CONSTRUCTION CERTIFICATION REPORT POND 3 2014 BERM ADDITION

NPDES Permit No. 0002186 Sherburne County (Sherco) Generating Plant Northern States Power Company (dba Xcel Energy, Inc.) Becker, MN

Prepared for:

Xcel Energy, Inc.

December 8th, 2014

Prepared By:

CONSTRUCTION CERTIFICATION REPORT POND 3 2014 BERM ADDITION

Sherburne County (Sherco) Generating Plant Northern States Power Company (dba Xcel Energy, Inc.) Becker, Minnesota

Prepared For Xcel Energy, Inc.

December 2014

Prepared by: Carlson McCain

CONSTRUCTION CERTIFICATION REPORT 2014 POND 3 BERM ADDITION

TABLE OF CONTENTS

SECTION 1.0 - CERTIFICATION	1
SECTION 2.0 - INTRODUCTION	1
SECTION 3.0 – CONSTRUCTION ACTIVITIES	
3.1 Surveying	
3.2 TOPSOIL, CLASS 5, AND CONTROLLED FILL STRIPPING	
3.3 CLAY BARRIER	3
3.3 CLAY BARRIER	4
3.3.1.1 Pre-Qualification Testing	
3.3.1.2 In-Place Density & Moisture Testing	
3.3.1.3 In-Place Permeability	
3.3.2 Verification Survey	
3.3.2 Verification Survey	t
3.5 CLASS 5	6
3.6 TOPSOIL	
3.7 Turf Establishment	8
3.8 DEWATERING SYSTEM CLEANOUT EXTENSIONS	8
SECTION 4.0 - CONCLUSION	(
SECTION 5.0 - REFERENCES	9

LIST OF TABLES

Table 1	Sample / Test Information –	- Clay (Source Area Pre-Qualification)
T 11 A	~ 1 /	

Table 2 Sample / Test Information – Clay (In-Place Density)

Table 3 Sample / Test Information – Clay (In-Place Permeability and Index Testing)

Table 4 Sample / Test Information – Controlled fill

LIST OF FIGURES

Figure 1 Pond 3S Clay In-Place Density and Permeability/Atterberg Locations Figure 2 Pond 3N Clay In-Place Density and Permeability/Atterberg Locations

LIST OF APPENDICES

Appendix A Record Drawings (As-Built)
Appendix B Construction Photographs

Appendix C Survey Information

Clay Survey Verification Data

Finished Grade Survey Verification Data

Survey Verification Drawing

Appendix D Clay Material Test Data / Reports

Clay Source Prequalification Test Reports Clay Source Standard Proctor Test Reports

Clay In-place Density Test Reports

Clay In-place Permeability and Index Property Test Reports

Appendix E Controlled fill Test Data / Reports

In-place Proctor Test Reports
In-place Density Test Reports

Appendix F Turf Establishment Information

Seed Mix Tag, Fertilizer Tag, Mulch Information, Erosion Control Blanket Spec

Sheet

CONSTRUCTION CERTIFICATION REPORT 2014 POND 3 BERM ADDITION

SECTION 1.0 – CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Daniel J. Riggs

Date: 12/17/2014

License No. 49559

SECTION 2.0 - INTRODUCTION

The purpose of this report is to present information associated with the construction of the 2014 Pond 3 Berm Addition at the Sherburne County Generating Plant (Sherco). Project activities began on September 15, 2014 and were completed on October 23, 2014. As-built Record Drawings are included in Appendix A and photographs of construction activities are included in Appendix B. The Sherco project number assigned to this work was SHC-18212.

The 2014 Pond 3 Berm Addition project consisted of raising the clay barrier 3-feet from an existing elevation of 995 to 998. The primary construction activities consisted of stripping the existing road material (class 5), topsoil, and subgrade material to the top of the existing clay barrier, and installing 3-feet of clay (8-feet wide), subgrade material (controlled fill), class 5 road material, topsoil, and establishing turf. The dewatering system cleanouts located along the east side of Pond 3 were also extended as part of the construction project.

The project was constructed in accordance with the 2014 Sherco Pond 3 Extension Project Technical Specifications, dated July 22, 2014 and the Sherburne County (Sherco) Generating Plant, 2014 Pond 3 Berm Addition Construction Drawings, dated July 23, 2014. Both documents were prepared by Carlson McCain. Deviations from the Technical Specifications are noted on the enclosed Record Drawings and/or described in this report.

Carlson McCain provided on-site construction quality assurance (CQA) management from September 15, 2014 through October 14, 2014. Information associated with activities completed after October 14, 2014 were provided by the general contractor and/or Xcel personnel. Activities completed without on-site CQA included class 5 installation, topsoil installation, turf establishment, and the construction of the Pond 3 clean-out extensions. Construction observation consisted of observing and recording activities of the general contractor and subcontractors, answering questions and interpreting information contained in the drawings and specifications, and assisting testing and quality control activities.

The following companies provided services to complete the project:

Company Activity or Products

Xcel Energy Owner/Project Management

Carlson McCain, Inc. (Carlson McCain) Design/Construction Management – CQA

Veit & Company Inc. (Veit) General Contractor & Earthwork Installation

Bogart, Pederson and Associates, Inc. Survey Verification (Subcontractor to Veit)

Neaton Brothers Erosion Turf Establishment (Subcontractor to Veit)

Soil Engineering Testing Laboratory Soil Testing (Subcontractor to Veit)

American Engineering Testing, Inc.

Soil Testing (Subcontractor to Veit)

SECTION 3.0 – CONSTRUCTION ACTIVITIES

The following sections provide the general description of materials, construction methods, and quality control measures used to complete the project. For additional project details and information see the referenced Technical Specification Documents.

The primary construction activities consisted of stripping the existing road material (class 5), topsoil, and subgrade material to the top of the existing clay barrier, then installing 3-feet of clay (8-feet wide), subgrade material

(controlled fill), class 5 road material, topsoil, and establishing turf. The dewatering system cleanouts located along the east side of Pond 3 were also extended.

3.1 Surveying

Bogart, Pederson and Associates, Inc., was retained by the general contractor to provide surveying services for the project. The primary activities included completing survey activities associated with verifying the proper material thicknesses and elevations of the clay barrier, controlled fill, class 5, and topsoil, and providing an as-built survey drawing. Survey grid point locations were provided by Carlson McCain prior to initiating surveying activities. The survey activities were completed using 50 foot grid point locations for the clay, controlled fill, and class 5 and 100 foot grid point locations for the topsoil.

The survey verification data and as-built survey drawing are included in Appendix C.

3.2 Topsoil, Class 5, and Controlled fill Stripping

The existing topsoil, class 5, and controlled fill within the construction area was stripped by a dozer utilizing GPS and/or excavator utilizing GPS. The topsoil was placed along the outer edges of the construction area adjacent to the area it was removed. The class 5 road material was excavated and stockpiled at the base of the Pond 2 north slope near the existing rip-rap stockpile. The controlled fill was placed along the Pond 3 interior benches adjacent to the area that it was removed. All stripped material was re-used as part of the construction project.

3.3 Clay Barrier

Approximately 4,600 cubic yards of clay (in-place volume) was used to complete the clay barrier Berm Addition project. The in-place volume was determined by multiplying the clay barrier square footage by the expansion height (3-feet) and converting to cubic yards. The clay came from a pre-qualified off-site source (pit) located in Wright County, Minnesota and was hauled to the construction area and placed on the clay barrier over a 1 week period utilizing ten (10) to twenty (20) belly-dump semis.

The placed clay was connected to the top of the existing clay barrier at an elevation of 995 by scarifying and moistening the top of the existing clay barrier prior to placing the first lift of clay. Following placement, a dozer utilizing GPS spread the clay into 9-inch loose lifts approximately 10-feet wide (for semi travel) along the clay barrier alignment. The loose lifts were then compacted with a vibratory sheepsfoot roller. Each lift was maintained

in a rough and moistened condition to promote bonding between lifts and provide uniformity throughout the clay barrier. Once the barrier was approximately 2-feet thick, the GPS excavator shaped the exterior of the clay barrier by pulling up the extra clay along the outside 1.5 horizontal to 1 vertical slope and placing it on the top in six (6) inch lifts to a final height elevation of 998 and width of 8-feet. A vibratory sheepsfoot roller followed behind to compact each clay lift pulled up by the excavator. The top of the clay barrier was compacted with a smooth-drum roller to provide a smooth finish surface.

3.3.1 Clay Material Testing

3.3.1.1 Pre-Qualification Testing

To ensure the source area clay met the required project specifications, two (2) source area samples were collected from the proposed clay source pit. Each sample was collected by excavating down with an excavator approximately 10 feet and collecting multiple grab samples at various elevations and combining them into one (1) composite sample for analyses. One (1) composite sample was collected from a test pit excavated at the estimated north end of the clay source area and one (1) composite sample was collected from a test pit excavated at the estimated south end of the source area. The samples were analyzed for permeability, USCS classification, percent passing #200 sieve, and atterberg limits. The permeability samples were tested at 97 percent standard proctor density and at or above optimum moisture. Both samples met the minimum project specifications except for the percent passing the #200 sieve. The project specifications required the percent passing #200 sieve to be a minimum of 50 percent, however CLP-1 only had 49.3 percent passing. Given the relatively close margin of non-compliance, and history of acceptable in-place permeability results using this clay pit, the test results were deemed acceptable by Xcel and the clay source was approved for use.

Table 1 presents the clay source pre-qualification sample/test information such as sample ID., date, time, location, project requirements, and results and Appendix D contains the test/sample laboratory reports. The samples were collected by Veit personnel and were analyzed by Soil Engineering Testing Inc.

3.3.1.2 In-Place Density & Moisture Testing

To ensure proper soil compaction and moisture content, random in-place density and moisture tests using a nuclear density meter were completed on the placed clay at a minimum frequency of one test per 200 cubic yards. The density tests were compared to the standard proctor results to determine if the field density met the design

compaction criteria of 97 percent at 0-5 percent above optimum moisture content. There were two (2) proctor samples analyzed from the clay source material collected from the pre-qualification clay testing and twenty-four (24) in-place field density tests collected from the clay placed on the barrier. In general, there were four (4) tests performed on each 6-inch lift of compacted clay. Figures 1 and 2 depict the location of the in-place field density/moisture tests. All in-place tests passed the density and moisture requirements of the project.

Table 2 presents the in-place density and moisture sample/test information such as sample no., date, time, location, elevation, project requirements, and results and Appendix D contains the test/sample laboratory reports. All in-place density testing was performed by American Engineering Testing, Inc.

3.3.1.3 In-Place Permeability

To ensure the placed clay met the in-place permeability requirements, two (2) thin-wall samples were collected and analyzed. Figures 1 and 2 depict the location of the thin-wall samples. The samples were collected by pushing a standard thin-wall tube (30 inches long x 3 inches diameter) into the compacted clay material with a skid loader bucket and removing the thin-wall tube with the skid loader bucket. The thin-wall tube was positioned in a vertical alignment during installation and extraction. The samples were analyzed for permeability, USCS classification, passing #200 sieve, and atterberg limits. Both samples met the minimum project specifications except for the percent passing the #200 sieve. The project specifications required the percent passing #200 sieve to be a minimum of 50 percent. The percent passing for CL TW-1 was 47.1 and for CL TW-2 was 48.4. Given the acceptable permeability tests (CL TW-1 at 2.4 x 10⁻⁸ cm/sec and CL TW-2 at 1.3 x 10⁻⁸ cm/sec) the test results were deemed acceptable by Xcel.

Table 3 presents the in-place permeability sample/test information such as sample ID., date, time, location, project requirements, and results and Appendix D contains the test/sample laboratory reports. The samples were collected by American Engineering Testing, Inc. and were analyzed by Soil Engineering Testing Inc.

3.3.2 Verification Survey

The top of the existing clay barrier was exposed and surveyed to establish subgrade elevations. Once the clay barrier was installed, it was surveyed again to ensure the clay barrier met the project specifications for elevation (998) and minimum width (8-feet). Results of the survey indicate that the clay barrier was constructed in accordance with the required project specifications.

The results of the survey and as-built survey drawing are included in Appendix C.

3.4 Controlled fill

The road subgrade was re-constructed using the salvaged fill material and an additional source of controlled fill following installation of the clay barrier. The additional controlled fill came from the north end of the controlled fill borrow area located northeast of Pond 3N and was hauled to the construction area with side-dump trucks. The additional required volume of controlled fill was estimated at 20,400 cubic yards. The additional volume was calculated by determining the total volume of controlled fill required for the project and subtracting the volume of the initially stripped material. The location of the borrow area is referenced on the Record Drawings included in Appendix A.

The salvaged controlled fill and the additional controlled fill were graded into place by a dozer utilizing GPS. The material was graded into approximately 12-inch loose lifts and compacted with a smooth-drum vibratory roller prior to placement of additional fill material.

To ensure proper soil compaction of the controlled fill, eight (8) in-place field density tests using a nuclear density meter were completed on the compacted controlled fill material. The density tests were completed at a minimum frequency of one test per 3,000 cubic yards. The density tests were compared to the standard proctor results to determine if the field density met the 95 percent compaction criteria. All density tests passed the minimum specified compaction of 95 percent. Table 4 presents the sample/test information such as sample no., date, time, location, elevation, and results and Appendix E contains the test/sample laboratory reports. All sample analyses (proctor) and in-place density testing were performed by American Engineering Testing, Inc.

An elevation verification survey was completed to ensure the controlled fill met the minimum elevation tolerance of +/-0.1 foot. The results of the survey are included in Appendix C. Results of the survey indicate that the elevation tolerance was met at all controlled fill grid point locations.

3.5 Class 5

Class 5 aggregate was as road surface material over the controlled fill material. Approximately 2,700 cubic yards (in-place volume) of class 5 was used to construct the roads. The in-place volume was determined by multiplying

the estimated square footage of the road surface by the thickness of class 5 (6-inches) and converting to cubic yards. All class 5 was salvaged from the initial stripping process and no addition class 5 was required.

The class 5 was hauled to the construction area with dump trucks, graded into place by a dozer utilizing GPS to a depth of approximately 6-inches and compacted with a vibratory smooth-drum roller. No material and/or density tests were collected from the class 5 as they were not required as part of the project specifications.

A thickness verification survey was completed to ensure the placed class 5 met the minimum tolerance of 6-inches +0.0-0.1 foot (6.0-7.2 inches). Results of the survey indicate that the class 5 thickness ranged from 6.0 to 7.1 inches and the thickness tolerance was met at all class 5 grid point locations. The results of the survey are included in Appendix C.

3.6 Topsoil

Topsoil was placed along the road edges, embankments/slope areas, and all disturbed areas following installation of the controlled fill and class 5. The topsoil came from two sources, material salvaged during the beginning of the project and from a topsoil stockpile. The amount excavated from the stockpile was estimated at 650 cubic yards (hauled volume). This estimated volume was determined by multiplying the number of trucks by the estimated haul volume of each truck. The topsoil was hauled to from the stockpile, located east Pond 3, to the project area with dump trucks. The location of the east topsoil stockpile is referenced on the Record Drawings included in Appendix A.

The topsoil was graded by a dozer utilizing GPS to a depth of approximately 6-inches and/or to the design finished grade elevations.

No topsoil samples were collected and analyzed for nutrient content or fertilizer recommendations. The on-site topsoil has been sampled multiple times during previous construction projects and the most recent sampling results (summer 2014) were provided to the general contractor for nutrient content and fertilizer recommendations.

A thickness verification survey was completed to ensure the placed topsoil met the minimum tolerance of 6-inches +0.0-0.1 foot (6.0-7.2 inches). Results of the survey indicate that the topsoil thickness ranged from 6.0 to 7.0

inches and the thickness tolerance was met at all topsoil grid point locations. The results of the survey are included in Appendix C.

3.7 Turf Establishment

All topsoil and disturbed areas were seeded, fertilized and either mulched or covered with erosion control blankets. Drawing P4 of the Record Drawings included in Appendix A illustrates the areas that were seeded/fertilized and either mulched and disc anchored or covered with erosion control blankets. Neaton Brothers Erosion completed the turf establishment activities.

One modification to the original design included the interior slope areas of the raised berm. The interior slope of the raised berm was initially designed to contain topsoil and erosion control blankets. Based on site conditions and future use, it was determined that the topsoil and erosion control blankets were not necessary and the interior slopes were constructed with controlled fill.

The disturbed areas were dragged with a steel mechanical drag and seeded and fertilized all at the same time by using a 3-pt pendulum spreader attached to a tractor. The seeded areas where then mulched and disc anchored using a custom built large steel disc. The erosion control blankets were placed by a skid loader with a draw bar that unrolled the 8-foot wide blankets as the machine moved forward. The blankets were stapled in-place as they were being installed.

