for source term analysis are identified (note that those release categories calculated to have near-zero frequencies of occurrence are not discussed separately below).

F.2.4.1 Containment Intact (Release Categories X-XX-X, L-XX-X, H-XX-X)

These release categories represent the accident sequences in which the containment remains intact. The source term for this type of sequence is very small and limited to the containment design leakage rate. Category H-XX-X was selected as the bounding category and a representative sequence was chosen from that category for X-XX-X, L-XX-X and H-XX-X source term analysis. The total baseline frequency for these release categories is 7.28E-06/yr for Unit 1 and 8.52E-06/yr for Unit 2.

F.2.4.2 Release Category L-CC-L

This release category includes core damage sequences that are not arrested in-vessel (the core goes ex-vessel at low reactor pressure) and ex-vessel injection to quench the debris in the reactor cavity fails. Containment failure on overpressure occurs as a result of basemat penetration from core concrete interaction. The total baseline frequency for this release category is 2.82E-07/yr for Unit 1 and 3.39E-07/yr for Unit 2.

F.2.4.3 Release Category L-CI-E

This release category includes core damage sequences where the reactor vessel fails at low reactor pressure, with failure of containment isolation. Core damage from small LOCA sequences with failure of ECCS injection or recirculation dominates this release category. Successful hot leg creep rupture allows the debris to exit the vessel at low pressure. The release from the containment is scrubbed by either the containment sprays or a pool of water over the core debris. The total baseline frequency for this release category is 1.85E-10/yr for both Unit 1 and Unit 2.

F.2.4.4 Release Category L-DH-L

This release category includes core damage sequences in where the reactor vessel fails at low reactor pressure, with overpressure failure of containment due to steam generation and failure of containment pressure control (failure of containment fan coil units or ECCS recirculation to remove decay heat). Core damage from RCP seal LOCA sequences with failure of ECCS recirculation dominates this release category. Successful hot leg creep rupture allows the debris to exit the vessel at low pressure. The release from the containment is scrubbed by either containment spray or a pool of water over the core debris. The total baseline frequency for this release category is 1.92E-06/yr for Unit 1 and 1.97E-06/yr for Unit 2.

F.2.4.5 Release Category L-H2-E

This release category is similar to release category L-DH-L, except that the containment fails from early containment failure modes such as hydrogen combustion or in-vessel steam explosion with the reactor at low pressure. Core damage from RCP seal LOCA or small LOCA sequences with failure of ECCS recirculation dominates this release category. The total baseline frequency for this release category is 2.23E-08/yr for Unit 1 and 2.49E-08/yr for Unit 2.

F.2.4.6 Release Category H-DH-L

This category is similar to L-DH-L, except that hot leg creep rupture is not successful and the core debris exits the vessel at high pressure. Containment fails very late on overpressure due to steam generation and failure of containment pressure control (failure of containment fan coil units and ECCS recirculation to remove decay heat). The total baseline frequency for this release category is 3.09E-08/yr for Unit 1 and 3.14E-08/yr for Unit 2.

F.2.4.7 Release Category H-H2-E

This release category includes core damage sequences in where the reactor vessel fails at high reactor pressure, with overpressure failure of containment from early containment failure modes such as hydrogen combustion. ECCS injection is not successful for these sequences, and hot leg creep rupture does not successfully depressurize the reactor prior to vessel failure. The total baseline frequency for this release category is 2.32E-11/yr for both Unit 1 and Unit 2.

F.2.4.8 Release Category H-OT-L

This release category includes core damage sequences in which the reactor vessel fails at high reactor pressure, with late overtemperature or overpressure failure of containment due to inability to cool debris that may have relocated to the upper parts of containment. Neither ECCS injection nor RWST injection to the containment through containment spray is available throughout this scenario. The total baseline frequency for this release category is 4.89E-09/yr for Unit 1 and 5.87E-09/yr for Unit 2.

F.2.4.9 Release Category X-CI-E

This release category includes core damage sequences where containment isolation fails, but the reactor vessel does not fail (core damage is arrested in vessel due to successful ex-vessel cooling), leading to a lower source term than the other

containment isolation failure release categories. The source term for this category is bounded by the L-CI-E case. The total baseline frequency for this release category is 6.55E-10/yr for Unit 1 and 7.32E-10/yr for Unit 2.

F.2.4.10 Release Category X-H2-E

This release category is similar to category L-H2-E, except that the reactor vessel does not fail (core damage is arrested in vessel due to successful ex-vessel cooling). The source term for this category is bounded by the L-H2-E case. The total baseline frequency for this release category is 3.39E-8/yr for Unit 1 and 4.03E-8/yr for Unit 2.

F.2.4.11 Release Category GEH

This release category involves core damage sequences due to SGTR with failure of high pressure injection from the Refueling Water Storage Tank (RWST). This results in early core damage at high pressure, with containment bypass. As these sequences bypass containment and occur early (prior to successful implementation of protective action recommendations), the frequency of this release category is considered to be a component of the LERF (large early release frequency). The source term for this category is bounded by the SGTR case. The total baseline frequency for this release category is 1.63E-8/yr for Unit 1 and 9.87E-8/yr for Unit 2.

F.2.4.12 Release Category GLH

This release category involves core damage sequences due to SGTR with successful high pressure injection from RWST, but failure of ruptured SG isolation, or SG overfill, followed by failure of alternative actions to cool down and depressurize the RCS results in late core damage at high reactor pressure, with containment bypass. Core damage is delayed for hours during this event due to the long time available prior to RWST depletion. The source term for this category is bounded by the SGTR case. The total baseline frequency for this release category is 1.78E-7/yr for Unit 1 and 1.03E-6/yr for Unit 2.

F.2.4.13 Release Category L-SR-E

This release category involves core damage sequences due to Pressure- or Temperature-Induced SGTR. These sequences involve high RCS pressure with at least one dry, depressurized SG leads to failure of the SG tubes and assumed containment bypass. This may result in a short-duration release, terminated when the steam generator relief valves reseat. However, assuming that the relief valves do not reseat, the source term is similar to the SGTR release category GEH. The frequency of this release category is considered to be a component of the LERF. The total baseline frequency for this release category is 3.85E-8/yr for Unit 1 and 4.34E-8/yr for Unit 2.

F.2.4.14 Release Category ISLOCA

This release category involves core damage sequences due to interfacing system LOCA (ISLOCA). ISLOCA results in loss of RCS inventory and failure of ECCS systems for makeup and/or recirculation, and ultimately core damage (assumed to be at high pressure) with containment bypass. Core damage and vessel failure are assumed to occur within one hour. Although the release is into the Auxiliary Building it is assumed to be essentially unscrubbed. The frequency of this release category is considered to be a component of the LERF. The total baseline frequency for this release category is 3.22E-8/yr for both Unit 1 and Unit 2.

F.3 LEVEL 3 PRA ANALYSIS

This section addresses the critical input parameters and analysis of the Level 3 portion of the probabilistic risk assessment. In addition, Section F.7.3 summarizes a series of sensitivity evaluations to potentially critical parameters.

F.3.1 Analysis

The MACCS2 code (NRC 1998) is used to perform the Level 3 PRA for the Prairie Island Nuclear Generating Plant. PINGP site specific parameters are used for population distribution and economic parameters using the NRC endorsed SECPOP2000 code (NRC 2003). Plant-specific release data included the time-dependent distribution of nuclide releases and release frequencies. The behavior of the population during a release (evacuation parameters) is based on plant decisions and when certain site-specific setpoints are reached. Other input parameters given with "Sample Problem A" from the MACCS2 manual formed the basis for the present analysis. These data are used in combination with site-specific meteorology to simulate the probability distribution of impact risks (both exposures and economic effects) to the surrounding 50-mile radius population as a result of the release accident sequences at PINGP.

Note regarding errors with the SECPOP2000 code: During performance of the PINGP analysis, three SECPOP2000 code errors were publicized, specifically: 1) incorrect column formatting of the output file, 2) incorrect 1997 economic database file end character resulting in the selection of data from wrong counties, and 3) gaps in the 1997 economic database numbering scheme resulting in the selection of data from wrong counties. All three errors have been addressed in the PINGP analysis (via industry-developed formatting fixes) such that selection of proper counties by SECPOP2000 has been confirmed and the MAACS2 outputs used to quantify MMACR have been verified to be correct.

F.3.2 Population

The population surrounding the PINGP site is estimated for the year 2034.

Population projections within 50 miles of PINGP are determined using SECPOP2000, (NRC 2003) utilizing a geographic information system (GIS). U.S Census block-group level population data is allocated to each sector based on the area fraction of the census block-groups in that sector. U.S. Census data from 1990 and 2000 are used to determine a ten year population growth factor for each of the 50-mile radius rings. The

population growth factor for each ring is applied uniformly to all sectors in the ring to calculate the year 2034 population distribution.

Population distributions are given at distances to 1, 2, 3, 4, 5, 10, 20, 30, 40 and 50 miles from the plant and in the direction of each of the 16 compass points (i.e., N, NNE, NE.....NNW).

The total year 2034 population estimate for the 160 sectors (10 distances \times 16 directions) in the region is provided in Table F.3-2. The ten year population growth factor (in parenthesis) and distribution of the population is given for the 10-mile radius from PINGP and for the 50-mile radius from PINGP in Tables F.3-1 and F.3-2, respectively.

F.3.3 Economy

MACCS2 requires certain economic data (fraction of land devoted to farming, annual farm sales, fraction of farm sales resulting from dairy production, and property value of farm and non-farm land) for each of the 160 sectors. These values are calculated using the SECPOP2000 code (NRC 2003). SECPOP2000 utilizes economic data from the U.S. Department of Agriculture, "1997 Census of Agriculture" (USDA 1998) and from other 1998 and 1999 data sources. Economic values for up to 97 economic zones are calculated and allocated to each of the 160 sectors.

In addition, generic economic data that are applied to the region as a whole are revised from the MACCS2 sample problem input when better information is available. These revised parameters include per diem living expenses (applied to owners of interdicted properties and relocated populations), relocation costs (for owners of interdicted properties), and value of farm and non-farm wealth. These values are updated to the year 2006 value using the Consumer Price Index ratio.

PINGP MACCS2 economic parameters are listed on next page:

Variable	Description	PINGP Value
DPRATE ⁽¹⁾	Property depreciation rate (per yr)	0.2
DSRATE ⁽¹⁾	Investment rate of return (per yr)	0.12
EVACST ⁽²⁾	Daily cost for a person who has been evacuated (\$/person-day)	48.72
POPCST ⁽²⁾	Population relocation cost (\$/person)	9022.00
RELCST ⁽²⁾	Daily cost for a person who is relocated (\$/person-day)	48.72
CDFRM0 ⁽²⁾	Cost of farm decontamination for various levels of decontamination (\$/hectare)	1015.00 ⁽⁴⁾ 2256.00 ⁽⁴⁾
CDNFRM ⁽²⁾	Cost of non-farm decontamination per resident person for various levels of decontamination (\$/person)	5413.00 ⁽⁴⁾ 14435.00 ⁽⁴⁾
DLBCST ⁽²⁾	Average cost of decontamination labor (\$/man-year)	63155.00
VALWF0 ⁽³⁾	Value of farm wealth (\$/hectare)	2469.00
VALWNF ⁽³⁾	Value of non-farm wealth (\$/person)	130602.00

PINGP MACCS2 Economic Parameters

⁽¹⁾ DPRATE and DSRATE are based on NUREG/CR-4551 value (NRC 1990).

⁽²⁾ These parameters for PINGP use the NUREG/CR-4551 value (NRC 1990), updated to the 2006 CPI value.

⁽³⁾ VALWF0 and VALWNF are based on SECPOP2000 values for PINGP, updated to the 2006 CPI value.

⁽⁴⁾ A value is provided for each level of the two levels of decontamination modeled. Two levels of decontamination is consistent with Sample Problem A.

F.3.4 Food and Agriculture

Food ingestion is modeled using the new MACCS2 ingestion pathway model COMIDA2 (NRC 1998a), consistent with Sample Problem A. The COMIDA2 model utilizes national based food production parameters derived from the annual food consumption of an average individual such that site specific food production values are not utilized. The fraction of population dose due to food ingestion is typically small compared to other population dose sources. For PINGP, approximately less than one percent of the total population dose is due to food ingestion.

F.3.5 Nuclide Release

MACCS2 requires input for 60 radionuclide. The core inventory at the time of the accident is based on a plant specific calculation and results provided in the PINGP USAR. PINGP USAR Appendix D, Rev. 18 Table D.1-1 provides the core inventory for 20 significant nuclides that correspond to MACCS2. The core inventory corresponds to end-of-cycle values (core average exposure of 50,000 MWD/MTU) for the PINGP core. Additional core inventory for the remaining 40 nuclides is obtained from MACCS2 Sample Problem A (NRC 1998a). The values for these 40 nuclides are adjusted to account for the PINGP power level (as compared to the Sample Problem A core power level). In addition, these values are increased by a factor of 1.39, which is the average

increase of the PINGP 20 nuclides compared to those provided in Sample Problem A. Table F.3-3 provides a comparison of the MACCS2 PINGP core inventory and the Sample Problem A core inventory (as adjusted to account for the PINGP power level).

PINGP nuclide release categories are related to the MACCS categories as shown in Table F.3-4. All releases are modeled as occurring at a height of 62 meters (204'-41/2'') above grade elevation, which coincides with the top of the Containment Building (NMC 2007). The thermal content of each of the releases are assumed to be 1.0E+07 watts based on values provided in Sample Problem A and NUREG/CR-4551 (NRC 1990).

Two nuclide release sensitivity cases were performed to determine the effect of release height and thermal content assumptions. One sensitivity case modeled the releases occurring at ground level (0.0 meters). The second sensitivity case modeled the thermal content of each release to be the same as ambient (i.e., buoyant plume rise is not modeled). The results are discussed in Section F.7.3.4.

A final aspect to consider is the magnitude and timing of the radionuclide releases. Multiple release duration periods were defined which represented the time distribution of each category's releases. Release inventories of each of the multiple chemical forms of the cesium (Cs) and tellurium (Te) releases were available from the MAAP code output. Representative MAAP cases for each of the release categories were chosen based on a review of the Level 2 model cutsets and the dominant types of scenarios that contributed to the results. A brief description of each of those MAAP cases is provided in Table F.3-5, and a summary of the release magnitude and timing for those cases is provided in Table F.3-6.

F.3.6 Evacuation

A reactor scram (automatic shutdown) signal begins each evaluated accident sequence. A General Emergency is declared when plant conditions degrade to the point where it is judged that there is a credible risk to the public. Therefore, the timing of the General Emergency declaration is sequence specific and ranges from 42 minutes to 24.1 hours for the release sequences evaluated.

The MACCS2 User's Guide input parameters of 95 percent of the population within 10 miles of the plant [Emergency Planning Zone (EPZ)] evacuating and 5 percent not evacuating are employed. These values have been used in similar studies (e.g., Hatch (SNOC 2000) and Calvert Cliffs (BGE 1998)) and are conservative relative to the NUREG-1150 study, which assumed evacuation of 99.5 percent of the population within the EPZ. The evacuees are assumed to begin evacuating 90 minutes after a General Emergency has been declared and are evacuated at an average radial speed of 3.35

miles per hour (1.5 m/sec). This speed is the time weighted value accounting for season, day of the week, time of day, weather conditions, and special events. The evacuation time weighted average of 268 minutes is for the full 0-10 mile EPZ, an assumed 15 minute notification time, 15 minutes for evacuation preparation, and 60 minutes average departure time. (TCDS 2003)

One evacuation sensitivity case was performed to determine the impact of evacuation assumptions. The sensitivity case reduced the evacuation speed by a factor of two (to 0.75 m/sec), resulting in a total evacuation time that exceeded the longest evacuation time used for the PINGP evacuation analysis. The results are discussed in Section F.7.3.3.

F.3.7 Meteorology

Annual PINGP meteorology data from year 2003 is used in MACCS2 for the base case results. The year 2003 meteorological data set is utilized for the PINGP base case MACCS2 analysis based on the fact that the year 2003 provided the most complete data set, the highest population dose risk and offsite economic cost risk, and is judged to be the most conservative.

Year 2003, 2004, and 2005 meteorology data for the PINGP site contains 10, 22, and 60 meter wind speed, wind direction, and temperature tower data as well as site specific precipitation data. The 2003 PINGP meteorological data set contained 33 total hours of missing data, representing 0.38% of the hourly readings. The 2004 and 2005 PINGP meteorological data sets contained 70 and 65 total hours of missing data, respectively, representing 0.80% and 0.74% of the hourly readings. Therefore, the year 2003 provided the most complete data set.

The year 2003 meteorological data set contained eight gaps of missing data (33 hours, 0.38%). Traditionally, up to 10% of missing data is considered acceptable. Of the missing gaps, five gaps consisted of less than 6 hours and interpolation was used to fill in the missing meteorological data. Three gaps consisted of six hours or more of missing data (6 hr., 6 hr., and 7 hr. gaps). Missing meteorological data gaps of more than 6 hours were filled based on substituting data from the same time of day from the day just before or after the missing data in order to account for seasonal variations and the onset of severe weather. It is noted that MACCS results used in the SAMA analysis are the statistical mean of 349 weather sequences (each sequence contains 120 hours of data) chosen at random from pre-sorted weather bins. Due to the large number of samples analyzed, the adjustment of any particular weather sequence has negligible impact on the mean results.

PINGP MACCS2 analysis evaluated three representative meteorological data sets (Calendar years 2003, 2004, and 2005). The use of the most conservative data set (year 2003) accounts for any weather sequences. Based on the multiple years analyzed, minimum data gaps in the year 2003 meteorological data, and the sampling methodology used, the reported mean results are judged acceptable and appropriate for use in averted cost risk calculations.

Meteorological data is prepared for MACCS2 input as follows:

- Wind speed and direction from the 10-meter sensor of the site tower were combined with precipitation (hourly cumulative). If the lower wind speed or direction is unavailable, mid and/or upper directions are used to estimate the wind speed or direction. Onsite precipitation from PINGP is utilized. Missing or suspect precipitation data is supplemented with data from the Minneapolis – St. Paul International Airport.
- 2. If a brief period (i.e., < 6 hr.) of missing data exists for all tower sensors, interpolation is used between hours.
- 3. For larger data voids (i.e., > 6 hr.), tower data from the previous or following day is utilized to fill data gaps (for the same time of day).
- 4. Atmospheric stability is calculated according to the vertical temperature gradient of the tower temperature data.
- 5. Atmospheric mixing heights are specified for morning and afternoon. These values were taken from the document *Mixing Heights, Windspeeds, and Potential for Urban Air Pollution throughout the Contiguous United States* (EPA 1972).

This source defined morning as being the four-hour period from 0200 to 0600 Local Standard Time and afternoon as being the four-hour period from 1200 to 1600 Local Standard Time.

The Code Manual for MACCS2: Volume 1 (from Appendix A, pages A-1 and A-2) states the following:

"The first of these two values corresponds to the morning mixing height and the second to the afternoon height. In the current implementation, the larger of these two values and the value of the boundary weather mixing height is used by the code."

"In its present form, that atmospheric model implemented in MACCS2 does not allow a change in the mixing layer to occur during transport of the plume. Mixing layer height is assumed to be constant and therefore only a single value is used by the code."

For the PINGP MACCS2 analyses, these conditions mean that, only the afternoon mixing height is used since it is larger than the morning mixing height. Note that the boundary weather mixing height, wind speed and stability category are only used when there is no meteorological data. These fixed boundary weather values are ignored by

the code when an hourly meteorological data file is supplied by the user, as was the case in the MACCS2 runs for PINGP.

As noted above, site meteorological data for years 2004 and 2005 are also evaluated as sensitivity cases to ensure year 2003 data is an appropriate data set. The results are discussed in Section F.7.3.1.

F.3.8 MACCS2 Results

Table F.3-7 shows the mean off-site doses and economic impacts to the region within 50 miles of PINGP for each of ten release categories calculated using MACCS2. Mean off-site dose impacts are multiplied by the annual frequency for each release category and then summed to obtain the dose-risk and offsite economic cost-risk (OECR) for each unit. Table F.3-7 provides the Unit 1 and Unit 2 results, respectively.

F.4 BASELINE RISK MONETIZATION

This section explains how NMC calculated the monetized value of the status quo (i.e., accident consequences without SAMA implementation). NMC also used this analysis to establish the maximum benefit that could be achieved if all on-line PINGP risk were eliminated, which is referred to as the Maximum Averted Cost-Risk (MACR).

The calculations below have been performed using Unit 1 input. The same process used for the Unit 1 case is also used to establish the MACR for Unit 2.

Section F.4.6 summarizes the results for these cases.

F.4.1 Off-Site Exposure Cost

The baseline annual off-site exposure risk was converted to dollars using the NRC's conversion factor of \$2,000 per person-rem, and discounted to present value using NRC standard formula (NRC 1997):

$$W_{pha} = C \times Z_{pha}$$

Where:

W_{pha} = monetary value of public health accident risk after discounting

 $C = [1-exp(-rt_f)]/r$

- t_f = years remaining until end of facility life = 20 years
- r = real discount rate (as fraction) = 0.03 per year
- Z_{pha} = monetary value of public health (accident) risk per year before discounting (\$ per year)

The Level 3 analysis showed an annual off-site population dose risk of 2.94 person-rem. The calculated value for C using 20 years and a 3 percent discount rate is approximately 15.04. Therefore, calculating the discounted monetary equivalent of accident dose-risk involves multiplying the dose (person-rem per year) by \$2,000 and by the C value (15.04). The calculated off-site exposure cost for Unit 1 is \$88,132 per person.

F.4.2 Off-Site Economic Cost Risk

The Level 3 analysis showed an annual off-site economic risk of \$15,852 for Unit 1. Calculated values for off-site economic costs caused by severe accidents must be discounted to present value as well. This is performed in the same manner as for public health risks and uses the same C value. The resulting value is \$238,408.

F.4.3 On-Site Exposure Cost Risk

Occupational health was evaluated using the NRC recommended methodology that involves separately evaluating immediate and long-term doses (NRC 1997).

For immediate dose, the NRC recommends using the following equation:

Equation 1:

$$W_{IO} = R{(FD_{IO})_{S} - (FD_{IO})_{A}}{[1 - exp(-rt_{f})]/r}$$

Where:

W _{IO}	=	monetary value of accident risk avoided due to immediate doses, after discounting
R	=	monetary equivalent of unit dose (\$2,000 per person-rem)
F	=	accident frequency (events per year) (9.79E-06 (total CDF))
D _{IO}	=	immediate occupational dose [3,300 person-rem per accident (NRC estimate)]
S	=	subscript denoting status quo (current conditions)
A	=	subscript denoting after implementation of proposed action
r	=	real discount rate (0.03 per year)
t _f	=	years remaining until end of facility life (20 years).

Assuming F_A is zero, the best estimate of the immediate dose cost is:

 $W_{IO} = R (FD_{IO})_{S} \{ [1 - exp(-rt_{f})]/r \}$

 $= 2,000*9.79E-06*3,300*{[1 - exp(-0.03*20)]/0.03}$

= \$972

For long-term dose, the NRC recommends using the following equation:

Equation 2:

$$W_{LTO} = R{(FD_{LTO})_{S} - (FD_{LTO})_{A}} {[1 - exp(-rt_{f})]/r}{[1 - exp(-rm)]/rm}$$

Where:

- W_{LTO} = monetary value of accident risk avoided long-term doses, after discounting, \$
- D_{LTO} = long-term dose [20,000 person-rem per accident (NRC estimate)]

Using values defined for immediate dose and assuming F_A is zero, the best estimate of the long-term dose is:

$$W_{LTO} = R (FD_{LTO})_{S} \{ [1 - exp(-rt_{f})]/r \} \{ [1 - exp(-rm)]/rm \}$$

$$= 2,000*9.79E-06*20,000* \{ [1 - exp(-0.03*20)]/0.03 \} \{ [1 - exp(-0.03*10)]/0.03*10 \}$$

= \$5,090

The total occupational exposure is then calculated by combining Equations 1 and 2 above. The total accident related on-site (occupational) exposure risk (W_0) for Unit 1 is:

 W_0 = $W_{IO} + W_{LTO} = (\$972 + \$5,090) = \$6,062$ person-rem

F.4.4 On-Site Cleanup and Decontamination Cost

The total undiscounted cost of a single event in constant year dollars (C_{CD}) that NRC provides for cleanup and decontamination is \$1.5 billion (NRC 1997). The net present value of a single event is calculated as follows. NRC uses the following equation to integrate the net present value over the average number of remaining service years:

 $PV_{CD} = [C_{CD}/mr][1-exp(-rm)]$

Where:

- PV_{CD} = net present value of a single event
- C_{CD} = total undiscounted cost for a single accident in constant dollar years
- r = real discount rate (0.03)
- m = years required to return site to a pre-accident state

The resulting net present value of a single event is \$1.3E+09. The NRC uses the following equation to integrate the net present value over the average number of remaining service years:

 $U_{CD} = [PV_{CD}/r][1-exp(-rt_f)]$

Where:

 PV_{CD} = net present value of a single event (\$1.3E+09) r = real discount rate (0.03) t_f = 20 years (license renewal period)

The resulting net present value of cleanup integrated over the license renewal term, \$1.95E+10, must be multiplied by the total CDF (9.79E-06) to determine the expected value of cleanup and decontamination costs. The resulting monetary equivalent for Unit 1 is \$191,000.

F.4.5 Replacement Power Cost

Long-term replacement power costs were determined following the NRC methodology in NRC, 1997. The net present value of replacement power for a single event, PV_{RP} , was determined using the following equation:

 PV_{RP} = [\$1.2×10⁸/r] * [1 - exp(-rt_f)]²

Where:

 PV_{RP} = net present value of replacement power for a single event, (\$)

r = 0.03

t_f = 20 years (license renewal period)

To attain a summation of the single-event costs over the entire license renewal period, the following equation is used:

 U_{RP} = $[PV_{RP}/r] * [1 - exp(-rt_f)]^2$

Where:

 U_{RP} = net present value of replacement power over life of facility (\$-year)

After applying a correction factor to account for PINGP's size relative to the "generic" reactor described in NUREG/BR-0184 (NRC 1997) (i.e., 560 megawatt electric/910 megawatt electric), the replacement power costs are determined to be 3.40E+09 (\$-year). Multiplying 3.40E+09 (\$-year) by the CDF (9.79E-06) results in a replacement power cost of \$33,300 for Unit 1.

F.4.6 Total Cost-Risk

The calculations presented in Sections F.4-1 through F.4-5 provide the on-line, internal events based MACR for a single unit. Given that the PINGP SAMA analysis is performed on a site basis and must consider the external events contributions, further steps are required to obtain a site based maximum averted cost-risk estimate that accounts for external events. This estimate, which is referred to as the Modified Maximum Averted Cost-Risk (MMACR) is calculated according to the following steps:

- 1. For presentation purposes, round each unit's MACR to the next highest thousand,
- 2. Multiply each unit's rounded MACR from the previous step by a factor of 2 to account for External Events contributions (refer to Section F.5.1.8 for additional details related to the basis for this factor),
- 3. Add the Unit 1 and Unit 2 results from step 2 together to obtain the MMACR.

The table on the next page summarizes the results of this process.

Input	Unit 1	Unit 2
CDF (per year)	9.79E-06	1.21E-05
Dose-Risk (person-REM, single year)	2.94	8.43
OECR (\$/yr)	15,900	63,300
Plant Net MWe	560	560
Output		
Offsite Exposure Cost-Risk	\$88,100	\$254,000
Offsite Economic Cost-Risk	\$238,000	\$953,000
Onsite Exposure Cost-Risk	\$6,062	\$7,461
Onsite Cleanup Cost-Risk	\$191,000	\$235,000
Replacement Power Cost-Risk	\$33,300	\$41,000
Total Unit MACR (Rounded to Next Highest Thousand)	\$557,000	\$1,490,000
Unit MMACR (Includes External Events (MACR x 2))	\$1,114,000	\$2,980,000
Site MMACR	\$4,094,000	

PINGP MMACR DEVELOPMENT SUMMARY

F.5 PHASE I SAMA ANALYSIS

The Phase I SAMA analysis, as discussed in Section F.1, includes the development of the initial SAMA list and a coarse screening process. This screening process eliminated those candidates that are not applicable to the plant's design or are too expensive to be cost beneficial even if the risk of on-line operations were completely eliminated. The following subsections provide additional details of the Phase I process.

F.5.1 SAMA Identification

The initial list of SAMA candidates for PINGP was developed from a combination of resources. These include the following:

- PINGP PRA results and PRA Group Insights
- Industry Phase II SAMAs (review of the potentially cost effective Phase II SAMAs for selected plants)
- Prairie Island Nuclear Generating Plant Individual Plant Examination IPE (PINGP IPE) (NSP 1994)
- PINGP IPEEE (NSP 1998)

These resources are judged to provide a list of potential plant changes that are most likely to reduce risk in a cost-effective manner for PINGP.

In addition to the "Industry Phase II SAMA" review identified above, an industry based SAMA list was used in a different way to aid in the development of the PINGP specific SAMA list. While the industry SAMA review cited above was used to identify SAMAs that might have been overlooked in the development of the PINGP SAMA list due to PRA modeling issues, a generic SAMA list was used as an idea source to identify the types of changes that could be used to address the areas of concern identified through the PINGP importance list review. For example, if Instrument Air availability were determined to be an important issue for PINGP, the industry list would be reviewed to determine if a plant enhancement had already been conceived that would address PINGP's needs. If an appropriate SAMA was found to exist, it would be used in the PINGP list to address the Instrument Air issue; otherwise, a new SAMA would be developed that would meet the site's needs. This generic list was compiled as part of the development of several industry SAMA analyses and has been provided in Addendum 1 for reference purposes.

F.5.1.1 Level 1 PINGP Importance List Review

The PINGP PRA was used to generate a list of events sorted according to their risk reduction worth (RRW) values. The top events in this list are those events that would provide the greatest reduction in the PINGP CDF if the failure probability were set to zero. The events were reviewed down to the 1.02 level, which corresponds to about a 2 percent reduction in the CDF given 100 percent reliability of the event. If the dose-risk and offsite economic cost-risk were also assumed to be reduced by a factor of 1.02, the corresponding averted cost-risk would be about \$22,000, which also accounts for the impact of External Events after applying a factor of 2. Similarly, the Unit 2 result was determined to be about \$58,000. Both of these estimates are on the order of the dollar amount that would be expected to process a procedural change, i.e., no hardware modification. The lower end of implementation costs for SAMAs are expected to apply to procedural changes, which have previously been estimated to cost about \$50,000 (CPL 2004). Given that the PINGP importance list was reviewed down to a level corresponding to an averted cost-risk of about \$22,000 for Unit 1 and \$58,000 for Unit 2, all events that are likely to yield cost beneficial improvements were addressed by this review process.

Tables F.5-1a and F.5-1b document the disposition of each event in the Level 1 PINGP RRW list for both Units 1 and 2, respectively. Note that no basic events were preemptively screened from the process even if they solely represent sequence flags. Whatever the event, the intent of the process is to determine if insights can be gleaned to reduce the risk of the accident evolutions represented by the events listed. However, unique SAMAs are not identified for all of the events in the RRW list. Previously identified SAMAs are suggested as mitigating enhancements when those SAMAs (or similarly related changes) would reduce the RRW importance of the identified event. It is recognized that in some cases, additional requirements may need to be imposed on the SAMA to get a reduction in the RRW value for the basic event listed. In these cases, if an existing SAMA can approximate such an impact, then it is considered to address the relevant event and provide a first order indication of the potential benefit. If warranted, a more detailed PRA analysis may then be required to provide a better estimate of the actual potential cost-benefit.

F.5.1.2 Level 2 PINGP Importance List Review

A similar review was performed on the importance listings from the Level 2 results that involved contributions to Large Early Release Frequencies (LERF). In this case, cutsets that contribute to LERF that exhibited a RRW \geq 1.02 were reviewed for both Units 1 and 2 to identify any potential SAMA improvements.

The Level 2 RRW values were reviewed down to the 1.02 level. As described for the Level 1 RRW list, events below the 1.02 threshold value are estimated to yield an averted cost-risk less than that required for a procedural modification (approximately \$50,000) and were not considered to be likely candidates for identifying cost effective SAMAs. As such, the events with RRW values below 1.02 were not reviewed. Tables F.5-2a and F.5-2b document the disposition of each event in the LERF PINGP RRW list for both Units 1 and 2. The same ground rules related to event disposition in the Level 1 importance tables were utilized in the Level 2 importance tables.

F.5.1.3 PINGP PRA Group Insights

A review of the current PRA model results and insights was conducted in order to identify any additional risk reduction opportunities that could be examined as potential SAMA improvements. This review did not include potential PRA modeling enhancements (as these changes only result in enhancements to the ability to measure plant risk), but rather plant changes that reduce risk (through hardware modifications, procedural enhancements, operator training improvements, etc.). The review indicated that the large majority of risk reduction opportunities available through implementation of individual plant changes are encompassed by the previously identified listing of SAMA improvements (most of these were identified from the importance list reviews for CDF and LERF based on the current PRA model of record, as described in Sections 5.1.1 and 5.1.2 above). There were no additional SAMA improvements identified by this review.

F.5.1.4 Industry SAMA Analysis Review

The SAMA identification process for PINGP is primarily based on the PRA importance listings/insights, the IPE, and the IPEEE. In addition to these plant specific sources, selected industry SAMA analyses were reviewed to identify any Phase II SAMAs that were determined to be potentially cost beneficial at other plants. These SAMAs were further analyzed and included in the PINGP SAMA list only if they were considered to be potentially cost beneficial for PINGP. The following subsections provide a more detailed description of the identification process.

While many of these SAMAs are ultimately shown not to be cost beneficial, some are close contenders and a small number have been shown to be cost beneficial at other plants. Use of the PINGP importance ranking should identify the types of changes that would most likely be cost beneficial for PINGP, but review of selected industry Phase II SAMAs may capture potentially important changes not identified for PINGP due to PRA

modeling differences. Given this potential, it was considered prudent to include a review of selected industry Phase II SAMAs in the PINGP SAMA identification process.

The Phase II SAMAs from the following U.S. nuclear sites have been reviewed:

- V.C. Summer (SCE&GC 2002)
- H.B. Robinson (CPL 2002)
- Palisades (NMC 2005b)
- Dresden (Exelon 2003a)
- Quad Cities (Exelon 2003b)
- Brunswick (CPL 2004)
- Monticello (NMC 2005a)
- Susquehanna (PPL 2006)
- Browns Ferry (NRC 2005c)
- Calvert Cliffs (NRC 1999)
- D.C. Cook (NRC 2005b)

Five PWR and six boiling water reactor (BWR) sites were chosen from available documentation to serve as the Phase II SAMA sources. Most of the Phase II SAMAs from these sources are not included in the PINGP SAMA list. The industry Phase II SAMAs that were considered to have the potential to be cost effective for PINGP were independently identified through the PINGP importance list reviews. The remaining industry Phase II SAMAs were judged not to provide any significant benefit or added insight to the plant, or were addressed by SAMAs more suitable to PINGP's needs. These SAMAs were not considered further and no SAMAs unique to the review of the industry Phase II SAMAs were included in the PINGP SAMA list.

F.5.1.5 PINGP IPE Plant Improvement Review

The PINGP IPE generated a list of risk-based insights and potential plant improvements. Typically, changes identified in the IPE process are implemented and closed out; however, there are some items that may not have been completed due to high projected costs or other criteria. Because the criteria for implementation of a SAMA may be different than what was used in the post-IPE decision-making process, these recommended improvements are re-examined in this analysis. The following table summarizes the status of the potential plant enhancements resulting from the IPE process and their treatment in the SAMA analysis:

ltem No.	Description of Potential Enhancement	Status of Implementation	Disposition
1.	Procedure revision to utilize the cross-tie from station air to instrument air. The station air compressors are cooled from loop B cooling water and would not be affected by a LOOP A CL pipe break. If the cross-tie could be accomplished within 1 hour after the flood initiator, main feedwater or bleed and feed cooling could be restored and core melt could be prevented.	Procedural modifications have been implemented.	No further review required.
2.	Revise procedure C35 AOP1, "Loss of Cooling Water Header A or B", to address the problem of closure of the turbine building cooling water header isolation valve and the subsequent loss of cooling water to the main feedwater lube oil coolers and condensate pump oil coolers. Analysis has shown that the main feedwater pumps can conservatively operate without cooling water for approximately 20 minutes before possible pump damage.	This recommendation was implemented through the disposition listed below for item #3.	No further review required.
3.	To limit the impact of AFW pump room flooding due to Cooling Water System header rupture, provide a means to either allow additional water flow out of the room or to segregate the room into two compartments.	Calculation ENG-ME-148, Rev. 1, "Cooling Water Header Pipe Failure Causing Flooding in the Auxiliary Feedwater Pump/Instrument Air Compressor Room", addressed this recommendation. This position paper documents the qualifications, design features and periodic inspections in place that provide confidence that the probability of occurrence of the pipe rupture is negligible. In addition to pipe replacements and upgrades that were performed in 1992, it is likely that operators or other personnel who periodically transit these rooms would notice a substantial piping leak.	No further review required.

ltem No.	Description of Potential Enhancement	Status of Implementation	Disposition
4.	Emphasize in training the importance of bleed and feed and the operator actions that are necessary for success as bleed and feed is a significant contributor to the overall CDF.	Operator training, course outlines, and lesson plans have been revised to emphasize the importance of this and other IPE insights in the operation and maintenance of the plant.	No further review required.
5.	Emphasize in training the importance of the crosstie between the motor driven AFW pumps and the operator actions that are necessary for success as the AFW crosstie is a significant contributor to the overall CDF.	See implementation status for #4 above.	No further review required.
6.	Emphasize in training the importance of switchover to high and low head recirculation and the operator actions that are necessary for success as switchover to recirculation is a significant contributor to the overall CDF.	See implementation status for #4 above.	No further review required.
7.	Emphasize in training the importance of RCS cooldown and depressurization to terminate safety injection before ruptured steam generator overfill and the operator actions that are necessary for success as this action is a significant contributor to the overall CDF.	See implementation status for #4 above.	No further review required.
8.	Revise step 18 of FR-C.1, "Response to Inadequate Core Cooling", such that the operator checks for adequate steam generator level before attempting to start an RCP. If the RCPs are started with a "dry" steam generator with core exit thermocouples greater than 1200°F, hot gases could be pushed up into the steam generator tubes causing creep rupture of the tubes and a possible containment bypass if one of the steam generator relief valves were to lift.	Implemented.	No further review required.
9.	The in-core instrument tube hatches for both units should be secured open during normal operation. This could be accomplished by using a solid bar or other device, instead of a chain, to keep the hatch open but still prevent inadvertent entry during normal operation. Having this hatch open greatly improves the probability of recovering from a core damage event in-vessel (without vessel rupture), by allowing injection water from the RWST to flow into the reactor cavity and to provide cooling to the lower vessel head.	The hatch was replaced with a metal cage to allow water to flow freely.	No further review required.

