Xcel's Synergi and DRIVE Demonstration for Hosting Capacity Webinar – June 2, 2020

TODAY'S AGENDA:

12:00 - 1:30

The first half of the Workshop (12:00 to 1:30) will be a demonstration that provides an in-depth look at how Xcel Energy uses the EPRI DRIVE tool and other software tools for its hosting capacity analysis (HCA).

30-minute Break (1:30 p.m. – 2:00 p.m.)

2:00 - 4:00

The second half of the Workshop will feature a representative from EPRI who will provide an overview of DRIVE and outline the three available methodologies

Presenters

Luther Miller, Xcel Energy - Distribution Planning Engineer

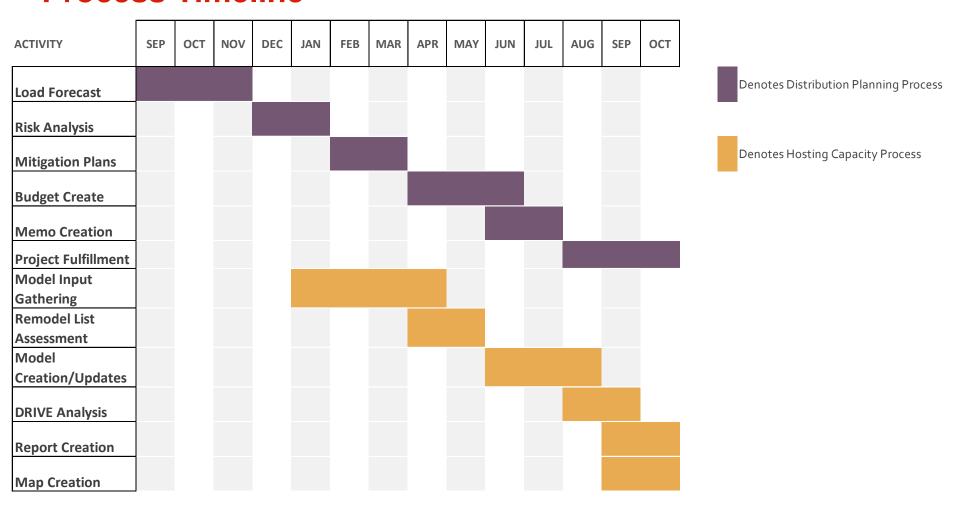
Matt Rylander, EPRI - Distribution Ops and Planning's Advanced Analytics Project Set Lead

Synergi and DRIVE Demonstration for Hosting Capacity

June 2, 2020

Hosting Capacity

- Xcel Energy filed its first Hosting Capacity
 Analysis (HCA) report in December 2016 and has continued to file HCA reports yearly with consistently updated features and accuracy
- The purpose of this demonstration is to provide a practical look at the full HCA process used by Xcel Energy in the Synergi tool and the Electric Power Research Institute (EPRI) Distribution Resource Integration and Value Estimation (DRIVE) tool.



Objectives

- Provide a practical demonstration of Synergi modeling and DRIVE analysis with respect to Hosting Capacity
- Examine additional functionality of the DRIVE tool

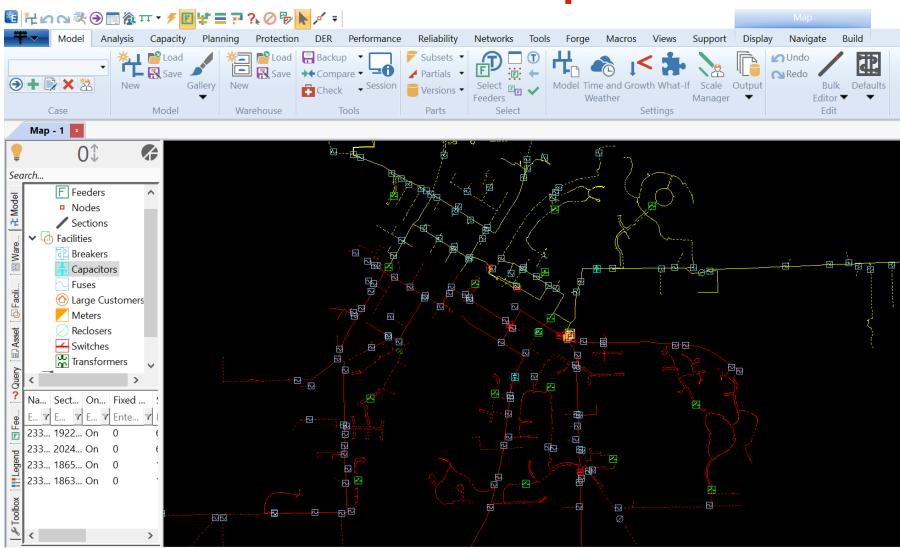
Distribution Planning and Hosting Capacity Process Timeline