A copy of the seed mix tag, fertilizer tag, mulch information, and erosion control blanket spec. sheet used on the project are included in Appendix F.

3.8 Dewatering System Cleanout Extensions

As part of the Berm Addition project the existing cleanout pipes located along the east side of Pond 3 were extended and raised to provide future access. Each cleanout was extended approximately 10-feet using an 8-inch SDR 17 solid wall polyethylene pipe, and fused to the existing 8-inch SDR 17 cleanout pipe with an electrofusion coupling. The existing corrugated metal protective casings were salvaged and reinstalled on the extended cleanouts. Additional details associated with the cleanout extensions are illustrated on the Record Drawings included in Appendix A.

SECTION 4.0 - CONCLUSION

Construction of the 2014 Pond 3 Berm Addition Project has been completed in accordance with the goals and objectives of the construction activities presented within the referenced Technical Specification Documents and in compliance with the requirements contained in NPDES Permit No. 0002186.

SECTION 5.0 - REFERENCES

2014 Sherco Pond 3 Berm Addition Project Technical Spec., prepared by Carlson McCain dated July 22, 2015

2014 Sherco Pond 3 Berm Addition Construction Drawings, prepared by Carlson McCain dated July 23, 2015

TABLE 1 SAMPLE / TEST INFORMATION - CLAY (SOURCE AREA PRE-QUALIFICATION) POND 3 2014 BERM ADDITION PROJECT

				PERMEABILITY @ 95%			ATTERBE	ERG LIMITS						
				PROCTOR DRY DENSITY										
	SAMPLE	SAMPLE		W/MOISTURE CONTENT @ 0-	USCS	% PASSING	LIQUID LIMIT	PLASTICITY	TEST					
	COLL.	COLL.		5% WET OF OPTIMUM	CLASSIFICATION	# 200 SIEVE	(25% OR	INDEX (12% OR	RESULT					
SAMPLE ID	DATE	TIME	SAMPLE LOCATION	(1x10-7 CM/SEC)	(SC/CL/CH)	(MIN 50%)	GREATER)	GREATER)	(PASS/FAIL)	COMMENTS				
CLP-1	09/02/24	0900	Veit Clay Pit - Wright County	6.7 x 10-9 cm/sec	SC	49.3	30.8	16.8	Pass	South end of pit				
(source)			, ,							1				
CLP-2 (source)	09/02/24	0900	Veit Clay Pit - Wright County	2.0 x 10-8 cm/sec	CL	50.3	30.4	17.2	Pass	North end of pit				

- 1. Samples collected by Brian Lenneman, Veit & Company Inc., McCain field personnel present during sample collection
- 2. Required samples (1/3,000 cyds): Project est. @ 4,500 cyds = 2 samples
- 3. See lab reports for additional information

TABLE 2
SAMPLE / TEST INFORMATION - CLAY (IN-PLACE DENSITY)
POND 3 2014 BERM ADDITION PROJECT

	SAMPLE COLLECTION / TEST LOCATION		(3)	(3)												
(1) SAMPLE NO.	SAMPLE COLL. DATE	SAMPLE COLL. TIME	(2) NORTHING	(2) EASTING	(2) GROUND ELEVATION	TEST ELEVATION (PROBE)	NUCLEAR IN-PLACE DRY DENSITY (LBS/CFT)	NUCLEAR IN-PLACE MOISTURE (%)	SOIL PROCTOR ID	PROCTOR MAX DRY DENSITY (LBS/CFT)	PROCTOR OPT. MOISTURE (%)	PERM. MOISTURE (%)	REL. COMP. (%)	MIN. SPECIFIED COMPACT. (%)	TEST RESULT (PASS/FAIL)	# OF PASSING TESTS
CLP-1	09/02/14	0900								115.8	14.7	16.1				
CLP-2	09/02/14	0900								115.9	14.0	15.9				
CL-1	09/22/14	1310	862402	2030846	995.7	995.7-994.7	117.1	15.4	CLP-2	115.9	14.0	15.9	101.0	97	Pass	1
CL-2	09/22/14	1500	862411	2031049	996.1	996.1-995.1	117.3	15.6	CLP-2	115.9	14.0	15.9	101.2	97	Pass	2
CL-3	09/22/14	1540	862427	2031305	995.8	995.8-994.8	116.6	17.0	CLP-2	115.9	14.0	15.9	100.6	97	Pass	3
CL-4	09/23/14	1145	862424	2031243	996.6	996.6-995.6	117.3	16.2	CLP-1	115.8	14.7	16.1	101.3	97	Pass	4
CL-5	09/23/14	1245	862404	2030884	997.1	997.1-996.1	115.0	18.3	CLP-1	115.8	14.7	16.1	99.3	97	Pass	5
CL-6	09/24/14	1030	862411	2030922	998.0	998.0-997.0	112.8	17.7	CLP-2	115.9	14.0	15.9	97.3	97	Pass	6
CL-7	09/24/14	1115	862699	2031998	995.9	995.9-994.9	118.0	15.3	CLP-2	115.9	14.0	15.9	101.8	97	Pass	7
CL-8	09/25/14	1020	863910	2031999	996.0	996.0-995.0	118.1	15.6	CLP-2	115.9	14.0	15.9	101.9	97	Pass	8
CL-9	09/25/14	1030	863026	2031997	997.1	997.1-996.1	115.9	17.3	CLP-2	115.9	14.0	15.9	100.0	97	Pass	9
CL-10	09/25/14	1100	863545	2031997	997.0	997.0-996.0	116.6	16.1	CLP-2	115.9	14.0	15.9	100.6	97	Pass	10
CL-11	09/25/14	1630	864045	2031998	997.1	997.1-996.1	116.0	15.7	CLP-2	115.9	14.0	15.9	100.1	97	Pass	11
CL-12	09/25/14	1650	864641	2031999	996.1	996.1-995.1	113.8	16.3	CLP-2	115.9	14.0	15.9	98.2	97	Pass	12
CL-13	09/25/14	1745	865108	2031998	996.0	996.0-995.0	113.0	17.2	CLP-2	115.9	14.0	15.9	97.5	97	Pass	13
CL-14	09/26/14	1445	865009	2031999	997.1	997.1-996.1	115.3	15.5	CLP-2	115.9	14.0	15.9	99.5	97	Pass	14
CL-15	09/26/14	1510	865364	2031033	996.1	996.1-995.1	113.1	18.0	CLP-2	115.9	14.0	15.9	97.6	97	Pass	15
CL-16	09/26/14	1420	865364	2031528	996.1	996.1-995.1	112.9	17.3	CLP-2	115.9	14.0	15.9	97.4	97	Pass	16
CL-17	09/29/14	1050	865363	2031602	997.0	997.0-996.0	113.6	18.0	CLP-2	115.9	14.0	15.9	98.0	97	Pass	17
CL-18	09/29/14	1100	865365	2031104	997.1	997.1-996.1	113.4	16.8	CLP-2	115.9	14.0	15.9	97.8	97	Pass	18
CL-19	09/29/14	1125	863032	2031992	998.4	998.4-997.4	117.8	15.6	CLP-2	115.9	14.0	15.9	101.6	97	Pass	19
CL-20	09/30/14	0935	863616	2031991	998.3	998.3-997.3	114.6	17.8	CLP-2	115.9	14.0	15.9	98.9	97	Pass	20
CL-21	09/30/14	0945	864300	2031993	998.2	998.2-997.2	117.6	15.5	CLP-2	115.9	14.0	15.9	101.5	97	Pass	21
CL-22	10/02/14	0920	864829	2031992	998.3	998.3-997.3	114.4	16.5	CLP-2	115.9	14.0	15.9	98.7	97	Pass	22
CL-23	10/02/14	0935	865361	2031689	998.2	998.2-997.2	119.7	15.7	CLP-2	115.9	14.0	15.9	103.3	97	Pass	23
CL-24	10/02/14	0945	865359	2031250	998.3	998.3-997.3	115.5	16.6	CLP-2	115.9	14.0	15.9	99.7	97	Pass	24

- 1. All density tests performed by Alex Sterger w/AET, Gary Gilbert (Carlson McCain) present during sample collection
- 2. GPS coordinates obtained from GPS rover provided by Xcel

- 4. Required samples (1/200 cyds placed), total volume est. = 4,600 cyds = 4,600/200) = min 23 samples
- 3. In-place density tests and moisture percentage obtained from Troxler 3440 density gauge
- 5. See lab reports for additional information

TABLE 3
SAMPLE / TEST INFORMATION - CLAY (IN-PLACE PERMEABILITY & INDEX TESTING)
POND 3 2014 BERM ADDITION PROJECT

			SAMPLE COL	LECTION / TE	ST LOCATION	PERMEABILITY @ 95%			ATTERBE	ERG LIMITS	
(1) SAMPLE ID	SAMPLE COLL. DATE	SAMPLE COLL. TIME	(2) NORTHING	(2) EASTING	(2) GROUND ELEVATION	PROCTOR DRY DENSITY W/MOISTURE CONTENT @ 0- 5% WET OF OPTIMUM (1x10-7 CM/SEC)		% PASSING # 200 SIEVE (MIN 50%)	LIQUID LIMIT (25% OR GREATER)	PLASTICITY INDEX (12% OR GREATER)	TEST RESULT (PASS/FAIL)
CL TW-1	09/25/14	1150	862429	2031302	998.0	2.4 x 10-8 cm/sec	CL	47.1	30.1	17.4	Pass
CL TW-2	10/02/14	1005	865359	2031243	998.3	1.3 x 10-8 cm/sec	CL	48.4	31.0	18.7	Pass

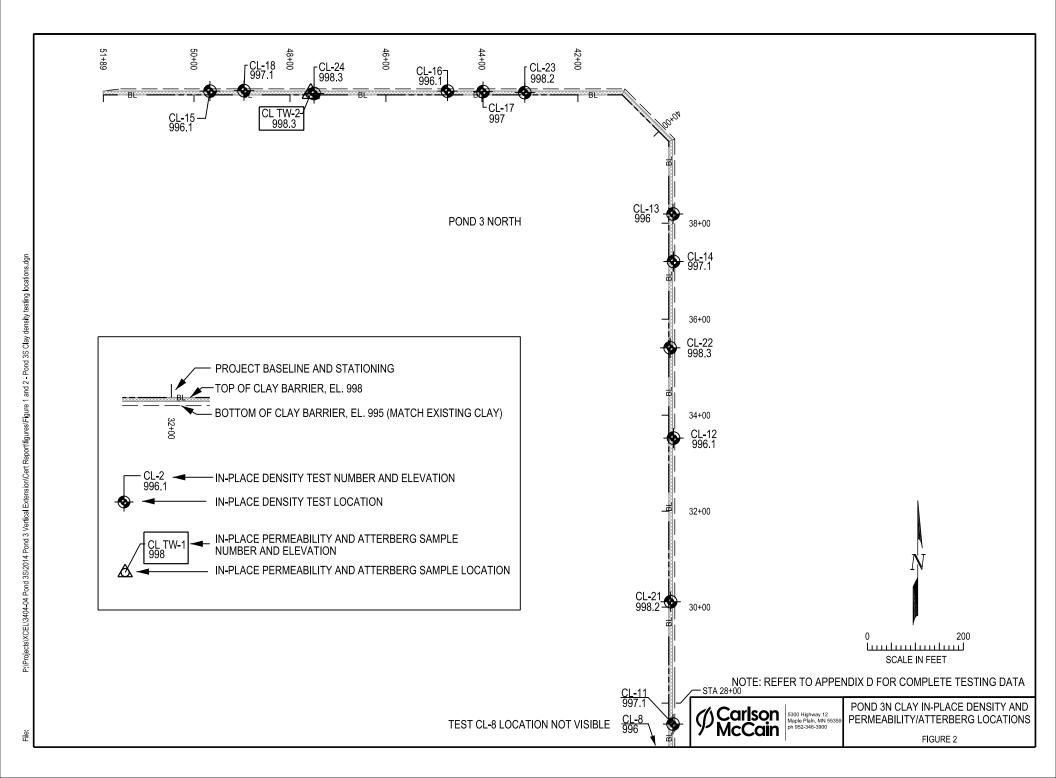

- 1. Samples collected by Alex Sterger w/AET, Gary Gilbert (Carlson McCain) present during sample collection
- 2. GPS coordinates obtained from GPS rover provided by Xcel
- 3. Sample CL TW-1 collected from Pond 3S south bench, sample CL TW-2 collected from Pond 3N north bench
- 4. See lab reports for additional information

TABLE 4
SAMPLE / TEST INFORMATION - CONTROLLED FILL
POND 3 2014 BERM ADDITION PROJECT

			SAMPLE COL	LECTION / TI	EST LOCATION	(3)									
(1) SAMPLE NO.	SAMPLE COLL. DATE	SAMPLE COLL. TIME	(2) NORTHING	(2) EASTING	(2) ELEVATION	NUCLEAR IN-PLACE DRY DENSITY (LBS/CFT)	(3) IN-PLACE MOISTURE (%)	SOIL PROCTOR ID	PROCTOR MAX DRY DENSITY (LBS/CFT)	PROCTOR OPT. MOISTURE (%)	REL. COMP. (%)	MIN. SPECIFIED COMPACT. (%)	TEST RESULT (PASS/FAIL)	# OF PASSING TESTS	COMMENTS
RFP-1	09/29/14	1130							119.7	11.0					Collected from north end of borrow area located west of construction trailer. 5 grab samples put into one composite sample.
RF-1	10/06/14	1615	862414	2031278	1000.5	120.8	4.6	RFP-1	119.7	11.0	101	95	Pass	1	
RF-2	10/06/14	1625	862426	2031277	1001.5	114.7	4.8	RFP-1	119.7	11.0	96	95	Pass	2	
RF-3	10/07/14	1720	863161	2032002	1000.5	118.9	5.5	RFP-1	119.7	11.0	99	95	Pass	3	
RF-4	10/07/14	1730	863162	2032000	1001.5	120.5	4.7	RFP-1	119.7	11.0	101	95	Pass	4	
RF-5	10/14/14	0945	864425	2031998	1000.5	116.5	3.6	RFP-1	119.7	11.0	97	95	Pass	5	
RF-6	10/14/14	0950	864446	2031996	1001.4	118.6	5.4	RFP-1	119.7	11.0	99	95	Pass	6	
RF-7	10/14/14	1010	865370	2031524	1000.4	114.4	3.3	RFP-1	119.7	11.0	96	95	Pass	7	
RF-8	10/14/14	1015	865364	2031413	1001.5	115.8	3.8	RFP-1	119.7	11.0	97	95	Pass	8	

- 1. Proctor sample and density tests collected by Alex Sterger w/AET, Gary Gilbert (Carlson McCain) present during sample collection
- 2. GPS coordinates obtained from GPS rover provided by Xcel
- 3. In-place density tests and moisture percentage obtained from Troxler 3440 density gauge
- 4. Required samples (1/3,000 cyds placed), total volume est. = $20,421 \text{ cyds} = 20,421/3,000 = \min 7 \text{ samples}$
- 5. See lab reports for additional information

Figures

Appendix A - Record Drawings

RECORD DRAWINGS

POND 3 2014 BERM ADDITION

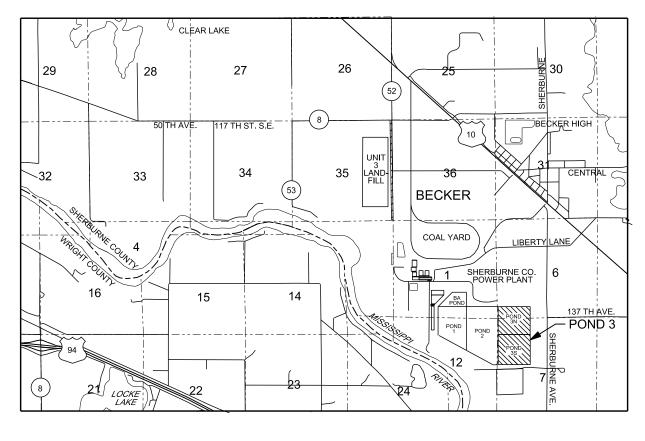
NPDES Permit No. 0002186 Sherburne County (Sherco) Generating Plant Northern States Power Company (dba Xcel Energy, Inc.) Becker, MN

Prepared for:

Xcel Energy, Inc.