F.5.1.6 PINGP IPEEE Plant Improvement Review

The PINGP IPEEE also generated a list of risk-based insights and potential plant improvements. Typically, changes identified in the IPEEE process are implemented and closed out; however, there are some items that may not have been completed due to high projected costs or other criteria. Because the criteria for implementation of a SAMA may be different than what was used in the post-IPEEE decision-making process, these recommended improvements are re-examined in this analysis. The following table summarizes the status of the potential plant enhancements resulting from the IPEEE process and their treatment in the SAMA analysis:

ltem No.	Description of Potential Enhancement	Status of Implementation	Disposition
1.	Add fire wrap or other fire barrier material to the exposed length of cable 1DCB-1 (control power to Bus 16) above cable tray 1SG-LB22 in FA 32 (Unit 1 side AFW pump/instrument air compressor room). In the fire PRA, the critical component for this fire is the 12 AFW pump. Although this pump resides in FA 31, loss of control power to Bus 16 will result in loss of the automatic start of the pump.	Implemented.	No further review required.
2.	Add instructions to Fire Safety Procedure F5, Appendix D, for the operator to locally start an available roof exhaust fan to reestablish safeguards screenhouse ventilation. In many fire core damage sequences (fire may be initiated in a number of fire areas), the 121 cooling water pump and a roof exhaust fan are available, but since (in these sequences) the fan and pump are powered from the opposite train, the fan is not running. This leads to failure of the 121 CL pump due to lack of sufficient ventilation.		

ltem No.	Description of Potential Enhancement	Status of Implementation	Disposition
3.	Add instructions to Fire Safety Procedure F5 App. D for the operator to manually open a suction supply valve to the 12 AF pump on a fire in FA 32 (Unit 1 side AFW pump/IA compressor room). On an air compressor large oil spill fire, the assumption is that the fire causes spurious closure of MV-32335 prior to loss of power from MCC 1A2. The cooling water supply valve MV- 32027 could also be opened. An alternative would be to wrap the length of conduit for cable 1A2-6A that traverses FA 32.	procedure, it was found that direction is included in F5	No further review required.
4.	Ensure that existing training for manual fire suppression in the mitigation of fires in the control room and relay room (fire brigade to relay room) includes a discussion of the risk significance of this action in the prevention of core damage. If successful, this action prevents the need for shutdown outside the main control room.	Revisions were made to lesson plans to include this recommendation.	No further review required.
5.	Ensure that existing training for the operator task to shutdown the plant from outside the control room per F5 App. B includes a discussion of the risk significance of this action in the prevention of a core damage accident.	Revisions were made to lesson plans to include this recommendation.	No further review required.
6.	Ensure that existing training for the operator task to perform bleed and feed cooling of the RCS includes a discussion of the risk significance of this action in the prevention of a core damage event due to internal fires.	Revisions were made to lesson plans to include this recommendation.	No further review required.
7.	Ensure that training (lesson plans, outplant checkoffs, etc. as appropriate) exists for the operator task to perform DC panel switching in the battery room and relay room for a fire in FA 59. Training should include information relative to the importance of this action to stopping loss of inventory through the RCS vent solenoid valves.	Revisions were made to lesson plans to include this recommendation.	No further review required.

ltem No.	Description of Potential Enhancement	Status of Implementation	Disposition
8.	Verify cable separation in the G-panel due to potential for a large fire internal to the panel to cause the loss of offsite and onsite power. Power would then have to be restored from the diesel generators from outside the control room. This recommendation is made only to provide added assurance of this critical assumption with respect to its impact on plant risk due to fires.	A visual inspection was performed on the G panel and confirmation was made on the proper design separation between trains. Additionally, proper separation of cables throughout the plant was verified.	No further review required.
9.	Upgrade the anchorage for the main Cardox tank for Relay Room automatic fire suppression. From walkdown activities, it was found that a potentially weak anchorage exists for the main CO2 storage tank in the Unit 1 Turbine Building. Suppression in the Relay Room is important due to the critical equipment in this room required for safe shutdown of the plant.	was completed and documented under the plant design change process.	No further review required.
10.	Upgrade the anchorage for the diesel driven fire water pump batteries and its fuel oil day tank. From walkdown activities, it was found that a potentially weak anchorage exists for the diesel driven fire water pump batteries and fuel oil day tank in the plant Screenhouse. This is a concern in that seismic events of sufficient magnitude to cause a loss of offsite power could also render the diesel fire pump unavailable.	The installation of new anchors for the diesel driven fire water pump batteries and its fuel oil day tank was completed and documented under the plant design change process.	No further review required.

F.5.1.7 Use of External Events in the PINGP SAMA Analysis

The external events examination was conducted in three distinct phases: seismic, internal fires, and other external events. The following summarizes the conclusions of these assessments, including specific insights and recommendations. As a result of reviewing these historical analyses and their results, no additional SAMAs were identified that required further consideration for the Phase I analysis.

F.5.1.7.1 <u>Seismic Analysis</u>

Northern States Power (NSP) had originally planned to respond to Generic Letter 88-20, Supplement 4, by performing a seismic probabilistic risk assessment (PRA) for PINGP. By letter dated September 25, 1995, PINGP notified the NRC staff of a change in the manner in which the seismic IPEEE would be completed. This change was based on new information regarding large reductions in the seismic hazard estimates for sites in the eastern United States, as presented in NUREG-1488 (NRC 1993). This information was incorporated within Supplement 5 of Generic Letter 88-20, which provides the basis for NSP's decision to change the approach of completing the seismic IPEEE from a seismic PRA to a seismic margins assessment.

A portion of the effort for the PRA was accomplished (i.e., walkdowns and initial screening) when the NRC issued Supplement 5 to the Generic Letter. NSP elected to change its approach in accordance with Supplement 5 and completed the analysis of seismic events in the form of a reduced scope seismic margins assessment with the focus on a few known weaker, but critical, components. The majority of the components included in the assessment were determined to meet the screening criteria established in EPRI NP-6041-SL (EPRI 1991). This result in itself indicates that most of the components have a relatively high seismic capacity. The remaining components; i.e., those not meeting the screening criteria, were evaluated further and were determined to be: 1) adequate for the safe shutdown earthquake (SSE); 2) unnecessary due to the particular seismic failure mode and/or available plant equipment redundancy; or 3) were to be addressed under the closure of the PINGP SQUG program. Overall, it was concluded that there was no significant plant vulnerability to severe accidents attributable to seismic events at PINGP.

It should be noted that the seismic analysis conducted as part of the IPEEE program was done in conjunction with the efforts at PINGP to address seismic issues associated with the USI A-46 program (NRC 1987). Further, it was shown that many unscreened components that were not dispositioned in the USI A-46 program would not be expected to lead to the inability to cool the core if they were assumed to fail following a seismic event. In each case, additional random failures of equipment are necessary before inadequate core cooling would be expected.

Other significant conclusions of the seismic margins assessment include:

- The seismic walkdowns performed as part of the IPEEE found most of the components and structures reviewed to be seismically adequate (i.e., suitably anchored and/or seismically rugged). Those items that could be considered potentially vulnerable were subjected to the more rigorous seismic evaluation referred to above.
- Concrete block walls were either screened from further consideration because their failure would cause no adverse consequences, or they were further evaluated and found to have sufficient seismic capacity.
- The review of relays credited in the IPE revealed that there were relays beyond those considered in the SQUG program scope that had to be evaluated. However, it was determined that none of these relays were considered "bad actors".

- Few flat bottom tanks fell solely under the scope of the seismic IPEEE (i.e., SQUG had identified some tanks as outliers that were addressed under the closure of that program). Those that did were either screened or shown to have limited consequences should they fail.
- A review of containment response revealed no conditions unique to seismic events or that were not already evaluated as part of the internal events PRA (IPE).
- A recommendation from the seismic margins assessment was to restrain or remove wall hung ladders and scaffolding that were located near safety related equipment to reduce the impact of seismically induced relay chatter.

F.5.1.7.2 Internal Fires Analysis

The overall methodology used in the development of the PINGP Fire IPEEE conformed to the guidance provided by GL 88-20, Supplement 4 and detailed guidance provided by NUREG-1407 (NRC 1991), and has made use of past PRA experience, generic databases, and other defensible simplifications to the maximum extent possible. This methodology was summarized in the PINGP IPEEE submittal of September 1998. The PINGP fire study used an approach that combined the deterministic evaluation techniques from the Fire Induced Vulnerability Evaluation (FIVE) methodology with classical PRA techniques. The FIVE methodology provided a means of establishing fire boundaries as well as methods to evaluate the probability and the timing of damage to components located in a compartment involved in a fire. PRA techniques allow determination of compartment-specific core damage frequencies associated with fires within the various fire areas of the plant. For the PINGP Fire IPEEE, compartments were identified and evaluated, then quantified using the fault trees and event trees from the updated internal events PRA. The internal initiating events were evaluated to determine if they could also result from a fire. The relevant fire-induced initiating events and related fault trees were used to perform the quantification.

The core damage frequency resulting from fires was estimated to be less than 5E-5/yr. This total is on the same order of magnitude as the core damage frequency of the internal events PRA (Level 1, Rev. 1 – see Section F.2.1.2.1 above). It should be noted that these results included a number of conservative assumptions. For example, automatic and manual fire suppression techniques were not credited except in the control room, relay and cable spreading room, and the AFW pump rooms. Also, in most cases, fires were also assumed to completely engulf an area once ignited. In a few critical fire areas (FA), fire modeling was performed to more accurately predict the spread of credible fires occurring in those areas, and the scope of equipment affected by those fires. The areas that received fire modeling were the control room (FA 13), cable spreading and relay room (FA 18), both of the Auxiliary Feedwater/Instrument Air

compressor rooms (FAs 31 and 32), the screenhouse basement (FA 41B), and the Unit 1 side Auxiliary Building 695' elevation (FA 58).

More than 89 percent of the plant risk associated with the internal fires can be traced to eight fire areas. These areas are the main control room (FA 13), Unit 1 side Auxiliary Feedwater/Instrument Air compressor room (FA 32), 480V safeguards switchgear room-Bus 111 (FA 80), 4160V safeguards switchgear room-Bus 16 (FA 20), Unit 1 Auxiliary Building elevation 715' (FA 59), Unit 2 Auxiliary Building elevation 695' (FA 73), the cable spreading and relay room (FA 18), and the Turbine Building ground and mezzanine floor (FA 69). Of these, the largest contributors to core damage frequency were fires originating in the main control room. Small fires in the panels that include the Main Feedwater system and Auxiliary Feedwater system controls that are successfully suppressed; along with large fires in the safeguards electrical panel (G-panel) dominated the risk from this fire area.

It should be noted that FA 73, Unit 2 Auxiliary Building elevation 695', did not receive detailed fire modeling, as did its Unit 1 counterpart fire area, FA 58. As a result, the core damage contribution from fires in FA 58 fell below the 1E-6/rx-yr reporting criteria, while the contribution from fires in FA 73 did not. If fire modeling had been applied to FA 73, it is expected that this fire area would have been shown to be even less significant to the Unit 1 Fire PRA results than FA 58.

Operator actions that dominated the fire PRA are associated with performing RCS bleed and feed operation, activation of the hot shutdown panel, local restoration of onsite power following station blackout from a control room G-panel fire, and manual fire suppression in the control room.

The principal finding of the IPEEE fire analysis is that there were no major vulnerabilities due to fire events at PINGP. Plant insights/improvements and their resolution were identified above in Section F.5.1.6, which also included two recommendations from the seismic/fire interactions review.

F.5.1.7.3 High Winds, Floods, and Others

The assessment of other external events in Appendix C of the IPEEE (NSP 1998) showed that there were no other credible external events besides fires and seismic activity that were a safety concern to the PINGP site. No vulnerabilities were identified, and the screening criteria contained in NUREG-1407 (NRC 1991) and Generic Letter 88-20 (Supplement 4) were satisfied for all events. Because there were no

vulnerabilities found from this analysis, no changes to plant hardware or procedures were necessary.

F.5.1.7.4 <u>Post-IPEEE External Hazards Review</u>

In addition to the above summary of the PINGP IPEEE, an effort was made to review information since the conclusion of the original IPEEE in 1998 to determine if any outstanding issues exist that could warrant the implementation of any additional SAMAs with regard to external risk. Information for this review was obtained from inspection audits, RAIs, USAR changes, etc. Therefore, the following sources of information are outlined below with a summary of their review:

F.5.1.7.4.1 PINGP Response to RAIs from NRC regarding IPEEE Submittal (NSP 2000)

There were five major requests for additional information, with some containing multiple sub-topics of interest. Three of the requests can be categorized as related to seismic interactions, one related to non-seismic failures and human actions, and one related to seismic-induced fires. The responses from NMC involved detailed explanations and evaluations that satisfactorily address each of the questions, but none involving any structural or hardware modifications.

Since no outstanding items exist as a result of these RAIs, no new SAMAs are deemed necessary.

F.5.1.7.4.2 Response to Generic Letter 2003-01, "Control Room Habitability" (NMC 2003)

The purpose of this generic letter was to ensure that licensees are capable of meeting the applicable habitability regulatory requirements and the control room is designed, constructed, configured, operated, and maintained in accordance with the facility's design and licensing basis. One of the results found within this report is that inspections during the initial set of tests indicated that the seals for the doors that enter the control room envelope and the outside air isolation dampers could be a significant vulnerability. Thus, following initial testing, the seals on all the doors entering the control room envelope were replaced, and the outside air isolation dampers were replaced with bubble tight design dampers. Consistent with the current licensing bases, control room dose analyses were performed for the LOCA, the Main Steam Line Break (MSLB), and the Fuel Handling Accident (FHA). The LOCA dose analysis demonstrated that the dose to the Control Room operator satisfied General Design Criteria (GDC) 19 using 165 cfm unfiltered inleakage. The MSLB dose analysis demonstrated that the dose to the Control Room operator satisfied GDC-19 using 175 cfm unfiltered inleakage. An

evaluation for the dose to the control room operator following a FHA demonstrated that the dose to the Control Room operator is less than the GDC-19 limits with unfiltered inleakage up to 700 cfm.

With regard to toxic chemicals, a probabilistic evaluation of chlorine and ammonia spills, determined that no automatic monitoring systems were required. Following NRC approval, the chlorine detection system was removed. PINGP used the guidance of Regulatory Guide 1.78 and 1.95 in determining the adequacy of operator protection in the event of a toxic chemical release. RG 1.95 recommended that a six hour air capacity for the SCBAs be readily available on site to ensure that sufficient time is available to transport additional bottled air from offsite locations. The regulatory guidance also stated that a minimum emergency crew should consist of those personnel required to maintain the plant in a safe condition, including orderly shutdown or scram (automatic shutdown) of the reactor. When a toxic gas event is detected, control personnel will place the Control Room ventilation in recirculation and don their SCBAs. PINGP can provide a minimum of six hours of air for 14 people: six Control Room operators, six out-plant operators and fire brigade, one chemist, and one shift manager. The breathing air supply consists of an auto-cascade air system with two Quick-Fill stations located on the missile shield wall outside the Control Room. The system also provides a redundant three hour supply of air in the event of an equipment failure on one of the stations. All SCBAs in the plant have Quick-Fill capability. Annually, Operations personnel must complete SCBA training and must don an SCBA and have it functional within 2 minutes for potential hazardous chemicals capable of entering the Control Room. With regard to reactor control capability in the event of smoke, it was concluded, using the guidance described in NEI 99-03, Rev. 1, Appendix A (NEI 2003), that a single smoke event originating from inside or outside the Control Room would not affect both the Control Room and the Hot Shutdown Panel areas. Plant Operators would be able to achieve and maintain safe shutdown (reactor control capability) from either the Control Room or the Hot Shutdown Panels if needed.

As a result, no areas of concern or outstanding vulnerabilities were identified regarding control room habitability; therefore, no additional SAMAs are warranted.

F.5.1.7.4.3 Prairie Island Nuclear Generating Plant, Units 1 and 2 NRC Tornado/Fire/Flood Integrated Inspection Report (NRC 2005a)

On June 30, 2005, the NRC completed an integrated inspection for Units 1 and 2. This inspection examined activities, selected procedures, records, observed activities, and personnel interviews. Based on the results of this inspection, the inspectors identified two external event-related findings. Both findings were determined to be of very low

safety significance. As a result, no areas of concern or outstanding vulnerabilities were identified regarding this integrated inspection, and therefore, no additional SAMAs are warranted.

F.5.1.7.4.4 Prairie Island Nuclear Generating Plant, Units 1 and 2 NRC Triennial Fire Protection Baseline Inspection (NRC 2006)

Based on the results of this fire inspection, no significant outstanding vulnerabilities were identified that would warrant a specific SAMA to mitigate external risk. Two of the four findings identified during this inspection were determined to be of very low safety significance, and two are being addressed through the corrective action program and NFPA 805 implementation.

F.5.1.8 Quantitative Strategy for External Events

The quantitative methods available to evaluate external events risk at PINGP are limited, as discussed above. In order to account for the external events contributions in the SAMA analysis, the assumption that the risk posed by external and internal events is approximately equal was imposed to simplify the calculation of averted cost-risk based on external events accidents.

Continuing on with the assumption that the internal and external events risks are assumed to be equal, the MACR calculated for the internal events model has been doubled to account for external events contributions. As identified in Section F.4.6, this total is referred to as the MMACR. The MMACR is used in the Phase I screening process to represent the maximum achievable benefit if all risk related to on-line power operations was eliminated. Therefore, those SAMAs with costs of implementation that are greater than the MMACR were eliminated from further review. The second stage of this strategy was to also apply the doubling factor to the Phase II analysis. Any averted cost-risk calculated for a SAMA was multiplied by two to account for the corresponding reduction in external events risk. The difference in the averted cost-risk estimates between the base case and the proposed SAMA were then compared with implementation costs to determine whether a particular SAMA was cost beneficial.

F.5.2 Phase I Screening Process

The initial list of SAMA candidates is presented in Table F.5-3. The process used to develop the initial list is described in Section F.5.1.

The purpose of the Phase I analysis is to use high-level knowledge of the plant and SAMAs to preclude the need to perform detailed cost-benefit analyses on them. The following screening criteria were used:

- Applicability to the Plant: If a proposed SAMA does not apply to the PINGP design, it is not retained.
- Engineering Judgment: Using extensive plant knowledge and sound engineering judgment, potential SAMAs are evaluated based on their expected maximum cost and dose benefits; those that are deemed not beneficial are screened from further analysis.

Table F.5-3 provides a description of how each SAMA was disposition in Phase I. Those SAMAs that required a more detailed cost-benefit analysis are evaluated in Section F.6.

Detailed cost-estimates were developed, using an outside vendor, for the most viable candidates. These cost estimates included cost estimates related to the four project phases: Study, Engineering and Design, Implementation and Life Cycle. A summary of cost estimates by phase breakdown is included in Table F.5-3 to help determine which SAMAs should be retained for further analysis in Phase II.

F.5.2.1 SAMA 6 (Install Equipment to Automatically Isolate Auxiliary Building Flooding):

This SAMA attempts to address the risk of Auxiliary Building flooding, which is dominated by floods in the lowest level (Zone 7, the 695' elevation, represented by initiating events I-AB7FLDA and I-AB7FLDB). The flooding is assumed to be due to a ruptured Cooling Water (CL) system pipe.

Risk Benefit:

For either unit, Auxiliary Building Zone 7 flooding initiating events account for only about 2% of the CDF and only about 1% of the LERF. Also, by definition, implementation of this SAMA will not provide any benefit in reducing the risk of SGTR-initiated events, which are an important component of the LERF.

SAMA Implementation Cost:

The cost and complexity of implementing this SAMA would be significant—involving system modifications that would entail extensive engineering support, specialized hardware and instrumentation, and regulatory analyses to support modifications to the facility. In order to minimize the cost of the modification, the existing ring header isolation MOVs would have to be used (those that currently split the ring header into two

safeguards headers on an S-signal on either unit) in order to prevent a dual-unit outage to install new isolation valves. Under this design, however, isolation of an entire train of safeguards equipment (those supplied by CL) to stop the flooding event would leave both units susceptible to a single failure for important safety functions. Also, adding level instrumentation and automatic isolation logic in order to achieve the most risk benefit from this modification, additional logic to identify the affected CL header and trip the pumps supplying that header would have to be installed. If manual action to diagnose the situation and trip the right pumps is relied upon, a large portion of the risk benefit from this SAMA would not be realized. Also, at a minimum, one CC pump on each unit must be assumed to have failed as they are located in the CCHX room underneath each CL header.

Recommendation:

Screen this SAMA from further consideration.

F.5.2.2 SAMA 6a (Segregate Flooding Zones):

This SAMA attempts to address the risk of Auxiliary Building flooding (see SAMA 6 discussion above), which is dominated by floods in the lowest level (Zone 7, the 695' elevation, represented by initiating events I-AB7FLDA and I-AB7FLDB). However, this SAMA addresses the problem by building curbs or other barriers to physically protect trains of potentially affected equipment from each other. Currently the SI pumps are not separated from each other with respect to flooding hazards. The RHR pits (containing the RHR pumps and heat exchangers) are separated but would both flood nearly simultaneously when water level reaches top of curb. Other equipment affected on the 695' elevation include MCCs supplying power to the ECCS MOVs, which are not separated and would fail simultaneously impacting both trains. It may be possible to increase height of curb around RHR pits to provide extended time to flooding, or to increase the curb height for the RHR pits.

Risk Benefit:

The maximum risk benefit for this SAMA is low (see SAMA 6 discussion above).

SAMA Implementation Cost:

The cost of implementing this SAMA is estimated to be significantly greater than that of SAMA 6. Furthermore, this SAMA relies on operator action to identify and isolate the header with the break (the current, pre-SAMA implementation situation). With the higher likelihood of isolation failure due to operator vs. automatic action, a large portion

of the risk benefit from this SAMA would not be realized. Also, even with successful operator action, the result is the loss of at least one train of safeguards equipment.

Recommendation:

Screen this SAMA from further consideration.

F.5.2.3 SAMA 8 (Install Additional Diesel Generator):

This SAMA addresses the risk of Station Blackout (SBO) events by installing an additional diesel generator that can be aligned should the onsite EDGs fail to provide power before offsite power can be restored. One option may be to provide an upgrade to the D3 and/or D4 non-safeguard diesel generators already onsite to provide a backup EDG supply.

Risk Benefit:

SBO is a significant contributor to CDF for both units (provides about 8% of the total CDF). However, it contributes <1% to the LERF, and approximately 1% to the frequency of all early containment failure sequences. All of the top SBO-related release categories involve sequences in which the containment and/or reactor vessel does not fail. The risk benefit of this SAMA is further reduced by the need for operator action (including local actions) for implementation.

SAMA Implementation Cost:

The cost of implementing this SAMA would be significant, involving (at a minimum) semi-permanent connection capability for D3 and/or D4 to the safeguards 4kV buses and analyses to show no degradation of the safeguards power supplies due to the modifications required. Procedures and operator training would need to be implemented to obtain much benefit from this SAMA. In addition, the reliability of D3 and D4 may need to be improved.

Recommendation:

Screen this SAMA from further consideration.

F.5.2.4 SAMA 13 (Install Automatic Sump Pump for Zone 7 AB Flooding):

This SAMA attempts to address the risk of Auxiliary Building flooding (see SAMA 6 discussion above), which is dominated by floods in the lowest level (Zone 7, the 695'

elevation, represented by initiating events I-AB7FLDA and I-AB7FLDB). However, this SAMA addresses the problem by installing a sump pump system that would remove water from the affected area, providing additional time for operator action to isolate the break.

Risk Benefit:

The maximum risk benefit for this SAMA is low (see SAMA 6 discussion above).

SAMA Implementation Cost:

The cost of implementing this SAMA would be about the same, or slightly less, than the cost of SAMA 6, however, as with SAMA 6a, this SAMA relies on operator action to identify and isolate the header with the break (the current, pre-SAMA implementation situation). Therefore, a large portion of the risk benefit from this SAMA would not be realized. Also, even with successful operator action, the result is the loss of at least one train of safeguards equipment.

Recommendation:

Screen this SAMA from further consideration.

F.6 PHASE II SAMA ANALYSIS

Not all of the Phase II SAMA candidates require detailed analysis. The Phase II process allows for the screening of SAMAs known to be related to non-risk significant systems or to components/functions with low importance rankings. Due to the nature of the PRA based process used to develop the PINGP SAMA list, there are limited avenues for SAMAs of this type to be included in the list. However, potential pathways do exist:

- Inclusion of unresolved proposed plant changes from previous PINGP risk analyses,
- Inclusion of SAMAs based on the results of conservative modeling methods.

While no calculations are required for eliminating a SAMA that is linked to a non-risk significant system or components, some quantitative efforts are usually required to screen SAMAs that were developed to address risk contributors based on conservative modeling techniques. These cases are identified in Table F.6-1 and discussed in detail in the SAMA specific subsections of F.6.

For the SAMAs requiring detailed analysis, a more detailed conceptual design was prepared along with a more detailed estimated cost. This information was then used to evaluate the effect of the candidates' changes upon the plant safety model.

The final cost-risk based screening method is defined by the following equation:

Net Value = (baseline cost-risk of plant operation (MMACR) – cost-risk of plant operation with SAMA implemented) – cost of implementation

If the net value of the SAMA is negative, the cost of implementation is larger than the benefit associated with the SAMA and the SAMA is not considered cost beneficial. The baseline cost-risk of plant operation was derived using the methodology presented in Section F.4. The cost-risk of plant operation with the SAMA implemented is determined in the same manner with the exception that the revised PRA results reflect implementation of the SAMA.

The implementation costs used in the Phase I and II analyses consist of PINGP specific estimates developed by plant personnel, as well as those from Sargent & Lundy for certain Phase II SAMAs (S&L 2007). The basic components of the cost estimates included relevant work activities across the following major project phases: study, analysis, design, implementation, and life cycle. Where possible, the economic benefit of implementing proposed SAMAs across both units and taking credit for certain

duplicate work activities resulted in implementation costs for the second unit being reduced. To average this economic benefit across both units, the SAMA cost for each unit was figured by dividing the total expected cost by a factor of two. It should be noted that PINGP specific implementation costs do <u>not</u> account for any replacement power costs that may be incurred due to consequential shutdown time. Table F.5-3 provides implementation costs for each Phase I and II SAMA. Costs are delineated as 'per unit' and/or 'total' as appropriate.

Sections F.6.1 - F.6.14 describe the detailed cost-benefit analysis that was used for each of the remaining candidates. It should be noted that the release category results provided for each SAMA do not include contributions from the negligible release category.

F.6.1 SAMA 2: Alternate Cooling Water (CL) Supply

Loss of the Cooling Water (CL) system is a highly risk-significant initiating event. Provision of an additional, alternate means of supplying CL may reduce the risk associated with these events. Although crossties from the fire protection system (FPS) are available, these crossties were intended to supply CL to FPS, not the other direction. As a result, the amount of water flow available from the FP system to CL may not be sufficient to meet the CL system needs, even for one train of safeguards equipment. Therefore, this SAMA investigates the risk impact of installing a redundant CL pump train, diverse and independent from the existing pump trains (for example, a separate diesel-driven CL pump located in a building onsite that can be tied into the existing system and will start automatically on low system pressure).

Assumptions:

- 1. For the purposes of this SAMA, it is assumed that the existing diesel-driven fire pump (DDFP) in the basement of the Screenhouse is upgraded and piped such that it can supply both the needs of the FP system and needs of the CL system (as a backup CL system pump).
- 2. The SAMA 2 pump would remain diesel-driven, with fuel, cooling and ventilation requirements independent of the diesel-driven cooling water pumps (DDCLPs), and would otherwise be diverse enough from the design of the existing DDCLPs such that no CCF potential existed between these pumps.
- 3. The suction source of the SAMA 2 pump is assumed to be the same suction source currently available to the DDFP (Unit 1 side Circ Water Bay).

- 4. The SAMA 2 pump is assumed to start automatically on low system pressure (when all of the other pumps have failed setpoint below the current DDCLP start setpoint).
- 5. For operating flexibility, it was assumed that the SAMA 2 pump unavailability for testing or maintenance and existing CL pump unavailability for testing or maintenance are not mutually-exclusive events.

SAMA 2 pump failure modeling:

- 1. The pump FTR BE probability was determined by summing the diesel-driver and pump-portion FTR BE probabilities for one of the existing DDCLPs.
- 2. The pump FTS BE probability was determined by summing the diesel-driver and pump-portion FTS BE probabilities for one of the existing DDCLPs.
- 3. A double-check valve design on the outlet of the SAMA 2 pump was assumed in order to prevent a significant failure likelihood from flow diversion through the non-running pump (no such modeling was included in the fault tree).
- 4. It is assumed that the SAMA 2 pump discharge will be piped into the CL header similar to the location of 121 CL pump discharge, between the A/B and C/D header isolation MOVs, such that the pump is able to supply either CL header A or B on a unit SI signal. The existing FT models failure of one of these header isolation valves to remain open, together with failure of the remaining pumps available to that header to provide flow. However, due to the low risk significance of these failures, no additional modeling (to include the SAMA 2 pump failures) was felt to be necessary as this would only drive down the frequency of these sequences.
- 5. The fuel supply design for the SAMA 2 diesel engine was assumed to be similar (but independent) to that of the existing DDCLPs.
- 6. No failure basic events were included for pump ventilation issues over its mission time to run. The pump was assumed to have minimal ventilation requirements due to its location within the large, open Screenhouse basement room (or the ventilation design was assumed to have high reliability).
- 7. The design of the pump was assumed to not have a requirement for external bearing water cooling as the existing safeguards pumps have (pump has a self-sealing or other reliable seal design).
- 8. The SAMA 2 pump was assumed to be susceptible to failure from Screenhouse flooding initiating events.
- 9. The SAMA 2 pump was assumed to NOT be available as a safeguards (Technical Specifications) replacement for the existing DDCLPs (as the 121 motor-driven pump

is) since it is modeled as taking suction from the circulating water bay (not the safeguards pump bay).

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
SAMA DIESEL CL PUMP UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	1.29E-03	Assumes same unavailability as 12, 22 CL pumps
SAMA DIESEL CL PUMP UNAVAILABLE DUE TO PREVENTIVE MAINTENANCE	1.58E-02	Assumes same unavailability as 12, 22 CL pumps
SAMA 2 DIESEL CL PUMP FAILS TO RUN (24 HR MISSION)	4.01E-02	Probability derived by summing event probabilities for
SAMA 2 DIESEL CL PUMP FAILS TO START	3.45E-03	Probability derived by summing event probabilities for
SAMA 2 DIESEL CL PUMP OUT OF FUEL	6.40E-03	Probability determined by summing all BEs under 12 DDCLP.
SAMA 2 PUMP CHECK VALVE 1 FAILS TO OPEN	5.00E-05	Standard check valve FTO probability.
SAMA 2 PUMP CHECK VALVE 2 FAILS TO OPEN	5.00E-05	Standard check valve FTO probability.

SAMA 2 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-Risk, and Offsite Economic Cost-Risk (OECR). The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	7.72E-06	2.73	\$15,396
Unit 1 Percent Reduction	21.2%	6.8%	2.9%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.00E-05	8.22	\$62,884
Unit 2 Percent Reduction	17.1%	2.5%	0.7%

SAMA 2 - Unit 1 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.02E-06	1.82E-07	2.64E-07	2.27E-07	4.89E-08	3.22E-08	2.45E-09	4.84E-09	8.40E-10	2.32E-11	7.72E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.01	0.59	1.29	0.10	0.73	0.00	0.00	0.00	0.00	2.73
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$2	\$900	\$11,422	\$646	\$2,408	\$0	\$0	\$18	\$0	\$15,396

SAMA 2 - Unit 2 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	8.28E-06	2.18E-07	3.23E-07	1.16E-06	5.79E-08	3.22E-08	2.80E-09	5.82E-09	9.17E-10	2.32E-11	1.00E-05
$\text{Dose-Risk}_{\text{BASE}}$	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
$\text{Dose-Risk}_{\text{SAMA}}$	0.01	0.01	0.72	6.63	0.12	0.73	0.00	0.00	0.00	0.00	8.22
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$2	\$1,101	\$58,589	\$765	\$2,408	\$0	\$0	\$19	\$0	\$62,884

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$990,624	\$123,376
Unit 2	\$2,980,000	\$2,856,908	\$123,092

SAMA 2 Net Value

The SAMA 2 results indicate a relatively significant reduction in CDF. Most of the CDF reduction is due to the decrease in the frequency of release category L-DH-L (late vessel failure with late containment failure due to failure of containment heat removal); however, this category is not very significant to the overall risk from offsite releases.

Based on a \$300,000 cost of implementation for each unit, the net value for this SAMA is -\$176,624 (\$123,376 - \$300,000) for Unit 1 and -\$176,908 (\$123,092 - \$300,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.2 SAMA 3: Provide Alternate Flow Path from RWST to Charging Pump Suction

In the PINGP PRA model, failure to maintain cooling to the reactor coolant pump (RCP) seal package is assumed to result in a small LOCA through the RCP seals. The normal means of providing seal cooling during plant operation is through RCP seal injection from the Chemical and Volume Control System (CVCS) charging pumps. Water for seal injection is taken from the Volume Control Tank (VCT) and pumped into the RCP seal packages by the charging pumps. On low VCT level, the charging pump suction is automatically supplied from the RWST (VCT isolation MOV closes and RWST MOV opens). The current plant design provides only one flow path from the RWST to charging. This SAMA investigates the risk benefit of adding a bypass line around the motor-operated valve that must open to supply charging pump suction flow from the RWST upon loss of VCT level (MV-32060 for Unit 1, MV-32062 for Unit 2).

Assumptions:

- 1. The bypass line for each unit is assumed to contain a normally closed, fail closed air-operated valve that opens on low VCT level (same instrumentation that provides open signal to the MOV).
- 2. The bypass line air operated valve (AOV) is assumed to be supplied with an air accumulator in the event that normal plant instrument air is lost (due to the high reliability of such an air supply system, no air dependency is modeled in the fault tree). The purpose of this design requirement is to eliminate the common

dependency of the Component Cooling Water (CC) system and the Instrument Air (SA) system on the Cooling Water (CL) system. As CC is a backup for seal cooling in the event of loss of seal injection flow from the charging pumps, the elimination of this dependency is critical to obtaining maximum value from this SAMA.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

	SAMA 3 New Basic Events	
--	-------------------------	--

Description	Probability	Comments
SAMA 3 AIR OPERATED VALVE FAILS TO OPEN	3.00E-03	Standard air-operated valve FTO probability.
SAMA 3 AIR OPERATED VALVE FAILS TO REMAIN OPEN	1.01E-05	Standard air-operated valve FTRO probability. Assumes standard 24-hour mission time.

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	8.52E-06	2.83	\$15,548
Unit 1 Percent Reduction	13.0%	3.4%	1.9%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.08E-05	8.32	\$63,030
Unit 2 Percent Reduction	10.7%	1.3%	0.5%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.17E-06	7.85E-07	2.82E-07	2.29E-07	4.95E-08	3.22E-08	1.12E-08	4.89E-09	8.40E-10	2.32E-11	8.52E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.05	0.63	1.30	0.11	0.73	0.00	0.00	0.00	0.00	2.83
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$8	\$961	\$11,500	\$653	\$2,408	\$0	\$0	\$18	\$0	\$15,548

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency_{SAMA}	8.41E-06	8.14E-07	3.39E-07	1.17E-06	5.85E-08	3.22E-08	1.15E-08	5.87E-09	9.17E-10	2.32E-11	1.08E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.05	0.76	6.64	0.13	0.73	0.00	0.00	0.00	0.00	8.32
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$8	\$1,157	\$58,666	\$772	\$2,408	\$0	\$0	\$19	\$0	\$63,030

SAMA 3 - Unit 2 Results By Release Category

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk									
Unit 1	\$1,114,000	\$1,039,044	\$74,956									
Unit 2	\$2,980,000	\$2,903,346	\$76,654									

SAMA 3 Net Value

The SAMA 3 results are similar to the SAMA 2 results, although the magnitude of the reductions in CDF and LERF are slightly lower. Both SAMAs act to reduce the potential for RCP seal LOCA-induced core damage, however, addition of the diverse CL pump of SAMA 2 provides additional benefits that the more focused SAMA 3 does not provide. Most of the CDF reduction is due to the decrease in the frequency of release category L-DH-L (late vessel failure with late containment failure due to failure of containment heat removal), however, this category is not very significant to the overall risk from offsite releases. The small drop seen in release category L-SR-E (pressure or temperature-induced SGTR), a component of the LERF, is the most significant risk benefit associated with this SAMA.

Based on a \$250,000 cost of implementation for each unit, the net value for this SAMA is -\$175,044 (\$74,956 - \$250,000) for Unit 1 and -\$173,346 (\$76,654 - \$250,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.3 SAMA 5: Diesel-Driven HPI Pump

SAMA 5 investigates the potential risk reduction for installing an additional diesel-driven, high pressure injection (HPI) pump that could use a large volume, cold suction source. The intent of this SAMA is to reduce the risk of Station Blackout events (by prolonging the time the plant can operate without AC power) and SGTR events (by providing a

diverse means of providing high pressure injection from the RWST). No containment sump recirculation capability was assumed for this pump train.

Assumptions:

An additional, diesel-driven HPI pump train is assumed to be made available to the ECCS, in parallel to the two existing SI pumps on both units (the SAMA 5 pump would be common to both units).