History of DRIVE Usage and HCA

- 2015
 - Xcel Energy began working with EPRI in 2015 to begin the process of acquiring DRIVE as a tool for HCA
- 2016
 - Xcel Energy's first filed HCA
- 2017
 - Methodology changed to Large Centralized HCA in DRIVE
 - HCA heat map developed and implemented
- 2018
 - Reverse power flow was added as an analysis criteria
- 2019
 - HCA performed with actual daytime minimum loading and power factor information.
 - Unintentional islanding was added as an analysis criteria
 - Popup functionality in HCA map

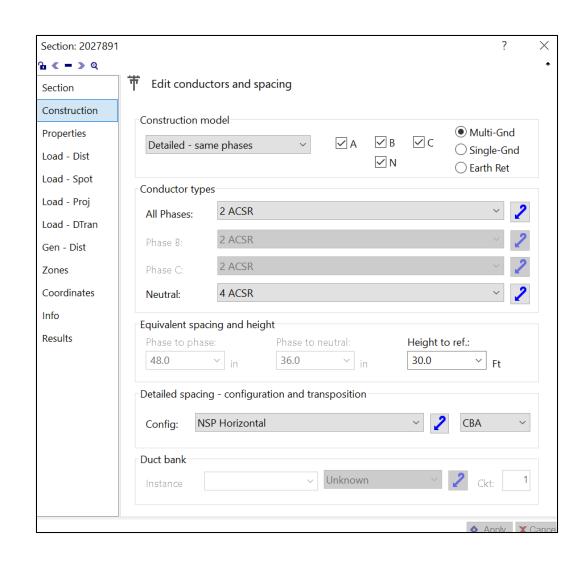
Inputs required for HCA

- GIS feeder model
- Forecasted peak load, amp balance and power factor
- Secondary customer billing data
- Primary customer and solar garden information
- Daytime minimum load

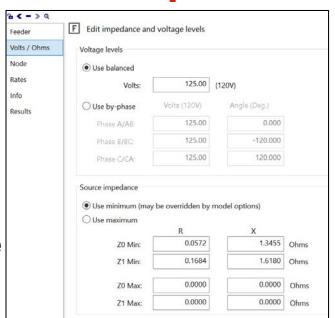


Synergi Model Creation Process

- Import feeder model from GIS
- Perform model cleanup
- Input forecasted loading, head-end impedance
- Import customer billing information and solar garden size/power factor
- Allocate load
- Perform load flow
- QA model

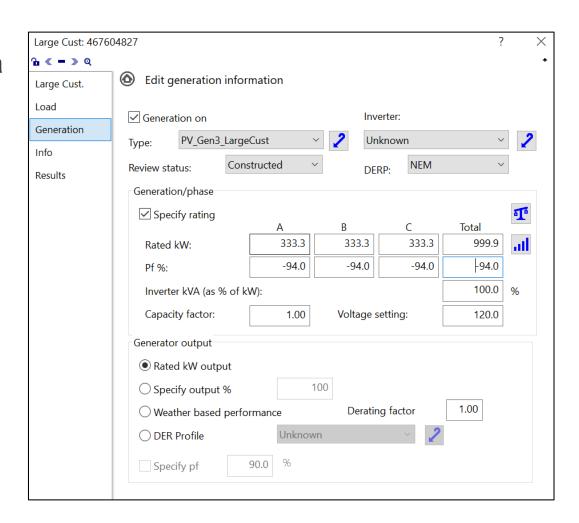

Model Creation and Cleanup

Model Creation and Cleanup


- Model is imported from GIS Database
- An automated cleanup script performs most of this work, but several facilities require further inspection
 - Conductor validation
 - Capacitor banks
 - StepdownTransformers