December 8th, 2014

Prepared By:


RECORD DRAWINGS
SHERBURNE COUNTY (SHERCO) GENERATING PLANT
POND 3 2014 BERM ADDITION

NPDES PERMIT No. 0002186

BECKER, MINNESOTA

NORTHERN STATES POWER COMPANY

dba XCEL ENERGY, INC.

SHEET DRAWING TITLE

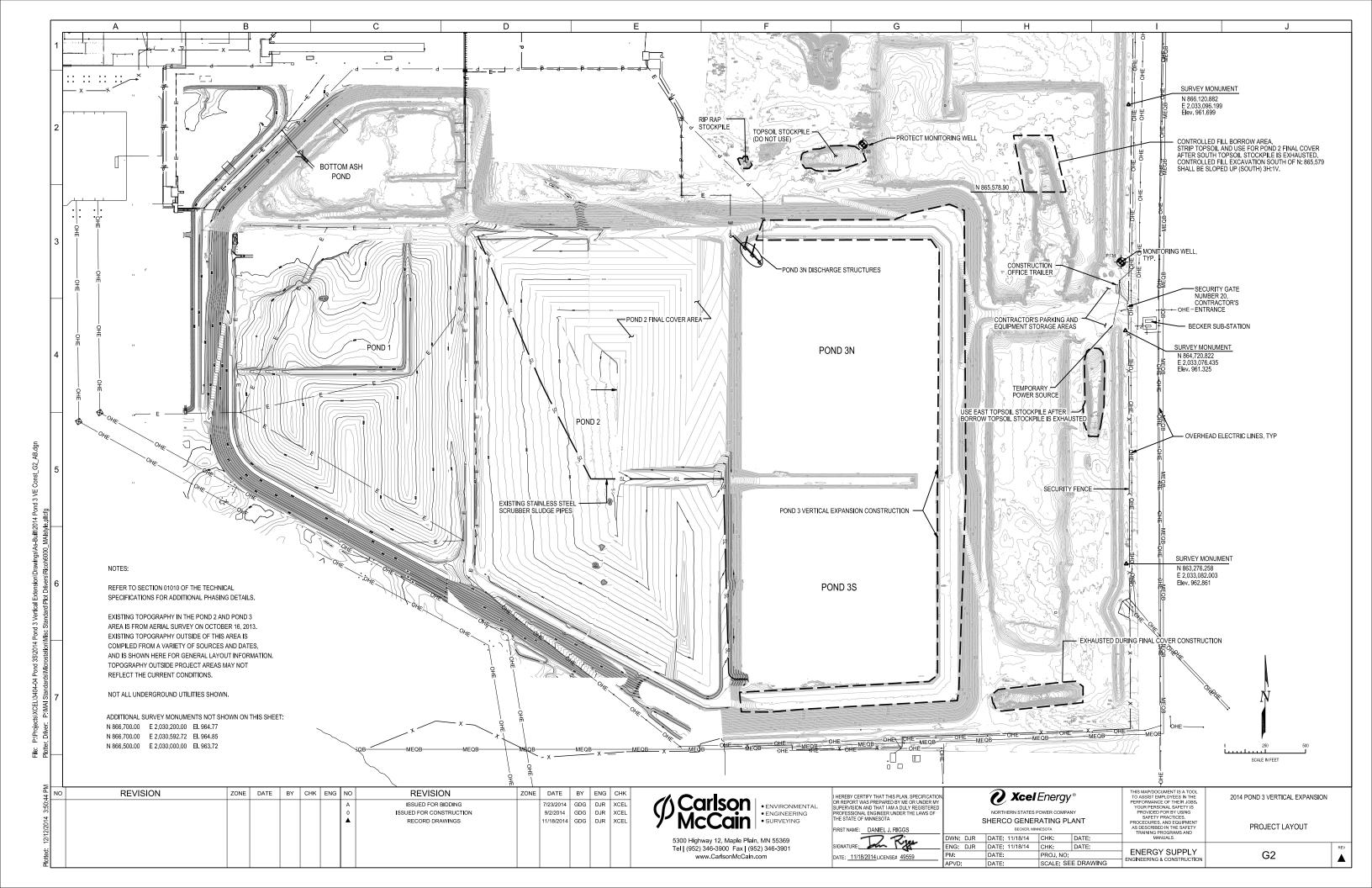
GENERAL
G1 INDEX SHEET
G2 PROJECT LAYOUT

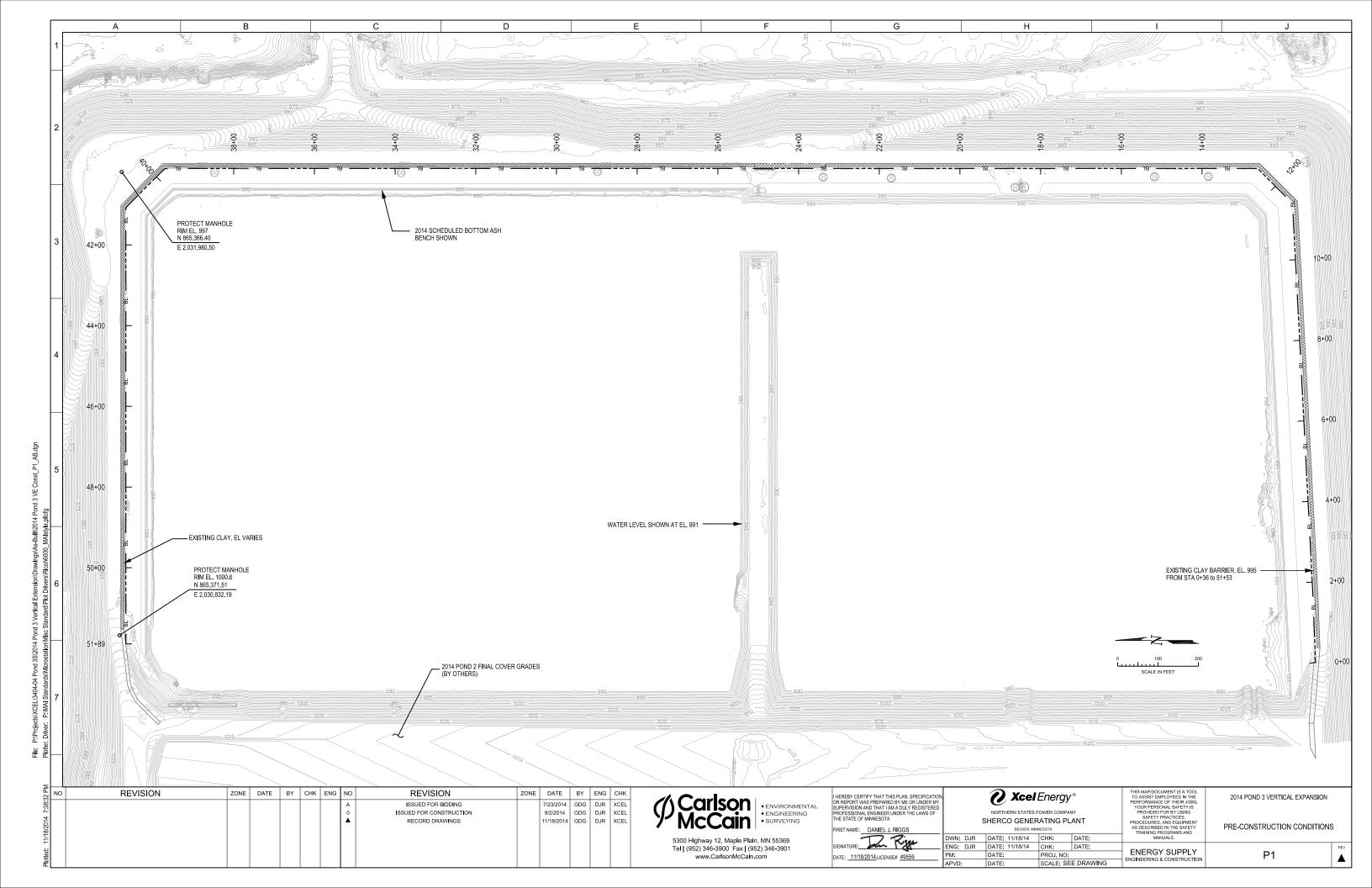
POND 3S VERTICAL EXPANSION
P1 PRE-CONSTRUCTION CONDITIONS

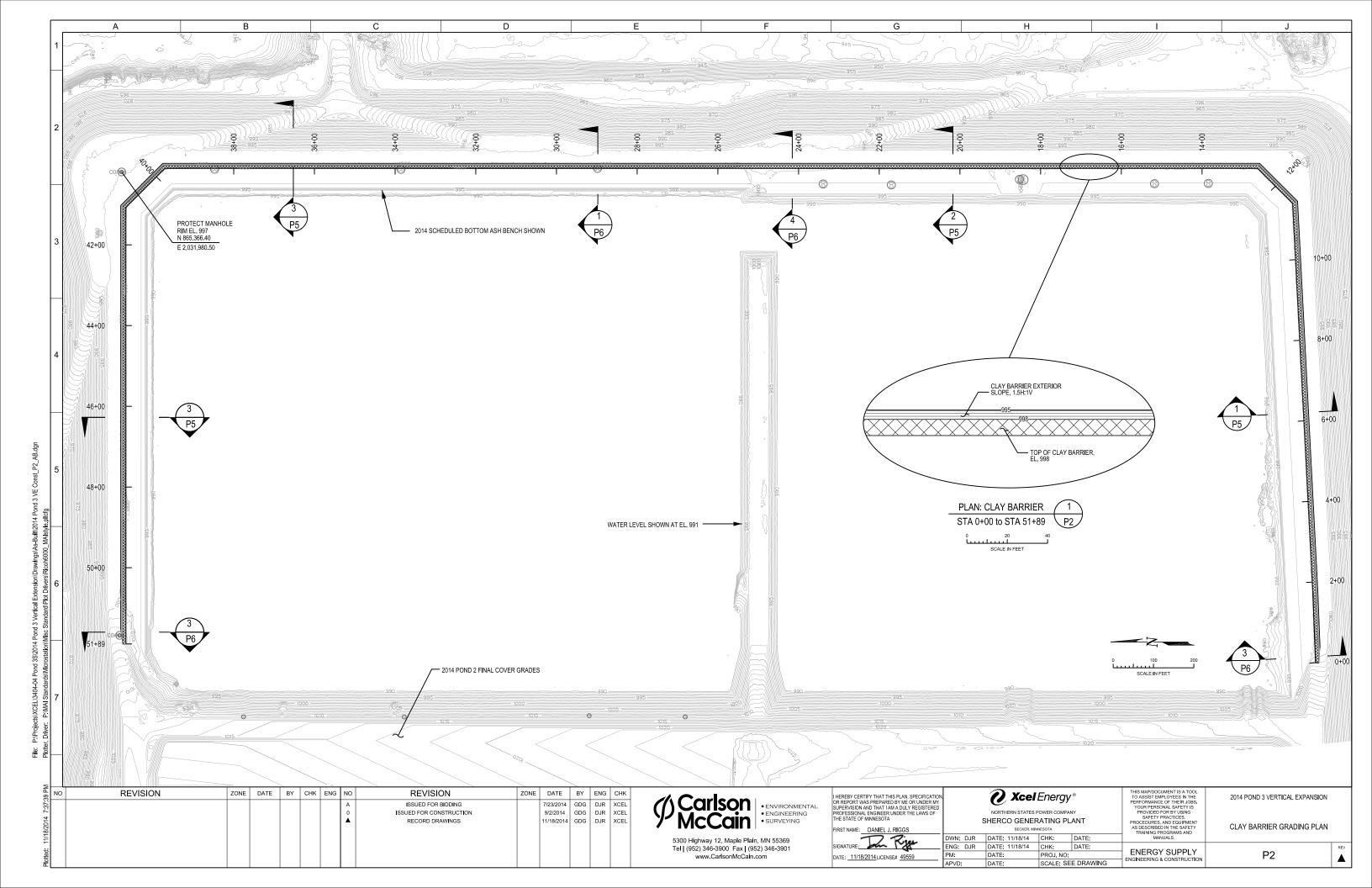
P1 PRE-CONSTRUCTION CONDITIONS
P2 CLAY BARRIER GRADING PLAN
P3 FINISHED GRADING PLAN
P4 RESTORATION PLAN
P5 EMBANKMENT SECTIONS
P6 CLEANOUT EXTENSION AND CLAY BARRIER SECTIONS

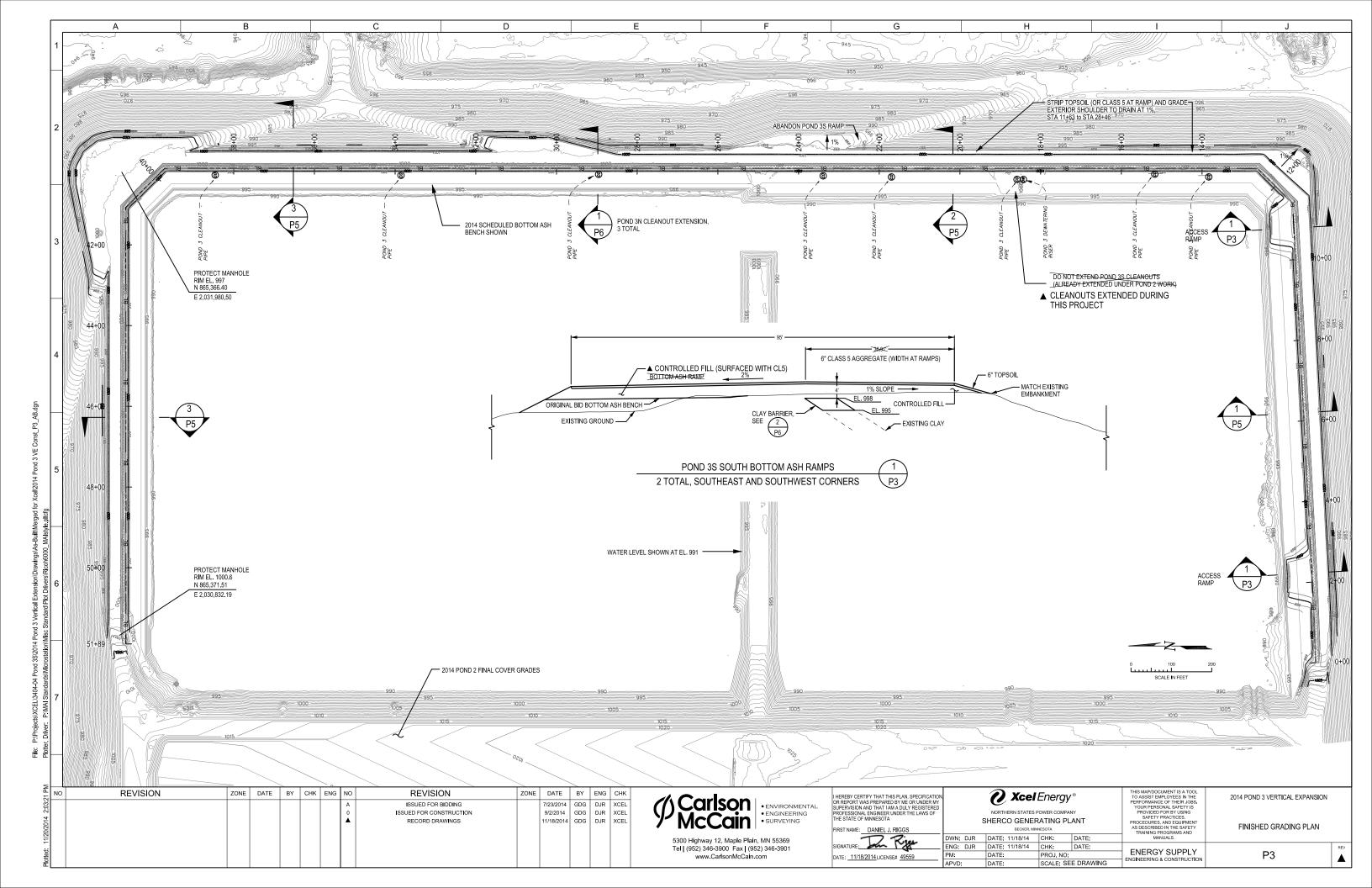
0 1000 2000 3000 4000 5000 L J J J J SCALE IN FEET