The following additional assumptions are made regarding this pump train:

- The initial suction source to the SAMA 5 pump train is assumed to be the RWST. However, it is assumed that the design allows for highly reliable, automatic transfer to an alternate supply (other unit RWST, BAST, SFP, etc.) on loss of RWST level. (NOTE: This design addresses SAMA 19a as well).
 - a. Use of a river water source, while having the advantage of unlimited supply, is assumed to not be a viable alternative as it is not a borated water source.
- 2. The SAMA 5 pump train is assumed to be independent of the existing SI pumps both in design (including location) and operation such that the potential for common cause failures associated with all three HPI pump trains is negligible. The pump train is also assumed to be of a design that is diverse from the existing diesel CL pump trains.
- 3. The SAMA 5 pump train is assumed to be supplied with water for pump cooling by either train (header) of the site cooling water system (provides some diversity from the CC system means of equipment heat removal used by the existing SI pumps). A normally-open MOV is assumed for isolation (must remain open during pump mission time to run).
 - a. Self cooling (through recirculation of borated RWST water) is not considered to be a viable alternative.
- 4. The SAMA 5 pump train is assumed to start on an S-signal for either train/either unit and run on recirculation until flow is lost from the SI pump trains on the affected unit. The shutoff head for the SAMA 5 pump train is slightly lower than the SI pumps, such that it will automatically supply HPI flow should flow from the SI pump trains on the affected unit be lost.
- 5. The SAMA 5 pump train is assumed to either be provided with a highly reliable ventilation system, or be located in a large volume such that pump train failures due to ventilation failures are not likely.

6. For operating flexibility, it was assumed that the SAMA 5 pump unavailability for testing or maintenance and existing SI pump unavailability for testing or maintenance are not mutually-exclusive events.

SAMA 5 pump failure modeling:

- 1. The SAMA 5 pump FTR BE probability was determined by summing the dieseldriver and pump-portion FTR BE probabilities for one of the existing DDCLPs.
- 2. The SAMA 5 pump FTS BE probability was determined by summing the diesel-driver and pump-portion FTS BE probabilities for one of the existing DDCLPs.
- 3. A check valve on the outlet of the SAMA 5 pump was assumed to be required in order to prevent a significant failure likelihood from flow diversion through the pump should it fail to start (no such modeling was included in the fault tree).
- 4. It is assumed that the SAMA 5 pump discharge will be piped into the high head safety injection (HHSI) header in the section of SI pump discharge piping common to both existing pump trains, such that the SAMA 5 pump is able to supply either the A or B HPI header on a unit SI signal.
- 5. The fuel supply design for the SAMA 5 diesel engine was assumed to be similar (but independent) to that of the existing DDCLPs.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
SAMA 5 HP INJECTION PUMP FAILS TO RUN	4.01E-02	Probability determined by summing the CLP diesel-driver and pump-portion FTR BE
SAMA 5 HP INJECTION PUMP FAILS TO START	3.45E-03	Probability determined by summing the CLP diesel-driver and pump-portion FTS BE
SAMA 2 DIESEL HPI PUMP UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	1.29E-03	Assumes same unavailability as 12, 22 CL pumps
SAMA 2 DIESEL HPI PUMP UNAVAILABLE DUE TO PREVENTIVE MAINTENANCE	1.58E-02	Assumes same unavailability as 12, 22 CL pumps
SAMA 2 DIESEL HPI PUMP OUT OF FUEL	6.40E-03	Probability determined by summing all BEs under 12 DDCLP.
SAMA 5 DIESEL HPI PUMP DISCHARGE CHECK VALVE FAILS TO OPEN	5.00E-05	Standard check valve FTO probability.
SAMA 5 PUMP COOLING WATER MOTOR OPERATED ISOLATION VALVE FTRO	4.80E-06	Standard motor-operated valve FTRO probability. Assumes standard 24 hour mission time.

SAMA 5 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a slight reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.77E-06	2.39	\$14,450
Unit 1 Percent Reduction	0.3%	18.4%	8.8%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.20E-05	7.37	\$58,219
Unit 2 Percent Reduction	0.8%	12.6%	8.1%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

SAMA 5 - Unit 1 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.51E-06	1.92E-06	6.95E-08	2.21E-07	5.09E-08	3.22E-08	3.06E-08	5.45E-10	8.40E-10	0.00E+00	9.77E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
$Dose\text{-}Risk_{SAMA}$	0.01	0.12	0.16	1.26	0.11	0.73	0.00	0.00	0.00	0.00	2.39
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$237	\$11,098	\$671	\$2,408	\$0	\$0	\$18	\$0	\$14,450

SAMA 5 - Unit 2 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	8.74E-06	2.02E-06	7.99E-08	1.09E-06	5.99E-08	3.22E-08	3.11E-08	6.02E-10	9.17E-10	0.00E+00	1.20E-05
$Dose-Risk_{BASE}$	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.13	0.18	6.19	0.13	0.73	0.00	0.00	0.00	0.00	7.37
OECRBASE	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$272	\$54,710	\$791	\$2,408	\$0	\$0	\$19	\$0	\$58,219

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

	SAMA 5 Net Value										
Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk								
Unit 1	\$1,114,000	\$1,038,058	\$75,942								
Unit 2	\$2,980,000	\$2,757,390	\$222,610								

The SAMA 5 results show a reduction in the potential for core damage with containment bypass due to SGTR events. This is due to the ability to align an alternate, diverse pump train to supply RCS makeup following a SGTR, in the event that both safety injection pump trains are unavailable or failed. The independence of the pump from the component cooling system also provides a significant risk benefit. Also, the beneficial impact of this SAMA is greater for Unit 2, which has a higher potential for SGTR events (SGs have not been replaced on Unit 2 as they have on Unit 1). However, the high cost of this modification is not offset by the expected risk benefit from either unit.

Based on a \$1,500,000 cost of implementation for each unit, the net value for this SAMA is -\$1,424,058 (\$75,942 - \$1,500,000) for Unit 1 and -\$1,277,390 (\$222,610 - \$1,500,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.4 SAMA 9: Analyze Room Heat-up for Natural/Forced Circulation (Screenhouse Ventilation)

The purpose of this SAMA is to investigate the risk benefit of implementing procedural practices (opening doors, installing portable fans) or a plant modification to improve ventilation for safeguards equipment in the screenhouse. In particular, failures of the ventilation system associated with the safeguards vertical cooling water (CL) pumps currently provide a significant contribution to plant core damage risk. This SAMA determines the maximum benefit achievable if the Screenhouse ventilation system reliability is improved.

Assumptions:

- 1. It is assumed that the implementation of this SAMA either:
 - a. allows all combinations of running safeguards CL pumps to run for at least a 24-hour mission time without forced ventilation (and with room temperatures stable or trending lower at 24 hours), or
 - b. increases the reliability of the Screenhouse ventilation system such that the potential for loss of running safeguards CL pumps provides a negligible contribution to plant risk.

2. For the purposes of SAMA cost estimation, it is assumed that a best-estimate room heatup analysis (the least expensive option) is chosen, and that the reanalysis provides results that adequately support Assumption 1a above.

PRA Model Changes to Model SAMA:

In order to model this SAMA, all of the PRA fault tree model logic associated with failures of the safeguards vertical CL pumps (12, 121, and 22) due to Screenhouse ventilation system failures was set to logical FALSE. This treatment demonstrates the maximum risk benefit of this SAMA.

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	8.75E-06	2.83	\$15,600
Unit 1 Percent Reduction	10.7%	3.4%	1.6%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.10E-05	8.32	\$63,088
Unit 2 Percent Reduction	8.6%	1.3%	0.4%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency_{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency_{SAMA}	7.24E-06	9.47E-07	2.79E-07	2.29E-07	5.16E-08	3.22E-08	1.39E-08	4.89E-09	8.40E-10	2.32E-11	8.75E-06
$Dose\text{-}Risk_{BASE}$	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{sama}	0.01	0.06	0.62	1.30	0.11	0.73	0.00	0.00	0.00	0.00	2.83
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$9	\$953	\$11,531	\$681	\$2,408	\$0	\$0	\$18	\$0	\$15,600

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	8.49E-06	9.92E-07	3.38E-07	1.17E-06	6.06E-08	3.22E-08	1.44E-08	5.87E-09	9.17E-10	2.32E-11	1.10E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.06	0.75	6.64	0.13	0.73	0.00	0.00	0.00	0.00	8.32
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$10	\$1,151	\$58,700	\$800	\$2,408	\$0	\$0	\$19	\$0	\$63,088

SAMA 9 - Unit 2 Results By Release Category

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

SAMA 9 Net Value Unit **Base Case** Revised Averted Cost-Risk Cost-Risk Cost-Risk \$1,051,254 Unit 1 \$1,114,000 \$62,746 \$2,980,000 \$2,917,082 \$62,918 Unit 2

The SAMA 9 risk reduction results are similar to the SAMA 3 results, both in magnitude and in release categories benefited. SAMA 9 also reduces the potential for seal LOCAs, as the availability of the CL system is enhanced, although it also has the potential to reduce the loss of cooling water (LOCL) initiating event frequency. The impact of eliminating the Screenhouse ventilation dependency is not as great as the impact of adding another diverse CL pump, however (SAMA 2).

Based on a \$62,500 cost of implementation for each unit, the net value for this SAMA is \$246 (\$62,746 - \$62,500) for Unit 1 and \$418 (\$62,918 - \$62,500) for Unit 2, which implies that this SAMA is cost beneficial for both units.

F.6.5 SAMA 12: Alternate Component Cooling Water Supply

The Component Cooling Water (CC) system provides cooling for the ECCS and other safeguards components, and provides a backup to the Chemical and Volume Control System (CVCS) seal injection system for cooling the reactor coolant pump (RCP) seals. The purpose of this SAMA is to investigate the risk benefit of enabling an alternate means of supplying water to the Component Cooling Water (CC) system.

The most risk-significant events associated with the CC system are those in which the entire system is lost (loss of CC initiating event, or those initiated by other events, but in which both CC pump trains subsequently fail to supply flow for mitigation of the event).

Therefore, any alternate CC supply source should provide sufficient flow to support the removal of heat through the CC heat exchangers.

In addition to pump train failures, passive CC system piping and head tank faults contribute to potential for loss of the CC system, although only the head tank faults contribute significantly to the initiating event frequency. These passive faults must be isolatable in order to maintain flow to the supplied equipment.

Normal makeup to the CC system is from the reactor makeup water (RM) system. Makeup from RM system is low-volume and intended only for minor makeup requirements to the closed-loop CC system. Therefore, an alternate source of water is necessary for this SAMA. The CCW pumps and heat exchangers are located on the 695' elevation of the Auxiliary Building. Available alternate supply sources in this location include headers include the CL and Fire Protection (FP) system piping. These alternate makeup sources are not closed loop systems. Therefore, use of these systems will require availability of a system outlet (note that this outlet flow will also provide additional heat removal for the system).

The CL system currently provides the ultimate heat sink for the CC system through the CC heat exchangers. Therefore, if the FP system is used as the alternate CC system supply the design should either provide an alternate means of system heat removal, or should ensure that a sufficient amount of flow is available to circulate water through the CC heat exchangers for significant heat removal to the CL system (to avoid rejection of an excessive amount of heat through the existing FP discharge piping). If the CL system is used as the alternate CC system supply the design may require the addition of CL pumping capacity to maintain design requirements.

Assumptions:

- 1. Neither the existing CL system nor the existing FP is assumed to be a viable source of alternate supply water to the CC system without additional flow capacity. One possibility may be to combine SAMA 2 (which investigates upgrading the existing diesel-driven fire pump and using it as an additional backup CL pump train) to this SAMA in order to achieve the benefits from both. For the purposes of this SAMA, the CL system upgrade, as described for SAMA 2, is assumed to have been performed (with SAMA 12 design requirements also incorporated).
- 2. It is assumed that an automatic means of supplying water from the alternate train upon loss of CC system flow (loss of flow, loss of pressure, and/or other signal, such as both CC pumps tripped) is available. A normally-closed MOV for each CC header (A or B) is assumed to be required to open in order to provide this supply. A

return MOV from each header is also assumed to be required to open to provide the return path from the CC system to the CL return header.

- 3. It is assumed that an attempt to limit the potential for MOV common cause failures, resulting in the loss of the entire alternate CC supply, is made in the SAMA 12 design process. Therefore, CCF of the CL supply and return MOVs to open are modeled across trains, but not across supply/return applications (i.e., the Train A and Train B supply MOVs are modeled as having the potential for CCF, but the Train A supply and Train B return MOVs are not).
- 4. Except for the loss of all CL initiating event (I-LOCL), failures involving flow from the CL system headers are not modeled under the alternate supply logic, because loss of flow from these headers will directly result in loss of the affected CC train (due to loss of CL flow to the associated CC heat exchanger). Due to flagging issues, the I-LOCL event must be included as a failure of the SAMA 12 alternate supply in order for the model to quantify correctly.
- 5. Internal flooding events in the 695' elevation of the Auxiliary Building are assumed to be due to failures of CL system piping in the CC pump/heat exchanger room. Therefore, these initiating events are included as failures of the SAMA 12 alternate CC supply.
- 6. Rupture of the CC surge tank on a given unit is modeled as a failure of all component cooling water for that unit in the current PRA revision (no credit is given for operator action to isolate the break and to operate either train of the CC system without an expansion volume). This assumption is maintained for the SAMA 12 quantification; however, if the CC surge tank failure is manually isolated (using the CC pump suction isolation MOVs, which can be operated from the control room), then the alternate SAMA 12 supply from the CL system should not be impacted. Credit for operator identification and manual isolation of the surge tank rupture event is given in the model.

PRA Model Changes to Model SAMA 12:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
OPERATOR FAILS TO ISOLATE CC SURGE TANK RUPTURE	5.00E-2	Standard HRA screening value.
UNIT 1 TRAIN A SAMA 12 SUPPLY MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 1 TRAIN A SAMA 12 SUPPLY MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 1 SAMA 12 CL TRAIN A AND B SUPPLY MOVS FTO DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
UNIT 1 TRAIN A SAMA 12 RETURN MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 1 TRAIN A SAMA 12 RETURN MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 1 SAMA 12 CL TRAIN A AND B RETURN MOVs FTO DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
MV-32200 (11 CC SURGE TANK TO 11 CC PUMP) FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
MV-32201 (11 CC SURGE TANK TO 12 CC PUMP) FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
MV-32200 & MV-32201 FTC DUE TO CCF (CC SURGE TANK ISOLATION MOVs)	6.21E-05	Standard motor operated valve FTC CCF probability.
UNIT 1 TRAIN B SAMA 12 SUPPLY MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 1 TRAIN B SAMA 12 SUPPLY MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 1 TRAIN B SAMA 12 RETURN MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 1 TRAIN B SAMA 12 RETURN MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 2 TRAIN A SAMA 12 SUPPLY MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 2 TRAIN A SAMA 12 SUPPLY MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 2 SAMA 12 CL TRAIN A AND B SUPPLY MOVS FTO DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
UNIT 2 TRAIN A SAMA 12 RETURN MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 2 TRAIN A SAMA 12 RETURN MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 2 SAMA 12 CL TRAIN A AND B RETURN MOVS FTO DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
MV-32211 (21 CC SURGE TANK TO 21 CC PUMP) FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
MV-32212 (21 CC SURGE TANK TO 22 CC PUMP) FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
MV-32200 & MV-32201 FTC DUE TO CCF (CC SURGE TANK ISOLATION MOVs)	6.21E-05	Standard motor operated valve FTC CCF probability.
UNIT 2 TRAIN B SAMA 12 SUPPLY MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 2 TRAIN B SAMA 12 SUPPLY MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
UNIT 1 TRAIN B SAMA 12 RETURN MOV FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
UNIT 2 TRAIN B SAMA 12 RETURN MOV FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.

SAMA 12 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	6.85E-06	2.67	\$14,791
Unit 1 Percent Reduction	30.1%	8.9%	6.7%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	9.01E-06	7.74	\$59,428
Unit 2 Percent Reduction	25.2%	8.2%	6.2%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

SAMA 12 - Unit 1 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	6.15E-06	1.63E-07	2.64E-07	2.17E-07	4.09E-08	3.22E-08	2.13E-09	4.84E-09	8.40E-10	2.32E-11	6.85E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.01	0.59	1.24	0.09	0.73	0.00	0.00	0.00	0.00	2.67
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$2	\$900	\$10,923	\$540	\$2,408	\$0	\$0	\$18	\$0	\$14,791

SAMA 12 - Unit 2 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	7.41E-06	1.95E-07	2.73E-07	1.10E-06	4.97E-08	3.22E-08	2.48E-09	4.87E-09	9.17E-10	2.32E-11	9.01E-06
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.01	0.61	6.27	0.11	0.73	0.00	0.00	0.00	0.00	7.74
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$2	\$931	\$55,413	\$655	\$2,408	\$0	\$0	\$19	\$0	\$59,428

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

	SAMA 12 Net Value							
Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk					
Unit 1	\$1,114,000	\$927,812	\$186,188					
Unit 2	\$2,980,000	\$2,677,868	\$302,132					

As expected, the results of the SAMA 12 risk benefit quantification exceed those of SAMA 2, as this alternative also assumes the implementation of SAMA 2, but also provides a backup supply of water to the CC header for safeguards equipment heat removal. A significant additional decrease is seen in CDF, primarily due to reduction in the frequency of loss of CC (LOCC) initiating events that lead to core damage without containment failure (release categories X-XX-X and L-XX-X). However, the significant benefit added by SAMA 12 is in the additional large drop in the frequency of release category GEH (SGTR with early core damage at high reactor pressure). This is due to the dependence of the high head injection system (SI system) on CC for equipment heat removal. SGTR events without high head injection capability are assumed to lead to the GEH accident class, unless the operators manage to depressurize the primary system to below the secondary side pressure (stop the primary to secondary leak) prior to overfilling the faulted steam generator. The beneficial impact of this SAMA is even greater for Unit 2, which has a higher potential for SGTR events (SGs have not been replaced on Unit 2 as they have on Unit 1).

Based on a \$900,000 cost of implementation for each unit, the net value for this SAMA is -\$713,812 (\$186,188 - \$900,000) for Unit 1 and -\$597,868 (\$302,132 - \$900,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.6 SAMA 15: Portable DC Power Source

The reliability of Unit 2 Train A DC power (DC Panel 21) has a higher importance to the risk of a core damaging event on its dedicated unit (Unit 2) than do any of the other DC power trains. Loss of Train A DC on either unit results in the loss of all main feedwater, and the loss of instrument air to containment (important for bleed and feed operation of the RCS PORVs). However, unlike Unit 1, the Unit 2 motor-driven AFW pump (21 AFW pump), powered from 4160 V AC Bus 25, is also dependent on Train A DC for breaker control power. Therefore, on a loss of Unit 2 Train A DC power initiating event, if the Unit 2 turbine-driven AFW pump fails to start or run, only operator action is available to prevent core damage (local action to restore an AFW pump, or action from the control room to perform bleed and feed). Note that, on this event, the reliability of the bleed and feed action is potentially impacted as the PORV operation must rely on PORV air

accumulators that have not been positively tested under a complete range of potential bleed and feed scenarios.

Assumptions:

- 1. It is assumed that the primary DC backup supply for 21 AFW pump breaker control power is provided by a battery bank, with a failure rate similar to the existing safeguards (i.e., 21 and 22) batteries.
- 2. The SAMA 15 battery bank is assumed to be operable whenever the 21 AFW pump is required to be operable.
- 3. The SAMA 15 battery bank has no common-cause failure potential with any of the existing safeguards batteries.
- 4. Due to the relatively high reliability of the battery source, no credit for the SAMA 15 battery charger as a DC power source is included in the modeling.

PRA Model Changes to Model SAMA:

As described above, the unavailability of the 21 AFW pump auto-start capability is the primary risk contributor on a loss of Unit 2 Train A DC power. Although a modification providing additional DC power backup to Panel 21 (possibly from an independent and remotely-located source) would be a more comprehensive means of implementing this SAMA, this would require a larger DC power supply and a potentially much more expensive modification than would providing Bus 25 control power. However, a study of the Unit 2 CDF cutsets shows that loss of DC control power to the other loads on this bus provides very little contribution to CDF (all DC power-related failures in the cutset file not associated with the loss of DC initiating event are panel circuit (fuse) failures unrelated to Bus 25 breaker control power). As the DC control power requirement is only required to close the breaker one time during an accident condition, this DC supply could be provided by a small battery bank receiving a continuous "trickle" charge during normal operation. Therefore, to simplify the PRA modeling of this SAMA, the backup DC power source will be applied to only the 21 AFW pump control power logic. The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

SAMA 15 New Basic Events

Description	Probability	Comments	
SAMA 15 BATTERY FAILS ON DEMAND	3.95E-04	Standard battery failure on demand probability.	

Results of SAMA Quantification:

Implementation of this SAMA yields a slight reduction in the Unit 2 CDF, Dose-risk, and Offsite Economic cost-risk only. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.79E-06	2.93	\$15,852
Unit 1 Percent Reduction	0.0%	0.0%	0.0%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.17E-05	8.41	\$63,260
Unit 2 Percent Reduction	2.8%	0.3%	0.1%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
$Dose-Risk_{BASE}$	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency_{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	8.20E-06	1.96E-06	3.39E-07	1.17E-06	6.37E-08	3.22E-08	3.13E-08	5.87E-09	9.17E-10	2.32E-11	1.17E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	6.65	0.14	0.73	0.00	0.00	0.00	0.00	8.41
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$58,816	\$841	\$2,408	\$0	\$0	\$19	\$0	\$63,260

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

	SAMA 15 Net Value								
Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk						
Unit 1	\$1,114,000	\$1,114,000	\$0						
Unit 2	\$2,980,000	\$2,960,676	\$19,324						

The SAMA 15 results show a modest drop in the CDF and LERF metrics for Unit 2, primarily in release categories that do not involve containment failure. This is expected as, although the loss of the main feedwater and AFW systems on a loss of Train A DC power is important to decay heat removal and prevention of core damage, one train of support systems remains available for containment heat removal. There is virtually no risk benefit provided to Unit 1 upon implementation of this SAMA.

Based on a \$130,000 cost of implementation for each unit, the net value for this SAMA is -\$130,000 (\$0 - \$130,000) for Unit 1 and -\$110,676 (\$19,324 - \$130,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.7 SAMA 19: Upgrade RHR Suction Piping and Install Containment Isolation Valve

During plant shutdown conditions, the RHR shutdown cooling function on both units is facilitated by opening both of the two RHR pump suction MOVs in at least one of the parallel flowpaths (one from each RCS hot leg). All four of these hot leg suction isolation valves are located inside containment. A common 10" line passes through the containment, before dividing again at the suction to each RHR pump. The primary contributor to the risk of intersystem LOCA (ISLOCA) events is the catastrophic failure of the RCS hot leg-to-RHR suction MOVs during power operation, which exposes the low-pressure RHR suction piping and RHR pump seals outside containment (in the Auxiliary Building RHR pits) to RCS pressure. These events can result in large LOCAs outside containment that lead to core damage with direct containment bypass.

The RHR pump suction piping outside containment is designed for low pressure (<600 psig). RCS pressure is approximately 2235 psig during power operation. While the RHR piping likely would not rupture given exposure to RCS pressure (due to margin available in the as-built piping), the RHR pump seals are not likely to remain intact, and at least a small LOCA outside containment is the likely result. Manual valves for local isolation of the suction piping to each RHR pump are available. However, the valve handwheels are located in the RHR pits and environmental conditions in the area following rupture of the RHR pump seals are likely to prevent local operation of the valves. Also, the valves each isolate the suction to only one pump, so that both valves

would have to be locally closed to stop the flow of reactor coolant out of the RHR pump seals. There is no automatic isolation valve available outside containment to prevent continuous loss of RCS inventory into the RHR pits inside the Auxiliary Building. The purpose of this SAMA is to investigate the risk benefit of upgrading the RHR suction piping and installing a normally open, automatic isolation valve in the 10" piping common to the suction of both RHR pumps outside containment.

Assumptions:

- 1. The SAMA 19 automatic isolation valve is assumed to be an MOV. Neither the design of this valve nor its power supply need be independent of the other hot leg suction valves, as the active and passive functions of this valve required during normal and emergency operation are opposite that required for other valves -- the active function required for this valve, to close, is only required if the other valves have failed to remain closed. For shutdown cooling operation, the valve is only required to remain open, while the other valves are required to open. For the purposes of this analysis, 480V MCC 1LA1 [2LA1] is assumed to be the power supply for the SAMA 19 MOV.
- 2. The signal providing automatic closure of the SAMA 19 MOV is high RHR pump suction pressure. Redundant pressure instrumentation that could be upgraded to provide this signal is available (2PT-620 and 2PT-621 [2PT-620 and 2PT-621]). As closure of this valve could impact operation of the shutdown cooling function, a 2/2 logic is assumed to be required for closure of the valve.
- 3. Successful automatic closure of the SAMA 19 MOV is not assumed to successfully prevent rupture of the RHR pump seals. However, this will stop the ISLOCA and allow the CVCS charging or high-head SI pumps to replace the lost RCS inventory, with decay heat removal through the steam generators. Therefore, the RHR pumps are assumed to be unavailable for recovery from the event following successful operation of the SAMA 19 MOV.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
BISTABLE FOR PRESSURE CHANNEL PC-620 FAILS TO FUNCTION	7.46E-04	Standard bistable failure on demand probability.
BISTABLE FOR PRESSURE CHANNEL PC-621 FAILS TO FUNCTION	7.46E-04	Standard bistable failure on demand probability.
SAMA 19 MOV FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
PRESSURE TRANSMITTER 1PT-620 FAILS TO FUNCTION	2.52E-05	Standard pressure transmitter failure probability. Assumes standard 24-hour mission time.
PRESSURE TRANSMITTER 1PT-621 FAILS TO FUNCTION	2.52E-05	Standard pressure transmitter failure probability. Assumes standard 24-hour mission time.
SAMA 19 MOTOR OPERATED VALVE FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
SAMA 19 MOV FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
BISTABLE FOR PRESSURE CHANNEL PC-620 FAILS TO FUNCTION	7.46E-04	Standard bistable failure on demand probability.
BISTABLE FOR PRESSURE CHANNEL PC-621 FAILS TO FUNCTION	7.46E-04	Standard bistable failure on demand probability.
SAMA 19 MOV FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
PRESSURE TRANSMITTER 2PT-620 FAILS TO FUNCTION	2.52E-05	Standard pressure transmitter failure probability. Assumes standard 24-hour mission time.
PRESSURE TRANSMITTER 2PT-621 FAILS TO FUNCTION	2.52E-05	Standard pressure transmitter failure probability. Assumes standard 24-hour mission time.
SAMA 19 MOTOR OPERATED VALVE FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
SAMA 19 MOV FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.

SAMA 19 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.78E-06	2.56	\$14,612
Unit 1 Percent Reduction	0.2%	12.6%	7.8%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.20E-05	8.05	\$62,115
Unit 2 Percent Reduction	0.1%	4.5%	1.9%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	1.56E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.78E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.12	0.63	1.32	0.12	0.36	0.00	0.00	0.00	0.00	2.56
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$11,709	\$741	\$1,165	\$0	\$0	\$18	\$0	\$14,612

SAMA 19 - Unit 1 Results By Release Category

SAMA 19 - Unit 2 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency_{SAMA}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	1.56E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.20E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	6.66	0.14	0.36	0.00	0.00	0.00	0.00	8.05
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$58,895	\$860	\$1,165	\$0	\$0	\$19	\$0	\$62,115

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

SAMA 19 Net Value

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$1,053,670	\$60,330
Unit 2	\$2,980,000	\$2,919,486	\$60,514

The results of the SAMA 19 sensitivity analysis show a relatively significant reduction in LERF risk metrics for both units. SAMA 19 provides risk benefit only to the ISLOCA release category, a component of the LERF. ISLOCA events that lead to core damage are also components of the CDF, but are small relative to the contributions from other initiating events. Although the reduction in the ISLOCA frequency is comparable between units, the percent change on Unit 1 relative to the LERF is higher, as Unit 2 LERF contains a larger component from SGTR-initiated core damage events (SGs have not yet been replaced on Unit 2 as they have on Unit 1).

Based on a \$700,000 cost of implementation for each unit, the net value for this SAMA is -\$639,670 (\$60,330 - \$700,000) for Unit 1 and -\$639,486 (\$60,514 - \$700,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.8 SAMA 20: Close Low Head Injection MOVs to Prevent RCS Backflow to SI System

This SAMA investigates the risk benefit of changing the normal operation position of the low head reactor vessel injection motor-operated valves (MV-32064, MV-32065 [MV-32167, MV-32168]) from open to closed. These valves function as low head SI reactor vessel isolation valves and deliver RH system flow directly to the reactor vessel from the RH pumps following a large break LOCA. Two check valves are supplied in each injection line between the MOV and the reactor vessel. The check valves function as the containment isolation valves for the low head injection lines. As these lines interface directly between the RCS and the low head RHR system, they represent potential intersystem LOCA (ISLOCA) pathways.

The current PRA results show that low head injection line check valve rupture and failure to close events are significant contributors to the overall likelihood of an ISLOCA event. As ISLOCA events are assumed to lead directly to core damage with containment bypass, operating with these valves normally closed would provide a clear benefit to prevention of an offsite release due to an ISLOCA. However, operation with these valves normally closed requires that the valves automatically open following a LOCA event to supply flow to the reactor vessel if required. Therefore, failure of these valves to open would contribute to loss of low head injection capability during LOCA events.

The low head injection MOVs were originally maintained normally closed during power operation, but were changed to normally open in the mid-1990's to eliminate concerns with pressure locking and thermal binding of the valves. An assessment of the risk benefit of this mode of operation was performed prior to the change. This pre-IPE evaluation, which focused on the change in core damage frequency (CDF), found the change in operating state for the valves to be risk-insignificant. However, the SAMA evaluation will focus on change in both CDF and LERF (large, early release frequency), and the changes in the offsite release category frequencies.

Assumptions:

- 1. It is assumed that failure of a low head injection MOV to remain closed would be alarmed in the control room. Therefore, the analysis does not assume exposure to failure during the whole operating cycle (mission time for failure to remain closed is the standard 24 hours).
- 2. The current double-check valve design of the low head injection lines is leak-tight such that the RHR piping upstream does not experience high pressures during

normal operation. Therefore, the analysis does not assume exposure of the low head injection MOVs (when operated normally closed) to catastrophic failure during the whole operating cycle (mission time for catastrophic failure when subjected to RCS pressure is the standard 24 hours).

PRA Model Changes to Model SAMA:

Basic events representing failures of the low head injection MOVs to open were added next to the valve "failure to remain open" basic events, wherever those events are currently located in the existing plant fault tree model. Common cause failures to open between the Train A and B MOVs on each unit were also modeled. Also, failures of the power supplies to the valves were included in the model, as the valves cannot be opened without AC power. The Train A MOVs (MV-32064 [MV-32167] are supplied with 480 V AC power from safeguards MCCs 1LA1 [2LA1] and the Train B MOVs (MV-32065 [MV-32168] are supplied from safeguards MCCs 1LA2 [2LA2]. Logic associated with loss of the train-associated S-signal was also included as failures of the valves to open.

for this sensitivity analysis:		
	SAMA 20 New Basic Events	

The table below provides a listing of the new basic events included in	the PRA model
for this sensitivity analysis:	

Description	Probability	Comments
MV-32064 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
MV-32064 AND MV-32065 (LOW HEAD INJECTION TO RX VESSEL) FAIL TO OPEN DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
MV-32065 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
MV-32167 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
MV-32167 AND MV-32168 (LOW HEAD INJECTION TO RX VESSEL) FAIL TO OPEN DUE TO CCF	1.23E-04	Standard motor operated valve FTO CCF probability.
MV-32167 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO OPEN	2.88E-03	Standard motor operated valve FTO probability.
MV-32064 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
MV-32064 (LOW HEAD INJECTION TO RX VESSEL) CATASTROPHIC LEAK	2.40E-07	Standard normally-closed MOV catastrophic failure probability. Assumes standard 24-hour mission time (see Assumption #2).

Description	Probability	Comments
MV-32065 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
MV-32065 (LOW HEAD INJECTION TO RX VESSEL) CATASTROPHIC LEAK	2.40E-07	Standard normally-closed MOV catastrophic failure probability. Assumes standard 24-hour mission time (see Assumption #2).
MV-32167 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
MV-32167 (LOW HEAD INJECTION TO RX VESSEL) CATASTROPHIC LEAK	2.40E-07	Standard normally-closed MOV catastrophic failure probability. Assumes standard 24-hour mission time (see Assumption #2).
MV-32168 (LOW HEAD INJECTION TO RX VESSEL) FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
MV-32168 (LOW HEAD INJECTION TO RX VESSEL) CATASTROPHIC LEAK	2.40E-07	Standard normally-closed MOV catastrophic failure probability. Assumes standard 24-hour mission time (see Assumption #2).

SAMA 20 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.78E-06	2.60	\$14,742
Unit 1 Percent Reduction	0.1%	11.3%	7.0%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.20E-05	8.09	\$62,227
Unit 2 Percent Reduction	0.1%	4.1%	1.8%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency_{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	1.74E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.78E-06
$Dose-Risk_{BASE}$	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.12	0.63	1.32	0.12	0.40	0.00	0.00	0.00	0.00	2.60
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$11,706	\$741	\$1,298	\$0	\$0	\$18	\$0	\$14,742

SAMA 20 - Unit 1 Results By Release Category

SAMA 20 - Unit 2 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency_{SAMA}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	1.74E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.20E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	6.66	0.14	0.40	0.00	0.00	0.00	0.00	8.09
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$58,874	\$860	\$1,298	\$0	\$0	\$19	\$0	\$62,227

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

SAMA 20 Net Value

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$1,060,090	\$53,910
Unit 2	\$2,980,000	\$2,925,354	\$54,646

As ISLOCA is only a very small contributor to the CDF, the primary impact of this SAMA is in the reduction of the LERF risk metric. This reduction is significant for both units (again, the percent LERF change on Unit 1 is more significant than on Unit 2 due to the higher contribution from SGTR sequences on that unit).

Based on a \$313,000 cost of implementation for each unit, the net value for this SAMA is -\$259,090 (\$53,910 - \$313,000) for Unit 1 and -\$258,354 (\$54,646 - \$313,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.6.9 SAMA 22: Provide Compressed Air Backup for Instrument Air to Containment

The risk significant function of the instrument air system supplying the containment is to support the operation of the RCS power-operated relief valves (PORVs) during bleed and feed operation for decay heat removal. On a loss of instrument air to containment, the PORVs are each supplied with air from separate backup air accumulators. These

accumulators are sized for a certain number of valve operations during overpressure conditions following an accident (testing shows that the valves have capacity for 15 valve operating cycles, according to Section 5.6.1.B of Station and Instrument Air Design Basis Document, Rev. 4).

It is suspected that the air requirements during bleed and feed operations may be less than required for overpressure. However, the PRA model does not take full credit for the ability of these accumulators because their ability to supply sufficient air to support bleed and feed operation over the full range of RCS break sizes has not been verified (through testing or through engineering calculations). Bench testing of the valves for bleed and feed operation at operating pressures may not be practical. The risk benefit from this SAMA can be achieved by either:

- a. Qualification of the existing accumulator air supply for bleed and feed operation, through either testing or analysis, or
- b. Implementation of a plant modification that would provide a backup to the accumulators during normal plant operation to support bleed and feed operation. One possibility would be to tie into the nitrogen (or air) bottle source that supplies air to the LTOP system during outages.

Assumptions:

- 1. To estimate an upper bound on the risk benefit for this SAMA with a minimum cost, it was assumed that the PORVs accumulator air supply is successfully qualified for bleed and feed operation through analysis.
- 2. The upper bound on the risk benefit for this SAMA is represented in the model by setting the existing PRA failure basic events to logical FALSE.

PRA Model Changes to Model SAMA:

The only changes to the PRA necessary to model this SAMA were to reduce the probability of events representing failure of the PORV accumulator to provide sufficient air for bleed and feed operation. As described in Assumption #1, the PORVs accumulator air supply is assumed to be qualified for bleed and feed operation, such that the existing PRA failure basic events can be set to logical FALSE.

The table below shows the basic events that were modified to model this SAMA:

Description	Original Probability	SAMA21 Probability
FAILURE OF PZR PORV AIR ACCUMULATOR FOLLOWING LOSS OF AIR	1.0E-01	[FALSE]
FAILURE OF PZR PORV AIR ACCUMULATOR FOLLOWING LOSS OF AIR	1.0E-01	[FALSE]

SAMA 22 Changes to Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.75E-06	2.89	\$15,488
Unit 1 Percent Reduction	0.4%	1.4%	2.3%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.18E-05	8.25	\$61,792
Unit 2 Percent Reduction	1.8%	2.2%	2.4%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency_{SAMA}	7.25E-06	1.92E-06	2.82E-07	2.25E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.75E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.12	0.63	1.28	0.12	0.73	0.00	0.00	0.00	0.00	2.89
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$11,342	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,488

SAMA 22 - Unit 1 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency _{SAMA}	8.33E-06	1.97E-06	3.39E-07	1.14E-06	6.45E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.18E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	6.49	0.14	0.73	0.00	0.00	0.00	0.00	8.25
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$57,337	\$852	\$2,408	\$0	\$0	\$19	\$0	\$61,792

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

	SAMA 22 Net Value							
Unit	Unit Base Case Cost-Risk		Averted Cost-Risk					
Unit 1	\$1,114,000	\$1,098,650	\$15,350					
Unit 2	\$2,980,000	\$2,912,350	\$67,650					

Similar to the SAMA 21 results, the SAMA 22 results show the primary risk benefit to be the reduction in the frequency of release category L-SR-E (pressure and temperatureinduced SGTR core damage sequences). There also is a small reduction in sequences that do not lead to containment failure (primarily core damage events due to failure of secondary decay heat removal and bleed and feed failure), although these categories do not significantly impact the risk of offsite release.

Based on a \$39,000 cost of implementation for each unit, the net value for this SAMA is -\$23,650 (\$15,350 - \$39,000) for Unit 1 and \$28,650 (\$67,650 - \$39,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for Unit 1, but is cost beneficial for Unit 2.

F.6.10 Summary

All of the SAMAs reviewed showed at least some benefit with respect to the traditional CDF and LERF risk metrics. From a cost of implementation perspective, SAMA 9 provided a positive net value for both Units 1 and 2, while SAMA 22 returned a positive net value for only Unit 2. All other SAMAs returned a negative net value. SAMAs 9 and 22 are represented by engineering analyses and procedure modifications, which are both low cost options.

SAMA 9 attempts to show through engineering analyses and procedure modifications that loss of Screenhouse Ventilation is not expected to fail operation of the safeguards vertical cooling water (CL) pumps. Computer modeling of expected room temperatures due to maximum mechanical and electrical heat loads during summer operation is anticipated to show that running electrical equipment would continue to successfully operate for a 24 hour mission time, with minimal mitigative efforts by equipment operators, e.g., opening doors, dampers, etc.