Loading and Head-end Impedance

- Head-end impedance information is retrieved from an internal substation database
- Forecasted peak load data is gathered for each phase (when available) from Feeder SCADA and entered into the model's meter facility



Edit mete	er demands										
☐ Do not us	e demands	Loc	Lock downstream loads								
Туре		Units									
Amp	○kVA	⊚ k	W, kvar	O kva, % pf							
Metered valu	ues										
Override	den by upstream	meters									
	Α	В	С								
Amp:	131.0	122.0	118.0	123.7							
% pf:	99.0	99.0	99.0	99.0							
		Repl	ace with result	İS							

Customer/DER Information

- Customer metering data is imported through Synergi's CMM tool and assigned to the model's nodes/sections
- Primary customer and Solar Garden data is entered manually from Xcel Energy's records

Load Allocation and Load Flow

- Load is allocated with peak load values entered in the feeder model, and distributed across the feeder based on customer metering information.
- DER is turned off for load allocation
- A load flow is performed to check for any exceptions such as low voltage, overloaded transformers and overloaded conductors
- DER is turned back on and another load flow is performed

Feeder Summary																					
Source	Exce	ption	Pct L	.dg		Dema	and			Amps		Volts	Conne	cted	Loa	d	Los	SS	G	eneratio	n
ld	Cnt	Emr	Cnt	Emr	kW	kvar	kVA	pf	Max	% Imb	Neut	Avg	c.Cust	c.kVA	kW	kvar	kW	%	Tot kW	PV kW	PV %
Y	Y	7	Y	Y	Y	了	了	Y	7	了	Y	7	Y	Y	了	Y	了	了	了	Y	
	0	0	25.9	25.9	-1563	2246	2737	57	113	3.14	12	125.00	1316	14266	-1594	2267	95	6.10	4765	4765	304
	4	4	36.9	36.9	4659	664	4706	-57 99	202	11.11	12 32	125.00		18454	4569	726	106	2.28	4/63	4/03	304
	4	4	N/A	N/A	3096	2910	4249	73	N/A	N/A	N/A	N/A	2421	32720	2976	2994	202	6.52	4782	4782	154

Additional functions of Synergi as used in HCA and Planning

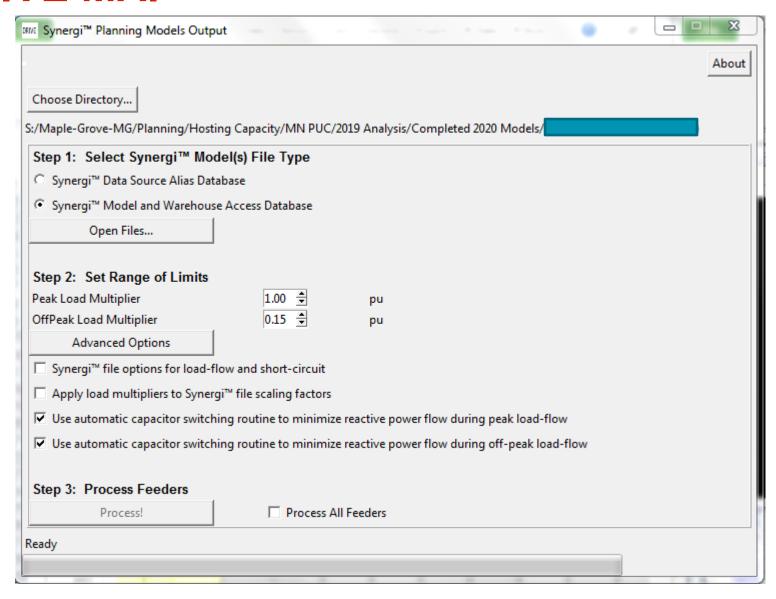
Queries

 Allow sections of feeder to be highlighted and edited based on conductor type, proximity, etc.