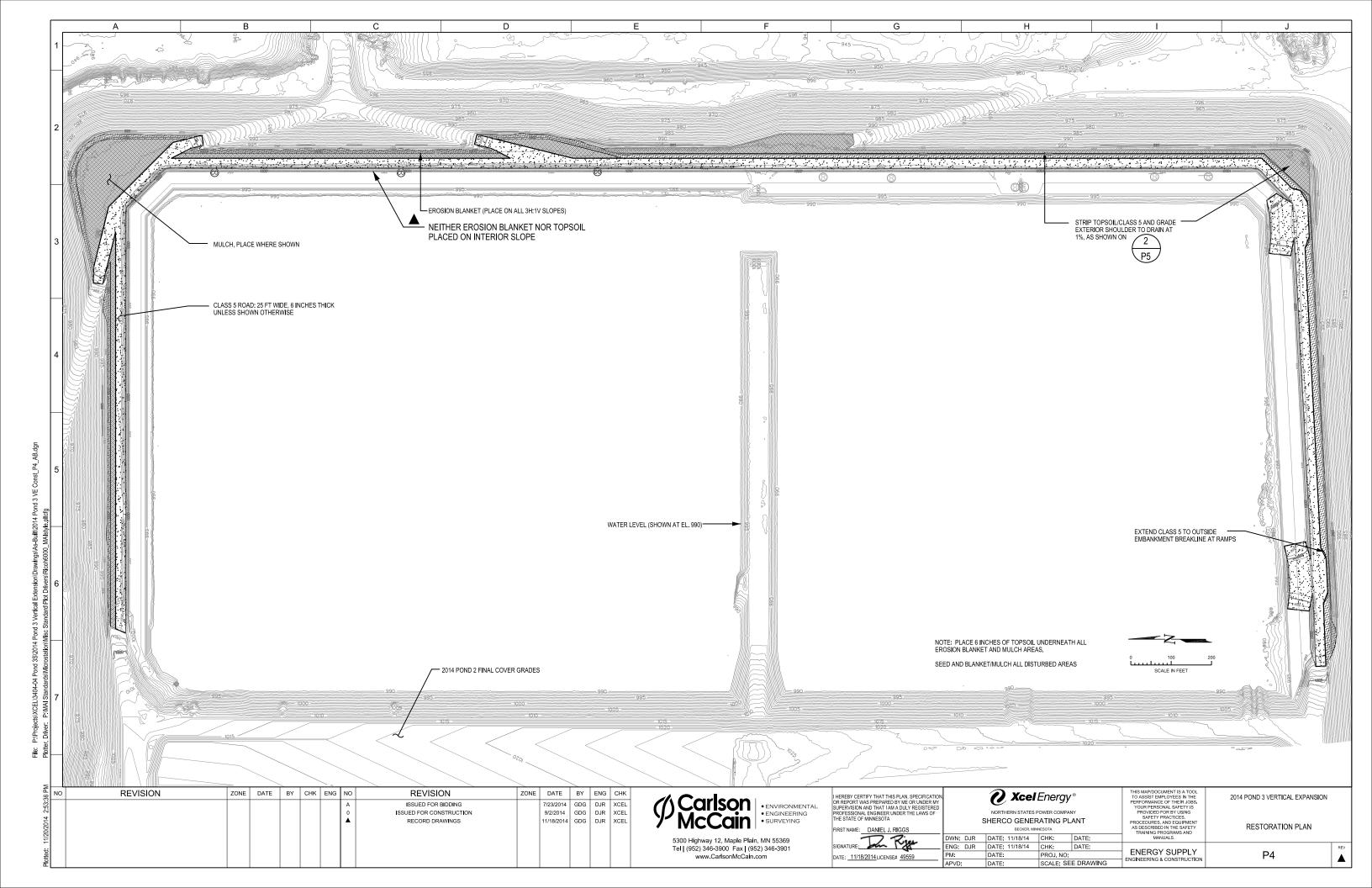
SITE LOCATION MAP

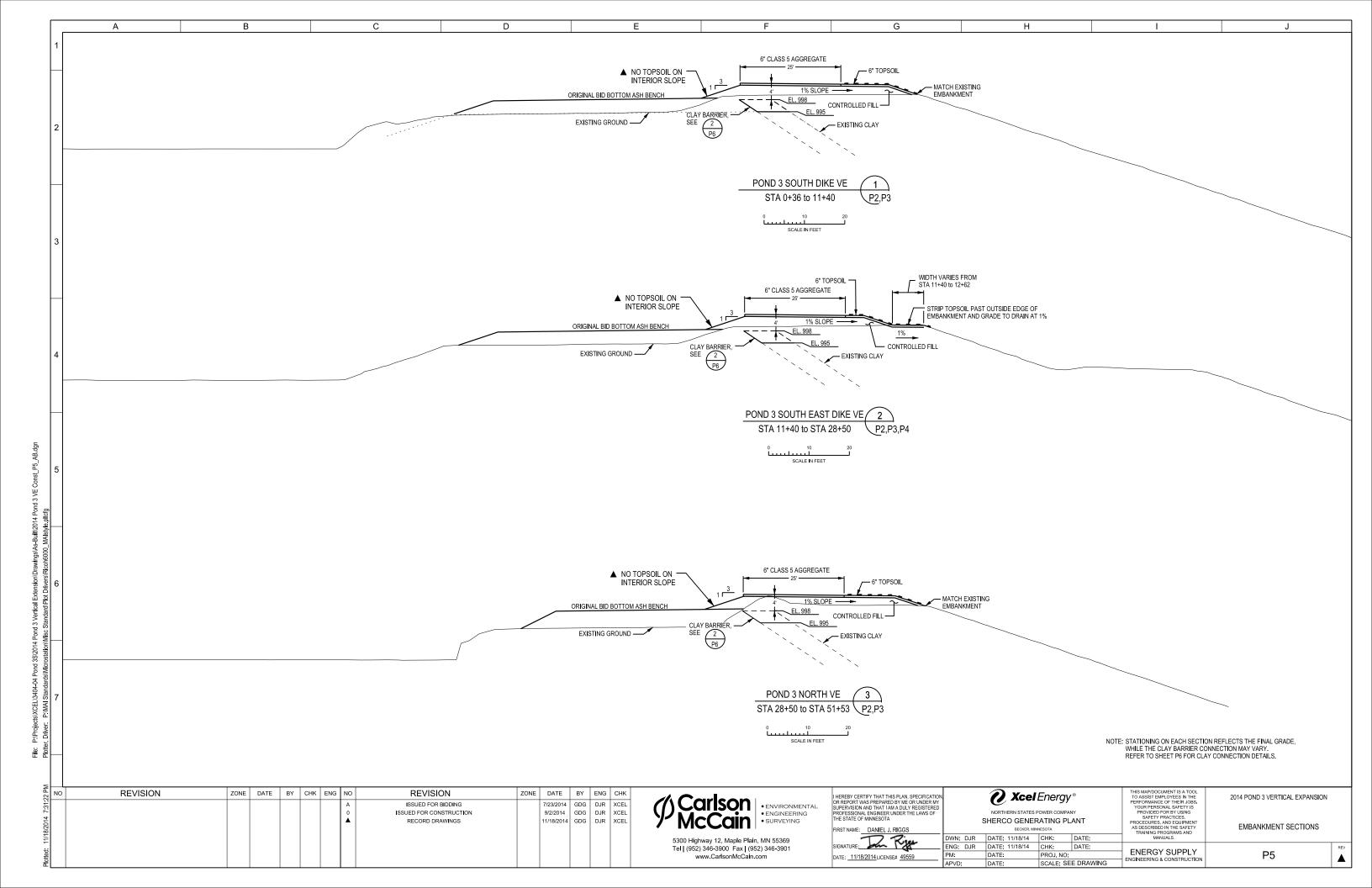

≂l															
16 AN	NO	REVISION	ZONE	DATE	BY	СНК	ENG	NO	REVISION	ZONE	DATE	BY	ENG	снк	
Š								Α	ISSUED FOR BIDDING		7/23/2014	GDG	DJR	XCEL	
6								0	ISSUED FOR CONSTRUCTION		9/2/2014	GDG	DJR	XCEL	
2								A	RECORD DRAWINGS		11/18/2014	GDG	DJR	XCEL	
7/															
177															
Plotted:															

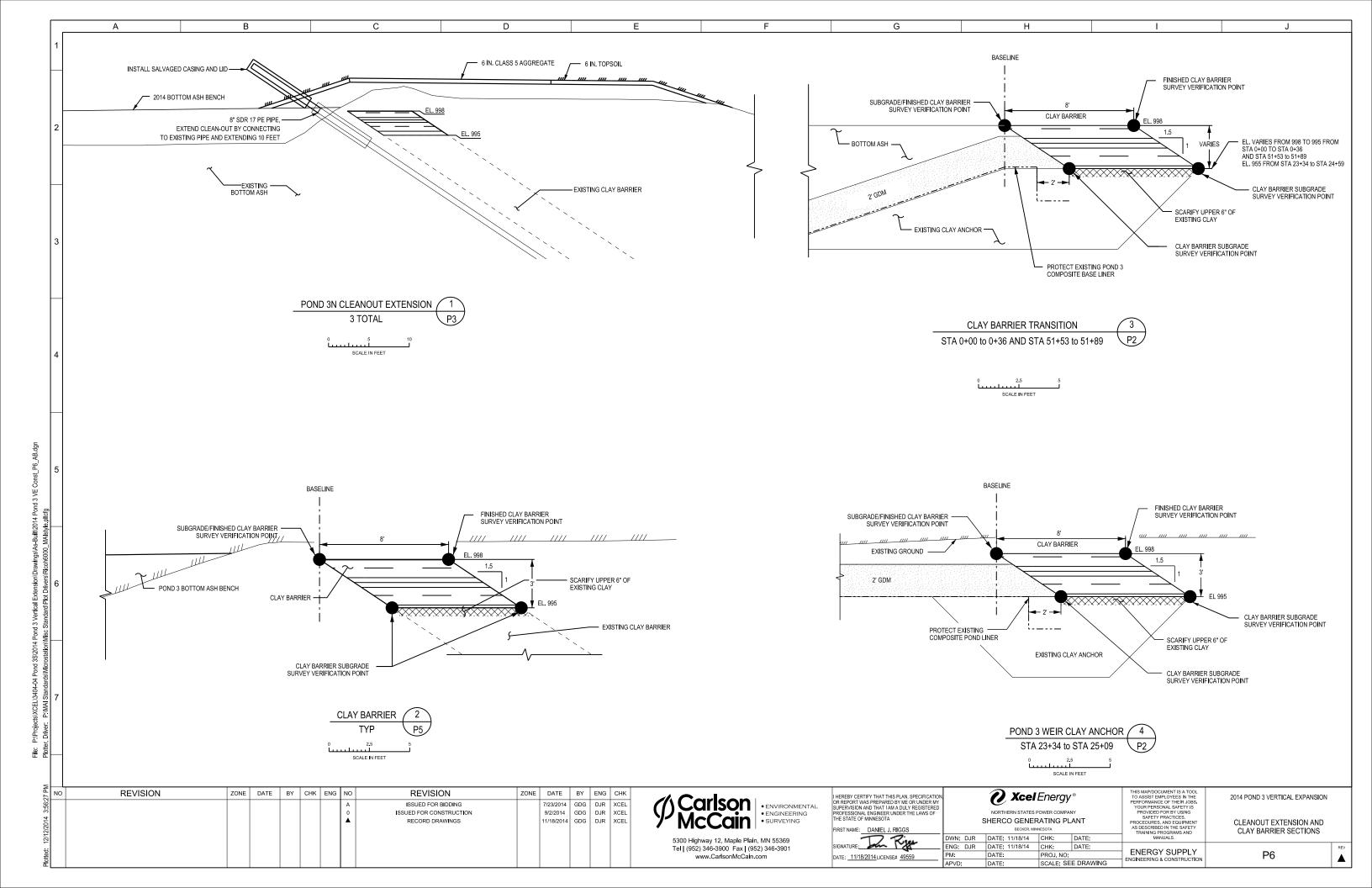



IHEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY SUPERVISION AND THAT IAM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA FIRST NAME: DANIEL J. RIGGS		
T Riega	DWN:	D
		_


DATE: 11/18/2014 LICENSE# 49559


	O Xcel			THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS PROVIDED FOR BY USING	2014 POND 3 VERTICAL EXPANSION					
S	HERCO GENER BECKER, MINI		ANT	SAFETY PRACTICES, PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND	INDEX SHEET					
1	DATE: 11/18/14	CHK:	DATE:	MANUALS.						
1	DATE: 11/18/14	CHK:	DATE:	ENERGY GURRIY		REV				
	DATE:	PROJ. NO:	•	ENERGY SUPPLY	G1					





Appendix B - Construction Photographs

POND 3 2014 BERM ADDITION PROJECT CONSTRUCTION PHOTOGRAPHS

Photo 1: Clay Pit – Clay Removal – 9/23/14

Photo 2: Clay Pit – Clay Removal – 9/23/14

POND 3 BERM ADDITION PROJECT CONSTRUCTION PHOTOGRAPHS

Photo 3: Exposing Existing Clay Barrier – Southwest Corner - Looking East – 9/15/14

Photo 4: Scarifying Clay – South Berm Section - Looking East – 9/22/14

POND 3 BERM ADDITION PROJECT CONSTRUCTION PHOTOGRAPHS

Photo 5: Placing Clay – South Berm Section – Looking West - 9/22/14

Photo 6: Compacting Placed Clay – South Berm Section – 9/22/14

POND 3 BERM ADDITION PROJECT CONSTRUCTION PHOTOGRAPHS

Photo 7: Grading Placed Clay – South Berm Section – Looking West - 9/22/14

Photo 8: Lifting Outer Clay – Southeast Corner – Looking North – 9/23/14

Photo 9: In-Place Clay Density Testing – East Berm Section - Looking North - 9/25/14

Photo 10: Watering Placed Clay - 9/26/14

Photo 11: Clay Thin-Wall Sample Collection (CL TW-1) – Looking East - 9/25/14

Photo 12: Clay Thin-Wall Sample Extraction (CL TW-2) – Looking West - 10/2/14

Photo 13: Smooth Rolling Top of Final Lift – East Section - 10/1/14

Photo 14: Placing Controlled Fill – South Berm Section - 10/3/14

Photo 15: Compacting Controlled Fill – South Berm Section - 10/3/14

Photo 16: In-Place Controlled cvFill Density Testing – 10/7/14

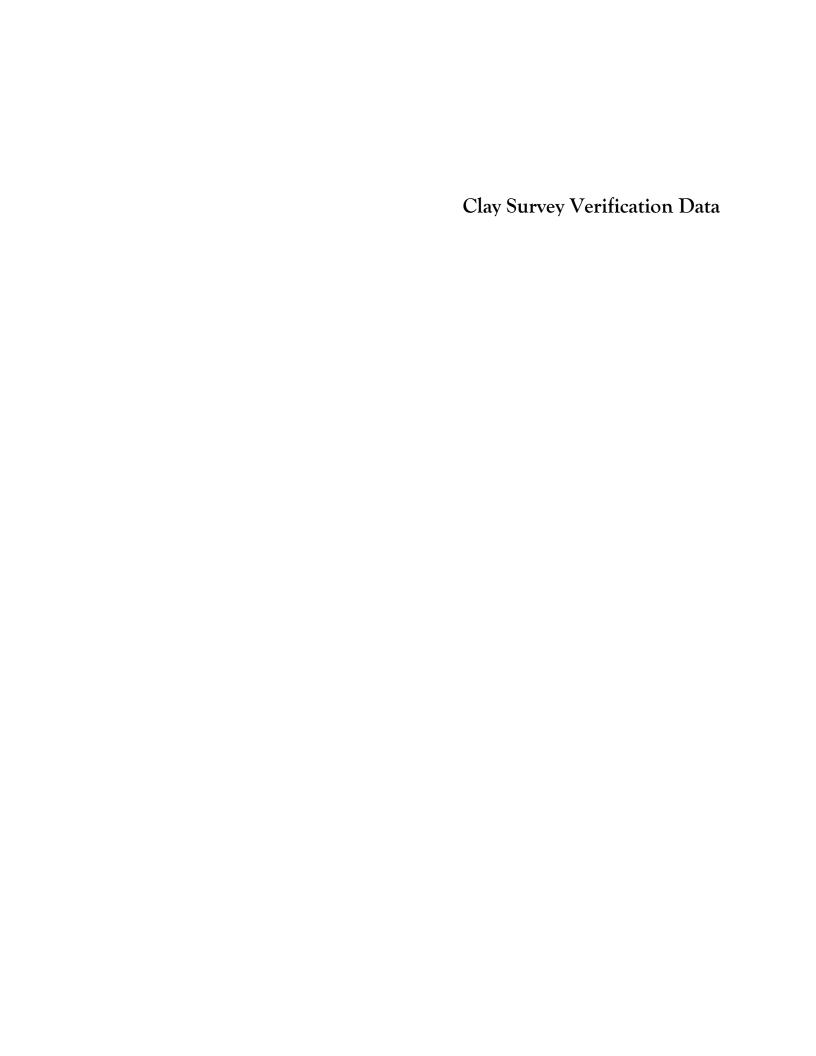

Photo 17: Finished North Berm Section – Looking East - 10/29/14

Photo 18: Finished East Berm Section – Looking South - 10/29/14

Appendix C - Survey Verification Data

Clay Survey Verification Data Finished Grade Survey Verification Data Survey Verification Drawing