SAMA 22 is meant to qualify the capacity of the backup air accumulators for adequate operation of the PORV during bleed and feed operation in removing heat from the

primary system when the steam generators are unavailable. The assumed operating conditions are based on the expected sequence of operator actions found in emergency procedures. However, costs for any required procedural changes or plant modifications resulting from the analysis were not included in the cost estimate.

F.7 UNCERTAINTY ANALYSIS

The following three uncertainties were further investigated as to their impact on the overall SAMA evaluation:

- Use a discount rate of 7 percent, instead of 3 percent used in the base case analysis.
- Use the 95th percentile PRA results in place of the mean PRA results.
- Selected MACCS2 input variables.

F.7.1 Real Discount Rate

A sensitivity study has been performed in order to identify how the conclusions of the SAMA analysis might change based on the value assigned to the real discount rate (RDR). The original RDR of 3 percent, which could be viewed as conservative, has been changed to 7 percent and the modified maximum averted cost-risk was recalculated using the methodology outlined in Section F.4.

Phase I SAMAs are not impacted by use of the 7 percent RDR. The Phase I screening process involved qualitative disposition of (11) SAMAs, and hence, no PRA requantification nor implementation cost data was generated for these SAMAs. Refer to Section F.5 and Table F.5-3 for a detailed analysis of each Phase I SAMA that was screened from further analysis.

The Phase II analysis was re-performed using the 7 percent RDR. Implementation of the 7 percent RDR reduced the MMACR by 28.4 percent compared with the case where a 3 percent RDR was used. This corresponds to a decrease in the MMACR from \$1,048,000 to \$750,000 for Unit 1 and from 2,706,000 to 1,938,000 for Unit 2.

The Phase II SAMAs are disposition based on PRA insights or detailed analysis. All of the PRA insights used to screen the SAMAs are still applicable given the use of the 7 percent real discount rate as the change only strengthens the factors used to screen them. The SAMA candidates screened based on these insights are considered to be addressed and are not investigated any further.

The remaining Phase II SAMAs were disposition based on the results of a SAMA specific cost-benefit analysis. This step has been re-performed using the 7 percent real discount rate to calculate the net values for the SAMAs. As shown below, the determination of cost effectiveness changed for one Phase II SAMA for both units when the 7 percent RDR was used in lieu of 3 percent. Since the margin by which SAMA 9

becomes "not cost beneficial" is less than \$20,000, this is considered within the noise of statistical uncertainty. This does not mean that this SAMA would be screened from consideration if a 7 percent real discount rate were applied in the SAMA analysis since other factors, such as the 95th percentile accident frequency sensitivity analysis, can also influence the decision making process.

SAMA ID	Cost of Implementation	Averted Cost Risk (3 percent RDR)	Net Value (3 percent RDR)	Averted Cost Risk (7 percent RDR)	Net Value (7 percent RDR)	Change in Cost Effective- ness?
1	\$4,250,000	\$268,252	(\$3,981,748)	\$186,958	(\$4,063,042)	No
2	\$300,000	\$123,376	(\$176,624)	\$87,054	(\$212,946)	No
3	\$250,000	\$74,956	(\$175,044)	\$53,680	(\$196,320)	No
5	\$1,500,000	\$75,942	(\$1,424,058)	\$51,184	(\$1,448,816)	No
9	\$62,500	\$62,746	\$246	\$44,670	(\$17,830)	Yes
10	\$2,866,000	\$46,870	(\$2,819,130)	\$34,054	(\$2,831,946)	No
12	\$900,000	\$186,188	(\$713,812)	\$131,094	(\$768,906)	No
15	\$130,000	\$0	(\$130,000)	\$0	(\$130,000)	No
17	\$2,362,000	\$88,030	(\$2,273,970)	\$56,160	(\$2,305,840)	No
19	\$700,000	\$60,330	(\$639,670)	\$39,456	(\$660,544)	No
19a	\$1,935,000	\$329,802	(\$1,605,198)	\$222,090	(\$1,712,910)	No
20	\$313,000	\$53,910	(\$259,090)	\$35,312	(\$277,688)	No
21	\$3,000,000	\$11,286	(\$2,988,714)	\$7,480	(\$2,992,520)	No
22	\$39,000	\$15,350	(\$23,650)	\$9,894	(\$29,106)	No

Unit 1 Summary of the Impact of the RDR Value on the Detailed SAMA Analyses

Unit 2 Summary of the Impact of the RDR Value on the Detailed SAMA Analyses

SAMA ID	Cost of Implementation	Averted Cost Risk (3 percent RDR)	Net Value (3 percent RDR)	Averted Cost Risk (7 percent RDR)	Net Value (7 percent RDR)	Change in Cost Effective- ness?
1	\$4,250,000	\$270,474	(\$3,979,526)	\$188,620	(\$4,061,380)	No
2	\$300,000	\$123,092	(\$176,908)	\$86,958	(\$213,042)	No
3	\$250,000	\$76,654	(\$173,346)	\$54,550	(\$195,450)	No
5	\$1,500,000	\$222,610	(\$1,277,390)	\$144,138	(\$1,355,862)	No
9	\$62,500	\$62,918	\$418	\$44,020	(\$18,480)	Yes
10	\$2,866,000	\$48,630	(\$2,817,370)	\$34,154	(\$2,831,846)	No
12	\$900,000	\$302,132	(\$597,868)	\$204,688	(\$695,312)	No
15	\$130,000	\$19,324	(\$110,676)	\$13,352	(\$116,648)	No
17	\$2,362,000	\$488,118	(\$1,873,882)	\$309,512	(\$2,052,488)	No
19	\$700,000	\$60,514	(\$639,486)	\$39,352	(\$660,648)	No
19a	\$1,935,000	\$929,586	(\$1,005,414)	\$601,740	(\$1,333,260)	No
20	\$313,000	\$54,646	(\$258,354)	\$35,516	(\$277,484)	No
21	\$3,000,000	\$12,518	(\$2,987,482)	\$8,426	(\$2,991,574)	No
22	\$39,000	\$67,650	\$28,650	\$43,452	\$4,452	No

F.7.2 95th Percentile PRA Results

The results of the SAMA analysis can be impacted by implementing conservative values from the PRA's uncertainty distribution (i.e., failure probabilities associated with plant equipment and operator actions). If the best estimate failure probability values were lower than the "actual" failure probabilities, the PRA model could underestimate plant risk and yield lower than "actual" averted cost-risk values for potential SAMAs. Therefore, using the high end of the failure probability distribution is a means of assessing the possible effect of best-estimate failure probabilities being too low.

A Level 1 internal events model uncertainty analysis was performed for PINGP Units 1 and 2. Most plants incorporate only Level 1 analyses in their SAMA reports. The reason Level 2 analyses are not typically used is due to the differing degree of development and uncertainties between the two models. Specifically, the Level 1 model tends to represent the plant in a more thorough and comprehensive manner as opposed to the Level 2 model. Furthermore, there are more release contributors beyond those captured by LERF. As such, for the purposes of the 95th percentile analysis, only Level 1 results are used in the uncertainty process. The results of the Level 1 calculation are provided below:

In performing the sensitivity analysis, each of the SAMA PRA model changes (the Phase I and II SAMAs identified in Table F.5-3) were used in determining the appropriate value for the 95th percentile since different events and failure frequencies may be more important when comparing one model change with another. For those SAMAs that required the addition of new basic events, no new uncertainty distributions were assigned since the design and implementation of each SAMA was arbitrary and was defined by the analysis assumptions. The results of this uncertainty analysis, therefore, show the expected statistical uncertainty of the CDF risk metrics under the assumption that each SAMA was designed and implemented as it was specified in this analysis. The analysis was run using the EPRI R&R Workstation UNCERT code (version 2.3a) using 25,000 trials for each simulation:

The results of these calculations are provided in the below tables. The term CDF_{pe} refers to the CDF point estimate for each unit, i.e., 9.79E-06 for Unit 1 and 1.21E-5 for Unit 2.

Unit 1 SAMA	Mean	5%	50%	95%	Factor > CDF _{pe}	Std Dev
1	6.35E-06	1.87E-06	4.38E-06	1.56E-05	1.6	1.50E-05
2	8.20E-06	1.88E-06	4.60E-06	2.08E-05	2.1	3.50E-05
3	9.05E-06	2.26E-06	5.42E-06	2.34E-05	2.4	1.89E-05
5	1.07E-05	2.55E-06	6.42E-06	2.79E-05	2.8	2.91E-05
9	9.52E-06	2.28E-06	5.62E-06	2.51E-05	2.6	2.49E-05
10	9.76E-06	2.23E-06	5.64E-06	2.54E-05	2.6	2.76E-05
12	7.14E-06	1.38E-06	3.68E-06	1.91E-05	2.0	2.77E-05
15	1.08E-05	2.55E-06	6.41E-06	2.84E-05	2.9	3.89E-05
17	1.08E-05	2.54E-06	6.36E-06	2.80E-05	2.9	2.70E-05
19	1.08E-05	2.54E-06	6.35E-06	2.80E-05	2.9	4.44E-05
19a	7.30E-06	2.15E-06	5.05E-06	1.79E-05	1.8	1.23E-05
20	1.06E-05	2.54E-06	6.40E-06	2.79E-05	2.8	2.62E-05
21	1.08E-05	2.51E-06	6.35E-06	2.83E-05	2.9	2.89E-05
22	1.07E-05	2.54E-06	6.33E-06	2.82E-05	2.9	3.33E-05

Summary of Unit 1 Uncertainty Distribution

Summary of Unit 2 Uncertainty Distribution

Unit 2	Маал	E0/	E00/	05%	Factor	Std Dav
SAMA	Mean	5%	50%	95%	> CDF _{pe}	Std Dev
1	8.62E-06	2.54E-06	6.02E-06	2.15E-05	1.8	1.11E-05
2	1.06E-05	2.58E-06	6.25E-06	2.79E-05	2.3	2.94E-05
3	1.15E-05	2.96E-06	7.17E-06	2.92E-05	2.4	2.75E-05
5	1.33E-05	3.25E-06	8.06E-06	3.45E-05	2.9	3.40E-05
9	1.21E-05	3.03E-06	7.33E-06	3.03E-05	2.5	4.37E-05
10	1.22E-05	2.93E-06	7.37E-06	3.20E-05	2.7	2.55E-05
12	9.51E-06	2.00E-06	5.34E-06	2.63E-05	2.2	2.84E-05
15	1.28E-05	3.17E-06	7.83E-06	3.33E-05	2.8	2.98E-05
17	1.29E-05	3.26E-06	7.95E-06	3.34E-05	2.8	4.65E-05
19	1.32E-05	3.33E-06	8.19E-06	3.46E-05	2.9	2.95E-05
19a	9.37E-06	2.79E-06	6.56E-06	2.29E-05	1.9	1.62E-05
20	1.32E-05	3.34E-06	8.15E-06	3.43E-05	2.8	3.68E-05
21	1.31E-05	3.26E-06	8.08E-06	3.31E-05	2.7	4.28E-05
22	1.26E-05	3.18E-06	7.93E-06	3.36E-05	2.8	2.33E-05

In general, the above tables reveal an average factor of about 2.5 greater than the respective point estimate CDF for each unit, which is in agreement with industry experience. Using the factors for each individual SAMA are determined to represent a more realistic and case-specific value than that obtained when applying one overall estimate for the 95th percentile. Therefore, for this analysis, the 95th percentile for each SAMA is used to examine Phase I and II impacts.

F.7.2.1 Phase I Impact

For the impacts on Phase I screening, use of the 95th percentile PRA results will increase the MACR and may reveal potential cost benefits due to implementing some of the high cost SAMAs originally screened in Table F.5-3. Therefore, five of the SAMAs (1, 10, 17, 19a, and 21) that were not evaluated in Phase II are presented here, following the same methodology and process as was used in Section F.6. The results of these SAMA evaluations are then used in Section F.7.2.3 to quantitatively determine any potential cost or risk benefits. However, due to their high implementation costs, the benefit gleaned from the implementation of these SAMAs must be extremely large in order to be cost beneficial.

F.7.2.1.1 SAMA 1: Recirculation Automatic Swap to Containment Sump

Following the injection phase of a LOCA, the Refueling Water Storage Tank (RWST) is emptied and the suction supply to the high and low head ECCS systems must be transferred to the containment sump. The transfer currently relies on operator action, including some local, manual actions. These operator actions are among the most risksignificant human actions modeled in the PRA. This SAMA investigates the risk benefit of installing control logic to automatically swap to recirculation mode of ECCS, drawing suction from containment sump prior to depletion of RWST. (Locally operators need to vent valve bonnets on Sump B to RHR MVs to prevent hydraulic lock. Also improper action by not closing RWST to RHR MVs first can potentially drain RWST back to Sump B).

Assumptions:

- 1. For the purposes of this SAMA, it was assumed that all of the existing ECCS equipment (piping, valves, breakers, pumps, etc.) that must actively change state to affect the transfer to recirculation still exists following implementation of the automatic switchover modification. The only difference is that the operator action required to initiate the transfer has been replaced by an automatic signal. Therefore, the failure rates of valves to open, pumps to start, etc. are not changed from the original Level 2 PRA analysis.
- 2. It is assumed that the automatic logic function producing the transfer-to-recirculation actuation signal is designed such that it is highly reliable. Although the final implementation is not likely to produce a system with a negligible failure rate, a "near zero" failure rate may be assumed for the purposes of this calculation (determination of the maximum risk benefit for the SAMA implementation).

PRA Model Changes to Model SAMA:

All operator actions associated with transfer to recirculation were set to logical FALSE to model the maximum risk benefit that could be obtained with this plant modification. The basic event changes are shown in the table below:

Original Probability	Sensitivity Probability (1)	Description
5.30E-02	FALSE	OPERATOR FAIL TO INITIATE HIGH HEAD RECIRC COND. ON EOPHXCONXY
5.30E-02	FALSE	OPERATOR FAILS TO INITIATE HH RECIRC COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION.
1.50E-01	FALSE	OPERATOR FAILS TO INITIATE HH RECIRC FOR SLOCA COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION.
3.60E-03	FALSE	OPERATOR FAILS TO INITIATE HIGH HEAD RECIRC. FOR A SMALL LOCA
9.50E-03	FALSE	OPERATOR FAILS TO INITATE HIGH HEAD RECIRC. FOR A MEDIUM LOCA
6.80E-02	FALSE	OPERATOR FAILS TO INITIATE LOW HEAD RECIRC. WHEN REQUIRED

SAMA 1 Basic Event Changes

(1) Basic Event set to logical FALSE to obtain maximum risk benefit for sensitivity case

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	5.40E-06	2.72	\$14,225
Unit 1 Percent Reduction	44.9%	7.2%	10.3%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	7.62E-06	8.22	\$61,702
Unit 2 Percent Reduction	36.8%	2.5%	2.6%

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	2.90E-06	1.92E-06	2.82E-07	2.09E-07	2.33E-08	3.22E-08	3.09E-08	4.89E-09	1.23E-10	2.32E-11	5.40E-06
$Dose-Risk_{BASE}$	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
$Dose\text{-}Risk_{SAMA}$	0.00	0.12	0.63	1.19	0.05	0.73	0.00	0.00	0.00	0.00	2.72
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$10,527	\$308	\$2,408	\$0	\$0	\$3	\$0	\$14,225

SAMA 1 - Unit 1 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency_{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency SAMA	4.10E-06	1.97E-06	3.39E-07	1.15E-06	3.22E-08	3.22E-08	3.14E-08	5.87E-09	2.00E-10	2.32E-11	7.62E-06
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
$Dose-Risk_{SAMA}$	0.01	0.12	0.76	6.53	0.07	0.73	0.00	0.00	0.00	0.00	8.22
	\$0	\$16	\$1,007	\$50,425	\$669	\$2,034	\$0	\$0	\$16	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$57,689	\$425	\$2,408	\$0	\$0	\$4	\$0	\$61,702

SAMA 1 - Unit 2 Results By Release Category

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$845,748	\$268,252
Unit 2	\$2,980,000	\$2,709,526	\$270,474

SAMA 1 Net Value

The results of the SAMA 1 quantification show a large reduction in the CDF risk metrics for both units, and a corresponding decrease in the frequencies of a number of release categories. The release categories that showed the largest decrease in frequency relative to CDF were in those categories in which containment remained intact (category H-XX-X is considered to be bounding among these and represents all of the risk reduction from containment intact categories in the table above).

Based on a \$4,250,000 cost of implementation for each unit, the net value for this SAMA is -3,981,748 (\$268,252 - \$4,250,000) for Unit 1 and -\$3,979,526 (\$270,474 - \$4,250,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for both Units 1 and 2.

F.7.2.1.2 SAMA 10: Alternate Means of Charging Pump Suction Transfer (VCT to RWST)

The purpose of this SAMA is to investigate the risk benefit of improving the reliability of the automatic transfer of charging pump suction (from the VCT to the RWST on low VCT level). Specifically, this SAMA investigates installation of a third level transmitter and instrumentation channel, and logic change (from 2/2 to 2/3) for initiation of the automatic transfer.

Although level channel 1LT-112 [2LT-112] also supports automatic VCT makeup control, which is modeled in the PRA, no similar function was assumed for the new SAMA 10 level channel as this is not a risk significant function of the VCT level instrumentation.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
BISTABLE SAMA 10 FAILS TO FUNCTION	7.46E-04	Standard bistable failure probability.
VC: LEVEL TRANSMITTER FAILS TO FUNCTION (SAMA 10)	1.90E-04	Standard level transmitter failure probability. Assumes standard 24-hour mission time.
VC: TWO LEVEL TRANSMITTERS FAIL DUE TO CCF (SAMA 10 AND 1LT-112)	8.04E-06	Standard level transmitter CCF probability. Assumes standard 24-hour mission time.
VC: TWO LEVEL TRANSMITTERS FAIL DUE TO CCF (SAMA 10 AND 1LT-141)	8.04E-06	Standard level transmitter CCF probability. Assumes standard 24-hour mission time.
BISTABLE SAMA 10 FAILS TO FUNCTION	7.46E-04	Standard bistable failure probability.
VC: LEVEL TRANSMITTER FAILS TO FUNCTION (SAMA10)	1.90E-04	Standard level transmitter failure probability. Assumes standard 24-hour mission time.
VC: TWO LEVEL TRANSMITTERS FAIL DUE TO CCF (SAMA 10 AND 2LT-112)	8.04E-06	Standard level transmitter CCF probability. Assumes standard 24-hour mission time.
VC: TWO LEVEL TRANSMITTERS FAIL DUE TO CCF (SAMA 10 AND 2LT-141)	8.04E-06	Standard level transmitter CCF probability. Assumes standard 24-hour mission time.

SAMA 10 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	8.95E-06	2.88	\$15,711
Unit 1 Percent Reduction	8.6%	1.7%	0.9%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.12E-05	8.36	\$63,197
Unit 2 Percent Reduction	7.1%	0.9%	0.2%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency_{SAMA}	7.10E-06	1.27E-06	2.82E-07	2.31E-07	5.19E-08	3.22E-08	2.10E-08	4.89E-09	8.40E-10	2.32E-11	8.95E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.08	0.63	1.32	0.11	0.73	0.00	0.00	0.00	0.00	2.88
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$12	\$961	\$11,628	\$684	\$2,408	\$0	\$0	\$18	\$0	\$15,711

SAMA 10 - Unit 1 Results By Release Category

SAMA 10 - Unit 2 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency SAMA	8.34E-06	1.30E-06	3.39E-07	1.17E-06	6.09E-08	3.22E-08	2.14E-08	5.87E-09	9.17E-10	2.32E-11	1.12E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{sama}	0.01	0.08	0.76	6.65	0.13	0.73	0.00	0.00	0.00	0.00	8.36
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$13	\$1,157	\$58,796	\$804	\$2,408	\$0	\$0	\$19	\$0	\$63,197

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

SAMA 1	0 Net	Value
--------	-------	-------

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$1,067,130	\$46,870
Unit 2	\$2,980,000	\$2,931,370	\$48,630

The SAMA 10 results are similar to the SAMA 3 results, as the concern addressed with this alternative is shared by both SAMAs (charging pump suction supply). Both SAMAs reduce the CDF primarily by reducing the potential for RCP seal LOCAs due to failures of the suction switchover from the VCT to the RWST on low VCT level. The magnitude of the SAMA 10 benefits are generally lower than the SAMA 3 benefits simply because the likelihood of level transmitter failure is lower than the likelihood of MOV failure.

Based on a \$2,866,000 cost of implementation for each unit, the net value for this SAMA is -\$2,819,130 (\$46,870 - \$2,866,000) for Unit 1 and -\$2,817,370 (\$48,630 - \$2,866,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.7.2.1.3 SAMA 17: Bypass Around RHR Loop B Return Valves

The RHR to RCS Loop B return valve (MV-32066 [MV-32169]) is important to plant risk in two ways:

- 1. As a normally-closed, motor-operated valve located in the low pressure RHR return piping to the RCS, it represents a single failure point for shutdown cooling (SDC).
- 2. As a containment isolation valve for a system that interfaces with the RCS during power operation, its failure to remain closed (or catastrophic rupture) contributes to the potential for an ISLOCA.

The purpose of this SAMA is to investigate the risk benefit of including a bypass line with an isolation valve around the RHR Loop B return valve. The intent of this modification would be to reduce the risk associated with failure of the return valve to open.

Assumptions:

- The modification design is assumed to prevent a significant increase in the potential for ISLOCA. For the purposes of this analysis, it is assumed that multiple normallyclosed isolation valves are included in the bypass line (i.e., the primary, poweroperated isolation valve, and a check valve). This would provide 3 valves for isolating the RCS from ISLOCA through the bypass line (SI-6-2 [2SI-6-2], the SAMA 17 bypass isolation power-operated valve, and the SAMA 17 bypass isolation check valve).
- 2. The RCS pressure interlock preventing inadvertent operation of the existing RHR Loop B isolation MOV are assumed to also apply to the SAMA 17 bypass MOV. However, the pressure transmitters providing signals for the interlock are assumed to operate from the opposite train (SAMA 17 MOV uses 1PT-419 [2PT-419] instead of 1PT-420 [2PT-420]). The potential for common cause failure of the pressure transmitters is included in the SAMA 17 MOV failure modeling.
- 3. The SAMA 17 power-operated isolation valve is assumed to be a motor-operated valve, using an opposite-train power supply than that used by MV-32066 [MV-32169]. In addition, the valve and its motor operator are assumed to be of a different make than MV-32066 [MV-32169] in order to minimize the risk contribution from common-cause failures. Use of an MOV instead of an AOV eliminates the dependence on instrument air inside containment (the reliability of the containment air supply is already a significant contributor to risk).
- 4. The SAMA 17 MOV is assumed to be powered from an AC source of the opposite train than that used by MV-32066 [MV-32169]. For the purposes of this analysis, the 480V MCC assumed to power the SAMA 17 MOV is 1LA2 [2LA2].

5. The SAMA 17 isolation check valve is assumed to be of a different make and design than the other RHR and SI injection check valves in order to minimize the risk contribution from common-cause failures.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
SAMA 17 MOTOR OPERATED VALVE FAILS TO OPEN	3.00E-03	Standard motor operated valve FTO probability.
SAMA 17 MOTOR OPERATED VALVE FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
SAMA 17 CHECK VALVE FAILS TO OPEN	5.00E-05	Standard check valve FTO probability.
SAMA 17 MOTOR OPERATED VALVE FAILS TO OPEN	3.00E-03	Standard motor operated valve FTO probability.
SAMA 17 MOTOR OPERATED VALVE FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
SAMA 17 CHECK VALVE FAILS TO OPEN	5.00E-05	Standard check valve FTO probability.

SAMA 17 New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.69E-06	2.68	\$13,592
Unit 1 Percent Reduction	1.1%	8.5%	14.3%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.17E-05	6.98	\$50,616
Unit 2 Percent Reduction	3.2%	17.2%	20.1%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency_{SAMA}	7.22E-06	1.92E-06	2.82E-07	1.88E-07	5.59E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.69E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
Dose-Risk _{SAMA}	0.01	0.12	0.63	1.07	0.12	0.73	0.00	0.00	0.00	0.00	2.68
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$9,450	\$737	\$2,408	\$0	\$0	\$18	\$0	\$13,592

SAMA 17 - Unit 1 Results By Release Category

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency SAMA	8.39E-06	1.97E-06	3.39E-07	9.18E-07	6.45E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.17E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
$Dose\text{-}Risk_{SAMA}$	0.01	0.12	0.76	5.22	0.14	0.73	0.00	0.00	0.00	0.00	6.98
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$46,162	\$851	\$2,408	\$0	\$0	\$19	\$0	\$50,616

SAMA 17 - Unit 2 Results By Release Category

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$1,025,970	\$88,030
Unit 2	\$2,980,000	\$2,491,882	\$488,118

SAMA 17 Net Value

SAMA 17 provides a relatively slight reduction in the CDF values for Unit 1 and Unit 2 primarily due to the increased reliability of SDC on events involving small LOCAs and SGTR with successful high head injection. As the sequences which benefit from the SAMA 17 modification are those in which the SDC containment isolation MOV fails to open, the low-head RHR system and its support systems are likely to be available to support containment heat removal. The most significant benefit provided by this SAMA is to reduce the frequency of late core damage from SGTR events (accident class/release category GLH). The PRA model assumes that SDC must be functional for long term recovery from SGTR events involving operator failure to reduce RCS pressure to below SG pressure prior to SG overfill. Note that, as with SAMA 12, the beneficial impact of this SAMA is even greater for Unit 2, which has a higher potential for SGTR events (SGs have not been replaced on Unit 2 as they have on Unit 1).

Based on a \$2,362,000 cost of implementation for each unit, the net value for this SAMA is -\$2,273,970 (\$88,030 - \$2,362,000) for Unit 1 and -\$1,873,882 (\$488,118 - \$2,362,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.7.2.1.4 SAMA 19a: Replenish RWST from Large Water Source

The RWST is the initial suction supply for the high and low pressure ECCS subsystems (SI and RHR pumps, respectively). When the RWST has been depleted following the

injection phase of a loss of coolant accident, the ECCS trains are realigned for recirculation operation with suction taken from the containment sump. This realignment requires successful manual (and some local) operator actions. The time available to the operators to perform these actions varies from a few minutes to hours depending upon the size of the primary system break flow. Therefore, for LOCA accident sequences, it is clear that there would be some risk benefit for implementation of a plant change that would allow the time available for operator action to be extended.

For accidents which involve LOCAs outside containment however (i.e., steam generator tube rupture events, or intersystem LOCAs), recirculation is not an option. Intersystem LOCAs are risk significant for offsite releases, but typically the ECCS subsystem components cannot be expected to remain operable in these events for any significant length of time following the initiator (due to harsh environmental conditions produced in the Auxiliary Building). For SGTR events however, the ECCS subsystems (including the high pressure SI system) remain available and will inject the contents of the RWST into the RCS. In these events, quick operator action is required to cool down and depressurize the RCS to stop the leakage into the steam generator. If this action fails, then a period of hours is available to complete cooldown and depressurization and to initiate long term decay heat removal with RHR shutdown cooling before the RWST is completely emptied. Therefore, during a SGTR event, it would be beneficial to have the ability to replenish the RWST in order to give the operators more time to perform the required actions for initiation of long term decay heat removal.

This SAMA investigates the risk benefit of providing a reliable backup large water source for replenishing the RWST following an accident. Sources available onsite that could be connected (either through existing connections and piping or via a plant modification) include the Spent Fuel Pool (SFP), the opposite unit RWST, CVCS monitor tanks, CVCS holdup tanks, and CVCS boric acid storage tanks (BASTs). Each of these sources would likely require a pump (i.e., SFP pump, RWST purification pump, CVCS monitor tank pump, etc.) to ensure that the inventory is successfully transferred to the RWST on the affected unit.

For the purposes of this analysis, the opposite unit RWST is chosen as the alternate source, as it is already designed as a supply for ECCS injection. Piping a pump to assist in the water transfer operation, and procedural guidance to allow transfer of one RWST to another are currently available (see procedure C16, Rev. 46). However, the existing equipment and procedure are not designed for post-accident operations and will likely need to be upgraded to support this SAMA.

Assumptions:

- 1. For the purposes of this analysis, it is assumed that modifications to the plant are made such that the RWST refill is highly likely to be successful, including pump(s), piping and valves necessary to perform the transfer.
- 2. For the purposes of this analysis, it is assumed that the RWST refill is accomplished using operator action that can be performed from the control room using proceduralized actions to start a pump and operate two power-operated valves (both valves must operate for success; one must open and the other must close).
- 3. For the purposes of this analysis, it is assumed that the benefit for RWST refill is limited to an enhanced probability of operator success in transferring to high head recirculation and in cooling down and depressurizing the RCS and initiating shutdown cooling for SGTR events. Other benefits (such as increased time for repair of failed equipment, etc.) are not credited in this analysis.
- 4. Due to the short time available and requirement for other local operator actions performed at the same time, a minimum amount of credit for RWST refill is taken for Medium LOCA and Large LOCA scenarios (50% reduction in transfer to recirculation failure probability). Due to the significantly longer time available, it is assumed that a larger amount of credit can be applied to all other scenarios requiring ECCS injection (order of magnitude reduction in failure probabilities for transfer to high head recirculation and SGTR RCS cooldown, etc. operator actions).
- 5. The pump and valves required to actively function to support the RWST refill operation are assumed to be motor-operated, with power from a safeguards electrical source (MCC 1T1, the AC source for 121 SFP pump).
- 6. The potential that the SAMA19a operator action may be conditional upon the transfer to recirculation or SGTR recovery actions was not investigated in detail for this analysis. As SAMA19a involves an operator action performed from the control room, which is applied to sequences involving failure of other operator actions that are at least partially performed from the control room, there are issues of dependency between the failure rates of these actions. Preliminary quantification runs for this SAMA indicate that it provides very little benefit if no credit is given for sequences involving other dependent operator actions, as these failures are the dominant means of failing the transfer function. For the purposes of this SAMA, it is assumed that the issue of HRA dependency is resolved in the design and implementation of SAMA19a to the extent that all dependence can be covered by multiplying the standard 5E-2 HRA screening value by a factor of 2 (HRA applied = 1E-1).
- 7. Credit for improvement of the manual transfer to containment spray recirculation (CSR) was not given for this SAMA. Previous analyses have shown that failure of CSR is not a large risk contributor to the PINGP Level 2 results.

PRA Model Changes to Model SAMA:

The table below provides a listing of the new basic events included in the PRA model for this sensitivity analysis:

Description	Probability	Comments
OPERATOR FAILS TO PERFORM SAMA19a (REFILL RWST) WHEN REQUIRED	1.00E-01	Standard HRA screening value, multiplied by 2 (to account for dependency; all actions assumed to be performed from CRM)
SAMA19a MOTOR OPERATED VALVE #1 FAILS TO OPEN	3.00E-03	Standard motor operated valve FTO probability.
SAMA19a MOV #1 FAILS TO REMAIN OPEN	4.80E-06	Standard motor operated valve FTRO probability. Assumes standard 24-hour mission time.
SAMA19a MOTOR OPERATED VALVE #2 FAILS TO CLOSE	2.94E-03	Standard motor operated valve FTC probability.
SAMA19a MOV #1 FAILS TO REMAIN CLOSED	4.80E-06	Standard motor operated valve FTRC probability. Assumes standard 24-hour mission time.
SAMA19a OPERATOR ACTION SUCCESS CREDIT (OTHER THAN LG/MED LOCA)	1.00E-01	See Assumption #4.
SAMA19a SUCCESS CREDIT FOR HI HEAD RECIRC TRANSFER (LG./MED. LOCAs)	5.00E-01	See Assumption #4.

SAMA 19a New Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	6.46E-06	2.39	\$11,184
Unit 1 Percent Reduction	34.1%	18.4%	29.4%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	8.37E-06	6.09	\$42,874
Unit 2 Percent Reduction	30.6%	27.8%	32.3%

A further breakdown of the Dose-risk and OECR information is provided below according to release category.

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	4.02E-06	1.92E-06	2.82E-07	1.46E-07	3.33E-08	3.22E-08	3.09E-08	4.89E-09	1.23E-10	2.32E-11	6.46E-06
$Dose\text{-}Risk_{BASE}$	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
$Dose-Risk_{SAMA}$	0.01	0.12	0.63	0.83	0.07	0.73	0.00	0.00	0.00	0.00	2.39
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$7,355	\$439	\$2,408	\$0	\$0	\$3	\$0	\$11,184

SAMA 19a - Unit 1 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency BASE	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency SAMA	5.23E-06	1.97E-06	3.39E-07	7.70E-07	4.22E-08	3.22E-08	3.14E-08	5.87E-09	2.00E-10	2.32E-11	8.37E-06
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	4.38	0.09	0.73	0.00	0.00	0.00	0.00	6.09
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$38,729	\$557	\$2,408	\$0	\$0	\$4	\$0	\$42,874

SAMA 19a - Unit 2 Results By Release Category

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$784,198	\$329,802
Unit 2	\$2,980,000	\$2,050,414	\$929,586

SAMA 19a Net Value

The results of the SAMA 19a sensitivity analysis show a large drop in both the CDF and LERF risk metrics for both units. This CDF reduction is primarily due to the high importance of the transfer to recirculation operator action in preventing core damage following a LOCA. The LERF reduction is due to a significant reduction in the frequency of L-SR-E release category sequences as failure of the recirculation transfer leads to core damage at high pressure. The percent LERF change on Unit 1 is more significant than on Unit 2 due to the higher contribution from SGTR sequences on Unit 2 (SGs have not been replaced on that unit).

Based on a \$1,935,000 cost of implementation for each unit, the net value for this SAMA is -\$1,605,198 (\$329,802 - \$1,935,000) for Unit 1 and -\$1,005,414 (\$929,586 - \$1,935,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.7.2.1.5 SAMA 21: Increase Reliability of PORV Closure

The RCS PORVs are designed to open to relieve RCS pressure during overpressure conditions. The valves are then required to reclose when pressure is reduced to below the valve set pressure (there is essentially no dead band associated with the PINGP PORV design). In the PRA model, failure of either PORV on a unit to reclose following a pressure challenge is assumed to result in a "PORV LOCA" initiating event, an event having an accident progression similar to a small-break LOCA event.

PORV failure-to-reclose events are significant contributors to the LERF, as certain initiating events (particularly MSLB events) involve pressure challenges that also involve secondary side depressurization. If the PORV failure leads to core damage at high RCS pressure, the potential exists for a pressure-induced SGTR which would provide a fission product release pathway outside of containment.

Assumptions:

1. To estimate an upper bound on the risk benefit for this SAMA, it was assumed that a new or enhanced PORV design was implemented, such that the valve re-closure probability was reduced by an order of magnitude.

PRA Model Changes to Model SAMA:

The only changes to the PRA necessary to model this SAMA were to reduce the probability of events representing failure of the PORV to reclose.

The table below shows the basic events that were modified to model this SAMA:

Description	Original Probability	SAMA21 Probability
PORV CV-31231 FAILS TO CLOSE	2.94E-03	2.94E-04
PORV CV-31232 FAILS TO CLOSE	2.94E-03	2.94E-04
PORV CV-31233 FAILS TO CLOSE	2.94E-03	2.94E-04
PORV CV-31234 FAILS TO CLOSE	2.94E-03	2.94E-04

SAMA 21 Changes to Basic Events

Results of SAMA Quantification:

Implementation of this SAMA yields a reduction in the CDF, Dose-risk, and Offsite Economic cost-risk. The results are summarized in the following table for Units 1 and 2:

	CDF	Dose-Risk	OECR
Unit 1 _{Base}	9.79E-06	2.93	\$15,852
Unit 1 _{SAMA}	9.71E-06	2.91	\$15,644
Unit 1 Percent Reduction	0.8%	0.7%	1.3%
Unit 2 _{Base}	1.21E-05	8.43	\$63,337
Unit 2 _{SAMA}	1.20E-05	8.40	\$63,114
Unit 2 Percent Reduction	0.7%	0.4%	0.4%

Release Category	н-хх-х	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	7.28E-06	1.92E-06	2.82E-07	2.33E-07	5.61E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.79E-06
Frequency _{SAMA}	7.20E-06	1.92E-06	2.82E-07	2.29E-07	5.57E-08	3.22E-08	3.09E-08	4.89E-09	8.40E-10	2.32E-11	9.71E-06
Dose-Risk _{BASE}	0.01	0.12	0.63	1.32	0.12	0.73	0.00	0.00	0.00	0.00	2.93
$Dose-Risk_{SAMA}$	0.01	0.12	0.63	1.30	0.12	0.73	0.00	0.00	0.00	0.00	2.91
OECR _{BASE}	\$0	\$18	\$961	\$11,706	\$741	\$2,408	\$0	\$0	\$18	\$0	\$15,852
OECR _{SAMA}	\$0	\$18	\$961	\$11,504	\$735	\$2,408	\$0	\$0	\$18	\$0	\$15,644

SAMA 21 - Unit 1 Results By Release Category

SAMA 21 - Unit 2 Results By Release Category

Release Category	H-XX-X	L-DH-L	L-CC-L	SGTR	L-H2-E	ISLOCA	H-DH-L	H-OT-L	L-CI-E	H-H2-E	Total
Frequency _{BASE}	8.52E-06	1.97E-06	3.39E-07	1.17E-06	6.52E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.21E-05
Frequency_{SAMA}	8.44E-06	1.97E-06	3.39E-07	1.17E-06	6.47E-08	3.22E-08	3.14E-08	5.87E-09	9.17E-10	2.32E-11	1.20E-05
Dose-Risk _{BASE}	0.01	0.12	0.76	6.66	0.14	0.73	0.00	0.00	0.00	0.00	8.43
Dose-Risk _{SAMA}	0.01	0.12	0.76	6.64	0.14	0.73	0.00	0.00	0.00	0.00	8.40
OECR _{BASE}	\$0	\$19	\$1,157	\$58,874	\$860	\$2,408	\$0	\$0	\$19	\$0	\$63,337
OECR _{SAMA}	\$0	\$19	\$1,157	\$58,657	\$854	\$2,408	\$0	\$0	\$19	\$0	\$63,114

This information was used in the cost-benefit calculation. The results of this calculation are provided in the following table.

SAMA 21 Net Value

Unit	Base Case Cost-Risk	Revised Cost-Risk	Averted Cost-Risk
Unit 1	\$1,114,000	\$1,102,714	\$11,286
Unit 2	\$2,980,000	\$2,967,482	\$12,518

As expected, the SAMA 21 results show the primary risk benefit to be the reduction in the frequency of release category L-SR-E (pressure and temperature-induced SGTR core damage sequences). This release category is a component of the LERF for both units, although the impact (percent change) on the Unit 1 LERF is larger than the change on Unit 2 due to the higher contribution from SGTR sequences on Unit 2 (as previously described).