Building

- Sections of conductor may be built out from an existing feeder, and equipment can be added to new sections
- Conditional Highlighting
 - Feeders may be highlighted with multiple color codes based on certain conditions such as loading or conductor type

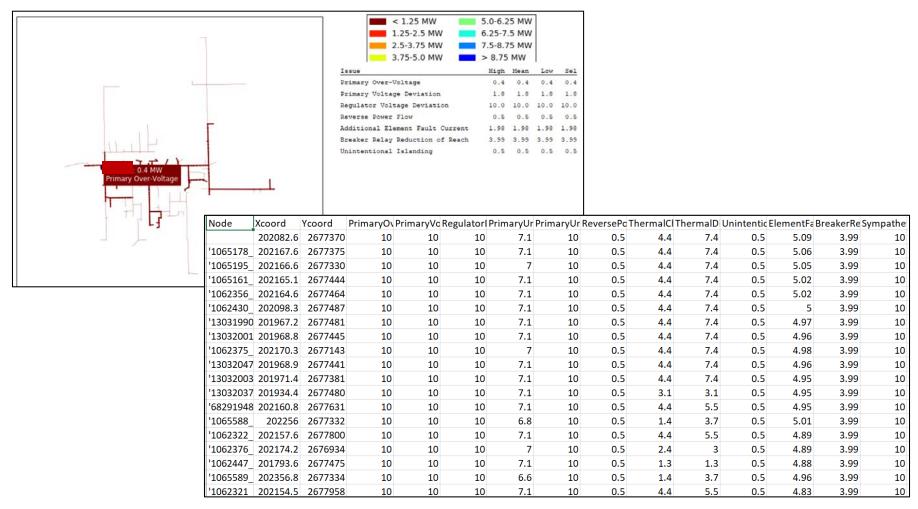
DRIVE Process


- Model A Interface (DRIVE MAI)
 - Load Synergi model
 - Assign off-peak load percentage (based on DML)
 - Convert Synergi model to DRIVE input files

DRIVE

- Select input folder/files
- Load threshold and analysis settings
- Perform analysis
- QA Hosting Capacity Analysis and download summary file

DRIVE MAI



DRIVE Hosting Capacity Interface

Hosting Capacity Analysis					— X
ELECTRIC POWER RESEARCH INSTITU	TE				
Evaluation Criteria Thresholds:					
Primary Over-Voltage	?	1.050	<u>*</u>	pu	D All
Primary Under-Voltage	?	0.950	<u> </u>	pu	Process All
Primary Voltage Deviation	?	3.0	<u> </u>	%	Process Individual Feeder
Regulator Voltage Deviation	?	50		%	Analysis Options
Thermal for Load	?	100	_ -	%	Future Resource Options
Thermal for Gen	?	100	+	%	
Reverse Power Flow	?	1	100	%	
Additional Element Fault Current	?	10	\$	%	
Breaker Relay Reduction of Reach	?	10	<u> </u>	%	
Sympathetic Breaker Relay Tripping	?	150	*	Α	
Unintentional Islanding	?	100	<u>+</u>	%	S S-Wi
Operational Flexibility	?	100	<u>^</u>	%	Save Settings
3V0	?	100	<u> </u>	%	Load Settings
Flicker	?	0.35	\$	Pst	
Progress Details:					
Ready					

DRIVE Hosting Capacity Results

Functions of DRIVE

- Hosting Capacity for Load or Generation
- Hosting Capacity Analysis with Autonomous Smart Inverters
- Hosting Capacity with N-1 switching
- Mitigation Assessment

Thank you for listening.

Are there any Questions?

30-MINUTE BREAK

1:25 p.m. – 1:55 p.m.