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
1	862,399.34	2,030,763.81	998	FIN1	862399.28	2030763.81	999.60		
2	862,407.36	2,030,764.15	998	FIN2	862407.43	2030764.12	999.96	8.16	
3	862,396.31	2,030,801.28	995	SG1	862396.25	2030801.27	995.21		
4	862,400.80	2,030,801.10	998	FIN1	862400.75	2030801.07	998.21		
5	862,404.38	2,030,800.96	995	SG2	862404.42	2030800.97	995.00		
6	862,408.80	2,030,800.79	998	SG3/FIN2	862408.86	2030800.81	998.49	8.11	3.22
7	862,398.27	2,030,851.24	995	SG1	862398.21	2030851.23	995.35		
8	862,402.76	2,030,851.06	998	FIN1	862402.71	2030851.03	998.03		
9	862,406.26	2,030,850.92	995	SG2	862406.32	2030850.98	994.96		
10	862,410.76	2,030,850.75	998	SG3/FIN2	862410.83	2030850.73	998.23	8.13	3.07
11	862,400.23	2,030,901.20	995	SG1	862400.17	2030901.21	995.22		
12	862,404.72	2,030,901.02	998	FIN1	862404.65	2030901.02	998.06		
13	862,408.22	2,030,900.89	995	SG2	862408.28	2030900.89	994.96		
14	862,412.72	2,030,900.71	998	SG3/FIN2	862412.78	2030900.74	998.25	8.13	3.10
15	862,402.36	2,030,951.31	995	SG1	862402.30	2030951.33	995.22		
16	862,406.86	2,030,951.08	998	FIN1	862406.81	2030951.05	998.24		
17	862,410.35	2,030,950.90	995	SG2	862410.42	2030950.90	994.91		
18	862,414.84	2,030,950.66	998	SG3/FIN2	862414.90	2030950.71	998.15	8.10	3.33
19	862,404.95	2,031,001.25	995	SG1	862404.88	2031001.24	995.32		
20	862,409.45	2,031,001.01	998	FIN1	862409.38	2031001.01	998.22		
21	862,412.94	2,031,000.83	995	SG2	862412.98	2031000.84	994.78		
22	862,417.44	2,031,000.60	998	SG3/FIN2	862417.49	2031000.60	998.17	8.12	3.44
	-								
23	862,407.55	2,031,051.18	995	SG1	862407.49	2031051.16	995.07		
24	862,412.04	2,031,050.94	998	FIN1	862411.98	2031050.91	998.56		
25	862,415.54	2,031,050.76	995	SG2	862415.59	2031050.79	994.89		
26	862,420.03	2,031,050.53	998	SG3/FIN2	862420.09	2031050.51	998.14	8.12	3.68

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
					1	Ī			
27	862,410.14	2,031,101.11	995	SG1	862410.08	2031101.12	995.12		
28	862,414.63	2,031,100.88	998	FIN1	862414.58	2031100.89	998.34		
29	862,418.13	2,031,100.70	995	SG2	862418.18	2031100.71	994.88		
30	862,422.62	2,031,100.46	998	SG3/FIN2	862422.68	2031100.47	998.41	8.11	3.46
31	862,412.73	2,031,151.04	995	SG1	862412.67	2031151.07	995.37		
32	862,417.23	2,031,150.81	998	FIN1	862417.17	2031150.81	998.28		
33	862,420.72	2,031,150.63	995	SG2	862420.79	2031150.64	994.85		
34	862,425.22	2,031,150.40	998	SG3/FIN2	862425.27	2031150.40	998.57	8.11	3.43
				T	,				
35	862,415.33	2,031,200.98	995	SG1	862415.28	2031200.97	995.25		
36	862,419.82	2,031,200.74	998	FIN1	862419.75	2031200.73	998.06		
37	862,423.31	2,031,200.56	995	SG2	862423.38	2031200.58	994.80		
38	862,427.81	2,031,200.33	998	SG3/FIN2	862427.86	2031200.33	998.34	8.12	3.26
39	862,417.92	2,031,250.91	995	SG1	862417.87	2031250.93	995.03		
40	862,422.41	2,031,250.68	998	FIN1	862422.35	2031250.68	998.16		
41	862,425.91	2,031,250.49	995	SG2	862425.96	2031250.46	994.86		
42	862,430.40	2,031,250.26	998	SG3/FIN2	862430.46	2031250.28	998.65	8.11	3.29
_						<u> </u>			
43	862,420.51	2,031,300.84	995	SG1	862420.44	2031300.85	995.33		
44	862,425.01	2,031,300.61	998	FIN1	862424.94	2031300.60	998.12		
45	862,428.50	2,031,300.43	995	SG2	862428.57	2031300.44	994.83		
46	862,432.99	2,031,300.19	998	SG3/FIN2	862433.05	2031300.21	998.35	8.12	3.29
47	862,423.10	2,031,350.77	995	SG1	862423.05	2031350.76	995.13		
47	862,427.60	2,031,350.77	998	FIN1	862423.05				
48 49		, ,	995	SG2	862427.54 862431.16	2031350.54 2031350.37	998.02		
	862,431.09	2,031,350.36		SG3/FIN2			994.85	0.12	2.17
50	862,435.59	2,031,350.13	998	SG3/FINZ	862435.65	2031350.13	998.46	8.12	3.17

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
	Į.								
51	862,425.70	2,031,400.71	995	SG1	862425.65	2031400.70	995.34		
52	862,430.19	2,031,400.47	998	FIN1	862430.13	2031400.50	998.33		
53	862,433.69	2,031,400.29	995	SG2	862433.75	2031400.26	994.74		
54	862,438.18	2,031,400.06	998	SG3/FIN2	862438.23	2031400.05	998.53	8.12	3.59
55	862,428.29	2,031,450.64	995	SG1	862428.23	2031450.67	995.16		
56	862,432.78	2,031,450.41	998	FIN1	862432.72	2031450.43	998.17		
57	862,436.28	2,031,450.22	995	SG2	862436.35	2031450.22	994.86		
58	862,440.77	2,031,449.99	998	SG3/FIN2	862440.83	2031450.00	998.59	8.12	3.30
59	862,430.88	2,031,500.57	995	SG1	862430.82	2031500.57	995.55		
60	862,435.38	2,031,500.34	998	FIN1	862435.32	2031500.34	998.10		
61	862,438.87	2,031,500.16	995	SG2	862438.93	2031500.16	994.90		
62	862,443.37	2,031,499.92	998	SG3/FIN2	862443.43	2031499.92	998.17	8.11	3.19
63	862,433.48	2,031,550.51	995	SG1	862433.42	2031550.53	995.34		
64	862,437.97	2,031,550.27	998	FIN1	862437.92	2031550.27	998.22		
65	862,441.46	2,031,550.09	995	SG2	862441.53	2031550.08	994.93		
66	862,445.96	2,031,549.86	998	SG3/FIN2	862446.01	2031549.87	998.53	8.10	3.30
					-				
67	862,436.07	2,031,600.44	995	SG1	862436.02	2031600.44	995.52		
68	862,440.56	2,031,600.20	998	FIN1	862440.50	2031600.20	998.07		
69	862,444.06	2,031,600.02	995	SG2	862444.07	2031600.05	994.92		
70	862,448.55	2,031,599.79	998	SG3/FIN2	862448.61	2031599.79	998.50	8.13	3.15
71	862,438.66	2,031,650.37	995	SG1	862438.60	2031650.33	995.23		
72	862,443.15	2,031,650.14	998	FIN1	862443.09	2031650.11	998.13		
73	862,446.65	2,031,649.96	995	SG2	862446.72	2031649.97	994.91		
74	862,451.14	2,031,649.72	998	SG3/FIN2	862451.19	2031649.73	998.32	8.11	3.22

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
75	862,441.25	2,031,700.30	995	SG1	862441.19	2031700.28	995.36		
76	862,445.75	2,031,700.07	998	FIN1	862445.69	2031700.06	998.12		
77	862,449.24	2,031,699.89	995	SG2	862449.31	2031699.90	994.86		
78	862,453.74	2,031,699.66	998	SG3/FIN2	862453.80	2031699.66	998.39	8.12	3.27
79	862,443.85	2,031,750.24	995	SG1	862443.79	2031750.21	995.44		
80	862,448.34	2,031,750.24	998	FIN1	862448.29	2031750.21	998.00		
81	862,451.84	2,031,749.82	995	SG2	862451.90	2031730.00	994.95		
82	862,456.33	2,031,749.59	998	SG3/FIN2	862456.39	2031749.59	998.26	8.10	3.05
02	002,400.00	2,001,140.00		000/11112	002+30.33	20317 43.33	330.20	0.10	3.03
83	862,446.44	2,031,800.17	995	SG1	862446.38	2031800.18	995.55		
84	862,450.93	2,031,799.94	998	FIN1	862450.87	2031799.94	998.06		
85	862,454.43	2,031,799.75	995	SG2	862454.49	2031799.75	994.87		
86	862,458.92	2,031,799.52	998	SG3/FIN2	862458.97	2031799.53	998.32	8.11	3.19
				T					
87	862,449.03	2,031,850.10	995	SG1	862448.98	2031850.07	995.39		
88	862,453.53	2,031,849.87	998	FIN1	862453.46	2031849.85	998.42		
89	862,457.02	2,031,849.69	995	SG2	862457.07	2031849.70	994.85		
90	862,461.52	2,031,849.45	998	SG3/FIN2	862461.58	2031849.46	998.45	8.13	3.57
91	862,452.03	2,031,907.88	995	SG1	862451.96	2031907.94	995.35		
92	862,456.44	2,031,905.92	998	FIN1	862456.38	2031905.97	998.07		
93	862,459.86	2,031,904.40	995	SG2	862459.92	2031904.35	994.79		
94	862,464.27	2,031,902.44	998	SG3/FIN2	862464.34	2031902.39	998.27	8.73	3.28
25	200 400 70	0.004.040.00		201	052400 74	2024046 60	225 42	1	
95	862,490.78	2,031,946.63	995	SG1	862490.71	2031946.68	995.49		
96	862,493.96	2,031,943.45	998	FIN1 SG2	862493.90	2031943.50	998.47		
97 98	862,496.44	2,031,940.97 2,031,937.79	995 998	SG3/FIN2	862496.52 862499.69	2031940.91 2031937.74	994.76 998.54	8.17	2.71
30	862,499.62	2,031,937.79	990	SG3/FINZ	002499.09	2031337.74	330.34	0.17	3.71
99	862,526.14	2,031,981.99	995	SG1	862526.08	2031982.05	995.15		
100	862,529.32	2,031,978.80	998	FIN1	862529.25	2031978.87	998.31		
101	862,531.80	2,031,976.33	995	SG2	862531.87	2031976.27	994.83		
102	862,534.98	2,031,973.15	998	SG3/FIN2	862535.03	2031973.09	998.25	8.18	3.48

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3 MIN)*
103	862,545.75	2,032,001.60	995	SG1	862545.70	2032001.66	995.67		
104	862,547.61	2,031,997.10	998	FIN1	862547.56	2031997.18	998.19		
105	862,549.06	2,031,993.60	995	SG2	862549.12	2031993.55	994.83		
106	862,550.93	2,031,989.10	998	SG3/FIN2	862550.99	2031989.05	998.29	8.82	3.37
407	200 000 00	0.000.004.00	005	004	050500.00	2022024 65	205.20		
107	862,600.93	2,032,001.60	995	SG1	862600.92	2032001.65	995.39		
108	862,600.93	2,031,997.10	998	FIN1	862600.91	2031997.16	998.10		
109	862,600.93	2,031,993.60	995	SG2	862600.97	2031993.53	994.68		
110	862,600.93	2,031,989.10	998	SG3/FIN2	862600.91	2031989.04	998.13	8.11	3.42
111	862,650.93	2,032,001.60	995	SG1	862650.92	2032001.66	995.25		
112	862,650.93	2,031,997.10	998	FIN1	862650.96	2031997.15	998.22		
113	862,650.93	2,031,993.60	995	SG2	862650.93	2031993.53	994.83		
114	862,650.93	2,031,989.10	998	SG3/FIN2	862650.92	2031989.03	998.42	8.12	3.39
115	862,700.93	2,032,001.60	995	SG1	862700.93	2032001.66	995.34		
116	862,700.93	2,031,997.10	998	FIN1	862700.92	2031997.16	998.23		
117	862,700.93	2,031,993.60	995	SG2	862700.93	2031993.52	994.85		
118	862,700.93	2,031,989.10	998	SG3/FIN2	862700.95	2031989.04	998.30	8.12	3.38
110	000 750 00	2 022 004 00	005	SG1	062750.04	2022004 66	005.20		
119	862,750.93	2,032,001.60	995		862750.94	2032001.66	995.20		
120	862,750.93	2,031,997.10	998	FIN1	862750.93	2031997.16	998.22		
121	862,750.93	2,031,993.60	995	SG2	862750.93	2031993.55	994.91	0.44	2.24
122	862,750.93	2,031,989.10	998	SG3/FIN2	862750.93	2031989.05	998.32	8.11	3.31
123	862,800.93	2,032,001.60	995	SG1	862800.94	2032001.66	995.36		
124	862,800.93	2,031,997.10	998	FIN1	862800.90	2031997.16	998.05		
125	862,800.93	2,031,993.60	995	SG2	862800.92	2031993.56	994.88		
126	862,800.93	2,031,989.10	998	SG3/FIN2	862800.94	2031989.05	998.08	8.11	3.17
127	862,850.93	2,032,001.60	995	SG1	862850.93	2032001.66	995.31		
128	862,850.93	2,031,997.10	998	FIN1	862850.92	2031997.16	998.18		
129	862,850.93	2,031,993.60	995	SG2	862850.95	2031993.54	994.86		
130	862,850.93	2,031,989.10	998	SG3/FIN2	862850.91	2031989.05	998.06	8.11	3.32

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
131	862,900.93	2,032,001.60	995	SG1	862900.95	2032001.65	995.40		
132	862,900.93	2,031,997.10	998	FIN1	862900.92	2031997.15	998.27		
133	862,900.93	2,031,993.60	995	SG2	862900.93	2031993.55	994.88		
134	862,900.93	2,031,989.10	998	SG3/FIN2	862900.92	2031989.04	998.20	8.11	3.39
135	862,950.93	2,032,001.60	995	SG1	862950.89	2032001.66	995.57		
136	862,950.93	2,031,997.10	998	FIN1	862950.92	2031997.16	998.38		
137	862,950.93	2,031,993.60	995	SG2	862950.92	2031993.53	994.81		
138	862,950.93	2,031,989.10	998	SG3/FIN2	862950.94	2031989.05	998.35	8.12	3.57
400	200 200 20	0.000.004.00	225	004	050000 00	2022004 65	005 77		
139	863,000.93	2,032,001.60	995	SG1	863000.93	2032001.65	995.77		
140	863,000.93	2,031,997.10	998	FIN1	863000.90	2031997.16	998.37		
141	863,000.93	2,031,993.60	995	SG2	863000.94	2031993.53	994.86		
142	863,000.93	2,031,989.10	998	SG3/FIN2	863000.93	2031989.05	998.34	8.11	3.51
143	863,050.93	2,032,001.60	995	SG1	863050.95	2032001.66	995.56		
143	863,050.93	2,032,001.00	998	FIN1	863050.95	2032001.00	998.51		
145	863,050.93	2,031,993.60	995	SG2	863050.89	2031997.13	994.89		
146	863,050.93	2,031,989.10	998	SG3/FIN2	863050.94	2031993.34	998.37	8.11	3.62
140	000,000.00	2,001,000.10	330	000/111112	003030.54	2031303.04	330.37	0.11	3.02
147	863,100.93	2,032,001.60	995	SG1	863100.93	2032001.65	995.42		
148	863,100.93	2,031,997.10	998	FIN1	863100.95	2031997.16	998.25		
149	863,100.93	2,031,993.60	995	SG2	863100.94	2031993.55	994.87		
150	863,100.93	2,031,989.10	998	SG3/FIN2	863100.94	2031989.03	998.47	8.13	3.38
				_					
151	863,150.93	2,032,001.60	995	SG1	863150.92	2032001.66	995.41		
152	863,150.93	2,031,997.10	998	FIN1	863150.95	2031997.16	998.43		
153	863,150.93	2,031,993.60	995	SG2	863150.89	2031993.54	994.89		
154	863,150.93	2,031,989.10	998	SG3/FIN2	863150.93	2031989.04	998.48	8.11	3.54
45-	000 000 00	0.000.004.00	005	004	000000	202222 == 1			
155	863,200.93	2,032,001.60	995	SG1	863200.94	2032001.67	995.40		
156	863,200.93	2,031,997.10	998	FIN1	863200.91	2031997.17	998.48		
157	863,200.93	2,031,993.60	995	SG2	863200.95	2031993.55	994.88		
158	863,200.93	2,031,989.10	998	SG3/FIN2	863200.92	2031989.04	998.56	8.13	3.61