Based on a \$3,000,000 cost of implementation for each unit, the net value for this SAMA is -\$2,988,714 (\$11,286 - \$3,000,000) for Unit 1 and -\$2,987,482 (\$12,518 - \$3,000,000) for Unit 2, which implies that this SAMA is <u>not</u> cost beneficial for either unit.

F.7.2.2 Phase II Impact

As discussed above, the 95th percentile PRA results for each individual Phase II SAMA were used to determine the impact of the cost-benefit analysis for the proposed SAMA candidates. The uncertainty analyses that are available for the Level 1 model are not available (or not used) for the Level 2 and 3 PRA models. In order to simulate the use of the 95th percentile results for the Level 2 and 3 models, the same scaling factor calculated for the Level 1 results was applied to the Level 2 and 3 models. Because the MMACR calculations scale linearly with the CDF, dose-risk, and offsite economic cost-risk, the 95th percentile MMACR for each SAMA can be re-calculated by multiplying the base case by the 95th percentile for each of the individual SAMAs.

The Phase II SAMA list has been re-examined using the revised MMACR to identify SAMAs that would be re-characterized as cost beneficial, i.e., positive net value. Those SAMAs that were previously determined not cost beneficial due to costs of implementation that exceeded their associated MMACR are now potentially cost beneficial if the implementation costs are less than the revised MMACR. In this case, one additional Phase II SAMA (SAMA 22) becomes cost beneficial for Unit 1 and no additional SAMAs for Unit 2.

F.7.2.3 Summary

The following table provides a summary of the impact of using the 95th percentile PRA results on the detailed cost-benefit calculations that have been performed for Phase II SAMAs and those Phase I SAMAs identified above in Section F.7.2.1

SAMA ID	Cost of Implementation	Averted Cost Risk (Base)	Net Value (Base)	Averted Cost Risk (95th Percentile)	Net Value (95th Percentile)	Change in Cost Effectiveness?
1	\$4,250,000	\$268,252	(\$3,981,748)	\$429,203	(\$3,820,797)	No
2	\$300,000	\$123,376	(\$176,624)	\$259,090	(\$40,910)	No
3	\$250,000	\$74,956	(\$175,044)	\$179,894	(\$70,106)	No
5	\$1,500,000	\$75,942	(\$1,424,058)	\$212,638	(\$1,287,362)	No
9	\$62,500	\$62,746	\$246	\$163,140	\$100,640	No
10	\$2,866,000	\$46,870	(\$2,819,130)	\$121,862	(\$2,744,138)	No
12	\$900,000	\$186,188	(\$713,812)	\$372,376	(\$527,624)	No
15	\$130,000	\$0	(\$130,000)	\$0	(\$130,000)	No
17	\$2,362,000	\$88,030	(\$2,273,970)	\$255,287	(\$2,106,713)	No
19	\$700,000	\$60,330	(\$639,670)	\$174,957	(\$525,043)	No
19a	\$1,935,000	\$329,802	(\$1,605,198)	\$593,644	(\$1,341,356)	No
20	\$313,000	\$53,910	(\$259,090)	\$150,948	(\$162,052)	No
21	\$3,000,000	\$11,286	(\$2,988,714)	\$32,729	(\$2,967,271)	No
22	\$39,000	\$15,350	(\$23,650)	\$44,515	\$5,515	Yes

Unit 1 Summary of the Impact of Using the 95 th Perc	centile PRA Results
---	---------------------

Unit 2 Summary of the Impact of Using the 95th Percentile PRA Results

SAMA ID	Cost of Implementation	Averted Cost Risk (Base)	Net Value (Base)	Averted Cost Risk (95th Percentile)	Net Value (95th Percentile)	Change in Cost Effectiveness?
1	\$4,250,000	\$270,474	(\$3,979,526)	\$486,853	(\$3,763,147)	No
2	\$300,000	\$123,092	(\$176,908)	\$283,112	(\$16,888)	No
3	\$250,000	\$76,654	(\$173,346)	\$183,970	(\$66,030)	No
5	\$1,500,000	\$222,610	(\$1,277,390)	\$645,569	(\$854,431)	No
9	\$62,500	\$62,918	\$418	\$157,295	\$94,795	No
10	\$2,866,000	\$48,630	(\$2,817,370)	\$131,301	(\$2,734,699)	No
12	\$900,000	\$302,132	(\$597,868)	\$664,690	(\$235,310)	No
15	\$130,000	\$19,324	(\$110,676)	\$54,107	(\$75,893)	No
17	\$2,362,000	\$488,118	(\$1,873,882)	\$1,366,730	(\$995,270)	No
19	\$700,000	\$60,514	(\$639,486)	\$175,491	(\$524,509)	No
19a	\$1,935,000	\$929,586	(\$1,005,414)	\$1,766,213	(\$168,787)	No
20	\$313,000	\$54,646	(\$258,354)	\$153,009	(\$159,991)	No
21	\$3,000,000	\$12,518	(\$2,987,482)	\$33,799	(\$2,966,201)	No
22	\$39,000	\$67,650	\$28,650	\$189,420	\$150,420	No

In reviewing the above results, none of the Phase I SAMAs identified in Section F.7.2.1 proved to be cost-beneficial at the 95th percentile. When the 95th percentile PRA results were applied to the Phase II SAMAs, only SAMA 22 for Unit 1 was shown to now be marginally cost effective. The use of the 95th percentile PRA result is not considered to provide the most rational assessment of the cost effectiveness of a SAMA; however,

this additional SAMA should be considered for implementation to address the uncertainties inherent in the SAMA risk analysis, especially since its consideration for Unit 2 was shown to provide a cost benefit.

F.7.3 MACCS2 Input Variations

The MACCS2 model was developed using the best information available for the PINGP site; however, reasonable changes to modeling assumptions can lead to variations in the Level 3 results. In order to determine how certain assumptions could impact the SAMA results, a sensitivity analysis was performed on a group of parameters that has previously been shown to impact the Level 3 results. These parameters (and associated sensitivity cases) include:

- Meteorological data (PI2004; PI2005)
- Population estimates (PI30INC; PISIT00)
- Evacuation effectiveness (PISLOW)
- Radionuclide release characteristics (PIATM1; PIATM2)
- Recovery, decontamination, and resettlement factors (Intermediate Phase) (PICHR1, PICHR2)

The risk metrics produced by MACCS2 that are evaluated in the sensitivity analyses are the 50 mile population dose and the 50 mile offsite economic cost for Unit 2. (Similar impacts would be expected for Unit 1). The subsections below discuss the changes in these results for each of the sensitivity cases that are shown below. The final subsection, F.7.3.6, correlates the worst case changes identified in the sensitivity runs to a change in the site's averted cost-risk and discusses the implications of the sensitivity analysis on the SAMA analysis.

Case	Description	Unit 2 Pop. Dose Risk ∆ Base (%)	Unit 2 Cost Risk ∆ Base (%)
PI2003	Base Case (Year 2003 MET data)		
PI2004	Year 2004 MET data	-1.5%	-4.7%
PI2005	Year 2005 MET data	-4.3%	-13.4%
PI30INC	Year 2034 population values increased uniformly 30% over base case.	28.6%	29.6%
PISit00	Year 2000 population based (Base Case is Year 2034)	-39.2%	-39.3%
PISlow	Evacuation speed decreased 50% to 1.67 mph, 0.75 m/sec (Base Case is 3.35 mph).	1.7%	0%
PIATM1	Release height set to ground level	2.3%	-5.8%
PIATM2	Plume thermal heat content set to ambient (i.e., buoyant plume rise not modeled)	negligible	-6.1%
PICHR1	Long Term Phase starts immediately after the Early Phase is over (No Intermediate Phase; Base Case is 6 month Intermediate Phase)	19.2%	-33.2%
PICHR2	1 Year Intermediate Phase following the Early Phase (Base Case is 6 month Intermediate Phase)	-15.3%	34.9%

F.7.3.1 Meteorological Sensitivity

In addition to the base case meteorological data (year 2003), data is also analyzed for the years 2004 and 2005. Analysis of these alternate data sets yielded population dose-risks and offsite economic cost-risks that are lower than the 2003 data by at least 1.5 percent and by as much as 13.4 percent.

As no particular criteria have been defined by the industry related to determining which meteorological data set should be used as a base case for a site, the year 2003 data is conservatively chosen for PINGP given that it yielded the largest results.

F.7.3.2 Population Sensitivity

Two population sensitivity cases (PI30INC, PISIT00) are analyzed to determine the dependence of population estimates on the MAACS2 results.

In case PI30INC, the baseline 2034 population is uniformly increased by 30 percent in all sectors of the 50-mile radius. This change increased the estimated population dose-risk and offsite economic cost by over 28 percent each.

A second population based sensitivity (PISIT00) is performed to determine the impact of using year 2000 census data rather than projecting to the end of the license renewal period (Year 2034). The baseline SAMA case is based on a population projection to year 2034 based on the population growth trends shown between the years 1990 and 2000. When year 2000 data is utilized, the overall dose-risk and OECR decrease, as expected. Specifically, the dose-risk and the OECR each decreased by about 39 percent.

The population sensitivity cases (PI30INC, PISIT00) demonstrate a significant dependence on population estimates. This is expected given that the population dose and offsite economic costs are primarily driven by the regional population.

F.7.3.3 Evacuation Sensitivity

One evacuation sensitivity case (PISLOW) is analyzed to determine the impacts associated with evacuation assumptions. While evacuation assumptions do impact the population dose-risk estimates, they do not impact MACCS2 offsite economic cost-risk estimates because MACCS2 calculated cost-risks are based on land contamination levels which remain unaffected by evacuation assumptions and the number of people evacuating.

For PINGP, evacuation assumptions have a relatively minor impact on dose-risk. A 50 percent decrease in the evacuation speed increased the dose-risk by only approximately 2 percent.

The evacuation sensitivity case (PISLOW) demonstrates minor population dose-risk impacts associated with evacuation assumptions due to the relatively slow base case PINGP evacuation.

F.7.3.4 Radioactive Release Sensitivity

The sensitivity cases PIATM1 and PIATM2 quantify the impact of the assumptions related to the height of the release and thermal energy of the plume, respectively. PIATM1 assumes that the release occurs at ground level rather than at an elevation that could correspond to a release through the stack or a break high in the reactor building. The lower release height shows a small increase in dose-risk of 2 percent and a reduction in OECR of over approximately 6 percent. Reducing the thermal plume heat content to ambient conditions has a similar impact. PIATM2 shows a negligible change (0 percent) in the dose-risk and a decrease of about 6 percent in the OECR.

F.7.3.5 Intermediate Phase Duration Sensitivity

The Intermediate Phase, as modeled by MACCS2, is the time period beginning after the early phase (one week emergency phase) and extends to the time when recovery actions such as decontamination and resettlement are started (long term phase). MACCS2 allows the habitation of land during the intermediate phase unless the projected dose criterion is exceeded. If the projected dose criterion is exceeded during the intermediate phase, the individual is relocated. MACCS2 allows an intermediate phase ranging from no intermediate phase to one (1) year. The Intermediate Phase related sensitivity cases (PICHR1 and PICHR2) show significant dependence in relation to economic impact, and are therefore discussed further:

- The No Intermediate Phase case (PICHR1) is developed based on the NUREG-1150 modeling approach. However, the 33 percent reduction in economic cost estimates based on the approach are judged too optimistic in that the land decontamination efforts are modeled as starting one week after the accident (i.e., directly after the early phase ends) such that a significant portion of population relocation costs are omitted. For example, the costs associated with temporary housing while decontamination strategies are developed and decontamination teams are contracted are not accounted for without an intermediate phase. It is believed that NUREG-1150 studies omitted the intermediate phase because the MACCS2 intermediate phase coding was not validated at that time. A competing factor is that the population dose increases because people are allowed to re-occupy the land sooner (19 percent increase over the base case).
- The 1 Year Intermediate Phase case (PICHR2) is developed based on the maximum length of time allowed by MACCS2 for the intermediate phase. A long intermediate phase can be unrealistic in that re-occupation of the contaminated land is not performed during this phase even if contamination levels decrease (by natural radioactive decay) to levels which would allow it (i.e., resettlement is evaluated as part of the long term phase, not the intermediate phase). Therefore, population relocation costs may be over estimated using a long (i.e., one year) intermediate phase. An Intermediate Phase of one year shows a 35 percent increase in the OECR estimates compared with the six month (base case) Intermediate phase. However, the population dose decreased by 15 percent with a longer Intermediate Phase due to later resettlement on decontaminated land.

The six month intermediate phase (base case) is judged to be a best estimate approach in that it provides a reasonable time for both decontamination efforts and resettlement to begin. The sensitivity cases demonstrate that this six month modeling approach is midrange of the modeling choices available and is used as the base case.

F.7.3.6 Impact on SAMA Analysis

Several different Level 3 input parameters are examined as part of the PINGP MACCS2 sensitivity analysis. The primary reason for performing these sensitivity runs is to identify any reasonable changes that could be made to the Level 3 input parameters that would impact the conclusions of the SAMA analysis. While the table in Section F.7.3 summarizes the changes to the dose-risk and OECR estimates for each sensitivity case, it is prudent to consider if any of these changes would result in the retention of the SAMAs that were screened using the baseline results.

Of all the MACCS2 sensitivity cases, the largest increase in the dose-risk is 29 percent in the population sensitivity case PI30INC (2034 population uniformly increased by 30%) while the largest increase in OECR is 35 percent in the intermediate phase duration sensitivity case PICHR2 (one year intermediate phase). While these are separate cases, the PINGP MMACR is recalculated using these results to determine the impact of using the worst case for each parameter simultaneously. The resulting Unit 2 MMACR is a factor of 1.24 greater than the base case, which is less than the average factor of 2.5 calculated in Section F.7.2 for the 95th percentile individual SAMA PRA model results. Therefore, the 95th percentile PRA results sensitivity is considered to bound this case and no SAMAs would be retained based on this sensitivity that were not already identified in Section F.7.2.

F.7.4 Unit 2 Containment Sump Sensitivity Analysis

As described in Section F.2.2.2, the Unit 2 SAMA probabilistic analysis results were quantified using the Unit 2, Level 1 Rev. 2.2 (SAMA) model. At the time of the Rev. 2.2 model update, containment sump strainer modifications to address G.L. 2004-02 on Unit 2 had not been completed. However, during the Unit 2 refueling outage in Fall 2006 (prior to the submittal of this LAR), the containment sump modifications were completed. Therefore, a sensitivity analysis is considered necessary to demonstrate the impact of this significant plant modification to the results of the Unit 2 SAMA analysis.

The containment sump strainer modifications implemented in Unit 1 and Unit 2 are very similar in design and operation. Therefore, in order to perform this sensitivity analysis, the reliability (assumed plugging failure rate) for the Unit 2 sump strainers was reduced to match the failure rate of the Unit 1 sump strainers (reduced by an order of magnitude). The probabilistic analyses for each of the Phase II SAMAs were reperformed, and the results used to regenerate new averted cost values for each of the SAMAs.

The results of the sensitivity analysis showed the change in averted costs were on the order of a few thousand dollars or less for most of the identified Phase II SAMAs when accounting for a more reliable sump strainer for Unit 2. However, this did not change the overall outcome for Unit 2 regarding whether or not a particular SAMA was costbeneficial. The change in averted costs due to the implementation of a more reliable containment sump strainer for Unit 2 is judged to be within the statistical uncertainty of the SAMA analysis.

The Unit 2 Level 1 PRA model used for the SAMA analysis is therefore deemed slightly conservative in the sense that the modeled reliability of the strainer is less than the actual plant configuration following the Fall 2006 outage. However, the sensitivity analysis showed that this does not affect the applicability of using the existing Level 1 model for Unit 2.

F.8 CONCLUSIONS

The benefits of revising the operational strategies in place at PINGP and/or implementing hardware modifications can be evaluated without the insight from a riskbased analysis. Use of the PRA in conjunction with cost-benefit analysis methodologies has, however, provided an enhanced understanding of the effects of the proposed changes relative to the cost of implementation and projected impact on a larger future population. The results of this study indicate that of the identified potential improvements that can be made at PINGP, a few are cost beneficial based on the methodology applied in this analysis and warrant further review for potential implementation. It should be noted that the following conclusions were drawn based on the use of a 3% RDR, which is viewed as a more appropriate discount rate. However, if a 7% RDR were used, there would be fewer SAMAs identified as being cost-beneficial.

F.8.1 Unit 1 Conclusions

The base case analysis shows that implementation of the following SAMA for Unit 1 would be cost beneficial:

• SAMA 9: Analyze Room Heat-up for Natural/Forced Circulation (Screenhouse Ventilation)

SAMA 9 is a potentially cost beneficial enhancement at PINGP. This SAMA represents engineering analyses and possible procedure modifications that loss of Screenhouse Ventilation is not expected to fail operation of the safeguards vertical cooling water (CL) pumps. Computer modeling of expected room temperatures due to maximum mechanical and electrical heat loads during summer operation is anticipated to show that running electrical equipment would continue to successfully operate for a 24 hour mission time, with minimal mitigative efforts by equipment operators, e.g., opening doors, dampers, etc.

The 95th percentile PRA results showed that the following additional SAMA was cost beneficial for Unit 1:

• SAMA22: Provide Compressed Air Backup for Instrument Air to Containment

SAMA 22 is a cost-effective change for PINGP, given the results of the sensitivity analysis involving 95th percentile PRA values (see Section F.7.2). This SAMA deals with analyzing the actual capability of the backup air accumulators for adequate operation of the PORV during bleed and feed operation in removing heat from the primary system when the steam generators are unavailable. On a loss of instrument air

to containment, the PORVs are each supplied with air from separate backup air accumulators. However, it is suspected that the air requirements during bleed and feed operations may be less than that required for overpressure conditions. Previous analyses involving these air accumulators included conservative assumptions and operating conditions that implied PORV operation would be compromised given a loss of the normal air supply. Therefore, a more realistic analysis of the PORV backup air accumulators, using the expected procedural sequence of operator actions, is expected to show that additional hardware modification is unnecessary. However, costs for any required procedural changes or plant modifications resulting from this analysis were not included in the SAMA cost estimate (S&L 2007).

F.8.2 Unit 2 Conclusions

The base case analysis shows that implementation of the following two SAMAs for Unit 2 would be cost beneficial:

- SAMA 9: Analyze Room Heat-up for Natural/Forced Circulation (Screenhouse Ventilation)
- SAMA22: Provide Compressed Air Backup for Instrument Air to Containment

The discussion of these SAMAs in Section F.8.1 applies to Unit 2 as well.

The 95th percentile PRA results showed that there were no additional cost beneficial SAMAs for Unit 2.

F.9 TABLES

E	Estimated Population Distribution within a 10-Mile Radius of PINGP, Year 2034 ⁽²⁾										
Sector	0-1 mile (1.84) ⁽¹⁾	1-2 miles (1.21) ⁽¹⁾	2-3 miles (1.00) ⁽¹⁾	3-4 miles (1.03) ⁽¹⁾	4-5 miles (1.02) ⁽¹⁾	5-10 miles (1.09) ⁽¹⁾	10-mile total				
N	0	14	25	25	16	493	573				
NNE	0	109	34	137	41	712	1033				
NE	0	143	30	0	52	868	1093				
ENE	0	0	9	0	30	553	592				
E	0	0	134	0	100	461	695				
ESE	0	0	0	81	124	2810	3015				
SE	0	0	0	0	228	17066	17294				
SSE	0	0	0	864	856	575	2295				
S	0	91	0	856	228	311	1486				
SSW	0	0	20	57	78	415	570				
SW	0	0	20	1	140	409	570				
WSW	0	0	47	0	0	347	394				
W	142	0	0	26	70	716	954				
WNW	1349	10	1	141	7	2377	3885				
NW	208	19	0	18	0	647	892				
NNW	125	0	0	34	0	999	1158				
Total	1824	386	320	2240	1970	29759	36499				

 Table F.3-1

 Estimated Population Distribution within a 10-Mile Radius of PINGP, Year 2034⁽²⁾

⁽¹⁾ Ten year radial population growth factor applied to year 2000 census data to develop year 2034 estimate. ⁽²⁾ Population estimates are based on year 2000 census data as processed by SECPOP2000 Any

⁽²⁾ Population estimates are based on year 2000 census data as processed by SECPOP2000. Any minor differences from the population estimates and actual population are judged to have a negligible impact on the results given the MACCS2 modeling methodology.

Est	Estimated Population Distribution within a 50-Mile Radius of PINGP, Year 2034 ⁽²⁾										
Sector	0-10 miles	10-20 miles (1.18) ⁽¹⁾	20-30 miles (1.34) ⁽¹⁾	30-40 miles (1.10) ⁽¹⁾	40-50 miles (1.12) ⁽¹⁾	50-mile total					
N	573	27938	36153	23733	17081	105478					
NNE	1033	3290	17862	3660	12635	38480					
NE	1093	8039	11719	6543	6963	34357					
ENE	592	2167	6284	24257	12927	46227					
E	695	1647	5869	6240	8427	22878					
ESE	3015	2784	12460	7073	3564	28896					
SE	17294	1555	9864	7079	4809	40601					
SSE	2295	1988	5839	20093	62859	93074					
S	1486	2771	21155	35417	61632	122461					
SSW	570	1575	6412	3852	7529	19938					
SW	570	3642	9064	23698	47250	84224					
WSW	394	9691	53668	11743	14428	89924					
W	954	4230	64056	53846	35935	159021					
WNW	3885	21326	250009	460884	409761	1145865					
NW	892	35228	445530	838915	749278	2069843					
NNW	1158	5115	141140	134921	66497	348831					
Total	36499	132986	1097084	1661954	1521575	4450098					

 Table F.3-2

 Estimated Population Distribution within a 50-Mile Radius of PINGP, Year 2034⁽²⁾

⁽¹⁾ Ten year radial population growth factor applied to year 2000 census data to develop year 2034 estimate. ⁽²⁾ Population estimates are based on year 2000 census data as processed by SECEOPOP2000 Arriv

⁽²⁾ Population estimates are based on year 2000 census data as processed by SECPOP2000. Any minor differences from the population estimates and actual population are judged to have a negligible impact on the results given the MACCS2 modeling methodology.

Entry	Nuclide ⁽²⁾	Sample Problem A ⁽¹⁾ (Bq)	PINGP MACCS2 ⁽³⁾ (Bq)	Entry	Nuclide ⁽²⁾	Sample Problem A ⁽¹⁾ (Bq)	PINGP MACCS2 ⁽³⁾ (Bq)
1	Co-58	1.56E+16	2.17E+16	31	Te-131m	2.26E+17	2.63E+17 ⁽³⁾
2	Co-60	1.19E+16	1.66E+16	32	Te-132	2.25E+18	2.41E+18 ⁽³⁾
3	Kr-85	1.20E+16	2.55E+16 ⁽³⁾	33	I-131	1.55E+18	1.70E+18 ⁽³⁾
4	Kr-85m	5.60E+17	4.07E+17 ⁽³⁾	34	I-132	2.28E+18	2.44E+18 ⁽³⁾
5	Kr-87	1.02E+18	7.77E+17 ⁽³⁾	35	I-133	3.28E+18	3.40E+18 ⁽³⁾
6	Kr-88	1.38E+18	1.07E+18 ⁽³⁾	36	I-134	3.60E+18	3.66E+18 ⁽³⁾
7	Rb-86	9.13E+14	1.27E+15	37	I-135	3.09E+18	3.15E+18 ⁽³⁾
8	Sr-89	1.74E+18	2.41E+18	38	Xe-133	3.28E+18	3.40E+18 ⁽³⁾
9	Sr-90	9.37E+16	1.30E+17	39	Xe-135	6.16E+17	7.03E+17 ⁽³⁾
10	Sr-91	2.23E+18	3.10E+18	40	Cs-134	2.09E+17	7.40E+17 ⁽³⁾
11	Sr-92	2.32E+18	3.23E+18	41	Cs-136	6.36E+16	1.48E+17 ⁽³⁾
12	Y-90	1.01E+17	1.40E+17	42	Cs-137	1.17E+17	3.15E+17 ⁽³⁾
13	Y-91	2.12E+18	2.94E+18	43	Ba-139	3.04E+18	4.22E+18
14	Y-92	2.33E+18	3.24E+18	44	Ba-140	3.01E+18	4.18E+18
15	Y-93	2.64E+18	3.67E+18	45	La-140	3.07E+18	4.27E+18
16	Zr-95	2.67E+18	3.72E+18	46	La-141	2.82E+18	3.92E+18
17	Zr-97	2.78E+18	3.87E+18	47	La-142	2.72E+18	3.78E+18
18	Nb-95	2.53E+18	3.51E+18	48	Ce-141	2.73E+18	3.80E+18
19	Mo-99	2.95E+18	4.10E+18	49	Ce-143	2.66E+18	3.70E+18
20	Tc-99m	2.55E+18	3.54E+18	50	Ce-144	1.65E+18	2.29E+18
21	Ru-103	2.20E+18	3.05E+18	51	Pr-143	2.61E+18	3.63E+18
22	Ru-105	1.43E+18	1.99E+18	52	Nd-147	1.17E+18	1.62E+18
23	Ru-106	4.99E+17	6.94E+17	53	Np-239	3.13E+19	4.35E+19
24	Rh-105	9.89E+17	1.38E+18	54	Pu-238	1.77E+15	2.46E+15
25	Sb-127	1.35E+17	1.87E+17	55	Pu-239	4.00E+14	5.56E+14
26	Sb-129	4.77E+17	6.64E+17	56	Pu-240	5.04E+14	7.01E+14
27	Te-127	1.30E+17	1.70E+17 ⁽³⁾	57	Pu-241	8.49E+16	1.18E+17
28	Te-127m	1.72E+16	2.59E+16 ⁽³⁾	58	Am-241	5.60E+13	7.79E+13
29	Te-129	4.48E+17	5.18E+17 ⁽³⁾	59	Cm-242	2.15E+16	2.98E+16
30	Te-129m	1.18E+17	1.48E+17 ⁽³⁾	60	Cm-244	1.26E+15	1.75E+15

 Table F.3-3

 Comparison of PINGP MACCS2 Core Inventory and Sample Problem A

(1) Core inventory obtained from MACCS2 Sample Problem A, adjusted to account for the PINGP power level

(2) MACCS2 allows up to 60 nuclides input

(3) PINGP USAR Appendix D, Rev. 18 Table D.1-1 provides 20 significant nuclide core inventories. These values are converted from Curies to Becquerels (3.7E10 bq/ci) for input into MACCS2. The remaining 40 nuclides inventories are based on Sample Problem A, adjusted to account for the PINGP power level, and increased by the average increase over the Sample Problem A inventory of the 20 PINGP specific nuclides.

MACCS2 Release Categories	PINGP Release Categories ⁽³⁾
1-Xe/Kr	Noble Gases
2-1	Csl
3-Cs	CsOH
4-Te	TeO2 (Sb ⁽¹⁾ & Te2 ⁽²⁾ are included)
5-Sr	SrO
6-Ru(Mo)	MoO2 (Mo is in Ru MACCS category)
7-La	La2O3
8-Ce	CeO2 (UO2 ⁽²⁾ are included)
9-Ba	BaO

Table F.3-4 MACCS2 Release Categories vs. PINGP Release Categories

(1)

(2)

The largest release fraction of the TeO2 and Sb category is used These release fractions are typically negligible. Fission product groups from Table F.3-6 are grouped into Release Categories for input into (3) MACCS2.

Case	Release Category	NMC Release Class(es) ⁽¹⁾	Representative Case Description	Tcd ⁽²⁾ (Hrs)	Tvf ⁽³⁾ (Hrs)	Tcf ⁽⁴⁾ (Hrs)	Tend ⁽⁵⁾ (Hrs)	Noble Gas Fraction	Csl ⁽⁶⁾ Fraction
1	H-XX-X	1X-XX-X 1L-XX-X 1H-XX-X	Core Damage, No Containment Failure (containment leakage only); No Rx Vessel Failure -or- Rx Vessel Failure at Low Pressure -or- Rx Vessel Failure at High Pressure	2.54	4.00	N/A	48	1.00E-03	3.00E-06
2	H-H2-E	1Н-СІ-Е 1Н-Н2-Е	Core Damage, Rx Vessel Failure at High Pressure, Early Containment Failure Due to Containment Isolation Failure -or- Overpressure Due to Hydrogen Combustion (or DCH, In-Vessel/Ex-Vessel Steam Explosions, etc.)	2.54	3.99	3.99	48	6.60E-01	1.80E-02
3	L-H2-E	1L-Н2-Е 1X-Н2-Е	Core Damage, Early Containment Failure on Overpressure Due to Hydrogen Combustion (or DCH, In- Vessel/Ex-Vessel Steam Explosions, etc.; Rx Vessel Failure at Low Pressure -or- No Rx Vessel Failure	7.40	9.01	9.01	48	7.50E-01	2.30E-02
4	L-CI-E	1L-CI-E 1X-CI-E	Core Damage, Early Containment Failure Due to Containment Isolation Failure; No Rx Vessel Failure -or- Rx Vessel Failure at Low Pressure	7.79	9.38	N/A	48	6.90E-01	3.30E-02
5	H-OT-L	1H-OT-L	Core Damage, Rx Vessel Failure at High Pressure, Late Containment Failure on Overtemperature or Overpressure	2.54	4.00	40.00	64	9.10E-01	6.00E-04
6	L-CC-L	1L-CC-L	Core Damage, Rx Vessel Failure at Low RCS Pressure, Late Containment Failure due to Core Concrete Interaction	0.27	0.81	40.00	64	1.00E+00	1.80E-03
7	H-DH-L	1H-DH-L	Core Damage, Rx Vessel Failure at High Pressure, Late Containment Failure on Overpressure Due to Failure to Remove Decay Heat	2.54	3.99	40.00	64	1.00E+00	6.00E-05
8	L-DH-L	1L-DH-L	Core Damage, Rx Vessel Failure at Low Pressure, Late Containment Failure on Overpressure Due to Failure to Remove Decay Heat	7.17	9.96	40.00	64	1.00E+00	3.00E-05

 Table F.3-5

 Representative MAAP Level 2 Case Descriptions and Key Event Timings

	Representative MAAP Level 2 Case Descriptions and Key Event Timings										
Case	Release Category	NMC Release Class(es) ⁽¹⁾	Representative Case Description	Tcd ⁽²⁾ (Hrs)	Tvf ⁽³⁾ (Hrs)	Tcf ⁽⁴⁾ (Hrs)	Tend ⁽⁵⁾ (Hrs)	Noble Gas Fraction	Csl ⁽⁶⁾ Fraction		
9	SGTR	1GEH 1GLH 1L-SR-E	Early Core Damage -or- Late Core Damage from Steam Generator Tube Rupture, Containment Bypass (RCS at High Pressure) -or- Pressure- or Temperature-Induced SGTR	24.12	26.31	N/A	48	9.60E-01	3.50E-01		
10	ISLOCA	1ISLOCA	Early Core Damage at High or Low Pressure with Containment Bypass from Intersystem LOCA	0.38	0.86	N/A	48	1.00E+00	7.60E-01		

 Table F.3-5 (Continue)

 Representative MAAP Level 2 Case Descriptions and Key Event Timing

Notes to Table F.3-5

⁽¹⁾ Unit 2 CETs and release categories are identical except for a "2" designator in the first character of each name

 $^{(2)}$ Tcd - Time of core damage (maximum core temperature > 1800°F)

⁽³⁾ Tvf - Time of vessel breach

⁽⁴⁾Tcf – Time of containment failure

 $^{(5)}$ Tend – Time at end of run

⁽⁶⁾CsI – Cesium Iodide release

		Release Category									
	H-XX-X	H-H2-E	L-H2-E	L-CI-E	H-OT-L	L-CC-L	H-DH-L	L-DH-L	SGTR	ISLOCA	
Bin Frequency											
Run Duration	48 hr	48 hr	48 hr	48 hr	64 hr	64 hr	64 hr	64 hr	48 hr	48 hr	
Time after Scram when General Emergency is declared (3)	2.6 hr	2.6 hr	7.7 hr	8.1 hr	2.6 hr	.7 hr	2.6 hr	7.5 hr	24.1 hr	.8 hr	
Fission Product Group:											
1) Noble											
Total Plume 1 Release Fraction	1.00E-03	6.60E-01	7.50E-01	6.90E-01	9.10E-01	1.00E+00	1.00E+00	1.00E+00	9.60E-01	1.00E+00	
Start of Plume 1 Release (hr)	2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80	
End of Plume 1 Release (hr)	48.00	4.00	9.00	10.00	40.00	40.00	40.00	40.00	26.00	0.80	
Total Plume 2 Release Fraction ²											
Start of Plume 2 Release (hr)											
End of Plume 2 Release (hr)											
2) Csl											
Total Plume 1 Release Fraction	3.00E-06	1.80E-02	2.30E-02	3.30E-02	6.00E-04	1.80E-03	6.00E-05	3.00E-05	3.50E-01	7.60E-01	
Start of Plume 1 Release (hr)	2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80	
End of Plume 1 Release (hr)	10.00	4.00	9.00	10.00	64.00	40.00	40.00	40.00	26.00	0.80	
Total Plume 2 Release Fraction ²						4.00E-03		5.50E-05			
Start of Plume 2 Release (hr)						40.00		40.00			
End of Plume 2 Release (hr)						64.00		64.00			
3) TeO2											
Total Plume 1 Release Fraction	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-05	0.00E+00	2.00E-10	0.00E+00	5.00E-06	
Start of Plume 1 Release (hr)						40.00		40.00		2.00	
End of Plume 1 Release (hr)						40.00		40.00		2.00	
Total Plume 2 Release Fraction ²											
Start of Plume 2 Release (hr)											
End of Plume 2 Release (hr)											

Table F.3-6Prairie Island Source Term Summary

		Release Category								
	H-XX-X	H-H2-E	L-H2-E	L-CI-E	H-OT-L	L-CC-L	H-DH-L	L-DH-L	SGTR	ISLOCA
4) SrO										
Total Plume 1 Release Fract	on 1.50E-08	1.50E-04	2.00E-05	2.50E-05	3.00E-07	5.00E-06	5.00E-07	1.00E-08	3.00E-04	2.50E-02
Start of Plume 1 Release (hr) 2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80
End of Plume 1 Release (hr) 10.00	4.00	9.00	10.00	40.00	40.00	40.00	40.00	26.00	2.00
Total Plume 2 Release Fraction	on ²									
Start of Plume 2 Release (hr)									
End of Plume 2 Release (hr)									
5) MoO2										
Total Plume 1 Release Fract	on 8.00E-07	8.00E-03	2.80E-04	7.00E-05	2.00E-05	1.60E-07	2.00E-05	3.00E-08	2.00E-04	8.00E-04
Start of Plume 1 Release (hr) 2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80
End of Plume 1 Release (hr) 10.00	4.00	9.00	10.00	40.00	40.00	40.00	40.00	26.00	0.80
Total Plume 2 Release Fraction	on ²									
Start of Plume 2 Release (hr)									
End of Plume 2 Release (hr)									
6) CsOH										
Total Plume 1 Release Fract	on 3.00E-06	1.80E-02	2.30E-02	3.30E-02	8.00E-04	4.00E-03	4.00E-05	7.00E-05	3.30E-01	7.60E-01
Start of Plume 1 Release (hr) 2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80
End of Plume 1 Release (hr) 10.00	4.00	9.00	10.00	64.00	40.00	40.00	40.00	26.00	0.80
Total Plume 2 Release Fraction	on ²					1.20E-02		1.50E-04		
Start of Plume 2 Release (hr)					40.00		40.00		
End of Plume 2 Release (hr)					64.00		64.00		

 Table F.3-6

 Prairie Island Source Term Summary (Continued)

		1									
					i	Releas	e Category	1	1		
		H-XX-X	H-H2-E	L-H2-E	L-CI-E	H-OT-L	L-CC-L	H-DH-L	L-DH-L	SGTR	ISLOCA
7) BaO											
	Total Plume 1 Release Fraction	1.50E-07	1.80E-03	1.50E-04	2.00E-04	3.00E-06	4.00E-06	5.00E-06	1.50E-07	2.00E-03	1.40E-02
	Start of Plume 1 Release (hr)	2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80
	End of Plume 1 Release (hr)	10.00	4.00	9.00	10.00	40.00	40.00	40.00	40.00	26.00	2.00
	Total Plume 2 Release Fraction ²										
	Start of Plume 2 Release (hr)										
	End of Plume 2 Release (hr)										
8) La2O3											
	Total Plume 1 Release Fraction	7.00E-07	4.50E-04	3.00E-07	1.00E-02	4.00E-07	2.00E-06	1.00E-06	2.00E-05	6.00E-04	1.10E-01
	Start of Plume 1 Release (hr)	2.50	4.00	9.00	9.00	40.00	1.00	40.00	40.00	26.00	0.80
	End of Plume 1 Release (hr)	10.00	4.00	9.00	10.00	40.00	1.00	40.00	40.00	26.00	0.80
	Total Plume 2 Release Fraction ²						3.80E-06				
	Start of Plume 2 Release (hr)						40.00				
	End of Plume 2 Release (hr)						64.00				
9) CeO2											
	Total Plume 1 Release Fraction	7.00E-07	4.50E-04	1.20E-06	1.00E-02	4.00E-07	2.00E-06	1.00E-06	2.00E-05	6.50E-04	1.10E-01
	Start of Plume 1 Release (hr)	2.50	4.00	9.00	9.00	40.00	1.00	40.00	40.00	26.00	0.80
	End of Plume 1 Release (hr)	10.00	4.00	9.00	10.00	40.00	1.00	40.00	40.00	26.00	0.80
	Total Plume 2 Release Fraction ²						6.50E-06				
	Start of Plume 2 Release (hr)						40.00				
	End of Plume 2 Release (hr)						40.00				

Table F.3-6 Prairie Island Source Term Summary (Continued)

		Release Category									
	H-XX-X	H-H2-E	L-H2-E	L-CI-E	H-OT-L	L-CC-L	H-DH-L	L-DH-L	SGTR	ISLOCA	
10) Sb											
Total Plume 1 Release Fraction	1 2.80E-06	2.10E-02	2.50E-03	3.50E-03	1.50E-03	8.00E-03	1.00E-04	2.00E-05	6.80E-02	3.40E-01	
Start of Plume 1 Release (hr) 2.50	4.00	9.00	8.00	40.00	40.00	40.00	40.00	24.00	0.80	
End of Plume 1 Release (hr) 10.00	4.00	9.00	10.00	64.00	40.00	40.00	40.00	26.00	4.00	
Total Plume 2 Release Fraction	2					2.00E-02	5.00E-04	5.50E-05			
Start of Plume 2 Release (hr)					40.00	40.00	40.00			
End of Plume 2 Release (hr)					64.00	64.00	64.00			
11) Te2											
Total Plume 1 Release Fraction	n 0.00E+00	0.00E+00	1.20E-04	8.00E-05	0.00E+00	4.00E-03	0.00E+00	1.50E-07	2.00E-03	3.60E-01	
Start of Plume 1 Release (hr)		9.00	9.00		40.00		40.00	28.00	0.80	
End of Plume 1 Release (hr)		9.00	10.00		40.00		40.00	30.00	2.00	
Total Plume 2 Release Fraction	2							3.00E-07			
Start of Plume 2 Release (hr)							40.00			
End of Plume 2 Release (hr)							64.00			
12) UO2											
Total Plume 1 Release Fraction	n 0.00E+00	0.00E+00	6.00E-09	4.00E-09	0.00E+00	2.00E-08	0.00E+00	0.00E+00	1.00E-07	7.00E-05	
Start of Plume 1 Release (hr)		9.00	9.00		40.00			28.00	0.80	
End of Plume 1 Release (hr)		9.00	10.00		40.00			30.00	2.00	
Total Plume 2 Release Fraction	2										
Start of Plume 2 Release (hr)										
End of Plume 2 Release (hr)										

Table F.3-6 Prairie Island Source Term Summary (Continued)

(1) Puff releases are denoted in the table by those entries with equivalent start and end times.