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
159	863,250.93	2,032,001.60	995	SG1	863250.91	2032001.66	995.27		
160	863,250.93	2,031,997.10	998	FIN1	863250.92	2031997.16	998.25		
161	863,250.93	2,031,993.60	995	SG2	863250.92	2031993.54	994.91		
162	863,250.93	2,031,989.10	998	SG3/FIN2	863250.93	2031989.03	998.38	8.13	3.34
163	863,300.93	2,032,001.60	995	SG1	863300.94	2032001.66	995.74		
164	863,300.93	2,032,001.60	998	FIN1	863300.94	2032001.66	995.74		
165	863,300.93	2,031,997.10	995	SG2	863300.94	2031997.16	994.90		
166	863,300.93	2,031,989.10	998	SG3/FIN2	863300.94	2031995.53	998.41	8.12	3.46
100	663,300.93	2,031,969.10	990	3G3/FINZ	805500.94	2031969.03	990.41	0.12	5.40
167	863,350.93	2,032,001.60	995	SG1	863350.94	2032001.66	995.49		
168	863,350.93	2,031,997.10	998	FIN1	863350.93	2031997.15	998.41		
169	863,350.93	2,031,993.60	995	SG2	863350.90	2031993.55	994.93		
170	863,350.93	2,031,989.10	998	SG3/FIN2	863350.91	2031989.04	998.47	8.11	3.49
				1	1				
171	863,400.93	2,032,001.60	995	SG1	863400.93	2032001.66	995.41		
172	863,400.93	2,031,997.10	998	FIN1	863400.95	2031997.16	998.30		
173	863,400.93	2,031,993.60	995	SG2	863400.94	2031993.53	994.91		
174	863,400.93	2,031,989.10	998	SG3/FIN2	863400.93	2031989.04	998.43	8.12	3.39
175	863,450.93	2,032,001.60	995	SG1	863450.91	2032001.65	995.27		
176	863,450.93	2,031,997.10	998	FIN1	863450.91	2031997.15	998.21		
177	863,450.93	2,031,993.60	995	SG2	863450.96	2031993.54	995.00		
178	863,450.93	2,031,989.10	998	SG3/FIN2	863450.95	2031989.05	998.53	8.11	3.21
				T	I				
179	863,500.93	2,032,001.60	995	SG1	863500.94	2032001.65	995.55		
180	863,500.93	2,031,997.10	998	FIN1	863500.95	2031997.16	998.31		
181	863,500.93	2,031,993.60	995	SG2	863500.92	2031993.55	994.87	0.43	2.42
182	863,500.93	2,031,989.10	998	SG3/FIN2	863500.94	2031989.03	998.32	8.13	3.43
183	863,550.93	2,032,001.60	995	SG1	863550.98	2032001.66	995.90		
184	863,550.93	2,031,997.10	998	FIN1	863550.91	2031997.15	998.46		
185	863,550.93	2,031,993.60	995	SG2	863550.95	2031993.54	994.96		
186	863,550.93	2,031,989.10	998	SG3/FIN2	863550.93	2031989.04	998.44	8.11	3.50

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
187	863,600.93	2,032,001.60	995	SG1	863600.93	2032001.66	995.66		
188	863,600.93	2,031,997.10	998	FIN1	863600.90	2031997.17	998.35		
189	863,600.93	2,031,993.60	995	SG2	863600.88	2031993.55	994.99		
190	863,600.93	2,031,989.10	998	SG3/FIN2	863600.94	2031989.05	998.37	8.12	3.35
191	863,650.93	2,032,001.60	995	SG1	863650.95	2032001.65	995.29		
192	863,650.93	2,031,997.10	998	FIN1	863650.95	2031997.16	998.51		
193	863,650.93	2,031,993.60	995	SG2	863650.92	2031993.52	994.91		
194	863,650.93	2,031,989.10	998	SG3/FIN2	863650.89	2031989.05	998.80	8.12	3.60
				1	, ,				
195	863,700.93	2,032,001.60	995	SG1	863700.94	2032001.66	995.77		
196	863,700.93	2,031,997.10	998	FIN1	863700.92	2031997.17	998.28		
197	863,700.93	2,031,993.60	995	SG2	863700.92	2031993.56	994.92		
198	863,700.93	2,031,989.10	998	SG3/FIN2	863700.94	2031989.05	998.36	8.12	3.35
					I				
199	863,750.93	2,032,001.60	995	SG1	863750.94	2032001.66	995.45		
200	863,750.93	2,031,997.10	998	FIN1	863750.94	2031997.16	998.27		
201	863,750.93	2,031,993.60	995	SG2	863750.92	2031993.55	994.97		
202	863,750.93	2,031,989.10	998	SG3/FIN2	863750.93	2031989.04	998.42	8.12	3.29
202	863,800.93	2,032,001.60	005	SG1	863800.94	2032001.66	995.51		
203 204	863,800.93		995 998	FIN1		2032001.66	995.51		
-		2,031,997.10		SG2	863800.96				
205	863,800.93	2,031,993.60	995	SG3/FIN2	863800.95	2031993.54	994.99	0.43	2.52
206	863,800.93	2,031,989.10	998	SG3/FIN2	863800.92	2031989.04	998.86	8.13	3.53
207	863,850.93	2,032,001.60	995	SG1	863850.94	2032001.66	995.82		
208	863,850.93	2,031,997.10	998	FIN1	863850.96	2031997.15	998.46		
209	863,850.93	2,031,993.60	995	SG2	863850.93	2031993.54	994.97		
210	863,850.93	2,031,989.10	998	SG3/FIN2	863850.95	2031989.04	998.59	8.12	3.49
	,	, , ,		· · · · · · · · · · · · · · · · · · ·					<u> </u>
211	863,900.93	2,032,001.60	995	SG1	863900.93	2032001.66	995.34		
212	863,900.93	2,031,997.10	998	FIN1	863900.95	2031997.15	998.32		
213	863,900.93	2,031,993.60	995	SG2	863900.94	2031993.54	995.48		
214	863,900.93	2,031,989.10	998	SG3/FIN2	863900.90	2031989.04	998.65	8.11	2.85

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
215	863,950.93	2,032,001.60	995	SG1	863950.90	2032001.65	995.68		
216	863,950.93	2,031,997.10	998	FIN1	863950.94	2031997.17	998.29		
217	863,950.93	2,031,993.60	995	SG2	863950.91	2031993.57	995.38		
218	863,950.93	2,031,989.10	998	SG3/FIN2	863950.95	2031989.04	998.77	8.13	2.91
219	864,000.93	2,032,001.60	995	SG1	864000.91	2032001.65	995.67		
220	864,000.93	2,031,997.10	998	FIN1	864000.93	2031997.15	998.18		
221	864,000.93	2,031,993.60	995	SG2	864000.95	2031993.55	995.26		
222	864,000.93	2,031,989.10	998	SG3/FIN2	864000.95	2031989.04	998.53	8.12	2.91
223	864,050.93	2,032,001.60	995	SG1	864050.92	2032001.65	995.68		
224	864,050.93	2,031,997.10	998	FIN1	864050.92	2031997.16	998.38		
225	864,050.93	2,031,993.60	995	SG2	864050.91	2031993.56	995.31		
226	864,050.93	2,031,989.10	998	SG3/FIN2	864050.94	2031989.04	998.71	8.12	3.08
227	004 400 00	0.000.004.00	005	004	064400.05	2022004 66	205.03	_	
227	864,100.93	2,032,001.60	995	SG1	864100.95	2032001.66	995.92		
228	864,100.93	2,031,997.10	998	FIN1	864100.94	2031997.16	998.41		
229	864,100.93	2,031,993.60	995	SG2	864100.95	2031993.54	995.13	0.43	2.20
230	864,100.93	2,031,989.10	998	SG3/FIN2	864100.94	2031989.05	998.65	8.12	3.28
231	864,150.93	2,032,001.60	995	SG1	864150.95	2032001.67	995.51		
232	864,150.93	2,031,997.10	998	FIN1	864150.94	2031997.16	998.36		
233	864,150.93	2,031,993.60	995	SG2	864150.91	2031993.53	995.39		
234	864,150.93	2,031,989.10	998	SG3/FIN2	864150.95	2031939.03	998.57	8.13	2.97
234	001,100.00	2,001,000.10		000/11112	004130.33	2031303.03	330.37	0.13	2.37
235	864,200.93	2,032,001.60	995	SG1	864200.94	2032001.65	995.41		
236	864,200.93	2,031,997.10	998	FIN1	864200.93	2031997.16	998.20		
237	864,200.93	2,031,993.60	995	SG2	864200.92	2031993.53	995.25		
238	864,200.93	2,031,989.10	998	SG3/FIN2	864200.91	2031989.04	998.25	8.11	2.95
239	864,250.93	2,032,001.60	995	SG1	864250.92	2032001.66	995.93		
240	864,250.93	2,031,997.10	998	FIN1	864250.95	2031997.16	998.22		
241	864,250.93	2,031,993.60	995	SG2	864250.96	2031993.55	994.94		
242	864,250.93	2,031,989.10	998	SG3/FIN2	864250.95	2031989.04	998.35	8.12	3.28

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3 MIN)*
243	864,300.93	2,032,001.60	995	SG1	864300.95	2032001.65	995.55		
244	864,300.93	2,031,997.10	998	FIN1	864300.94	2031997.16	998.19		
245	864,300.93	2,031,993.60	995	SG2	864300.90	2031993.53	995.00		
246	864,300.93	2,031,989.10	998	SG3/FIN2	864300.89	2031989.05	998.19	8.11	3.19
247	004 250 02	2 022 004 00	005	SG1	064250.06	2022004 66	005.27	1	
247	864,350.93	2,032,001.60	995		864350.96	2032001.66	995.27		
248	864,350.93	2,031,997.10	998	FIN1	864350.90	2031997.16	998.33		
249	864,350.93	2,031,993.60	995	SG2	864350.91	2031993.52	995.31	0.43	2.02
250	864,350.93	2,031,989.10	998	SG3/FIN2	864350.95	2031989.03	998.71	8.13	3.02
251	864,400.93	2,032,001.60	995	SG1	864400.93	2032001.66	995.61		
252	864,400.93	2,031,997.10	998	FIN1	864400.95	2031997.16	998.19		
253	864,400.93	2,031,993.60	995	SG2	864400.92	2031993.53	995.34		
254	864,400.93	2,031,989.10	998	SG3/FIN2	864400.94	2031989.04	998.25	8.11	2.85
1		T.		T					
255	864,450.93	2,032,001.60	995	SG1	864450.92	2032001.66	995.75		
256	864,450.93	2,031,997.10	998	FIN1	864450.93	2031997.16	998.19		
257	864,450.93	2,031,993.60	995	SG2	864450.91	2031993.53	995.53		
258	864,450.93	2,031,989.10	998	SG3/FIN2	864450.93	2031989.04	998.42	8.12	2.66
259	864,500.93	2,032,001.60	995	SG1	864500.95	2032001.67	995.60		
260	864,500.93	2,031,997.10	998	FIN1	864500.94	2031997.17	998.07		
261	864,500.93	2,031,993.60	995	SG2	864500.94	2031993.54	995.50		
262	864,500.93	2,031,989.10	998	SG3/FIN2	864500.92	2031939.03	998.37	8.14	2.57
	'				1				
263	864,550.93	2,032,001.60	995	SG1	864550.91	2032001.65	995.21		
264	864,550.93	2,031,997.10	998	FIN1	864550.91	2031997.16	998.54		
265	864,550.93	2,031,993.60	995	SG2	864550.95	2031993.54	995.52		
266	864,550.93	2,031,989.10	998	SG3/FIN2	864550.92	2031989.03	998.50	8.13	3.02
267	864,600.93	2,032,001.60	995	SG1	864600.92	2032001.67	995.12		
267				FIN1		2032001.67	995.12		
268	864,600.93	2,031,997.10	998 995	SG2	864600.93 864600.95	2031997.16	998.37		
269	864,600.93	2,031,993.60	995	SG3/FIN2	864600.95	2031993.54	995.50	8.12	2.86
270	864,600.93	2,031,989.10	990	SG3/FINZ	804000.91	2031989.04	998.47	8.12	2.80

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
271	864,650.93	2,032,001.60	995	SG1	864650.94	2032001.66	995.40		
272	864,650.93	2,031,997.10	998	FIN1	864650.93	2031997.16	998.15		
273	864,650.93	2,031,993.60	995	SG2	864650.93	2031993.53	995.46		
274	864,650.93	2,031,989.10	998	SG3/FIN2	864650.94	2031989.04	998.24	8.12	2.69
275	864,700.93	2,032,001.60	995	SG1	864700.95	2032001.66	995.37		
276	864,700.93	2,031,997.10	998	FIN1	864700.95	2031997.16	998.08		
277	864,700.93	2,031,993.60	995	SG2	864700.91	2031993.54	995.42		
278	864,700.93	2,031,989.10	998	SG3/FIN2	864700.92	2031989.04	998.39	8.12	2.66
					I				
279	864,750.93	2,032,001.60	995	SG1	864750.95	2032001.66	995.62		
280	864,750.93	2,031,997.10	998	FIN1	864750.94	2031997.15	998.20		
281	864,750.93	2,031,993.60	995	SG2	864750.92	2031993.54	995.31		
282	864,750.93	2,031,989.10	998	SG3/FIN2	864750.93	2031989.05	998.44	8.11	2.89
200	204 202 22	0.000.004.00	225	004	054000 00	2022004 66	205.47		
283	864,800.93	2,032,001.60	995	SG1	864800.92	2032001.66	995.47		
284	864,800.93	2,031,997.10	998	FIN1	864800.90	2031997.16	998.21		
285	864,800.93	2,031,993.60	995	SG2	864800.94	2031993.54	995.47	0.40	274
286	864,800.93	2,031,989.10	998	SG3/FIN2	864800.90	2031989.04	998.31	8.12	2.74
287	864,850.93	2,032,001.60	995	SG1	864850.94	2032001.66	995.78		
288	864,850.93	2,031,997.10	998	FIN1	864850.95	2031997.15	998.36		
289	864,850.93	2,031,993.60	995	SG2	864850.94	2031993.54	995.45		
290	864,850.93	2,031,989.10	998	SG3/FIN2	864850.95	2031939.04	998.39	8.11	2.90
				•					
291	864,900.93	2,032,001.60	995	SG1	864900.93	2032001.66	995.38		
292	864,900.93	2,031,997.10	998	FIN1	864900.94	2031997.16	998.12		
293	864,900.93	2,031,993.60	995	SG2	864900.92	2031993.55	995.33		
294	864,900.93	2,031,989.10	998	SG3/FIN2	864900.94	2031989.05	998.10	8.11	2.78
ı				T	1	1		ı	
295	864,950.93	2,032,001.60	995	SG1	864950.92	2032001.66	995.39		
296	864,950.93	2,031,997.10	998	FIN1	864950.93	2031997.15	998.24		
297	864,950.93	2,031,993.60	995	SG2	864950.93	2031993.55	995.29		
298	864,950.93	2,031,989.10	998	SG3/FIN2	864950.93	2031989.04	998.40	8.11	2.95

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
299	865,000.93	2,032,001.60	995	SG1	865000.94	2032001.66	995.53		
300	865,000.93	2,031,997.10	998	FIN1	865000.93	2031997.16	998.30		
301	865,000.93	2,031,993.60	995	SG2	865000.91	2031993.55	995.37		
302	865,000.93	2,031,989.10	998	SG3/FIN2	865000.90	2031989.03	998.46	8.12	2.93
202	865,050.93	2,032,001.60	995	SG1	005050.03	2022004 66	005.07		
303					865050.92	2032001.66	995.07		
304	865,050.93	2,031,997.10	998	FIN1	865050.94	2031997.16	998.29		
305	865,050.93	2,031,993.60	995	SG2	865050.94	2031993.54	995.33	0.43	2.06
306	865,050.93	2,031,989.10	998	SG3/FIN2	865050.92	2031989.04	998.63	8.12	2.96
307	865,100.93	2,032,001.60	995	SG1	865100.94	2032001.66	995.74		
308	865,100.93	2,031,997.10	998	FIN1	865100.93	2031997.15	998.31		
309	865,100.93	2,031,993.60	995	SG2	865100.92	2031993.55	995.10		
310	865,100.93	2,031,989.10	998	SG3/FIN2	865100.93	2031989.04	998.61	8.11	3.21
,				Ī	T T				
311	865,150.93	2,032,001.60	995	SG1	865150.94	2032001.65	995.44		
312	865,150.93	2,031,997.10	998	FIN1	865150.93	2031997.15	998.31		
313	865,150.93	2,031,993.60	995	SG2	865150.92	2031993.54	994.99		
314	865,150.93	2,031,989.10	998	SG3/FIN2	865150.93	2031989.05	998.36	8.11	3.32
315	865,200.93	2,032,001.60	995	SG1	865200.93	2032001.66	995.84		
316	865,200.93	2,031,997.10	998	FIN1	865200.93	2031997.16	998.35		
317	865,200.93	2,031,993.60	995	SG2	865200.93	2031993.54	994.96		
318	865,200.93	2,031,989.10	998	SG3/FIN2	865200.95	2031989.04	998.45	8.12	3.38
				1					
319	865,264.35	2,032,001.60	995	SG1	865264.41	2032001.66	995.69		
320	865,262.49	2,031,997.10	998	FIN1	865262.55	2031997.16	998.23		
321	865,261.04	2,031,993.60	995	SG2	865260.98	2031993.53	995.16		
322	865,259.17	2,031,989.10	998	SG3/FIN2	865259.11	2031989.04	998.40	8.82	3.07
323	865,303.37	2,031,962.58	995	SG1	865303.42	2031962.65	995.61		
323	865,300.19	2,031,962.36	998	FIN1	865300.25	2031962.65	998.45		
325	865,297.71	2,031,959.40	995	SG2	865297.65	2031959.46	995.17		
326	865,294.53	2,031,950.93	998	SG3/FIN2	865294.48	2031930.68	998.40	8.17	3.27

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
327	865,338.72	2,031,927.23	995	SG1	865338.77	2031927.28	995.51		
328	865,335.54	2,031,924.05	998	FIN1	865335.60	2031924.11	998.32		
329	865,333.07	2,031,921.57	995	SG2	865333.02	2031921.51	995.11		
330	865,329.89	2,031,918.39	998	SG3/FIN2	865329.82	2031918.33	998.65	8.18	3.21
ı				_					
331	865,368.60	2,031,897.35	995	SG1	865368.66	2031897.41	995.81		
332	865,364.10	2,031,895.49	998	FIN1	865364.17	2031895.55	998.02		
333	865,360.60	2,031,894.04	995	SG2	865360.55	2031893.98	995.35		
334	865,356.10	2,031,892.17	998	SG3/FIN2	865356.04	2031892.12	998.12	8.82	2.66
335	865,368.60	2,031,842.17	995	SG1	865368.65	2031842.17	995.58		
336	865,364.10	2,031,842.17	998	FIN1	865364.15	2031842.17	998.17		
337	865,360.60	2,031,842.17	995	SG2	865360.54	2031842.10	995.45		
338	865,356.10	2,031,842.17	998	SG3/FIN2	865356.05	2031842.14	998.39	8.11	2.72
330	000,000	2,001,012111		330,1112	000000.00	20010 (2.17)	330.03	5.22	
339	865,368.60	2,031,792.17	995	SG1	865368.65	2031792.16	995.27		
340	865,364.10	2,031,792.17	998	FIN1	865364.17	2031792.17	998.27		
341	865,360.60	2,031,792.17	995	SG2	865360.55	2031792.17	995.67		
342	865,356.10	2,031,792.17	998	SG3/FIN2	865356.04	2031792.16	998.28	8.13	2.60
				1	.				
343	865,368.60	2,031,742.17	995	SG1	865368.66	2031742.14	995.11		
344	865,364.10	2,031,742.17	998	FIN1	865364.16	2031742.18	998.12		
345	865,360.60	2,031,742.17	995	SG2	865360.55	2031742.17	995.39		
346	865,356.10	2,031,742.17	998	SG3/FIN2	865356.04	2031742.17	998.20	8.12	2.73
247	005 000 04	0.004.000.47	005	004	005200.07	2024502.47	005.20		
347	865,368.61	2,031,692.17	995	SG1	865368.67	2031692.17	995.29		
348	865,364.11	2,031,692.17	998	FIN1	865364.17	2031692.18	998.31		
349 350	865,360.61 865,356.11	2,031,692.17 2,031,692.17	995 998	SG2 SG3/FIN2	865360.55 865356.05	2031692.15 2031692.19	995.18 998.37	8.13	3.13
330	505,550.11	2,001,002.17	330	000/11112	005550.05	2031032.19	330.37	0.13	5.15
351	865,368.61	2,031,642.17	995	SG1	865368.66	2031642.17	995.32		
352	865,364.11	2,031,642.17	998	FIN1	865364.16	2031642.12	998.15		
353	865,360.61	2,031,642.17	995	SG2	865360.55	2031642.14	995.18		
354	865,356.11	2,031,642.17	998	SG3/FIN2	865356.06	2031642.19	998.43	8.10	2.97

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3 MIN)*
355	865,368.61	2,031,592.17	995	SG1	865368.67	2031592.16	995.76		
356	865,364.11	2,031,592.17	998	FIN1	865364.16	2031592.17	998.16		
357	865,360.61	2,031,592.17	995	SG2	865360.54	2031592.15	995.27		
358	865,356.11	2,031,592.17	998	SG3/FIN2	865356.06	2031592.20	998.52	8.10	2.89
359	865,368.61	2,031,542.17	995	SG1	865368.66	2031542.16	995.60		
360	865,364.11	2,031,542.17	998	FIN1	865364.16	2031542.17	998.25		
361	865,360.61	2,031,542.17	995	SG2	865360.55	2031542.19	995.11		
362	865,356.11	2,031,542.17	998	SG3/FIN2	865356.05	2031542.19	998.50	8.11	3.14
363	865,368.61	2,031,492.17	995	SG1	865368.68	2031492.16	995.62		
364	865,364.11	2,031,492.17	998	FIN1	865364.17	2031492.17	998.18		
365	865,360.61	2,031,492.17	995	SG2	865360.55	2031492.17	995.23		
366	865,356.11	2,031,492.17	998	SG3/FIN2	865356.06	2031492.17	998.46	8.11	2.95
367	865,368.61	2,031,442.17	995	SG1	865368.67	2031442.15	995.70		
368	865,364.11	2,031,442.17	998	FIN1	865364.17	2031442.18	998.14		
369	865,360.61	2,031,442.17	995	SG2	865360.55	2031442.16	995.42	0.44	2.72
370	865,356.11	2,031,442.17	998	SG3/FIN2	865356.06	2031442.18	998.47	8.11	2.72
371	865,368.61	2,031,392.17	995	SG1	865368.67	2031392.16	995.56		
372	865,364.11	2,031,392.17	998	FIN1	865364.18	2031392.17	998.21		
373	865,360.61	2,031,392.17	995	SG2	865360.55	2031392.16	995.44		
374	865,356.11	2,031,392.17	998	SG3/FIN2	865356.05	2031392.16	998.41	8.12	2.77
375	865,368.62	2,031,342.17	995	SG1	865368.68	2031342.17	995.48		
376	865,364.12	2,031,342.17	998	FIN1	865364.17	2031342.17	998.43		
377	865,360.62	2,031,342.17	995	SG2	865360.56	2031342.13	995.45		
378	865,356.12	2,031,342.17	998	SG3/FIN2	865356.06	2031342.18	998.66	8.11	2.98
379	865,368.62	2,031,292.17	995	SG1	865368.69	2031292.18	995.37		
380	865,364.12	2,031,292.17	998	FIN1	865364.18	2031292.18	998.14		
381	865,360.62	2,031,292.17	995	SG2	865360.56	2031292.17	995.66		
382	865,356.12	2,031,292.17	998	SG3/FIN2	865356.06	2031292.18	998.40	8.12	2.48

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3 MIN)*
383	865,368.62	2,031,242.17	995	SG1	865368.68	2031242.16	995.47		
384	865,364.12	2,031,242.17	998	FIN1	865364.17	2031242.16	998.54		
385	865,360.62	2,031,242.17	995	SG2	865360.57	2031242.17	995.63		
386	865,356.12	2,031,242.17	998	SG3/FIN2	865356.06	2031242.18	998.47	8.11	2.91
387	865,368.62	2,031,192.17	995	SG1	865368.69	2031192.16	995.52		
388	865,364.12	2,031,192.17	998	FIN1	865364.17	2031192.18	995.52		
389	865,360.62		995	SG2	865360.57		995.60		
390	,	2,031,192.17	998	SG3/FIN2	ł	2031192.18		0.11	2.00
390	865,356.12	2,031,192.17	990	SG3/FIN2	865356.06	2031192.14	998.46	8.11	2.96
391	865,368.62	2,031,142.17	995	SG1	865368.69	2031142.20	995.49		
392	865,364.12	2,031,142.17	998	FIN1	865364.17	2031142.20	998.45		
393	865,360.62	2,031,142.17	995	SG2	865360.57	2031142.16	995.48		
394	865,356.12	2,031,142.17	998	SG3/FIN2	865356.06	2031142.16	998.76	8.11	2.97
				1		T.			
395	865,368.62	2,031,092.17	995	SG1	865368.69	2031092.17	995.25		
396	865,364.12	2,031,092.17	998	FIN1	865364.17	2031092.16	998.65		
397	865,360.62	2,031,092.17	995	SG2	865360.56	2031092.14	995.35		
398	865,356.12	2,031,092.17	998	SG3/FIN2	865356.07	2031092.16	998.70	8.10	3.30
399	865,368.62	2,031,042.17	995	SG1	865368.68	2031042.14	995.95		
400	865,364.12	2,031,042.17	998	FIN1	865364.17	2031042.16	998.30		
401	865,360.62	2,031,042.17	995	SG2	865360.56	2031042.18	995.24		
402	865,356.12	2,031,042.17	998	SG3/FIN2	865356.06	2031042.15	998.43	8.12	3.06
403	865,368.62	2,030,992.17	995	SG1	865368.69	2030992.17	996.49		
404	865,364.12	2,030,992.17	998	FIN1	865364.17	2030992.18	998.66		
405	865,360.62	2,030,992.17	995	SG2	865360.56	2030992.16	995.42		
406	865,356.12	2,030,992.17	998	SG3/FIN2	865356.06	2030992.16	998.67	8.11	3.23
407	865,368.63	2,030,942.17	995	SG1	865368.69	2030942.16	996.21		
407	865,364.13	2,030,942.17	998	FIN1	865364.18	2030942.18	998.58		
409	865,360.63	2,030,942.17	995	SG2	865360.57	2030942.16	995.26		
410	865,356.13	2,030,942.17	998	SG3/FIN2	865356.07	2030942.15	998.66	8.12	3.33

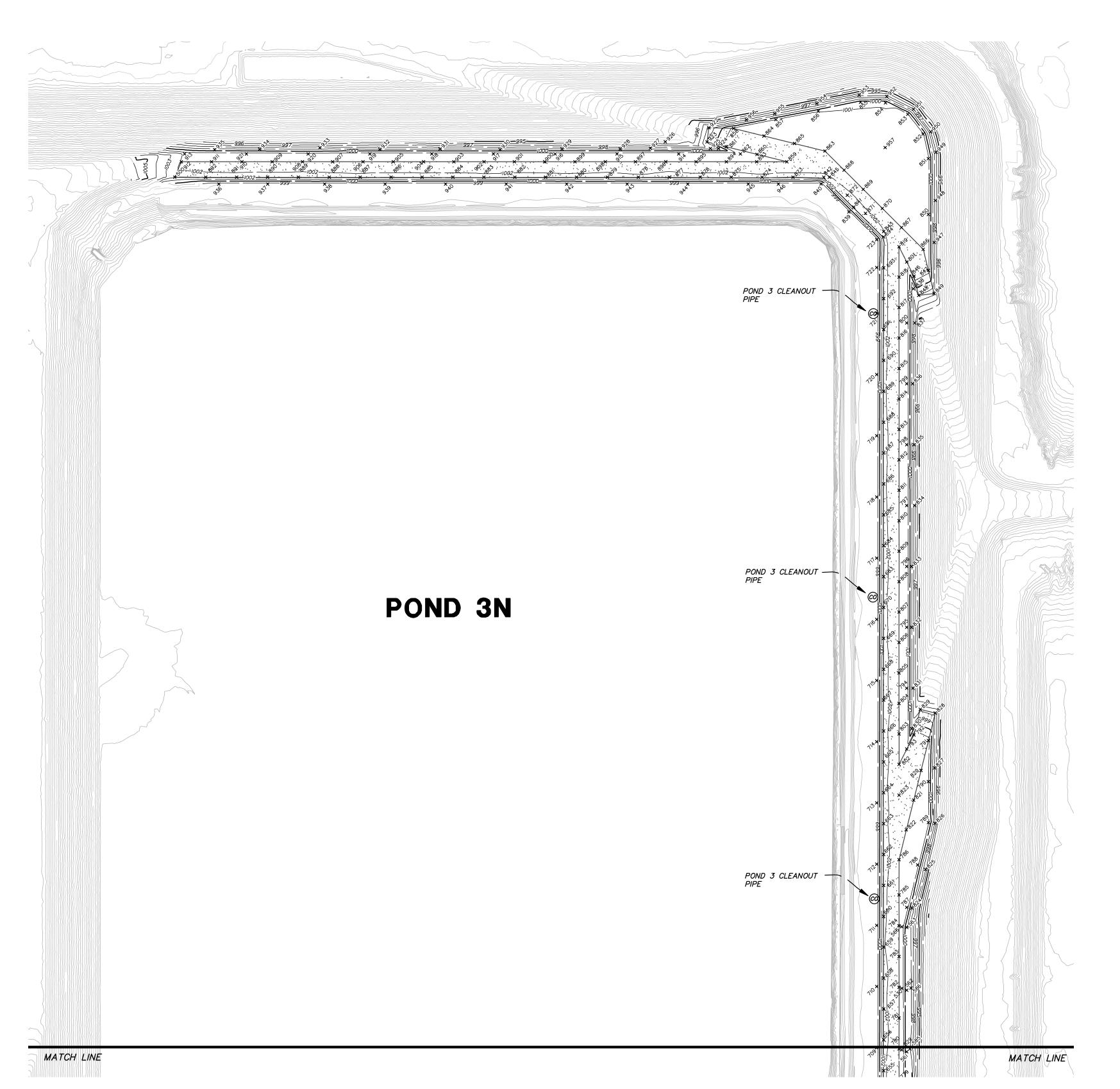
^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

Verification Point No.	Northing (Design)	Easting (Design)	Elevation (Design)	Location Description	Northing (As-built)	Easting (As-built)	Elevation (As-built)	Clay Width (8' MIN)	Clay Thickness (3' MIN)*
411	865,368.63	2,030,892.17	995	SG1	865368.68	2030892.16	996.92		
412	865,364.13	2,030,892.17	998	FIN1	865364.18	2030892.18	998.39		
413	865,360.63	2,030,892.17	995	SG2	865360.56	2030892.15	995.56		
414	865,356.13	2,030,892.17	998	SG3/FIN2	865356.07	2030892.17	998.33	8.10	2.83
415	865,368.63	2,030,846.80	995	SG1	865368.69	2030846.81	996.80		
416	865,364.13	2,030,847.07	998	FIN1	865364.18	2030847.08	998.05		
417	865,360.63	2,030,847.28	995	SG2	865360.56	2030847.28	995.37		
418	865,356.13	2,030,847.55	998	SG3/FIN2	865356.08	2030847.55	998.38	8.11	2.68
420	865,364.13	2,030,810.40	998	FIN1	865364.18	2030810.40	998.56		
421	865,356.13	2,030,810.88	998	SG3/FIN2	865356.08	2030810.89	998.64	8.12	

^{*}Thicknesses less than 3.0 feet are from existing clay constructed higher than elevation 995 during previous projects. Rather than excavate good clay, the existing clay was left in and surveyed.