(2) Plume 2 release fraction is cumulative and includes the initial plume 1 release fraction
 (3) General Emergency declaration based on time of core damage per Prairie Island EAL Reference Manual, Rev 0

	MACC32 Dase Case Medil Results											
Source Term	Release Category	Dose (p-sv) ⁽¹⁾	Offsite Economic Cost (\$)	Unit 1 Freq. (/yr)	Unit 1 Dose- Risk (p-rem/yr) ⁽¹⁾	Unit 1 OECR (\$/yr)	Unit 2 Freq. (/yr)	Unit 2 Dose- Risk (p-rem/ yr) ⁽¹⁾	Unit 2 OECR (\$/yr)			
1	H-XX-X	1.75E+01	1.35E+02	7.28E-06	1.27E-02	9.83E-04	8.52E-06	1.49E-02	1.15E-03			
2	H-H2-E	2.12E+04	1.05E+10	2.32E-11	4.91E-05	2.43E-01	2.32E-11	4.91E-05	2.43E-01			
3	L-H2-E	2.15E+04	1.15E+10	5.61E-08	1.21E-01	6.46E+02	6.52E-08	1.40E-01	7.50E+02			
4	L-CL-E	3.40E+04	1.85E+10	8.40E-10	2.86E-03	1.55E+01	9.17E-10	3.12E-03	1.70E+01			
5	H-OT-L	2.63E+03	4.74E+07	4.89E-09	1.29E-03	2.32E-01	5.87E-09	1.54E-03	2.78E-01			
6	L-CC-L	2.26E+04	2.97E+09	2.82E-07	6.37E-01	8.37E+02	3.39E-07	7.67E-01	1.01E+03			
7	H-DH-L	2.11E+02	1.02E+06	3.09E-08	6.53E-04	3.16E-02	3.14E-08	6.63E-04	3.21E-02			
8	L-DH-L	6.68E+02	7.89E+06	1.92E-06	1.28E-01	1.52E+01	1.97E-06	1.32E-01	1.55E+01			
9	SGTR	5.62E+04	4.32E+10	2.33E-07	1.31E+00	1.01E+04	1.17E-06	6.58E+00	5.06E+04			
10	ISLOCA	2.26E+05	6.31E+10	3.22E-08	7.28E-01	2.03E+03	3.22E-08	7.28E-01	2.03E+03			
FREQUEN	NCY WEIGHTE	D TOTALS		9.85E-06	2.94E+00	1.36E+04	1.21E-05	8.37E+00	5.44E+04			

Table F.3-7MACCS2 Base Case Mean Results

⁽¹⁾ MAACS2 provides dose results in Sieverts (sv). The MAACS2 result is converted to rem (1 sv = 100 rem) for the Dose-Risk results to be used in Section F.4.

		U	Table F.5-1a Init 1 Level 1 Importance List Review	
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
0SLOCAXXCDY	1.90E-02	1.62	OPERATOR FAILS TO PERFORM RCS COOLDOWN AND DEPRESSURIZATION ON SMALL LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)
0HRECIRCC2Y	5.30E-02	1.588	OPERATOR FAILS TO INITIATE HH RECIRC COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Install control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)
1RCPSL	1.00E+00	1.352	RCP SEAL LOCA FLAG	This flag identifies the importance of all RCP seal LOCA contributors. RCP seal LOCA failures will be addressed elsewhere in this table. (No specific SAMA identified)
I-1-SLOCAA	1.80E-03	1.326	LOOP A SMALL LOCA INITIATOR	This initiator identifies all Loop A small LOCA initiating events and is based on industry data. The specific contributors that make SLOCAs important are addressed individually in this table. (No specific SAMA identified)
I-1-SLOCAB	1.80E-03	1.326	LOOP B SMALL LOCA INITIATOR	This initiator identifies all Loop B small LOCA initiating events and is based on industry data. The specific contributors that make SLOCAs important are addressed individually in this table. (No specific SAMA identified)

Table F.5-1a Unit 1 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
I-LOCL	1.00E+00	1.22	LOSS OF COOLING WATER INITIATING EVENT FREQUENCY	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		
1LVM32060XN	3.00E-03	1.141	VALVE MV-32060 FAILS TO OPEN	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. However, operator recovery actions may only provide limited benefit due to the high uncertainty involved. Consider installing air operated valve in parallel to provide continuous suction source of water from RWST. (SAMA 3)		

			Table F.5-1a	
		Unit 1 L	evel 1 Importance List Review (Continu	led)
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
I-LOOP	3.20E-02	1.118	LOOP INITIATOR FREQUENCY	The importance of the LOOP initiator flag provides limited information about plant risk given that the LOOP category is broad and includes several different contributors. These contributors are represented by other events in this importance list that better define specific failures that can be investigated to identify means of reducing plant risk. No credible means of reducing the PI LOOP frequency have been identified. Implementation of the Maintenance Rule is considered to address equipment reliability issues such that no measurable improvement is likely available based on enhancing maintenance practices. It may be possible to improve switchyard work planning and/or practices, but a reliable means of quantifying the impact of these types of changes is not available. (No specific SAMA identified)
0SMP11XXXYR	9.55E-02	1.112	11 CL PUMP FAILS TO RUN (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)

			Table F.5-1a	
			evel 1 Importance List Review (Continu	
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
0SMP21XXXYR	9.55E-02	1.112	21 CL PUMP FAILS TO RUN (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)
0FAILROSP1Y	2.88E-01	1.094	OPERATOR FAILS TO RESTORE OFFSITE POWER 1 HOUR AFTER SBO	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP by prolonging the time the plant can operate without offsite AC power. (SAMA 5) In addition, the ability to cross-tie emergency 4kV AC buses would allow the operators to power functional equipment in divisions where the corresponding EDG has failed. (SAMA 7)
0SPD22XXXXR	3.91E-02	1.094	22 CL PUMP FAILS TO RUN (DIESEL DRIVER)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)

			Table F.5-1a			
Unit 1 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0FAILROSP6Y	1.71E-01	1.065	OPERATOR FAILS TO RESTORE OFFSITE POWER WITH OA7 SUCCESS AND HI FLOW RCP SEAL LE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP by prolonging the time the plant can operate without offsite AC power. (SAMA 5)		
				The ability to cross-tie emergency 4kV AC buses would allow the operators to power functional equipment in divisions where the corresponding EDG has failed. (SAMA 7)		
				Installation of a swing or SBO diesel would provide increased defense in depth and could be considered for LOOP conditions. (SAMA 8)		
				Consider enhancing the PRA to credit recovery of operator failure based on TSC and EOF oversight. (No specific SAMA identified)		
1NOCONLOCA	1.00E+00	1.052	NO CONSEQUENTIAL LOCA FLAG	This event is informational and categorizes those small LOCAs that do not involve stuck open relief valves. (No specific SAMA identified)		
0SPD12XXXXR	3.91E-02	1.049	12 CL PUMP FAILS TO RUN (DIESEL DRIVER)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		

Probability		evel 1 Importance List Review (Contin	ued)
Frobability	Risk Reduction Worth	Description	Potential SAMAs
9.10E-02	1.041	LOSS OF MFW INITIATING EVENT FREQUENCY	This initiating event frequency is based on plant operating experience and takes into account IPE recommendation no. 2 (see Section F.5.1.5). Equipment performance and reliability could be enhanced if key components were added to the MR. (No specific SAMA identified)
5.64E-02	1.04	D5 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel of a different design would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)
4.80E-03	1.035	11 SAFEGUARDS SCREENHOUSE ROOF EXHAUST FAN FAILS TO START	 Failure of safeguards screenhouse roof exhaust fans fails the associated cooling water pumps. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth without having to rely on the opposite train of cooling water. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (see SAMA 2) Further analysis such as room heatup calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected
_	5.64E-02	Worth 9.10E-02 1.041 5.64E-02 1.04	Worth9.10E-021.041LOSS OF MFW INITIATING EVENT FREQUENCY5.64E-021.04D5 DIESEL GENERATOR FAILS TO RUN4.80E-031.03511 SAFEGUARDS SCREENHOUSE ROOF EXHAUST FAN FAILS TO

			Table F.5-1a	
Event Name	Probability	Unit 1 L Risk Reduction Worth	evel 1 Importance List Review (Continu Description	red) Potential SAMAs
1LBI112BXXE	7.46E-04	1.031	BISTABLE 1-LC-112BX FAILS TO FUNCTION	Failure of this level controller disables the RWST auto transfer feature, rendering the RWST unavailable as an alternate water source to the charging pumps. Alternate means of RWST transfer could be developed, either procedurally or via plant modification. For example, parallel level transmitter signal path that could prevent a spurious failure of any one signal rendering suction unavailable to the charging pumps. A 2 out of 2 level control logic would be required for auto transfer of charging pump suction. (SAMA 10)
1LBI141BXXE	7.46E-04	1.031	BISTABLE 1-LC-141BX FAILS TO FUNCTION	Failure of this level controller disables the RWST auto transfer feature, rendering the RWST unavailable as an alternate water source to the charging pumps. Alternate means of RWST transfer could be developed, either procedurally or via plant modification. For example, parallel level transmitter signal path that could prevent a spurious failure of any one signal rendering suction unavailable to the charging pumps. A 2 out of 2 level control logic would be required for auto transfer of charging pump suction. (SAMA 10)
0HRECIRCXXY	9.50E-03	1.03	OPERATOR FAILS TO INITATE HIGH HEAD RECIRC. FOR A MEDIUM LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)

	Table F.5-1a Unit 1 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
I-1-LOCC	1.00E+00	1.03	LOSS OF COMPONENT COOLING WATER INITIATING EVENT FREQUENCY	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. A release path will be required since FPS is not a closed system. (SAMA 12)			
0RRECIRCXXY	6.80E-02	1.029	OPERATOR FAILS TO INITIATE LOW HEAD RECIRC. WHEN REQUIRED	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)			
2AG7D6XXXXR	5.64E-02	1.029	D6 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel of a different design would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)			
0SDCXXXXCCR	1.66E-03	1.026	12, 22 CL PUMPS FAIL TO RUN DUE TO CCF OF DIESEL DRIVERS	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)			

			Table F.5-1a	
Event Name	Probability	Unit 1 L Risk Reduction Worth	evel 1 Importance List Review (Continu Description	red) Potential SAMAs
0SE211RFCCS	2.03E-04	1.025	11, 21 SAFEGUARDS SCREENHOUSE ROOF EXHAUST FANS FAIL TO START DUE TO CCF	Failure of safeguards screenhouse roof exhaust fans fails the associated cooling water pumps. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth without having to rely on the opposite train of cooling water. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (see SAMA 2) Further analysis such as room heatup
				calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected areas, for example, portable fans, open doors, etc. (SAMA 9)
0SPM121XXPM	1.39E-02	1.025	121 CL PUMP UNAVAILABLE DUE TO PREVENTIVE MAINTENANCE	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)

Table F.5-1a Unit 1 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
1AG5D2XXXXR	4.63E-02	1.025	D2 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel of a different design would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)		
I-1-TR1	7.00E-01	1.025	NORMAL TRANSIENT INITIATING EVENT FREQUENCY	The importance of the Normal Transient initiator provides limited information about plant risk given that the transient category is broad and includes several different contributors. These contributors are represented by other events in this importance list that better define specific failures that can be investigated to identify means of reducing plant risk. No credible means of reducing the PI Normal Transient frequency have been identified. Implementation of the Maintenance Rule is considered to address equipment reliability issues such that no measurable improvement is likely available based on enhancing maintenance practices. It may be possible to improve BOP work planning and/or practices, but a reliable means of quantifying the impact of these types of changes is not available. (No specific SAMA identified)		

			Table F.5-1a	
Event Name	Probability	Unit 1 L Risk Reduction Worth	evel 1 Importance List Review (Continu Description	Potential SAMAs
0AB7FLDISLY	3.30E-03	1.024	OPERATOR FAILS TO ISOLATE AUXILIARY BUILDING ZONE 7 FLOODING SOURCE	This initiator represents an internal flooding scenario that disables various safety-related components. Mitigation of this event can be accomplished via an automatic sump pump system to remove water if the operator fails to isolate Zone 7 of the Aux. Bldg. (SAMA 13) Consider installing waterproof (EQ) equipment (valves / level sensors) capable of automatically isolating the flooding source. (SAMA 6)
				Consider segregating this zone into 2 compartments to reduce the impact of a flood on both trains of SI and RHR. (SAMA 6a)
1AG5D1XXXXR	4.63E-02	1.024	D1 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel of a different design would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)
0SPCHZXYCCR	3.50E-03	1.021	11 AND 21 HORIZONTAL CL PUMPS FAIL TO RUN DUE TO CCF (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)

Table F.5-1a Unit 1 Level 1 Importance List Review (Continued)							
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
0SDM34137XN	2.88E-03	1.02	CD-34137 FAILS TO OPEN (11 SAFEGUARDS SCREENHOUSE ROOF EXHAUST DAMPER)	Failure of safeguards screenhouse roof exhaust fans fails the associated cooling water pumps. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth without having to rely on the opposite train of cooling water. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)			
1NOSBO	1.00E+00	1.02	NO STATION BLACKOUT FLAG	This flag provides information only on the nature of the cutset that leads to core damage (CD). The only information conveyed is that the accident sequence does not involve SBO. (No specific SAMA identified)			

	Table F.5-1b Unit 2 Level 1 Importance List Review						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
0SLOCAXXCDY	1.90E-02	1.533	OPERATOR FAILS TO PERFORM RCS COOLDOWN AND DEPRESSURIZATION ON SMALL LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)			
0HRECIRCC2Y	5.30E-02	1.43	OPERATOR FAILS TO INITIATE HH RECIRC COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION.	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Install control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)			
I-2-SLOCAA	1.80E-03	1.287	LOOP A SMALL LOCA INITIATOR	This initiator identifies all Loop A small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)			
I-2-SLOCAB	1.80E-03	1.287	LOOP B SMALL LOCA INITIATOR	This initiator identifies all Loop B small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)			
2RCPSL	1.00E+00	1.279	RCP SEAL LOCA FLAG	This flag identifies the importance of all RCP seal LOCA contributors. RCP seal LOCA failures will be addressed elsewhere in this table. (No specific SAMA identified)			

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
I-LOCL	1.00E+00	1.172	LOSS OF COOLING WATER INITIATING EVENT FREQUENCY	Failure of the cooling water system may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)			
2LVM32062XN	3.00E-03	1.113	VALVE MV-32062 FAILS TO OPEN	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. However, operator recovery actions may only provide limited benefit due to the high uncertainty involved. Consider installing air operated valve in parallel to provide continuous suction source of water from RWST. (SAMA 3)			

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
I-LOOP	3.20E-02	1.106	LOOP INITIATOR FREQUENCY	The importance of the LOOP initiator flag provides limited information about plant risk given that the LOOP category is broad and includes several different contributors. These contributors are represented by other events in this importance list that better define specific failures that can be investigated to identify means of reducing plant risk. No credible means of reducing the PI LOOP frequency have been identified. Implementation of the Maintenance Rule is considered to address equipment reliability issues such that no measurable improvement is likely available based on enhancing maintenance practices. It may be possible to improve switchyard work planning and/or practices, but a reliable means of quantifying the impact of these types of changes is not available. (No specific SAMA identified)			
0SMP11XXXYR	9.55E-02	1.089	11 CL PUMP FAILS TO RUN (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)			

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SMP21XXXYR	9.55E-02	1.089	21 CL PUMP FAILS TO RUN (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		
0FAILROSP1Y	2.88E-01	1.084	OPERATOR FAILS TO RESTORE OFFSITE POWER 1 HOUR AFTER SBO	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP by prolonging the time the plant can operate without offsite AC power. (SAMA 5) Finally, the ability to cross-tie emergency 4kV AC buses would allow the operators to power functional equipment in divisions where the corresponding EDG has failed. (SAMA 7)		
0SGTRXXXCDY	9.20E-03	1.08	OPERATOR FAILS TO COOLDOWN AND DEPRESSURIZE RCS FOR A SGTR BEFORE SG OVERFILL	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)		

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
2RSTSUMPBXF	7.20E-03	1.078	CONTAINMENT SUMP B STRAINER PLUGS DUE TO DEBRIS	This event inhibits or prevents recirculation from the containment sump to the RCS during a small LOCA condition. A potential SAMA could address the source of debris and removal or reinforcement of any equipment such that the likelihood of clogging is reduced. In addition, consideration of a different type of strainer, or multiple strainers, could provide added reliability of recirculation. (SAMA 24)		
2NOCONLOCA	1.00E+00	1.077	NO CONSEQUENTIAL LOCA FLAG	This event is informational and categorizes those small LOCAs that do not involve stuck open relief valves. (No specific SAMA identified)		
0SPD22XXXXR	3.91E-02	1.075	22 CL PUMP FAILS TO RUN (DIESEL DRIVER)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		

			Table F.5-1b				
Unit 2 Level 1 Importance List Review (Continued)							
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
0FAILROSP6Y	1.71E-01	1.057	OPERATOR FAILS TO RESTORE OFFSITE POWER WITH OA7 SUCCESS AND HI FLOW RCP SEAL LE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP by prolonging the time the plant can operate without offsite AC power. (SAMA 5) The ability to cross-tie emergency 4kV AC buses would allow the operators to power functional equipment in divisions where the corresponding EDG has failed. (SAMA 7) Installation of a swing or SBO diesel would provide increased defense in depth and could be			
I-2-SGTRA	4.50E-03	1.049	RUPTURE INITIATING EVENT FREQ.	considered for LOOP conditions. (SAMA 8) This initiator identifies all unit 2A steam generator tube rupture initiating events and is based on industry data. Therefore, mitigative actions will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)			
I-2-SGTRB	4.50E-03	1.049	22 SG STEAM GENERATOR TUBE RUPTURE INITIATING EVENT FREQ.	This initiator identifies all unit 2B steam generator tube rupture initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)			

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)							
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs				
2SGTRRLFFTC	5.00E-01	1.045	SG RELIEF FAILS TO CLOSE FOLLOWING SG OVERFILL (SGTR)	Reinforce operator training to isolate PORVs when symptoms reveal valves have failed to re- seat. This reduces the amount of radioactivity released to the environment. Consider replacing with more reliable or robust valves to better isolate following lifting. (SAMA 14)				
2SGTRRLFSUC	5.00E-01	1.045	SUCCESSFUL SG RELIEF VALVE CLOSURE FOLLOWING SG OVERFILL (SGTR)	This event represents successful closure of SG relief valve following SG overfill. See above for additional information. (No specific SAMA identified)				
2AG7D5XXXXR	5.64E-02	1.044	D5 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)				
0SGTRXXEC3Y	5.80E-03	1.042	OPERATOR FAILS IN USE OF ECA- 3.1/3.2 FOLLOWING SG OVERFILL (SGTR)	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)				
0SPD12XXXXR	3.91E-02	1.041	12 CL PUMP FAILS TO RUN (DIESEL DRIVER)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)				

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
I-2-TR4	9.10E-02	1.035	LOSS OF MFW INITIATING EVENT FREQUENCY	This initiating event frequency is based on plant operating experience and takes into account IPE recommendation no. 2 (see Section F.5.1.5). Equipment performance and reliability could be enhanced if key components were added to the MR. (No specific SAMA identified)			
0EOPHXCONXY	2.30E-02	1.034	OPERATOR FAILS TO LINE UP OTHER UNIT MDAFW PUMP	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installing a spare turbine-driven AFW pump per unit. This would increase reliability of AFW system for each unit. The new pumps would be dedicated to the corresponding unit with no cross-tie capability, thereby eliminating operator error for this action. Note - some operating PWRs have (3) AFW pumps per unit, which provide greater redundancy and defense in depth. (SAMA 18)			
I-2-LODCA	8.80E-04	1.034	LOSS OF TRAIN A DC INITIATOR FREQUENCY	Consider a portable DC power source, such as a rectifier or skid-mounted battery pack that could be used for restoring DC control power to vital components, such as breakers, solenoid valves, etc. (SAMA 15)			

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
2RVM32169XN	3.00E-03	1.032	MV-32169 FAILS TO OPEN	 Failure of MV-32169 to open disables RHR Loop B return. Proper operation of this valve is most likely tracked via the MR. Consider replacing this MOV with a fail closed (FC) air-operated valve for improved reliability. This would eliminate CCF for inboard MOVs that currently exist on this flowpath. (SAMA 16) Alternatively, a bypass flowpath could be installed around inboard RHR Loop B return valves for improved defense in depth. (SAMA 17) 		
2AG7D6XXXXR	5.64E-02	1.031	D6 DIESEL GENERATOR FAILS TO RUN	Installation of a swing or SBO diesel would provide increased defense in depth and could be considered for loss of onsite emergency AC power sources. (SAMA 8)		
2EPT22AFTXR	2.01E-02	1.031	22 AF PUMP FAILS TO RUN (TURBINE DRIVER PORTION)	Consider installing a spare turbine-driven AFW pump per unit. This would increase reliability of AFW system for each unit. The new pumps would be dedicated to the corresponding unit with no cross-tie capability, thereby eliminating operator error for this action. Note - some operating PWRs have (3) AFW pumps per unit, which provide greater redundancy and defense in depth. (SAMA 18)		

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SED11RFEXS	4.80E-03	1.028	11 SAFEGUARDS SCREENHOUSE ROOF EXHAUST FAN FAILS TO START	 Failure of safeguards screenhouse roof exhaust fans fails the associated cooling water pumps. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth without having to rely on the opposite train of cooling water. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2) Further analysis such as room heatup calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected areas, for example, portable fans, open doors, etc. 		
2LBI112BXXE	7.46E-04	1.025	BISTABLE 2-LC-112BX FAILS TO FUNCTION	 (SAMA 9) Failure of this level controller disables the RWST auto transfer feature, rendering the RWST unavailable as an alternate water source to the charging pumps (in the event cooling water is lost). Alternate means of RWST transfer could be developed, either procedurally or via plant modification (SAMA 10). Auto transfer logic improvements, such as improved level controller reliability could also be 		

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
2LBI141BXXE	7.46E-04	1.025	BISTABLE 2-LC-141BX FAILS TO FUNCTION	Failure of this level controller disables the RWST auto transfer feature, rendering the RWST unavailable as an alternate water source to the charging pumps (in the event cooling water is lost). Alternate means of RWST transfer could be developed, either procedurally or via plant modification (SAMA 10). Auto transfer logic improvements, such as improved level controller reliability could also be considered. (SAMA 11)		
I-2-LOCC	1.00E+00	1.025	LOSS OF COMPONENT COOLING WATER INITIATING EVENT FREQUENCY	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. A release path will be required since FPS is not a closed system. (SAMA 12)		
0HRECIRCXXY	9.50E-03	1.024	OPERATOR FAILS TO INITATE HIGH HEAD RECIRC. FOR A MEDIUM LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)		

		Unit 2	Table F.5-1b Level 1 Importance List Review (Contine	ued)
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
I-2-TR1	7.00E-01	1.024	NORMAL TRANSIENT INITIATING EVENT FREQUENCY	The importance of the Normal Transient initiator provides limited information about plant risk given that the transient category is broad and includes several different contributors. These contributors are represented by other events in this importance list that better define specific failures that can be investigated to identify means of reducing plant risk. No credible means of reducing the PI Normal Transient frequency have been identified. Implementation of the Maintenance Rule is considered to address equipment reliability issues such that no measurable improvement is likely available based on enhancing maintenance practices. It may be possible to improve BOP work planning and/or practices, but a reliable means of quantifying the impact of these types of changes is not available. (No specific SAMA identified)
0RRECIRCXXY	6.80E-02	1.023	OPERATOR FAILS TO INITIATE LOW HEAD RECIRC. WHEN REQUIRED	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)
I-2-MLOCAA	1.50E-05	1.023	LOOP A MEDIUM LOCA INITIATOR	This initiator identifies all Loop A medium LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
I-2-MLOCAB	1.50E-05	1.023	LOOP B MEDIUM LOCA INITIATOR	This initiator identifies all Loop B medium LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)			
0FDBLDOPATY	1.70E-01	1.022	OPERATOR FAIL TO ESTABLISH BLEED & FEED COND. ON RESTORING FEEDWATER	This is a conditional operator action failure probability that is dependent on failure of an earlier operator action. Restoration of AFW would render this event unnecessary. Therefore, consider installing a spare turbine-driven AFW pump per unit. This would increase reliability of AFW system for each unit. The new pumps would be dedicated to the corresponding unit with no cross-tie capability, thereby eliminating operator error for this action. Note - some operating PWRs have (3) AFW pumps per unit, which provide greater redundancy and defense in depth. (SAMA 18)			
0SDCXXXXCCR	1.66E-03	1.022	12, 22 CL PUMPS FAIL TO RUN DUE TO CCF OF DIESEL DRIVERS	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)			

	Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0AB7FLDISLY	3.30E-03	1.02	OPERATOR FAILS TO ISOLATE AUXILIARY BUILDING ZONE 7 FLOODING SOURCE	This initiator represents an internal flooding scenario that disables various safety-related components. Mitigation of this event could be accomplished via an automatic sump pump system to remove water if the operator fails to isolate Zone 7 of the Aux. Bldg. (SAMA 13)		
0SE211RFCCS	2.03E-04	1.02	11, 21 SAFEGUARDS SCREENHOUSE ROOF EXHAUST FANS FAIL TO START DUE TO CCF	 Failure of safeguards screenhouse roof exhaust fans fails the associated cooling water pumps. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth without having to rely on the opposite train of cooling water. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2) Further analysis such as room heatup calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected areas, for example, portable fans, open doors, etc. (SAMA 9) 		

Table F.5-1b Unit 2 Level 1 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SPM121XXPM	1.39E-02	1.02	121 CL PUMP UNAVAILABLE DUE TO PREVENTIVE MAINTENANCE	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		

	Table F.5-2a Unit 1 Level 2 Importance List Review					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SLOCAXXCDY	1.90E-02	1.613	OPERATOR FAILS TO PERFORM RCS COOLDOWN AND DEPRESSURIZATION ON SMALL LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)		
I-1-ISLOCA	1.00E+00	1.579	INTERFACING SYSTEM LOCA INITIATING EVENT FREQUENCY	This initiator identifies all interfacing system LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)		
1NORVSTKOPN	8.35E-01	1.556	NO DEPRESSURIZATION DUE TO PORV/SRV STUCK OPEN DURING CYCLING	This event conveys information that the PORV did not fail to re-seat following pressure relief; therefore no failure mechanism involved. (No specific SAMA identified)		
1TISGTRPROB	5.53E-03	1.501	2-LOOP W PWR TEMPERATURE- INDUCED SGTR PROBABILITY	This basic event represents a phenomenological event for Level 2 accident scenarios. It is based on Westinghouse PWR analyses. No SAMA required.		
0HRECIRCC2Y	5.30E-02	1.281	OPERATOR FAILS TO INITIATE HH RECIRC COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION.	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of		
				ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)		
1HPIPERUP	4.00E-03	1.266	CONDITIONAL PROBABILITY OF LP PIPING RUPTURE WHEN EXPOSED TO RCS PRESSURE	This basic event represents a phenomenological event for Level 2 accident scenarios. (No specific SAMA identified)		

	Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
1SGTRECD	1.00E+00	1.227	SGTR SEQUENCES INVOLVING EARLY CORE DAMAGE	This flag identifies the importance of SGTR sequences that involve early core damage. Component failures will be addressed elsewhere in this table. (No specific SAMA identified)		
0SGTRXXCD1Y	5.00E-02	1.223	OPERATOR FAILS TO COOLDOWN AND DEPRESSURIZE RCS WITH SI FAILURE FOR A SGTR	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)		
I-1-SLOCAA	1.80E-03	1.146	LOOP A SMALL LOCA INITIATOR	This initiator identifies all Loop A small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)		
I-1-SLOCAB	1.80E-03	1.146	LOOP B SMALL LOCA INITIATOR	This initiator identifies all Loop B small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)		
1RVH32164XL	1.31E-04	1.105	MV-32164 (LP A HL TO RHR SUCTION) CATASTROPHIC LEAK (POWER TO VALVE REMOVED)	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)		

		Unit 1 Lov	Table F.5-2a el 2 Importance List Review (Continu	ied)
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
1RVH32230XL	1.31E-04	1.105	MV-32230 (LP B HL TO RHR SUCTION) CATASTROPHIC LEAK	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)
I-1-SGTRA	7.98E-04	1.102	11 SG STEAM GENERATOR TUBE RUPTURE INITIATING EVENT FREQ.	This initiator identifies SGTR initiating events for 11 / 12 SG and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)
I-1-SGTRB	7.98E-04	1.102	12 SG STEAM GENERATOR TUBE RUPTURE INITIATING EVENT FREQ.	This initiator identifies SGTR initiating events for 11 / 12 SG and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)
1RVM32165XL	2.63E-03	1.099	MV-32165 (LP A HL TO RHR SUCTION) FAILS TO REMAIN CLOSED	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)

	Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
1RVM32231XL	2.63E-03	1.099	MV-32231 (LP B HL TO RHR SUCTION) FAILS TO REMAIN CLOSED	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)		
1HVCSI95XXL	1.31E-03	1.092	CHECK VALVE SI-9-5 CATASTROPHIC LEAK	This check valve is in series with a second check valve (SI-9-3), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor- operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)		
1HVCSI96XXL	1.31E-03	1.092	CHECK VALVE SI-9-6 CATASTROPHIC INTERNAL LEAK	This check valve is in series with a second check valve (SI-9-4), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor- operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)		
1RCPSL	1.00E+00	1.088	RCP SEAL LOCA FLAG	This flag identifies the importance of all RCP seal LOCA contributors. RCP seal LOCA failures will be addressed elsewhere in this table. (No specific SAMA identified)		

Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs	
1HVCSI93XXL	1.31E-03	1.085	CHECK VALVE SI-9-3 CATASTROPHIC LEAK	This check valve is in series with a second check valve (SI-9-5), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)	
1HVCSI94XXL	1.31E-03	1.085	CHECK VALVE SI-9-4 CATASTROPHIC INTERNAL LEAK	This check valve is in series with a second check valve (SI-9-6), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor- operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)	
1PISGTRSECB	1.00E+00	1.084	PRESSURE-INDUCED SGTR PROBABILITY FOR MSLB/MFLB EVENTS WITH HIGH/DRY SG	This flag identifies pressure-induced SGTR scenarios due to high differential pressure across the SG tubes. Components related to this event will be addressed elsewhere in this table. (No specific SAMA identified)	

	Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
I-LOCL	1.00E+00	1.067	LOSS OF COOLING WATER INITIATING EVENT FREQUENCY	Failure of the cooling water system may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		
1PORVLOCA	1.00E+00	1.053	TRANSIENT INDUCED PORV LOCA FLAG	This flag identifies those scenarios whereby the PORV fails to re-seat after opening to provide pressure relief. Due to the importance of this event, a SAMA can be developed to make PORV more reliable thereby reducing failure frequency. (SAMA 21)		
OHRECIRCCMY	1.50E-01	1.052	OPERATOR FAILS TO INITIATE HH RECIRC FOR SLOCA COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)		
0PORVBLOCKY	5.00E-02	1.052	OPERATOR FAILS TO CLOSE BLOCK VALVE TO ISOLATE STUCK OPEN PORV	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)		

	Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SLOCAXCCDY	6.80E-02	1.051	OPERATOR FAILS TO COOLDOWN AND DEPRESSURIZE RCS COND. ON FAILURE TO ISOLATE PZR PORV	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)		
I-1-MSLBB-UP	4.41E-04	1.051	12 SG STEAMLINE BREAK UPSTREAM OF MSIV INITIATOR FREQUENCY	This initiator identifies 12 SG steamline break initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)		
1LVM32060XN	3.00E-03	1.048	VALVE MV-32060 FAILS TO OPEN	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. However, operator recovery actions may only provide limited benefit due to the high uncertainty involved. Consider installing air operated valve in parallel to provide continuous suction source of water from RWST. (SAMA 3)		
1NOCONLOCA	1.00E+00	1.048	NO CONSEQUENTIAL LOCA FLAG	This event is informational and categorizes those small LOCAs that do not involve stuck open relief valves. (No specific SAMA identified)		
1BCC01XXCCS	4.50E-05	1.043	#11 AND #12 CC PUMPS FAIL TO START DUE TO CCF	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. (SAMA 12)		

	Table F.5-2a Unit 1 Level 2 Importance List Review (Continued)					
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs		
0SMP11XXXYR	9.55E-02	1.038	YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		
0SMP21XXXYR	9.55E-02	1.038	21 CL PUMP FAILS TO RUN (1 YEAR MISSION TIME)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		
0SPD22XXXXR	3.91E-02	1.029	22 CL PUMP FAILS TO RUN (DIESEL DRIVER)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures. (SAMA 2)		

		Unit 1 Lev	Table F.5-2a el 2 Importance List Review (Continu	ied)
Event Name	Event Name Probability		Description	Potential SAMAs
1HSS1211CCS	2.99E-05	1.028	#11 AND #12 SI PUMPS FAIL TO START DUE TO COMMON CAUSE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure. (SAMA 5)
1PISGTRPROB	5.03E-04	1.028	2-LOOP W PWR PRESSURE- INDUCED SGTR PROBABILITY	This basic event represents a phenomenological event for Level 2 accident scenarios. It is based on Westinghouse PWR analyses. (No specific SAMA identified)
1V1PZRPORVF	1.00E-01	1.027	FAILURE OF PZR PORV AIR ACCUMULATOR FOLLOWING LOSS OF AIR	The station air and instrument air cross-tie has been proceduralized per IPE recommendation no. 1 (see Section F.5.1.5). Consider a portable air compressor to be used in the event of loss of air. Air compressor can be connected to air header to provide backup supply of air. (SAMA 22)
1HSS1112CCR	2.76E-05	1.026	#11 AND #12 SI PUMPS FAIL TO RUN DUE TO COMMON CAUSE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure. (SAMA 5)
1VA131231XC	2.94E-03	1.026	PORV CV-31231 FAILS TO CLOSE	This event identifies the PORV failing to re-seat after opening to provide pressure relief. Due to the importance of this event, a SAMA can be developed to make the PORV more reliable thereby reducing failure frequency. (SAMA 21)
1VA131232XC	2.94E-03	1.026	PORV CV-31232 FAILS TO CLOSE	This event identifies the PORV failing to re-seat after opening to provide pressure relief. Due to the importance of this event, a SAMA can be developed to make the PORV more reliable thereby reducing failure frequency. (SAMA 21)

	Table F.5-2b Unit 2 Level 2 Importance List Review							
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs				
2SGTRECD	1.00E+00	2.29	SGTR SEQUENCES INVOLVING EARLY CORE DAMAGE	This flag identifies the importance of SGTR sequences that involve early core damage. Component failures will be addressed elsewhere in this table. (No specific SAMA identified)				
0SGTRXXCD1Y	5.00E-02	2.236	OPERATOR FAILS TO COOLDOWN AND DEPRESSURIZE RCS WITH SI FAILURE FOR A SGTR	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)				
I-2-SGTRA	4.50E-03	1.392	21 SG STEAM GENERATOR TUBE RUPTURE INITIATING EVENT FREQ.	This initiator identifies SGTR initiating events for 21 SG and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)				
I-2-SGTRB	4.50E-03	1.392	22 SG STEAM GENERATOR TUBE RUPTURE INITIATING EVENT FREQ.	This initiator identifies SGTR initiating events for 22 SG and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario. (SAMA 19a)				
0SLOCAXXCDY	1.90E-02	1.256	OPERATOR FAILS TO PERFORM RCS COOLDOWN AND DEPRESSURIZATION ON SMALL LOCA	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)				

		Unit 2 Le	Table F.5-2b vel 2 Importance List Review (Continu	ed)		
Event Name	Probability Risk Reduction Worth		Description	Potential SAMAs		
2NORVSTKOPN	8.35E-01	1.256	NO DEPRESSURIZATION DUE TO PORV/SRV STUCK OPEN DURING CYCLING	This event conveys information that the PORV did not fail to re-seat following pressure relief. Therefore, since there is no failure mechanism involved, no SAMA required. (No specific SAMA identified)		
2TISGTRPROB	5.53E-03	1.236	2-LOOP W PWR TEMPERATURE- INDUCED SGTR PROBABILITY	This basic event represents a phenomenological event for Level 2 accident scenarios. It is based on Westinghouse PWR analyses. (No specific SAMA identified)		
I-2-ISLOCA	1.00E+00	1.225	INTERFACING SYSTEM LOCA INITIATING EVENT FREQUENCY	This initiator identifies all interfacing system LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)		
2BCC01XXCCS	4.50E-05	1.131	#21 AND #22 CC PUMPS FAIL TO START DUE TO CCF	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. (SAMA 12)		
0HRECIRCC2Y	5.30E-02	1.124	OPERATOR FAILS TO INITIATE HH RECIRC COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION.	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Install control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)		

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)						
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs			
2HPIPERUP	4.00E-03	1.118	CONDITIONAL PROBABILITY OF LP PIPING RUPTURE WHEN EXPOSED TO RCS PRESSURE	This basic event represents a phenomenological event for Level 2 accident scenarios. (No specific SAMA identified)			
2HSS2122CCS	2.99E-05	1.083	#21 AND #22 SI PUMPS FAIL TO START DUE TO COMMON CAUSE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure (SAMA 5).			
I-2-SLOCAA	1.80E-03	1.078	LOOP A SMALL LOCA INITIATOR	This initiator identifies all Loop A small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)			
I-2-SLOCAB	1.80E-03	1.078	LOOP B SMALL LOCA INITIATOR	This initiator identifies all Loop B small LOCA initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)			
2HSS2122CCR	2.76E-05	1.076	#21 AND #22 SI PUMPS FAIL TO RUN DUE TO COMMON CAUSE	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure (SAMA 5).			
2BU2TRNBXPM	4.10E-03	1.05	UNIT 2 TRAIN B CC UNAVAILABLE DUE TO PREVENTIVE MAINTENANCE	Consider deferring those PM tasks that require lengthy restoration to outage periods. For all other PM tasks, provide discreet protective barriers and signage for opposite (running) train. Online configuration risk management process most likely already takes this into account. (No specific SAMA identified)			
2RVH32192XL	1.31E-04	1.05	MV-32192 (LP A HL TO RHR SUCTION) CATASTROPHIC LEAK (POWER TO VALVE REMOVED)	Consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)			

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)								
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs					
2RVH32232XL	1.31E-04	1.05	MV-32232 (LP B HL TO RHR SUCTION) CATASTROPHIC LEAK	Consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)					
2HPI21SIXXR	1.12E-03	1.048	#21 SI PUMP FAILS TO RUN DURING HIGH HEAD INJECTION	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure (SAMA 5). Unit 2 SGTR frequency is higher than the frequency used for Unit 1. This appears to be driving the importance of this event.					
2RVM32193XL	2.63E-03	1.047	MV-32193 (LP A HL TO RHR SUCTION) FAILS TO REMAIN CLOSED	Consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)					
2RVM32233XL	2.63E-03	1.047	MV-32233 (LP B HL TO RHR SUCTION) FAILS TO REMAIN CLOSED	Consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is. (SAMA 19)					

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)								
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs					
2HVCSI95XXL	1.31E-03	1.044	CHECK VALVE 2SI-9-5 CATASTROPHIC LEAK	This valve is in series with a second check valve (2SI-9-3), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)					
2HVCSI96XXL	1.31E-03	1.044	CHECK VALVE 2SI-9-6 CATASTROPHIC INTERNAL LEAK	This valve is in series with a second check valve (2SI-9-4), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)					
2PISGTRSECB	1.00E+00	1.044	PRESSURE-INDUCED SGTR PROBABILITY FOR MSLB/MFLB EVENTS WITH HIGH/DRY SG	This flag identifies pressure-induced SGTR scenarios due to high differential pressure across the SG tubes. Components related to this event will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. (No specific SAMA identified)					
2RCPSL	1.00E+00	1.044	RCP SEAL LOCA FLAG	This flag identifies the importance of all RCP seal LOCA contributors. RCP seal LOCA failures will be addressed elsewhere in this table. (No specific SAMA identified)					

		Unit 2 Le	Table F.5-2b vel 2 Importance List Review (Continu	ied)
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs
2HVCSI93XXL	1.31E-03	1.041	CHECK VALVE 2SI-9-3 CATASTROPHIC LEAK	This valve is in series with a second check valve (2SI-9-5), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)
2HVCSI94XXL	1.31E-03	1.041	CHECK VALVE 2SI-9-4 CATASTROPHIC INTERNAL LEAK	This valve is in series with a second check valve (2SI-9-6), both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition. (SAMA 20)
I-LOCL	1.00E+00	1.033	LOSS OF COOLING WATER INITIATING EVENT FREQUENCY	This event identifies all loss of cooling water scenarios that lead to CD. Due to the importance of this event, a SAMA can be developed to make use of alternate cooling water sources. (SAMA 2)
2HTRAINAXPM	1.87E-03	1.032	UNIT 2 SI TRAIN A OUT FOR PREVENTIVE MAINTENANCE	Consider deferring those PM tasks that require lengthy restoration to outage periods. For all other PM tasks, provide discreet protective barriers and signage for opposite train. Online configuration risk management process most likely already takes this into account. (No specific SAMA identified)
2NOCONLOCA	1.00E+00	1.031	NO CONSEQUENTIAL LOCA FLAG	This event is informational and categorizes those small LOCAs that do not involve stuck open relief valves. (No specific SAMA identified)

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)								
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs					
2BPC21XXXXS	6.90E-04	1.029	#21 CC PUMP FAILS TO START	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. (SAMA 12)					
				Unit 2 SGTR frequency is higher than the frequency used for Unit 1. This appears to be driving the importance of this event.					
2PORVLOCA	1.00E+00	1.028	TRANSIENT INDUCED PORV LOCA FLAG	This flag identifies those scenarios whereby the PORV fails to re-seat after opening to provide pressure relief. Due to the importance of this event, a SAMA can be developed to make PORV more reliable thereby reducing failure frequency. (SAMA 21)					
0PORVBLOCKY	5.00E-02	1.027	OPERATOR FAILS TO CLOSE BLOCK VALVE TO ISOLATE STUCK OPEN PORV	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)					
2HPI21SIXXS	6.46E-04	1.027	#21 SI PUMP FAILS TO START DURING HIGH HEAD INJECTION	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of SI pump failure (SAMA 5). Unit 2 SGTR frequency is higher than the frequency used for Unit 1. This appears to be driving the importance of this event.					

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)								
Event Name	Event Name Probability Risk Reduction Worth		Description	Potential SAMAs					
I-2-MSLBB-UP	4.41E-04	1.027	22 SG STEAMLINE BREAK UPSTREAM OF MSIV INITIATOR FREQUENCY	This initiator identifies 22 SG steamline break initiating events and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. (No specific SAMA identified)					
0SLOCAXCCDY	6.80E-02	1.026	OPERATOR FAILS TO COOLDOWN AND DEPRESSURIZE RCS COND. ON FAILURE TO ISOLATE PZR PORV	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. (No specific SAMA identified)					
0HRECIRCCMY	1.50E-01	1.025	OPERATOR FAILS TO INITIATE HH RECIRC FOR SLOCA COND. ON FAILURE OF RCS COOLDOWN AND DEPRESSURIZATION	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installation of control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST. (SAMA 1)					
2LVM32062XN	3.00E-03	1.024	VALVE MV-32062 FAILS TO OPEN	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. However, operator recovery actions may only provide limited benefit due to the high uncertainty involved. Consider installing air operated valve in parallel to provide continuous suction source of water from RWST. (SAMA 3)					

	Table F.5-2b Unit 2 Level 2 Importance List Review (Continued)							
Event Name	Probability	Risk Reduction Worth	Description	Potential SAMAs				
2HTRAINBXPM	1.87E-03	1.022	UNIT 2 TRAIN B SI OUT FOR PREVENTIVE MAINTENANCE	Consider deferring those PM tasks that require lengthy restoration to outage periods. For all other PM tasks, provide discreet protective barriers and signage for opposite train. Online configuration risk management process most likely already takes this into account. (No specific SAMA identified)				
0SCLLOOPBPM	1.73E-03	1.021	COOLING WATER LOOP B HEADER OUTAGE MAINTENANCE	Consider deferring those PM tasks that require lengthy restoration to outage periods. For all other PM tasks, provide discreet protective barriers and signage for opposite (running) train. Online configuration risk management process most likely already takes this into account. (No specific SAMA identified)				
2RSTSUMPBXF	7.20E-03	1.021	CONTAINMENT SUMP B STRAINER PLUGS DUE TO DEBRIS	Install a redundant strainer of a different design to eliminate single failure event that takes out the RHR, SI and CS systems. (SAMA 24)				
2BU2TRNBXCM	1.68E-03	1.02	UNIT 2 TRAIN B CC UNAVAILABLE DUE TO CORRECTIVE MAINTENANCE	Better work control practices may reduce frequency of corrective maintenance activity on the B train of CC. Consider upgrading CC pump and / or train components to a new design. (SAMA 23)				

	Table F.5-3 PINGP Phase I SAMA List Summary									
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition				
1	Recirculation automatic swap to RB sump	Install control logic to automatically swap to recirculation mode of ECCS, and drawing suction from RB sump prior to depletion of RWST.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	\$4.25M per unit (\$8.5M total) (S&L 2007) Breakdown: Study: \$278,000 Design:\$1,695,000 Implement:\$1,777,000 Life Cycle:\$500,000	No	Although not retained for Phase II, this SAMA was investigated with respect to uncertainty to gain insight on possible risk benefits at the 95 th percentile. See Section F.7.2.				
2	Alternate water source to CL system (possible 3rd Diesel CL pump train)	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures.	PI Unit 1/2 Level 1 Importance List / Unit 1 Level 2 Importance List	\$300K per unit (\$600K total) (NMC estimate)	Yes	See Section F.6.1.				

	Table F.5-3 PINGP Phase I SAMA List Summary (Continued)									
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition				
3	Alternate flowpath from RWST	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. However, operator recovery actions may only provide limited benefit due to the high uncertainty involved. Consider installing air operated valve in parallel to provide continuous suction source of water from RWST.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	\$250K per unit (\$500K total) (NMC estimate)	Yes	See Section F.6.2.				
4	N/A	DELETED	N/A	N/A						
5	Diesel driven HPI pump	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP & SGTR by prolonging the time the plant can operate without offsite AC power.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	\$1.5M per unit (\$3M total) (NMC estimate)	Yes	See Section F.6.3.				
6	EQ equipment for flooding	Consider installing waterproof (EQ) equipment (valves / level sensors) capable of automatically isolating the flooding source.	PI Unit 1 Level 1 Importance List	\$400K per unit (\$800K total) (NMC estimate)	No	See Section F.5.2.				

		PINGP Phase I S	Table F.5-3 AMA List Sum	imary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
6a	Segregate flooding zones	Consider segregating this zone into 2 compartments to reduce the impact of a flood on both trains of SI and RHR.	PI Unit 1 Level 1 Importance List	\$2M per unit (\$4M total) (NMC estimate)	No	See Section F.5.2.
7	Upgrade Diesel Generators D3 and D4	The ability to use non-safety related diesel generators D3 and D4 would provide a backup source of power in addition to the existing four safety related diesels D1, D2, D5, and D6.	PI Unit 1/2 Level 1 Importance List	\$1.2M total (NMC estimate)	No	SBO is already a small contributor - <8% of CDF, <1% of LERF, <0.02% of early CF. Top SBO-related release categories involve sequences in which containment and/or vessel does not fail. Also, significant costs would be incurred to upgrade D3 and D4 to safety-related status, which would ultimately cost more than the benefit gained from a 2% improvement in CDF.
8	Swing / SBO diesel for LOOP	Installation of a swing or SBO diesel would provide increased defense in depth and could be considered for LOOP conditions.	PI Unit 1/2 Level 1 Importance List	\$8M total (NMC estimate)	No	See Section F.5.2.

		PINGP Phase I S	Table F.5-3 AMA List Sum	mary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
9	Analyze room heatup for natural / forced circulation	Further analysis such as room heatup calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected areas, for example, portable fans, open doors, etc.	PI Unit 1/2 Level 1 Importance List	\$62,500 per unit (\$125K total) (S&L 2007) Breakdown(Unit 1&2): Study: \$111,000 Design:none Implement(procedure change):\$14,000 Life Cycle:none	Yes	See Section F.6.4.
10	Alternate means of RWST transfer	Failure of VCT level controller disables the RWST auto transfer feature, rendering the RWST unavailable as an alternate water source to the charging pumps. Alternate means of RWST transfer could be developed, either procedurally or via plant modification. For example, an additional parallel level transmitter signal path that could prevent a spurious failure of any one signal rendering suction unavailable to the charging pumps. A 2 out of 3 level control logic would be required for auto transfer of charging pump suction.	PI Unit 1/2 Level 1 Importance List	\$2.866M per unit (\$5.732M total) (S&L 2007) Breakdown per unit: Study: \$175,000 Design:\$1,526,000 Implement:\$865,000 Life Cycle:\$300,000 Breakdown (Unit 2): Study: \$175,000 Design:\$1,257,000 Implement:\$865,000 Life Cycle:\$300,000	No	Although not retained for Phase II, this SAMA was investigated with respect to uncertainty to gain insight on possible risk benefits at the 95 th percentile. See Section F.7.2. Note that addressing SAMAs 9 and/or 12 would provide much, if not most, of the benefit that might be gained from this SAMA.
11	Auto transfer logic improvements	Auto transfer logic improvements, such as improved level controller reliability could also be considered.	PI Unit 2 Level 1 Importance List	\$100K per unit (\$200K total) (NMC estimate)	No	See SAMA 10 above (addresses same group of sequences).

		PINGP Phase I S	Table F.5-3 AMA List Sum	mary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
12	Alternate RCP thermal barrier cooling	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. A release path will be required since FPS is not a closed system.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	\$900K per unit (\$1.8M total) (NMC estimate)	Yes	See Section F.6.5. Note that SAMAs 3, 5, and 10 would address most of the CDF risk addressed by this SAMA.
13	Automatic sump pump for Zone 7 AB flooding	This initiator represents an internal flooding scenario that disables various safety-related components. Mitigation of this event can be accomplished via an automatic sump pump system to remove water if the operator fails to isolate Zone 7 of the Aux. Bldg.	PI Unit 1/2 Level 1 Importance List	\$300K per unit (\$600K total) (NMC estimate)	No	See Section F.5.2.
14	Operator training for PORV failure to re-seat	Reinforce operator training to isolate PORVs when symptoms reveal valves have failed to re-seat. This reduces the amount of radioactivity released to the environment. Consider replacing with more reliable or robust valves to better isolate following lifting.	PI Unit 2 Level 1 Importance List	\$600K per unit (\$1.2M total) (NMC estimate)	No	Existing model considers that failure to close and failure to open lead to the same accident class, GLH (assuming failure of operator to Cooldown/Depressurize per ECA 3.1/3.2, which leads to SGTR source term). Therefore, quantification of this SAMA modification would produce no difference in the calculated frequency of offsite release or its magnitude.

		PINGP Phase I S	Table F.5-3 AMA List Sum	imary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
15	Portable DC power source	Consider a portable DC power source, such as a rectifier or skid- mounted battery pack that could be used for restoring DC control power to vital components, such as breakers, solenoid valves, etc.	PI Unit 2 Level 1 Importance List	\$130K per unit (\$260K total) (NMC estimate)	Yes	See Section F.6.6.
16	Replace RHR Loop B return valve	Failure of MV-32169 to open disables RHR Loop B return. Proper operation of this valve is most likely tracked via the MR. Consider replacing this MOV with a FC air- operated valve for improved reliability. This would eliminate CCF for inboard MOVs that currently exist on this flowpath.	PI Unit 2 Level 1 Importance List	\$1.2M per unit (\$2.4M total) (NMC estimate)	No	Failure of this valve to open results in failure of shutdown cooling initiation (there is no CCF for inboard MOVs that currently exist for the flowpath involved in these sequences). This may not have any positive impact on CDF (FC air- operated valve inside containment may be less reliable than a MOV due to reliance on containment instrument air supply) and would have little, if any, impact on LERF.
17	Bypass around RHR Loop B return valves	Alternatively, a bypass flowpath could be installed around inboard RHR Loop B return valves for improved defense in depth.	PI Unit 2 Level 1 Importance List	\$2.362M per unit (\$4.724M total) (S&L 2007) Breakdown: Study: \$112,000 Design:\$870,000 Implement:\$1,080,000 Life Cycle:\$300,000	No	Although not retained for Phase II, this SAMA was investigated with respect to uncertainty to gain insight on possible risk benefits at the 95 th percentile. See Section F.7.2.

		PINGP Phase I SA	Table F.5-3 AMA List Sum	mary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
18	Install spare TDAFW for each unit	Operator training can be emphasized to reduce human error probability; however, there is a great deal of uncertainty regarding operator failure probability estimates. Consider installing a spare turbine-driven AFW pump per unit. This would increase reliability of AFW system for each unit. The new pumps would be dedicated to the corresponding unit with no cross-tie capability, thereby eliminating operator error for this action. Note - some operating PWRs have (3) AFW pumps per unit, which provide greater redundancy and defense in depth.	PI Unit 2 Level 1 Importance List	\$4M per unit (\$8M total) (NMC estimate)	No	TDAFWP makes U2 CDF list only - this is due to Train A DC dependency between Train A AFW and MFW that Unit 1 does not have. Would reduce CDF but would do little for LERF. Implementation of SAMA 15 would reduce the importance of this item and would involve significantly less cost.
19	Upgrade RHR suction piping / install cont. isol. valve	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is.	PI Unit 1/2 Level 2 Importance List	\$700K per unit (\$1.4M total) (NMC estimate)	Yes	See Section F.6.7.

		PINGP Phase I S	Table F.5-3 AMA List Sum	mary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
19a	Replenish RWST from large water source	This initiator identifies SGTR initiating events for 11 / 12 SG and is based on industry data. Therefore mitigative actions will be addressed elsewhere in this table. Consider upgrading SG to more robust design to lower accident frequency. Consider replenishing the RWST from a large source of water, such as the SFP, if failure to depressurize is part of the scenario	PI Unit 2 Level 1 and Unit 1/2 Level 2 Importance Lists	\$1.935M per unit (\$3.87M total) (S&L 2007) Breakdown: Study: \$225,000 Design:\$1,851,000 Implement:\$1,294,000 Life Cycle:\$500,000	No	Although not retained for Phase II, this SAMA was investigated with respect to uncertainty to gain insight on possible risk benefits at the 95 th percentile. See Section F.7.2.
20	Close MOV to prevent RCS backflow to SI system	This check valve is in series with a second check valve, both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition.	PI Unit 1/2 Level 2 Importance List	\$313K per unit (\$626K total) (S&L 2007) Breakdown: Study: \$52,000 Design:\$105,000 Implement:\$56,000 Life Cycle:\$100,000	Yes	See Section F.6.8.
21	Increase reliability of PORV to re- seat	This event identifies the PORV failing to re-seat after opening to provide pressure relief. Due to the importance of this event, a SAMA can be developed to make the PORV more reliable thereby reducing failure frequency.	PI Unit 1/2 Level 2 Importance List	\$3M per unit (\$6M total) (NMC estimate)	No	Although not retained for Phase II, this SAMA was investigated with respect to uncertainty to gain insight on possible risk benefits at the 95 th percentile. See Section F.7.2.

	Table F.5-3 PINGP Phase I SAMA List Summary (Continued)						
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition	
22	Portable air compressor for containment instrument air supply backup, or tie into (and make available during at power operation) air supply for LTOP used during outages	Consider a portable air compressor to be used in the event of loss of air to RCS PORVs inside containment. Air compressor can be connected to air header inside containment to provide backup supply of air. An alternative would be to tie into nitrogen (or air) bottle source that supplies air to LTOP system during outages.	PI Unit 1 Level 2 Importance List / IPE	\$39K per unit (\$78K total) (S&L 2007) Breakdown: Study: \$39,000 Design: None Implement: None Life Cycle: None	Yes	See Section F.6.9.	

		PINGP Phase I S	Table F.5-3 AMA List Sum	imary (Continued)		
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
23	Better work control / upgrade CC pump / train	Better work control practices may reduce frequency of corrective maintenance activity on the B train of CC. Consider upgrading CC pump and / or train components to a new design.	PI Unit 2 Level 2 Importance List	\$2.5M per unit (\$5M total) (NMC estimate)	No	U2 LERF risk from Tr. B CCW is from SGTR initiating event - SI pump requires CC for continued operation. Not as significant on U1 due to lower SGTR IE frequency from SG replacement. This event is very close to the screening threshold (RRW = 1.02), and would be an expensive modification. SAMA #5 and 19a will address this risk contributor in the interim until planned SG replacement on U2 (2013). Note: Maximum benefit from improved work control practices has probably already been achieved as CCW corrective maintenance impacts MSPI and MR performance indicators (management is highly aware of the need to minimize CM on CCW).

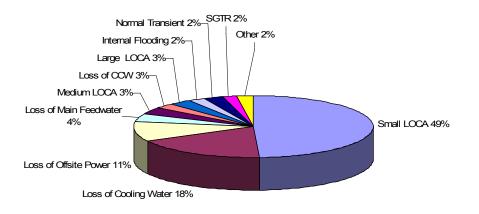
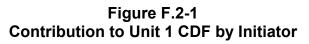
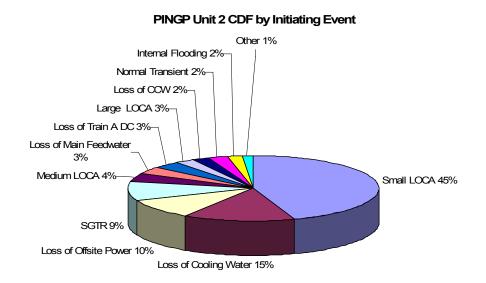

	Table F.5-3 PINGP Phase I SAMA List Summary (Continued)					
SAMA Number	SAMA Title	SAMA Description	Source	Cost Estimate	Retained	Phase I Baseline Disposition
24	Install redundant RB sump strainer	Install a redundant strainer of a different design to eliminate single failure event that takes out the RHR, SI and CS systems.	PI Unit 2 Level 2 Importance List	\$1.2M per unit (\$2.4M total) (NMC estimate)	No	This would be an expensive modification to perform directly after current modifications to sump strainers to meet the G.L. Treatment of post accident sump strainer reliability in PRA is currently subject of significant industry/NRC attention and modeling is likely to be changed when consensus is reached on a methodology. Until then, SAMAs 16 or 17, 21, and 22 address part of the LERF risk from sump strainer blockage. See sensitivity study in Section F.2.2.2.

		Table F.6-1 PINGP Phase II SAMA List Sum	mary	
SAMA Number	SAMA Title	SAMA Description	Source	Phase II Baseline Disposition
2	Alternate water source to CL system	Failure of the cooling water system / pumps may be mitigated via an alternate source of water. The Fire Protection System (FPS) is a standby pressurized water supply that can be connected to the main header of the cooling water system. Multiple connections from FPS to the cooling water system would result in increased defense in depth. The FPS is assumed not to be subject to the same type of failures as the cooling water system, such as screenhouse ventilation failures.	PI Unit 1/2 Level 1 Importance List / Unit 1 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
3	Alternate flowpath from RWST	This valve provides suction source from RWST to charging pumps for seal injection. Local actuation of this valve could mitigate remote operation failures. Since operator recovery actions may only provide limited benefit due to the high uncertainty involved, consider installing air operated valve in parallel to provide continuous suction source of water from RWST.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
5	Diesel driven HPI pump	A diesel driven, HPI pump that could use a large volume, cold suction source would reduce the risk of LOOP & SGTR by prolonging the time the plant can operate without offsite AC power.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
9	Analyze room heatup for natural / forced circulation	Further analysis such as room heatup calculations could be considered to determine to what extent natural or forced circulation can adequately remove heat from the affected areas, for example, portable fans, open doors, etc.	PI Unit 1/2 Level 1 Importance List	The averted cost-risk for this SAMA is greater than the cost of implementation and the SAMA is cost beneficial (based on 95 th percentile results).


		Table F.6-1 PINGP Phase II SAMA List Summary (Continued)	
SAMA Number	SAMA Title	SAMA Description	Source	Phase II Baseline Disposition
12	Alternate RCP thermal barrier cooling	An alternate source of water could be made available to provide the necessary cooling for RCP thermal barriers. Consider using FPS as a means to provide backup cooling source. This can be accomplished by connecting FPS directly to component cooling system header. A release path will be required since FPS is not a closed system.	PI Unit 1/2 Level 1 Importance List / Unit 1/2 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
15	Portable DC power source	Consider a portable DC power source, such as a rectifier or skid-mounted battery pack that could be used for restoring DC control power to vital components, such as breakers, solenoid valves, etc.	PI Unit 2 Level 1 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
19	Upgrade RHR suction piping / install cont. isol. valve	For Loop A/B HL return to RHR suction, consider upgrading piping downstream of inboard containment isolation valve to handle RCS pressure and install outboard containment isolation valve to prevent possible ISLOCA. RHR piping downstream of newly installed valve can remain as is.	PI Unit 1/2 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.
20	Close MOV to prevent RCS backflow to SI system	This check valve is in series with a second check valve, both prevent backflow from the RCS to the SI system. Both check valves are inside containment with a normally open motor-operated valve upstream (also inside containment). Consider operating with the MOV normally closed, provided that an automatic open signal is sent to the valve for injection from the RWST under a LOCA condition.	PI Unit 1/2 Level 2 Importance List	The averted cost-risk for this SAMA is less than the cost of implementation and the SAMA is <u>not</u> cost beneficial.


	Table F.6-1 PINGP Phase II SAMA List Summary (Continued)					
SAMA Number	SAMA Title	SAMA Description	Source	Phase II Baseline Disposition		
22	Portable air compressor for containment instrument air supply backup, or tie into (and make available during at power operation) air supply for LTOP used during outages	Instead of a plant hardware modification, the low cost option of analyzing the actual capability of the backup air accumulators was chosen to more realistically show that operation of the PORV can successfully provide bleed and feed cooling when secondary side heat removal via the SGs is unavailable. This would involve a review of any overly conservative assumptions found from previous analyses.	PI Unit 1 Level 2 Importance List / IPE	The averted cost-risk for this SAMA is greater than the cost of implementation and the SAMA is cost beneficial (based on 95 th percentile results).		

F.10 FIGURES

PINGP Unit 1 CDF by Initiating Event

Figure F.2-2 Contribution to Unit 2 CDF by Initiator

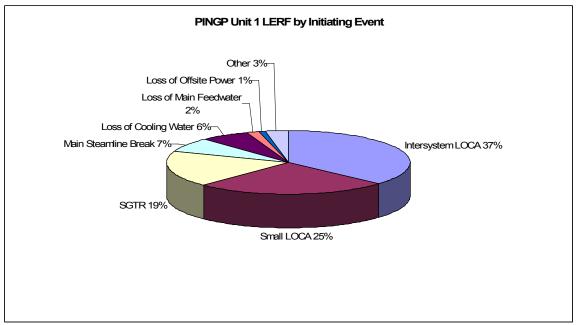


Figure F.2-3 Contribution to Unit 1 LERF by Initiator

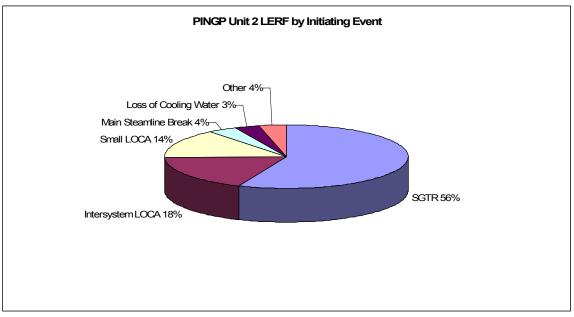


Figure F.2-4 Contribution to Unit 2 LERF by Initiator

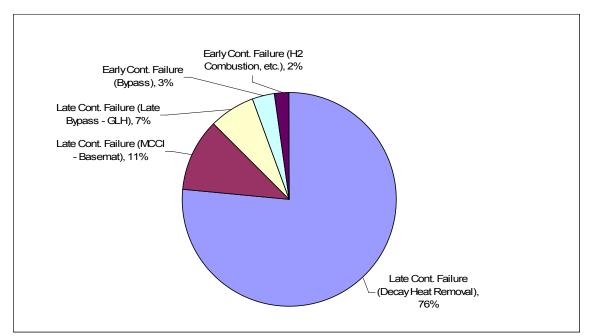


Figure F.2-5 Unit 1 Containment Failure Modes

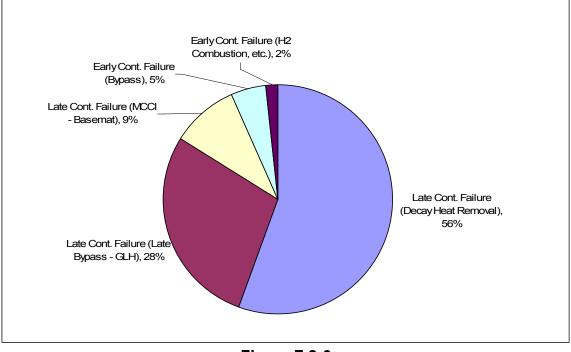


Figure F.2-6 Unit 2 Containment Failure Modes

F.11 REFERENCES

- ASME 2005 ASME (The American Society of Mechanical Engineers). 2005. ASME RA-Sb-2005 Addenda to ASME RA-S-2002 Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications. December.
- BGE 1998 BGE (Baltimore Gas and Electric). 1998. Calvert Cliffs Application for License Renewal, Attachment 2 of Appendix F – Severe Accident Mitigation Alternatives Analysis. April.
- CPL 2002 CPL (Carolina Power and Light). 2002. Applicant's Environmental Report; Operating License Renewal Stage; H. B. Robinson Steam Electric Plant Unit No. 2. Appendix F Severe Accident Mitigation Alternatives, Letter, J. W. Moyer (CP&L) to U.S. Nuclear Regulatory Commission. "Application for Renewal of Operating License." June 14. Available on U. S. Nuclear Regulatory Commission website at: http://www.nrc.gov/reactors/operating/licensing/renewal/application s/robinson.html.
- CPL 2004 CPL (Carolina Power and Light). 2004. Applicant's Environmental Report; Operating License Renewal Stage; Brunswick Steam Electric Plant. Appendix F Severe Accident Mitigation Alternatives. October. Available on U. S. Nuclear Regulatory Commission website at: http://www.nrc.gov/reactors/operating/licensing/renewal/application s/brunswick.html.
- EPA 1972 EPA (U.S. Environmental Protection Agency). 1972. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States. AP-101. Holzworth. George. C. January.
- EPRI 1991 EPRI (Electric Power Research Institute). 1991. A Methodology for Assessment of Nuclear Power Plant Seismic Margin. EPRI NP-6041 Revision 1, August.
- Exelon 2003a EXELON (Exelon Corporation). 2003a. Applicant's Environmental Report; Operating License Renewal Stage; Dresden Nuclear Power Station Units 2 and 3. Section 4.20 Severe Accident Mitigation Alternatives (SAMA) and Appendix F SAMA Analysis, Letter, Benjamin, Exelon, to U. S. Nuclear Regulatory Commission. Application for Renewed Operating Licenses. January 3. Available on U. S. Nuclear Regulatory Commission website at http://www.nrc.gov/reactors/operating/licensing/renewal/application s/dresden-guad.html

- Exelon 2003b EXELON (Exelon Corporation). 2003b. Applicant's Environmental Report; Operating License Renewal Stage; Quad Cities Nuclear Power Station Units 1 and 2. Section 4.20 Severe Accident Mitigation Alternatives (SAMA) and Appendix F SAMA Analysis, Letter, Benjamin, Exelon, to U. S. Nuclear Regulatory Commission. Application for Renewed Operating Licenses. January 3. Available on U. S. Nuclear Regulatory Commission website at http://www.nrc.gov/reactors/operating/licensing/renewal/application s/dresden-quad.html
- NEI 2003 NEI (Nuclear Energy Institute). 2003. Control Room Habitability Guidance. NEI-99-03. Revision 1. March.
- NMC 2003 NMC (NMC PINGP, LLC). 2003. Response to Generic Letter 2003-01, "Control Room Habitability", L-PI-03-114, December.
- NMC 2005a NMC (Nuclear Management Company). 2005a. Monticello Application for License Renewal, Environmental Report, Attachment F. March.
- NMC 2005b NMC (Nuclear Management Company). 2005b. Palisades Application for License Renewal, Environmental Report, Attachment F. March.
- NMC 2007 NMC (Nuclear Management Company). 2007. PINGP Nuclear Generating Plant Updated Safety Analysis Report (USAR), Revision 29, May.
- NRC 1987 NRC (U.S. Nuclear Regulatory Commission). 1987. "Verification of Seismic Adequacy of Mechanical and Electrical Equipment in Operating Reactors, Unresolved Safety Issue (USI) A-46," Generic Letter 87-02, February.
- NRC 1990 NRC (U.S. Nuclear Regulatory Commission). 1990. Evaluation of Severe Accident Risks: Quantification of Major Input Parameters, NUREG/CR-4551, SAND86-1309, Vol. 2, Rev. 1, Part 7, Sprung, J.L., Rollstin, J.A., Helton, J.C., Jow, H-N. Washington, DC. December.
- NRC 1991 NRC (U.S. Nuclear Regulatory Commission). 1991. Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities, NUREG-1407, May.
- NRC 1993 NRC (U.S. Nuclear Regulatory Commission). 1993. Revised Livermore Seismic Hazard Estimates for 69 Sites East of the Rocky Mountains. NUREG-1488. October.
- NRC 1997 NRC (U.S. Nuclear Regulatory Commission). 1997. Regulatory Analysis Technical Evaluation Handbook. NUREG/BR-0184.

- NRC 1998 NRC (U.S. Nuclear Regulatory Commission). 1998a. Code Manual for MACCS2: User's-Guide. NUREG/CR-6613, Volume 1, SAND 97-0594. Chanin, D. and Young, M. May.
- NRC 1999 NRC (U.S. Nuclear Regulatory Commission). 1999. Generic Environmental Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant. NUREG-1437, Final Report. October.
- NRC 2003 NRC (U.S. Nuclear Regulatory Commission). 2003. Sector Population, Land Fraction, and Economic Estimation Program. SECPOP2000: NUREG/CR-6525, Washington, D.C., Rev. 1, August.
- NRC 2005a NRC (U.S. Nuclear Regulatory Commission). 2005. Prairie Island Nuclear Generating Plant, Units 1 and 2 NRC Integrated Inspection Report, 05000282/2005004 and 05000306/2005004, July.
- NRC 2005b NRC (U.S. Nuclear Regulatory Commission). 2005. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding Donald C. Cook Nuclear Plant, Units No. 1 and 2. NUREG-1437, Final Report. May.
- NRC 2005c NRC (U.S. Nuclear Regulatory Commission). 2005. Generic Environmental Impact Statement for License Renewal of Nuclear Plants Regarding Browns Ferry Nuclear Plant, Units 1, 2, and 3. NUREG-1437, Final Report. June.
- NRC 2006 NRC (U.S. Nuclear Regulatory Commission). 2006. Prairie Island Nuclear Generating Plant, Units 1 and 2 NRC Triennial Fire Protection Baseline Inspection Report, 05000282/2006009(DRS) and 05000306/2006009(DRS), October.
- NSP 1994 Northern States Power Company (NSP). 1994. Prairie Island Nuclear Generating Plant Individual Plant Examination (IPE), NSPLMI-94001, Rev. 0, February.
- NSP 1998 Northern States Power Company (NSP). 1998. PINGP Individual Examination of External Events (IPEEE), NSPLMI-96001, Rev. 1, September.
- NSP 2000 Northern States Power Company (NSP). 2000. Response to Request for Additional Information Regarding Report NSPLMI-96001, Individual Plant Examination of External Events (IPEEE), Letter to NRC, February.
- PPL 2006 PPL Corporation. 2006. Susquehanna Steam Electric Station -License Renewal Application. NRC submittal. September.
- S&L 2007 Sargent & Lundy. 2007. SAMA Cost Estimates, Letter No. SLPR-2007-031, Project No. 11973-013. August.

- SCE&GC 2002 SCE&GC (South Carolina Electric and Gas Company). 2002. Virgil C. Summer Nuclear Station Application for License Renewal. Environmental Report. Appendix F. August.
- SNOC 2000 SNOC (Southern Nuclear Operating Company). 2000. Edwin I. Hatch Nuclear Plant Application for License Renewal, Environmental Report. Appendix D, Attachment F. February.
- TCDS 2003 TCDS (TOM COD Data Systems). 2003. Evacuation Time Estimates Study for the Prairie Island Nuclear Generating Plant Emergency Planning Zone. September.
- USDA 1998 USDA (U.S. Department of Agriculture). 1998. 1997 Census of Agriculture. National Agricultural Statistics Service. http://www.nass.usda.gov/census/census97/volume1/vol1pubs.htm

SAMA ID Number	SAMA Title	Result of Potential Enhancement
	Improvements Related to RCP Se	al LOCAs (Loss of CC or SW)
1	Cap downstream piping of normally closed component cooling water drain and vent valves.	SAMA would reduce the frequency of a loss of component cooling event, a large portion of which was derived from catastrophic failure of one of the many single isolation valves.
2	Enhance loss of component cooling procedure to facilitate stopping reactor coolant pumps.	SAMA would reduce the potential for reactor coolant pump (RCP) sea damage due to pump bearing failure.
3	Enhance loss of component cooling procedure to present desirability of cooling down reactor coolant system (RCS) prior to seal LOCA.	SAMA would reduce the potential for RCP seal failure.
4	Provide additional training on the loss of component cooling.	SAMA would potentially improve the success rate of operator actions after a loss of component cooling (to restore RCP seal damage).
5	Provide hardware connections to allow another essential raw cooling water system to cool charging pump seals.	SAMA would reduce effect of loss of component cooling by providing a means to maintain the centrifugal charging pump seal injection afte a loss of component cooling.
6	Procedure changes to allow cross connection of motor cooling for RHRSW pumps.	SAMA would allow continued operation of both RHRSW pumps on a failure of one train of PSW.
7		SAMA would increase time before the loss of component cooling (and reactor coolant pump seal failure) in the loss of essential raw cooling water sequences.
8	Increase charging pump lube oil capacity.	SAMA would lengthen the time before centrifugal charging pump failure due to lube oil overheating in loss of CC sequences.

Addendum 1 Selected Previous Industry SAMAs

SAMA ID Number	SAMA Title	Result of Potential Enhancement
9	Eliminate the RCP thermal barrier dependence on component cooling such that loss of component cooling does not result directly in core damage.	SAMA would prevent the loss of recirculation pump seal integrity after a loss of component cooling. Watts Bar Nuclear Plant IPE said that they could do this with essential raw cooling water connection to RCP seals.
10	Add redundant DC control power for PSW pumps C & D.	SAMA would increase reliability of PSW and decrease core damage frequency due to a loss of SW.
11	Create an independent RCP seal injection system, with a dedicated diesel.	SAMA would add redundancy to RCP seal cooling alternatives, reducing CDF from loss of component cooling or service water or from a station blackout event.
12	Use existing hydro-test pump for RCP seal injection.	SAMA would provide an independent seal injection source, without the cost of a new system.
13	Replace ECCS pump motor with air-cooled motors.	SAMA would eliminate ECCS dependency on component cooling system (but not on room cooling).
14	Install improved RCS pumps seals.	SAMA would reduce probability of RCP seal LOCA by installing RCP seal O-ring constructed of improved materials
15	Install additional component cooling water pump.	SAMA would reduce probability of loss of component cooling leading to RCP seal LOCA.
16	Prevent centrifugal charging pump flow diversion from the relief valves.	SAMA modification would reduce the frequency of the loss of RCP seal cooling if relief valve opening causes a flow diversion large enough to prevent RCP seal injection.
17	Change procedures to isolate RCP seal letdown flow on loss of component cooling, and guidance on loss of injection during seal LOCA.	SAMA would reduce CDF from loss of seal cooling.

		•
SAMA ID Number	SAMA Title	Result of Potential Enhancement
18	Implement procedures to stagger high pressure safety injection (HPSI) pump use after a loss of service water.	SAMA would allow HPSI to be extended after a loss of service water.
19	Use FP system pumps as a backup seal injection and high pressure makeup.	SAMA would reduce the frequency of the RCP seal LOCA and the SBO CDF.
20	Enhance procedural guidance for use of cross-tied component cooling or service water pumps.	SAMA would reduce the frequency of the loss of component cooling water and service water.
21	Procedure enhancements and operator training in support system failure sequences, with emphasis on anticipating problems and coping.	SAMA would potentially improve the success rate of operator actions subsequent to support system failures.
22	Improved ability to cool the residual heat removal heat exchangers.	SAMA would reduce the probability of a loss of decay heat removal by implementing procedure and hardware modifications to allow manual alignment of the FP system or by installing a component cooling water cross-tie.
23	8.a. Additional Service Water Pump	SAMA would conceivably reduce common cause dependencies from SW system and thus reduce plant risk through system reliability improvement.
24	Create an independent RCP seal injection system, without dedicated diesel	This SAMA would add redundancy to RCP seal cooling alternatives, reducing the CDF from loss of CC or SW, but not SBO.
	Improvements Related to Heating, V	entilation, and Air Conditioning
25	Provide reliable power to control building fans.	SAMA would increase availability of control room ventilation on a loss of power.
26	Provide a redundant train of ventilation.	SAMA would increase the availability of components dependent on room cooling.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
27	Procedures for actions on loss of HVAC.	SAMA would provide for improved credit to be taken for loss of HVAC sequences (improved affected electrical equipment reliability upon a loss of control building HVAC).
28	Add a diesel building switchgear room high temperature alarm.	SAMA would improve diagnosis of a loss of switchgear room HVAC. Option 1: Install high temp alarm. Option 2: Redundant louver and thermostat
29	Create ability to switch fan power supply to DC in an SBO event.	SAMA would allow continued operation in an SBO event. This SAMA was created for reactor core isolation cooling system room at Fitzpatrick Nuclear Power Plant.
30	Enhance procedure to instruct operators to trip unneeded RHR/CS pumps on loss of room ventilation.	SAMA increases availability of required RHR/CS pumps. Reduction i room heat load allows continued operation of required RHR/CS pumps, when room cooling is lost.
31	Stage backup fans in switchgear (SWGR) rooms	This SAMA would provide alternate ventilation in the event of a loss of SWGR Room ventilation
	Improvements Related to Ex-Vessel Accide	ent Mitigation/Containment Phenomena
32	Delay containment spray actuation after large LOCA.	SAMA would lengthen time of RWST availability.
33	Install containment spray pump header automatic throttle valves.	SAMA would extend the time over which water remains in the RWST, when full Containment Spray flow is not needed
34	Install an independent method of suppression pool cooling (BWR only).	SAMA would decrease the probability of loss of containment heat removal. For PWRs, a potential similar enhancement would be to install an independent cooling system for sump water.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
35	Develop an enhanced drywell / containment spray system.	SAMA would provide a redundant source of water to the containment to control containment pressure, when used in conjunction with containment heat removal.
36	Provide dedicated existing drywell / containment spray system.	SAMA would provide a source of water to the containment to control containment pressure, when used in conjunction with containment heat removal. This would use an existing spray loop instead of developing a new spray system.
37	Install an unfiltered hardened containment vent.	SAMA would provide an alternate decay heat removal method for non-ATWS events, with the released fission products not being scrubbed.
38	Install a filtered containment vent to remove decay heat.	SAMA would provide an alternate decay heat removal method for non-ATWS events, with the released fission products being scrubbed. Option 1: Gravel Bed Filter Option 2: Multiple Venturi Scrubber
39	Install a containment vent large enough to remove ATWS decay heat.	Assuming that injection is available, this SAMA would provide alternate decay heat removal in an ATWS event.
40	Create/enhance hydrogen recombiners with independent power supply.	 SAMA would reduce hydrogen detonation at lower cost, Use either 1) a new independent power supply 2) a nonsafety-grade portable generator 3) existing station batteries 4) existing AC/DC independent power supplies.
41	Install hydrogen recombiners.	SAMA would provide a means to reduce the chance of hydrogen detonation.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
42	Create a passive design hydrogen ignition system.	SAMA would reduce hydrogen denotation system without requiring electric power.
43	Create a large concrete crucible with heat removal potential under the basemat to contain molten core debris.	SAMA would ensure that molten core debris escaping from the vessel would be contained within the crucible. The water cooling mechanism would cool the molten core, preventing a melt-through of the basemat.
44	Create a water-cooled rubble bed on the pedestal.	SAMA would contain molten core debris dropping on to the pedestal and would allow the debris to be cooled.
45	Provide modification for flooding the drywell head (BWR only).	SAMA would help mitigate accidents that result in the leakage through the drywell head seal.
46	Enhance FP system and/or standby gas treatment system (BWR only) hardware and procedures.	SAMA would improve fission product scrubbing in severe accidents.
47	Create a reactor cavity flooding system.	SAMA would enhance debris coolability, reduce core concrete interaction, and provide fission product scrubbing.
48	Create other options for reactor cavity flooding.	SAMA would enhance debris coolability, reduce core concrete interaction, and provide fission product scrubbing.
49	Enhance air return fans (ice condenser plants).	SAMA would provide an independent power supply for the air return fans, reducing containment failure in SBO sequences.
50	Create a core melt source reduction system.	SAMA would provide cooling and containment of molten core debris. Refractory material would be placed underneath the reactor vessel such that a molten core falling on the material would melt and combine with the material. Subsequent spreading and heat removal form the vitrified compound would be facilitated, and concrete attack would not occur

SAMA ID Number	SAMA Title	Result of Potential Enhancement
51	Provide a containment inerting capability.	SAMA would prevent combustion of hydrogen and carbon monoxide gases.
52	Use the FP system as a backup source for the containment spray system.	SAMA would provide redundant containment spray function without the cost of installing a new system.
53	Install a secondary containment filtered vent (BWR only).	SAMA would filter fission products released from primary containment.
54	Install a passive containment spray system.	SAMA would provide redundant containment spray method without high cost.
55	Strengthen primary/secondary containment (BWR only).	SAMA would reduce the probability of containment overpressurization to failure.
56	Increase the depth of the concrete basemat or use an alternative concrete material to ensure melt-through does not occur.	SAMA would prevent basemat melt-through.
57	Provide a reactor vessel exterior cooling system.	SAMA would provide the potential to cool a molten core before it causes vessel failure, if the lower head could be submerged in water.
58	Construct a building to be connected to primary/secondary containment that is maintained at a vacuum (BWR only).	SAMA would provide a method to depressurize containment and reduce fission product release.
59	Refill CST	SAMA would reduce the risk of core damage during events such as extended station blackouts or LOCAs which render the suppression pool unavailable as an injection source due to heat up.
60	Maintain ECCS suction on CST	SAMA would maintain suction on the CST as long as possible to avoid pump failure as a result of high suppression pool temperature

SAMA ID Number	SAMA Title	Result of Potential Enhancement
61	Modify containment flooding procedure to restrict flooding to below Top of Active Fuel	SAMA would avoid forcing containment venting
62	Enhance containment venting procedures with respect to timing, path selection and technique.	SAMA would improve likelihood of successful venting strategies.
63	1.a. Severe Accident EPGs/Accident Management Guidelines	SAMA would lead to improved arrest of core melt progress and prevention of containment failure
64	1.h. Simulator Training for Severe Accident	SAMA would lead to improved arrest of core melt progress and prevention of containment failure
65	2.g. Dedicated Suppression Pool Cooling (BWR only)	SAMA would decrease the probability of loss of containment heat removal.
		While PWRs do not have suppression pools, a similar modification may be applied to the sump. Installation of a dedicated sump coolin system would provide an alternate method of cooling injection wate
66	3.a. Larger Volume Containment	SAMA increases time before containment failure and increases time for recovery
67	3.b. Increased Containment Pressure Capability (sufficient pressure to withstand severe accidents)	SAMA minimizes likelihood of large releases
68	3.c. Improved Vacuum Breakers (redundant valves in each line) (BWR only)	SAMA reduces the probability of a stuck open vacuum breaker.
69	3.d. Increased Temperature Margin for Seals (BWR only)	This SAMA would reduce containment failure due to drywell head s failure caused by elevated temperature and pressure.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
70	3.e. Improved Leak Detection	This SAMA would help prevent LOCA events by identifying pipes which have begun to leak. These pipes can be replaced before they break.
71	3.f. Suppression Pool Scrubbing (BWR only)	Directing releases through the suppression pool will reduce the radionuclides allowed to escape to the environment.
72	3.g. Improved Bottom Penetration Design	SAMA reduces failure likelihood of RPV bottom head penetrations
73	4.a. Larger Volume Suppression Pool (double effective liquid volume) (BWR only)	SAMA would increase the size of the suppression pool so that heatup rate is reduced, allowing more time for recovery of a heat removal system
74	5.a/d. Unfiltered Vent	SAMA would provide an alternate decay heat removal method with the released fission products not being scrubbed.
75	5.b/c. Filtered Vent	SAMA would provide an alternate decay heat removal method with the released fission products being scrubbed.
76	6.a. Post Accident Inerting System	SAMA would reduce likelihood of gas combustion inside containment
77	6.b. Hydrogen Control by Venting	Prevents hydrogen detonation by venting the containment before combustible levels are reached.
78	6.c. Pre-inerting	SAMA would reduce likelihood of gas combustion inside containment
79	6.d. Ignition Systems	Burning combustible gases before they reach a level which could cause a harmful detonation is a method of preventing containment failure.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
80	6.e. Fire Suppression System Inerting (BWR only)	Use of the FP system as a back up containment inerting system would reduce the probability of combustible gas accumulation. This would reduce the containment failure probability for small containments (e.g. BWR MKI).
81	7.a. Drywell Head Flooding (BWR only)	SAMA would provide intentional flooding of the upper drywell head such that if high drywell temperatures occurred, the drywell head seal would not fail.
82	7.b. Containment Spray Augmentation	This SAMA would provide additional means of providing flow to the containment spray system.
83	12.b. Integral Basemat	This SAMA would improve containment and system survivability for seismic events.
84	13.a. Reactor Building Sprays (BWR only)	This SAMA provides the capability to use firewater sprays in the reactor building to mitigate release of fission products into the Rx Bldg following an accident.
85	14.a. Flooded Rubble Bed	SAMA would contain molten core debris dropping on to the pedestal and would allow the debris to be cooled.
86	14.b. Reactor Cavity Flooder	SAMA would enhance debris coolability, reduce core concrete interaction, and provide fission product scrubbing.
87	14.c. Basaltic Cements	SAMA minimizes carbon dioxide production during core concrete interaction.
88	Provide a core debris control system	(Intended for ice condenser plants): This SAMA would prevent the direct core debris attack of the primary containment steel shell by erecting a barrier between the seal table and the containment shell.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
89	Add ribbing to the containment shell	This SAMA would reduce the risk of buckling of containment under reverse pressure loading.
	Improvements Related to Enhanc	ed AC/DC Reliability/Availability
90	Proceduralize alignment of spare diesel to shutdown board after loss of offsite power and failure of the diesel normally supplying it.	SAMA would reduce the SBO frequency.
91	Provide an additional diesel generator.	SAMA would increase the reliability and availability of onsite emergency AC power sources.
92	Provide additional DC battery capacity.	SAMA would ensure longer battery capability during an SBO, reduc the frequency of long-term SBO sequences.
93	Use fuel cells instead of lead-acid batteries.	SAMA would extend DC power availability in an SBO.
94	Procedure to cross-tie high pressure core spray diesel (BWR only).	SAMA would improve core injection availability by providing a more reliable power supply for the high pressure core spray pumps.
95	Improve 4.16-kV bus cross-tie ability.	SAMA would improve AC power reliability.
96	Incorporate an alternate battery charging capability.	SAMA would improve DC power reliability by either cross-tying the <i>b</i> busses, or installing a portable diesel-driven battery charger.
97	Increase/improve DC bus load shedding.	SAMA would extend battery life in an SBO event.
98	Replace existing batteries with more reliable ones.	SAMA would improve DC power reliability and thus increase availab SBO recovery time.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
99	Mod for DC Bus A reliability (BWR only).	SAMA would increase the reliability of AC power and injection capability. Loss of DC Bus A causes a loss of main condenser prevents transfer from the main transformer to offsite power, and defeats one half of the low vessel pressure permissive for LPCI/CS injection valves.
100	Create AC power cross-tie capability with other unit.	SAMA would improve AC power reliability.
101	Create a cross-tie for diesel fuel oil.	SAMA would increase diesel fuel oil supply and thus diesel generator, reliability.
102	Develop procedures to repair or replace failed 4-kV breakers.	SAMA would offer a recovery path from a failure of the breakers that perform transfer of 4.16-kV non-emergency busses from unit station service transformers, leading to loss of emergency AC power.
103	Emphasize steps in recovery of offsite power after an SBO.	SAMA would reduce human error probability during offsite power recovery.
104	Develop a severe weather conditions procedure.	For plants that do not already have one, this SAMA would reduce the CDF for external weather-related events.
105	Develop procedures for replenishing diesel fuel oil.	SAMA would allow for long-term diesel operation.
106	Install gas turbine generator.	SAMA would improve onsite AC power reliability by providing a redundant and diverse emergency power system.
107	Create a backup source for diesel cooling. (Not from existing system)	This SAMA would provide a redundant and diverse source of cooling for the diesel generators, which would contribute to enhanced diesel reliability.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
108	Use FP system as a backup source for diesel cooling.	This SAMA would provide a redundant and diverse source of cooling for the diesel generators, which would contribute to enhanced diesel reliability.
109	Provide a connection to an alternate source of offsite power.	SAMA would reduce the probability of a loss of offsite power event.
110	Bury offsite power lines.	SAMA could improve offsite power reliability, particularly during severe weather.
111	Replace anchor bolts on diesel generator oil cooler.	Millstone Nuclear Power Station found a high seismic SBO risk due to failure of the diesel oil cooler anchor bolts. For plants with a similar problem, this would reduce seismic risk. Note that these were Fairbanks Morse DGs.
112	Change undervoltage (UV), auxiliary feedwater actuation signal (AFAS) block and high pressurizer pressure actuation signals to 3-out-of-4, instead of 2-out-of-4 logic.	SAMA would reduce risk of 2/4 inverter failure.
113	Provide DC power to the 120/240-V vital AC system from the Class 1E station service battery system instead of its own battery.	SAMA would increase the reliability of the 120-VAC Bus.
114	Bypass Diesel Generator Trips	SAMA would allow D/Gs to operate for longer.
115	2.i. 16 hour Station Blackout Injection	SAMA includes improved capability to cope with longer station blackout scenarios.
116	9.a. Steam Driven Turbine Generator (BWR only)	This SAMA would provide a steam driven turbine generator which uses reactor steam and exhausts to the suppression pool. If large enough, it could provide power to additional equipment.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
117	9.b. Alternate Pump Power Source	This SAMA would provide a small dedicated power source such as a dedicated diesel or gas turbine for the feedwater or condensate pumps, so that they do not rely on offsite power.
118	9.d. Additional Diesel Generator	SAMA would reduce the SBO frequency.
119	9.e. Increased Electrical Divisions	SAMA would provide increased reliability of AC power system to reduce core damage and release frequencies.
120	9.f. Improved Uninterruptible Power Supplies	SAMA would provide increased reliability of power supplies supporting front-line equipment, thus reducing core damage and release frequencies.
121	9.g. AC Bus Cross-Ties	SAMA would provide increased reliability of AC power system to reduce core damage and release frequencies.
122	9.h. Gas Turbine	SAMA would improve onsite AC power reliability by providing a redundant and diverse emergency power system.
123	9.i. Dedicated RHR (bunkered) Power Supply	SAMA would provide RHR with more reliable AC power.
124	10.a. Dedicated DC Power Supply	This SAMA addresses the use of a diverse DC power system such as an additional battery or fuel cell for the purpose of providing motive power to certain components (e.g., RCIC).
125	10.b. Additional Batteries/Divisions	This SAMA addresses the use of a diverse DC power system such as an additional battery or fuel cell for the purpose of providing motive power to certain components (e.g., RCIC).
126	10.c. Fuel Cells	SAMA would extend DC power availability in an SBO.
127	10.d. DC Cross-ties	This SAMA would improve DC power reliability.

		•
SAMA ID Number	SAMA Title	Result of Potential Enhancement
128	10.e. Extended Station Blackout Provisions	SAMA would provide reduction in SBO sequence frequencies.
129	Add an automatic bus transfer feature to allow the automatic transfer of the 120V vital AC bus from the on- line unit to the standby unit	Plants are typically sensitive to the loss of one or more 120V vital AC buses. Manual transfers to alternate power supplies could be enhanced to transfer automatically.
	Improvements in Identifying and I	Mitigating Containment Bypass
130	Install a redundant spray system to depressurize the primary system during a steam generator tube rupture (SGTR).	SAMA would enhance depressurization during a SGTR.
131	Improve SGTR coping abilities.	SAMA would improve instrumentation to detect SGTR, or additional system to scrub fission product releases.
132	Add other SGTR coping abilities.	SAMA would decrease the consequences of an SGTR.
133	Increase secondary side pressure capacity such that an SGTR would not cause the relief valves to lift.	SAMA would eliminate direct release pathway for SGTR sequences
134	Replace steam generators (SG) with a new design.	SAMA would lower the frequency of an SGTR.
135	Revise EOPs to direct that a faulted SG be isolated.	SAMA would reduce the consequences of an SGTR.
136	Direct SG flooding after a SGTR, prior to core damage.	SAMA would provide for improved scrubbing of SGTR releases.
137	Implement a maintenance practice that inspects 100% of the tubes in a SG.	SAMA would reduce the potential for an SGTR.
138	Locate residual heat removal (RHR) inside of containment.	SAMA would prevent intersystem LOCA (ISLOCA) out the RHR pathway.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
139	Install additional instrumentation for ISLOCAs.	SAMA would decrease ISLOCA frequency by installing pressure of leak monitoring instruments in between the first two pressure isolation valves on low-pressure inject lines, RHR suction lines, and HPSI lines.
140	Increase frequency for valve leak testing.	SAMA could reduce ISLOCA frequency.
141	Improve operator training on ISLOCA coping.	SAMA would decrease ISLOCA effects.
142	Install relief valves in the CC System.	SAMA would relieve pressure buildup from an RCP thermal barrier tube rupture, preventing an ISLOCA.
143	Provide leak testing of valves in ISLOCA paths.	SAMA would help reduce ISLOCA frequency. At Kewaunee Nuclear Power Plant, four MOVs isolating RHR from the RCS were not leak tested.
144	Revise EOPs to improve ISLOCA identification.	SAMA would ensure LOCA outside containment could be identified as such. Salem Nuclear Power Plant had a scenario where an RHR ISLOCA could direct initial leakage back to the pressurizer relief tank, giving indication that the LOCA was inside containment.
145	Ensure all ISLOCA releases are scrubbed.	SAMA would scrub all ISLOCA releases. One example is to plug drains in the break area so that the break point would be covered with water.
146	Add redundant and diverse limit switches to each containment isolation valve.	SAMA could reduce the frequency of containment isolation failure and ISLOCAs through enhanced isolation valve position indication.
147	Early detection and mitigation of ISLOCA	SAMA would limit the effects of ISLOCA accidents by early detection and isolation
148	8.e. Improved MSIV Design	This SAMA would improve isolation reliability and reduce spurious actuations that could be initiating events.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
149	Proceduralize use of pressurizer vent valves during steam generator tube rupture (SGTR) sequences	Some plants may have procedures to direct the use of pressurizer sprays to reduce RCS pressure after an SGTR. Use of the vent valves would provide a back-up method.
150	Implement a maintenance practice that inspects 100% of the tubes in an SG	This SAMA would reduce the potential for a tube rupture.
151	Locate RHR inside of containment	This SAMA would prevent ISLOCA out the RHR pathway.
152	Install self-actuating containment isolation valves	For plants that do not have this, it would reduce the frequency of isolation failure.
	Improvements in Reducing Int	ternal Flooding Frequency
153	Modify swing direction of doors separating turbine building basement from areas containing safeguards equipment.	SAMA would prevent flood propagation, for a plant where internal flooding from turbine building to safeguards areas is a concern.
154	Improve inspection of rubber expansion joints on main condenser.	SAMA would reduce the frequency of internal flooding, for a plant where internal flooding due to a failure of circulating water system expansion joints is a concern.
155	Implement internal flood prevention and mitigation enhancements.	This SAMA would reduce the consequences of internal flooding.
156	Implement internal flooding improvements such as those implemented at Fort Calhoun.	This SAMA would reduce flooding risk by preventing or mitigating rupture in the RCP seal cooler of the component cooling system and ISLOCA in a shutdown cooling line, an auxiliary feedwater (AFW) flood involving the need to remove a watertight door.
157	Shield electrical equipment from potential water spray	SAMA would decrease risk associated with seismically induced internal flooding

SAMA ID Number	SAMA Title	Result of Potential Enhancement
158	13.c. Reduction in Reactor Building Flooding (BWR only)	This SAMA reduces the Reactor Building Flood Scenarios contribution to core damage and release.
	Improvements Related to Feedwater/Fe	ed and Bleed Reliability/Availability
159	Install a digital feedwater upgrade.	This SAMA would reduce the chance of a loss of main feedwater following a plant trip.
160	Perform surveillances on manual valves used for backup AFW pump suction.	This SAMA would improve success probability for providing alternative water supply to the AFW pumps.
161	Install manual isolation valves around AFW turbine-driven steam admission valves.	This SAMA would reduce the dual turbine-driven AFW pump maintenance unavailability.
162	Install accumulators for turbine-driven AFW pump flow control valves (CVs).	This SAMA would provide control air accumulators for the turbine- driven AFW flow CVs, the motor-driven AFW pressure CVs and SG power-operated relief valves (PORVs). This would eliminate the need for local manual action to align nitrogen bottles for control air during a LOOP.
163	Install separate accumulators for the AFW cross-connect and block valves	This SAMA would enhance the operator's ability to operate the AFW cross-connect and block valves following loss of air support.
164	Install a new condensate storage tank (CST)	Either replace the existing tank with a larger one, or install a back-up tank.
165	Provide cooling of the steam-driven AFW pump in an SBO event	This SAMA would improve success probability in an SBO by: (1) using the FP system to cool the pump, or (2) making the pump self cooled.
166	Proceduralize local manual operation of AFW when control power is lost.	This SAMA would lengthen AFW availability in an SBO. Also provides a success path should AFW control power be lost in non-SBO sequences.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
167	Provide portable generators to be hooked into the turbine driven AFW, after battery depletion.	This SAMA would extend AFW availability in an SBO (assuming the turbine driven AFW requires DC power)
168	Add a motor train of AFW to the Steam trains	For PWRs that do not have any motor trains of AFW, this would increase reliability in non-SBO sequences.
169	Create ability for emergency connections of existing or alternate water sources to feedwater/condensate	This SAMA would be a back-up water supply for the feedwater/condensate systems.
170	Use FP system as a back-up for SG inventory	This SAMA would create a back-up to main and AFW for SG water supply.
171	Procure a portable diesel pump for isolation condenser make-up (BWR only)	This SAMA would provide a back-up to the city water supply and diesel FP system pump for isolation condenser make-up.
172	Install an independent diesel generator for the CST make- up pumps	This SAMA would allow continued inventory make-up to the CST during an SBO.
173	Change failure position of condenser make-up valve	This SAMA would allow greater inventory for the AFW pumps by preventing CST flow diversion to the condenser if the condenser make-up valve fails open on loss of air or power.
174	Create passive secondary side coolers.	This SAMA would reduce CDF from the loss of Feedwater by providing a passive heat removal loop with a condenser and heat sink.
175	Replace current PORVs with larger ones such that only one is required for successful feed and bleed.	This SAMA would reduce the dependencies required for successful feed and bleed.
176	Install motor-driven feedwater pump.	SAMA would increase the availability of injection subsequent to MSIV closure.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
177	Use Main FW pumps for a Loss of Heat Sink Event	This SAMA involves a procedural change that would allow for a faster response to loss of the secondary heat sink. Use of only the feedwater booster pumps for injection to the SGs requires depressurization to about 350 psig; before the time this pressure is reached, conditions would be met for initiating feed and bleed. Using the available turbine driven feedwater pumps to inject water into the SGs at a high pressure rather than using the feedwater booster alone allows injection without the time consuming depressurization.
	Improvements in Co	ore Cooling Systems
178	Provide the capability for diesel driven, low pressure vessel make-up	This SAMA would provide an extra water source in sequences in which the reactor is depressurized and all other injection is unavailable (e.g., FP system)
179	Provide an additional HPSI pump with an independent diesel	This SAMA would reduce the frequency of core melt from small LOC/ and SBO sequences
180	Install an independent AC HPSI system	This SAMA would allow make-up and feed and bleed capabilities during an SBO.
181	Create the ability to manually align ECCS recirculation	This SAMA would provide a back-up should automatic or remote operation fail.
182	Implement an RWT make-up procedure	This SAMA would decrease CDF from ISLOCA scenarios, some smaller break LOCA scenarios, and SGTR.
183	Stop low pressure safety injection pumps earlier in medium or large LOCAs.	This SAMA would provide more time to perform recirculation swap over.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
184	Emphasize timely swap over in operator training.	This SAMA would reduce human error probability of recirculation failure.
185	Upgrade Chemical and Volume Control System to mitigate small LOCAs.	For a plant like the AP600 where the Chemical and Volume Control System cannot mitigate a Small LOCA, an upgrade would decrease the Small LOCA CDF contribution.
186	Install an active HPSI system.	For a plant like the AP600 where an active HPSI system does not exist, this SAMA would add redundancy in HPSI.
187	Change "in-containment" RWT suction from 4 check valves to 2 check and 2 air operated valves.	This SAMA would remove common mode failure of all four injection paths.
188	Replace 2 of the 4 safety injection (SI) pumps with diesel- powered pumps.	This SAMA would reduce the SI system common cause failure probability. This SAMA was intended for the System 80+, which has four trains of SI.
189	Align low pressure core injection or core spray to the CST on loss of suppression pool cooling (BWR only).	This SAMA would help to ensure low pressure ECCS can be maintained in loss of suppression pool cooling scenarios.
190	Raise high pressure core injection/reactor core isolation cooling backpressure trip setpoints (BWR only)	This SAMA would ensure high pressure core injection/reactor core isolation cooling availability when high suppression pool temperatures exist.
191	Improve the reliability of the automatic depressurization system (BWR only).	This SAMA would reduce the frequency of high pressure core damage sequences.
192	Disallow automatic vessel depressurization in non-ATWS scenarios	This SAMA would improve operator control of the plant.
193	Create automatic swap over to recirculation on RWT depletion	This SAMA would reduce the human error contribution from recirculation failure.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
194	Proceduralize intermittent operation of HPCI (BWR only).	SAMA would allow for extended duration of HPCI availability.
195	Increase available net positive suction head (NPSH) for injection pumps.	SAMA increases the probability that these pumps will be available to inject coolant into the vessel by increasing the available NPSH for the injection pumps.
196	Modify Reactor Water Cleanup (RWCU) for use as a decay heat removal system and proceduralize use (BWR only).	SAMA would provide an additional source of decay heat removal.
197	CRD Injection (BWR only)	SAMA would supply an additional method of level restoration by using a non-safety system.
198	Condensate Pumps for Injection (BWR only)	SAMA to provide an additional option for coolant injection when other systems are unavailable or inadequate
199	Align EDG to CRD for Injection (BWR only)	SAMA to provide power to an additional injection source during loss of power events
200	Re-open MSIVs (BWR only)	SAMA to regain the main condenser as a heat sink by re-opening the MSIVs.
201	Bypass RCIC Turbine Exhaust Pressure Trip (BWR only)	SAMA would allow RCIC to operate longer.
202	2.a. Passive High Pressure System	SAMA will improve prevention of core melt sequences by providing additional high pressure capability to remove decay heat through an isolation condenser type system
203	2.c. Suppression Pool Jockey Pump (BWR only)	SAMA will improve prevention of core melt sequences by providing a small makeup pump to provide low pressure decay heat removal from the RPV using the suppression pool as a source of water.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
204	2.d. Improved High Pressure Systems	SAMA will improve prevention of core melt sequences by improving reliability of high pressure capability to remove decay heat.
205	2.e. Additional Active High Pressure System	SAMA will improve reliability of high pressure decay heat removal by adding an additional system.
206	2.f. Improved Low Pressure System (Firepump)	SAMA would provide FP system pump(s) for use in low pressure scenarios.
207	4.b. Clean Up Water Decay Heat Removal (BWR only)	This SAMA provides a means for Alternate Decay Heat Removal.
208	4.c. High Flow Suppression Pool Cooling (BWR only)	SAMA would improve suppression pool cooling.
209	8.c. Diverse Injection System	SAMA will improve prevention of core melt sequences by providing additional injection capabilities.
210	Alternate Charging Pump Cooling	This SAMA will improve the high pressure core flooding capabilities by providing the SI pumps with alternate gear and oil cooling sources. Given a total loss of Chilled Water, abnormal operating procedures would direct alignment of preferred Demineralized Water or the Fire System to the Chilled Water System to provide cooling to the SI pumps' gear and oil box (and the other normal loads).
	Instrument Air/Ga	s Improvements
211	Modify EOPs for ability to align diesel power to more air compressors.	For plants that do not have diesel power to all normal and back-up air compressors, this change would increase the reliability of IA after a LOOP.
212	Replace old air compressors with more reliable ones	This SAMA would improve reliability and increase availability of the IA compressors.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
213	Install nitrogen bottles as a back-up gas supply for safety relief valves (BWR only).	This SAMA would extend operation of safety relief valves during an SBO and loss of air events (BWRs).
214	Allow cross connection of uninterruptible compressed air supply to opposite unit.	SAMA would increase the ability to vent containment using the hardened vent.
	ATWS Miti	gation
215	Install MG set trip breakers in control room (BWR only)	This SAMA would provide trip breakers for the MG sets in the control room. In some plants, MG set breaker trip requires action to be taken outside of the control room. Adding control capability to the control room would reduce the trip failure probability in sequences where immediate action is required (e.g., ATWS).
216	Add capability to remove power from the bus powering the control rods	This SAMA would decrease the time to insert the control rods if the reactor trip breakers fail (during a loss of FW ATWS which has a rapic pressure excursion)
217	Create cross-connect ability for standby liquid control trains (BWR only)	This SAMA would improve reliability for boron injection during an ATWS event.
218	Create an alternate boron injection capability (back-up to standby liquid control) (BWR only)	This SAMA would improve reliability for boron injection during an ATWS event.
219	Remove or allow override of low pressure core injection during an ATWS (BWR only)	On failure on high pressure core injection and condensate, some plants direct reactor depressurization followed by 5 minutes of low pressure core injection. This SAMA would allow control of low pressure core injection immediately.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
220	Install a system of relief valves that prevents any equipment damage from a pressure spike during an ATWS	This SAMA would improve equipment availability after an ATWS.
221	Create a boron injection system to back up the mechanical control rods.	This SAMA would provide a redundant means to shut down the reactor.
222	Provide an additional instrument system for ATWS mitigation (e.g., ATWS mitigation scram actuation circuitry).	This SAMA would improve instrument and control redundancy and reduce the ATWS frequency.
223	Increase the safety relief valve (SRV) reseat reliability (BWR only).	SAMA addresses the risk associated with dilution of boron caused by the failure of the SRVs to reseat after standby liquid control (SBLC) injection.
224	Use control rod drive for alternate boron injection (BWR only).	SAMA provides an additional system to address ATWS with SBLC failure or unavailability.
225	Bypass MSIV isolation in Turbine Trip ATWS scenarios (BWR only)	SAMA will afford operators more time to perform actions. The discharge of a substantial fraction of steam to the main condenser (i.e., as opposed to into the primary containment) affords the operator more time to perform actions (e.g., SBLC injection, lower water level, depressurize RPV) than if the main condenser was unavailable, resulting in lower human error probabilities
226	Enhance operator actions during ATWS	SAMA will reduce human error probabilities during ATWS
227	Guard against SBLC dilution (BWR only)	SAMA to control vessel injection to prevent boron loss or dilution following SBLC injection.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
228	11.a. ATWS Sized Vent	This SAMA would be providing the ability to remove reactor heat from ATWS events.
229	11.b. Improved ATWS Capability	This SAMA includes items which reduce the contribution of ATWS to core damage and release frequencies.
	Other Impro	vements
230	Provide capability for remote operation of secondary side relief valves in an SBO	Manual operation of these valves is required in an SBO scenario. High area temperatures may be encountered in this case (no ventilation to main steam areas), and remote operation could improve success probability.
231	Create/enhance RCS depressurization ability	With either a new depressurization system, or with existing PORVs, head vents, and secondary side valve, RCS depressurization would allow earlier low pressure ECCS injection. Even if core damage occurs, low RCS pressure would alleviate some concerns about high pressure melt ejection.
232	Make procedural changes only for the RCS depressurization option	This SAMA would reduce RCS pressure without the cost of a new system
233	Defeat 100% load rejection capability.	This SAMA would eliminate the possibility of a stuck open PORV after a LOOP, since PORV opening would not be needed.
234	Change control rod drive flow control valve failure position (BWR only)	Change failure position to the "fail-safest" position.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
235	Install secondary side guard pipes up to the MSIVs	This SAMA would prevent secondary side depressurization should a steam line break occur upstream of the main steam isolation valves. This SAMA would also guard against or prevent consequential multiple SGTR following a Main Steam Line Break event.
236	Install digital large break LOCA protection	Upgrade plant instrumentation and logic to improve the capability to identify symptoms/precursors of a large break LOCA (leak before break).
237	Increase seismic capacity of the plant to a high confidence, low pressure failure of twice the Safe Shutdown Earthquake.	This SAMA would reduce seismically -induced CDF.
238	Enhance the reliability of the demineralized water (DW) make-up system through the addition of diesel-backed power to one or both of the DW make-up pumps.	Inventory loss due to normal leakage can result in the failure of the CC and the SRW systems. Loss of CC could challenge the RCP seals. Loss of SRW results in the loss of three EDGs and the containment air coolers (CACs).
239	Increase the reliability of safety relief valves by adding signals to open them automatically (BWR only).	SAMA reduces the probability of a certain type of medium break LOCA. Hatch evaluated medium LOCA initiated by an MSIV closure transient with a failure of SRVs to open. Reducing the likelihood of the failure for SRVs to open, subsequently reduces the occurrence of this medium LOCA.
240	Reduce DC dependency between high pressure injection system and ADS (BWR only).	SAMA would ensure containment depressurization and high pressure injection upon a DC failure.
241	Increase seismic ruggedness of plant components.	SAMA would increase the availability of necessary plant equipment during and after seismic events.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
242	Enhance RPV depressurization capability (BWR only)	SAMA would decrease the likelihood of core damage in loss of high pressure coolant injection scenarios
243	Enhance RPV depressurization procedures (BWR only)	SAMA would decrease the likelihood of core damage in loss of high pressure coolant injection scenarios
244	Replace mercury switches on FP systems	SAMA would decrease probability of spurious fire suppression system actuation given a seismic event+D114
245	Provide additional restraints for CO ₂ tanks	SAMA would increase availability of FP given a seismic event.
246	Enhance control of transient combustibles	SAMA would minimize risk associated with important fire areas.
247	Enhance fire brigade awareness	SAMA would minimize risk associated with important fire areas.
248	Upgrade fire compartment barriers	SAMA would minimize risk associated with important fire areas.
249	Enhance procedures to allow specific operator actions	SAMA would minimize risk associated with important fire areas.
250	Develop procedures for transportation and nearby facility accidents	SAMA would minimize risk associated with transportation and nearby facility accidents.
251	Enhance procedures to mitigate Large LOCA	SAMA would minimize risk associated with Large LOCA
252	1.b. Computer Aided Instrumentation	SAMA will improve prevention of core melt sequences by making operator actions more reliable.
253	1.c/d. Improved Maintenance Procedures/Manuals	SAMA will improve prevention of core melt sequences by increasing reliability of important equipment
254	1.e. Improved Accident Management Instrumentation	SAMA will improve prevention of core melt sequences by making operator actions more reliable.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
255	1.f. Remote Shutdown Station	This SAMA would provide the capability to control the reactor in the event that evacuation of the main control room is required.
256	1.g. Security System	Improvements in the site's security system would decrease the potential for successful sabotage.
257	2.b. Improved Depressurization	SAMA will improve depressurization system to allow more reliable access to low pressure systems.
258	2.h. Safety Related Condensate Storage Tank	SAMA will improve availability of CST following a Seismic event
259	4.d. Passive Overpressure Relief	This SAMA would prevent vessel overpressurization.
260	8.b. Improved Operating Response	Improved operator reliability would improve accident mitigation and prevention.
261	8.d. Operation Experience Feedback	This SAMA would identify areas requiring increased attention in plant operation through review of equipment performance.
262	8.e. Improved SRV Design	This SAMA would improve SRV reliability, thus increasing the likelihood that sequences could be mitigated using low pressure heat removal.
263	12.a. Increased Seismic Margins	This SAMA would reduce the risk of core damage and release during seismic events.
264	13.b. System Simplification	This SAMA is intended to address system simplification by the elimination of unnecessary interlocks, automatic initiation of manual actions or redundancy as a means to reduce overall plant risk.

SAMA ID Number	SAMA Title	Result of Potential Enhancement
265	Train operations crew for response to inadvertent actuation signals	This SAMA would improve chances of a successful response to the loss of two 120V AC buses, which may cause inadvertent signal generation.
266	Install tornado protection on gas turbine generators	This SAMA would improve onsite AC power reliability.