						S/G to			
		D : E/O		0/0.4	1 24	Design	F/O A	1 24	S/G to F/G
Doint	Northing	Design F/G	Elevation	S/G As		Difference		s-built	Difference
Point 501	862,370.74	Easting 2,030,777.55	Elevation 1001.71		Desc. cont fill match	0.04	Elevation	Desc. topsoil match	0.01
502	862,373.90	2,030,858.32	1001.71	1001.73		-0.57	1001.70		0.53
503	862,377.07	2,030,939.08	1001.71	1001.17		-0.54	1001.68		0.51
504	862,382.16	2,031,037.03	1001.71	1001.13		-0.58	1001.66		0.54
505	862,387.24	2,031,134.99	1001.71	1001.20	cont fill	-0.51	1001.72		0.53
506	862,392.32	2,031,232.94	1001.71	1001.15		-0.56	1001.65		0.50
507	862,397.41	2,031,330.89	1001.71	1001.15		-0.57	1001.65		0.51
508	862,402.49	2,031,428.85	1001.71	1001.15		-0.56	1001.68		0.53
509 510	862,407.58 862,412.66	2,031,526.80 2,031,624.75	1001.71 1001.71	1001.20 1001.13		-0.51 -0.58	1001.70 1001.64		0.50 0.51
510	862,417.75	2.031,024.73	1001.71	1001.13		-0.59	1001.62		0.50
512	862,422.83	2,031,820.66	1001.71	1001.12		-0.58	1001.64		0.51
513	862,427.91	2,031,918.61	1001.71	1001.18		-0.53	1001.71		0.53
514	862,483.24	2,031,968.79	1001.75	1001.22	cont fill	-0.53	1001.74		0.52
515	862,538.56	2,032,018.97	1001.78	1001.19		-0.59	1001.72		0.53
516	862,638.57	2,032,018.97	1001.78	1001.20		-0.58	1001.72		0.51
517	862,738.59	2,032,018.97	1001.78	1001.26		-0.52	1001.77		0.51
518 519	862,838.61 862,938.63	2,032,018.97	1001.78 1001.78	1001.26 1001.22		-0.52 -0.56	1001.77		0.51 0.51
519	862,938.63	2,032,018.97 2,032,018.97	1001.78	1001.22		-0.58	1001.73 1001.72		0.51
521	863,138.66	2,032,018.97	1001.78	1001.20		-0.57	1001.72		0.52
522	863,238.68	2,032,018.97	1001.78	1001.24		-0.54	1001.75		0.51
523	863,338.69	2,032,018.97	1001.78	1001.25		-0.53	1001.76		0.51
524	863,438.71	2,032,018.97	1001.78	1001.24		-0.54	1001.75		0.51
525	863,538.73	2,032,018.97	1001.78	1001.21		-0.57	1001.74		0.53
526	863,638.75	2,032,018.97	1001.78	1001.23		-0.55	1001.74		0.51
527 528	863,738.76 863,838.78	2,032,018.97 2,032,018.97	1001.78 1001.78	1001.28 1001.25		-0.50 -0.53	1001.82 1001.77		0.54 0.52
529	863,938.80	2,032,018.97	1001.78	1001.25		-0.53	1001.77		0.52
530	864,038.82	2,032,018.97	1001.78	1001.25		-0.52	1001.76		0.51
531	862,359.06	2,030,805.67	997.30		g existing	-0.27	997.08	g existing	0.06
532	862,355.78	2,030,828.15	995.87	995.66	g existing	-0.21		topsoil match	0.00
533	862,358.21	2,030,850.41	996.41		g existing	-0.20		topsoil match	0.09
534	862,368.41	2,030,872.36	999.62		cont fill	-0.55	999.63		0.56
535	862,370.72	2,030,939.41	999.52		cont fill	-0.54	999.51		0.53
536 537	862,374.77 862,380.45	2,031,038.69 2,031,137.66	999.14 999.33		cont fill	-0.51 -0.58	999.15 999.30		0.51 0.54
538	862,385.17	2,031,137.00	999.18		cont fill	-0.54	999.18		0.54
539	862,390.42	2,031,335.65	999.21		cont fill	-0.52	999.26		0.57
540	862,396.09	2,031,434.61	999.40		cont fill	-0.55	999.38		0.54
541	862,401.21	2,031,533.60	999.39		cont fill	-0.55	999.35		0.51
542	862,405.33	2,031,632.64	999.04		cont fill	-0.44	999.11		0.50
543	862,411.16	2,031,731.59	999.28		cont fill	-0.52	999.27		0.51
544		2,031,830.57	999.33		cont fill	-0.50	999.40		0.57
545 546	862,422.02 862,478.86	2,031,922.19 2,031,974.25	999.61 999.42		cont fill	-0.53 -0.51	999.61 999.45		0.54 0.54
547	862,535.71	2,032,026.30	999.34		cont fill	-0.54	999.38		0.57
548	862,635.71	2,032,026.34	999.33		cont fill	-0.50	999.37		0.54
549	862,735.71	2,032,026.38	999.31	998.78	cont fill	-0.53	999.28	topsoil	0.50
550	862,835.71	2,032,026.42	999.30		cont fill	-0.52	999.30		0.52
551	862,935.71	2,032,026.47	999.29		cont fill	-0.52	999.31		0.54
552	863,035.71	2,032,026.51	999.27		cont fill	-0.52	999.31		0.56
553 554	863,135.71 863,235.71	2,032,026.55 2,032,026.59	999.26 999.24		cont fill	-0.50 -0.50	999.31 999.28		0.55 0.55
555	863,335.71	2,032,026.63	999.24		cont fill	-0.52		topsoil	0.50
556	863,435.71	2,032,026.67	999.22		cont fill	-0.52	999.25		0.54
557	863,535.71	2,032,026.71	999.20		cont fill	-0.53	999.22		0.55
558	863,635.71	2,032,026.75	999.19		cont fill	-0.52	999.18	topsoil	0.50
559	863,735.71	2,032,026.79	999.18		cont fill	-0.51	999.21		0.54
560	863,835.71	2,032,026.83	999.16		cont fill	-0.50		topsoil	0.54
561	863,935.71	2,032,026.87	999.15		cont fill	-0.51	999.19		0.54
562 563	864,035.71 864,137.79	2,032,026.91 2,032,026.95	999.13 999.12		cont fill	-0.51 -0.51	999.13 999.16		0.51 0.54
564	862,421.71	2,032,020.93	999.12		cont fill	-0.51	999.09		0.54
	862,425.46	2,032,011.34	998.80		cont fill	-0.58	998.75		0.53
565					cont fill	-0.52	1001.77		0.51

		Decima F/C		C/C A	ماند ا	S/G to Design	F/C A	مانده م	S/G to F/G
D : .	N	Design F/G	F1 (1)	S/G As		Difference		s-built	Difference
Point	Northing	Easting	Elevation	Elevation	Desc.	0.50	Elevation	Desc.	0.50
567	862,447.29	2,032,032.32	998.76		cont fill	-0.58	998.68		0.50
568	862,467.40	2,032,035.69	998.85		cont fill	-0.57	998.78		0.50
569	862,528.91	2,032,033.72	999.23	998.70	cont fill	-0.53	999.21		0.51
570	862,634.30	2,032,032.41	999.26				999.29		0.03
571	862,732.89	2,032,033.21	999.24				999.25		0.01
572	862,831.48	2,032,032.81	999.23				999.25		0.02
573	862,930.07	2,032,034.03	999.21 999.20				999.22		0.01
574	863,028.65	2,032,033.94					999.23		0.03
575	863,127.24	2,032,032.90	999.19				999.19		0.00
576	863,225.83	2,032,034.27	999.17				999.19		0.02
577	863,324.42	2,032,033.47	999.16			-	999.21		0.05
578	863,423.01	2,032,033.95	999.14				999.17		0.03
579	863,521.60	2,032,034.75	999.12	000.50	(CII) (-)-	0.50	999.12		0.00
580	863,620.19	2,032,036.03	999.10		cont fill match	-0.52	999.09		0.51
581	863,669.48	2,032,036.54	999.09		cont fill match	-0.51	999.13		0.55
582	863,718.77	2,032,055.32	998.89		cont fill match	-0.20		topsoil match	0.11
583	863,792.71	2,032,052.45	998.91		cont fill match	-0.11		topsoil match	0.04
584	863,842.01	2,032,040.08	999.03		cont fill match	-0.12		topsoil match	0.12
585	863,940.61	2,032,032.14	999.09		cont fill	-0.55	999.05		0.51
586	864,039.20	2,032,033.99	999.06		cont fill	-0.51	999.09	topsoil	0.54
724	862,381.80	2,030,756.15	1001.83	1001.26		-0.57	,	0	<u> </u>
725	862,383.82	2,030,807.84	1001.83	1001.32		-0.51	1001.89		0.57
726	862,385.85	2,030,859.52	1001.83	1001.28		-0.55	1001.81		0.53
727	862,387.88	2,030,911.21	1001.83	1001.31		-0.53	1001.84		0.53
728	862,379.25	2,030,980.70	1001.71	1001.18		-0.53	1001.70		0.52
729	862,381.41	2,031,022.48	1001.71	1001.20		-0.51	1001.73		0.52
730	862,394.68	2,031,048.98	1001.83	1001.31		-0.52	1001.82		0.51
731	862,429.63	2,031,722.02	1001.83	1001.28		-0.56	1001.79		0.51
732	862,427.08	2,031,672.89	1001.83	1001.32		-0.51	1001.83		0.50
733	862,424.53	2,031,623.75	1001.83	1001.33		-0.50	1001.83		0.51
734	862,421.98	2,031,574.62	1001.83	1001.31		-0.52	1001.83		0.52
735	862,419.43	2,031,525.48	1001.83	1001.32		-0.51	1001.84		0.52
736	862,416.88	2,031,476.35	1001.83	1001.32		-0.51	1001.82		0.50
737	862,414.32	2,031,427.22	1001.83	1001.32		-0.51	1001.83		0.50
738	862,411.77	2,031,378.08	1001.83	1001.32		-0.51	1001.85		0.53
739	862,409.22	2,031,328.95	1001.83	1001.30		-0.53	1001.82		0.52
740	862,406.67	2,031,279.81	1001.83	1001.28		-0.56	1001.82		0.54
741	862,404.12	2,031,230.68	1001.83	1001.32		-0.51	1001.85		0.53
742	862,401.57	2,031,181.55	1001.83	1001.30		-0.53	1001.81		0.51
743	862,399.02	2,031,132.41	1001.83	1001.31		-0.52	1001.83		0.51
744	862,396.46	2,031,083.28	1001.83	1001.31		-0.52	1001.82		0.51
745	862,431.55	2,031,758.89	1001.83	1001.32		-0.51	1001.85		0.53
746	862,433.27	2,031,792.14	1001.83	1001.31		-0.52	1001.82		0.51
747	862,425.00	2,031,862.23	1001.71	1001.12	cont fill	-0.59	1001.63		0.51
748		2,031,904.43	1001.71	1001.12	cont fill	-0.59	1001.63		0.51
749	862,445.08	2,031,934.18	1001.72	1001.20		-0.52	1001.70		0.50
750	862,465.54	2,031,939.40	1001.83	1001.24		-0.59	1001.77		0.53
751	862,503.01	2,031,976.86	1001.83	1001.33		-0.50	1001.88		0.56
752	862,540.48	2,032,014.33	1001.83	1001.32		-0.51	1001.85		0.52
753	862,590.48	2,032,014.33	1001.83	1001.29		-0.54	1001.82		0.52
754	862,640.48	2,032,014.33	1001.83	1001.32		-0.51	1001.86		0.54
755	862,690.48	2,032,014.33	1001.83	1001.25		-0.58	1001.75		0.51
756	862,740.48	2,032,014.33	1001.83	1001.27		-0.56	1001.79		0.52
757	862,790.48	2,032,014.33	1001.83	1001.26	cont fill	-0.57	1001.76		0.50
758	862,840.48	2,032,014.33	1001.83	1001.25	cont fill	-0.59	1001.77		0.52
759	862,890.48	2,032,014.33	1001.83	1001.29		-0.54	1001.83		0.54
760	862,940.48	2,032,014.33	1001.83	1001.29		-0.54	1001.80		0.51
761	862,990.48	2,032,014.33	1001.83	1001.27	cont fill	-0.56	1001.80	CL 5	0.52
762	863,040.48	2,032,014.33	1001.83	1001.28	cont fill	-0.55	1001.80	CL 5	0.52
763	863,090.48	2,032,014.33	1001.83	1001.29	cont fill	-0.54	1001.81	CL 5	0.51
764	863,140.48	2,032,014.33	1001.83	1001.28	cont fill	-0.55	1001.78	CL 5	0.50
765	863,190.48	2,032,014.33	1001.83	1001.30		-0.54	1001.81		0.51
766	863,240.48	2,032,014.33	1001.83	1001.29		-0.55	1001.79		0.51
767	863,290.48	2,032,014.33	1001.83	1001.33		-0.50	1001.86		0.53
	863,340.48	2,032,014.33	1001.83	1001.28		-0.55	1001.80		0.52
768							1001.81		


						S/G to Design			S/G to F/G
		Design F/G		S/G As		Difference		s-built	Difference
Point	Northing	Easting	Elevation	Elevation	Desc.	0.50	Elevation	Desc.	0.50
770 771	863,440.48 863,490.48	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.30 1001.32		-0.53 -0.51	1001.80 1001.83		0.50 0.51
772	863,540.48	2,032,014.33	1001.83	1001.30		-0.53	1001.81		0.51
773	863,590.48	2,032,014.33	1001.83	1001.30		-0.53	1001.84		0.54
774	863,640.48	2,032,014.33	1001.83	1001.32		-0.51	1001.83		0.51
775	863,690.48	2,032,014.33	1001.83	1001.31		-0.52	1001.81		0.50
776 777	863,740.48 863,790.48	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.27 1001.30		-0.56 -0.53	1001.80 1001.81		0.52 0.51
778	863,840.48	2,032,014.33	1001.83	1001.30		-0.52	1001.84		0.53
779	863,890.48	2,032,014.33	1001.83	1001.30		-0.53	1001.82		0.52
780	863,940.48	2,032,014.33	1001.83	1001.31		-0.52	1001.83		0.52
781	863,990.48	2,032,014.33	1001.83	1001.30		-0.53 -0.53	1001.82		0.52
782 783	864,040.48 864,090.48	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.30 1001.28		-0.55	1001.87 1001.81		0.57 0.52
784	864,140.48	2,032,014.33	1001.83	1001.32		-0.51	1001.84		0.52
785	864,190.48	2,032,014.33	1001.83	1001.27		-0.56	1001.79	CL 5	0.52
786	864,247.81	2,032,014.33	1001.83	1001.31		-0.52	1001.83		0.52
787	864,170.29	2,032,027.00	1001.70	1001.19		-0.51	1001.71		0.52
788 789	864,239.15 864,308.01	2,032,044.56 2,032,062.13	1001.53 1001.35	1000.97 1000.76		-0.56 -0.59	1001.50 1001.27		0.53 0.51
789	864,374.57	2,032,062.13	1001.35	1000.76		-0.59	1001.27		0.50
791	864,441.14	2,032,062.13	1001.35	1000.84		-0.51	1001.35		0.51
792	864,450.36	2,032,038.65	1001.58	1000.99		-0.59	1001.53		0.54
793	864,427.47	2,032,027.00	1001.70	1001.19		-0.51	1001.70		0.51
794 795	864,526.34 864,625.22	2,032,027.00 2,032,027.00	1001.70 1001.70	1001.13 1001.16		-0.57 -0.54	1001.64 1001.68		0.51 0.52
795	864,724.10	2,032,027.00	1001.70	1001.16		-0.54	1001.68		0.52
797	864,822.97	2,032,027.00	1001.70	1001.18		-0.52	1001.68		0.51
798	864,921.85	2,032,027.00	1001.70	1001.18		-0.53	1001.69		0.51
799	865,020.72	2,032,027.00	1001.70	1001.15		-0.55	1001.69		0.54
800	865,119.60	2,032,027.00	1001.70	1001.18		-0.52	1001.72		0.54
801 802	865,218.47 864,402.61	2,032,027.00 2,032,014.33	1001.70 1001.83	1001.18 1001.32		-0.52 -0.51	1001.68 1001.83		0.50 0.51
803	864,452.06	2,032,014.33	1001.83	1001.30		-0.53	1001.83		0.52
804	864,501.52	2,032,014.33	1001.83	1001.32	cont fill	-0.51	1001.87	CL 5	0.56
805	864,550.97	2,032,014.33	1001.83	1001.29		-0.54	1001.80		0.50
806 807	864,600.42 864,649.88	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.32 1001.31		-0.51 -0.52	1001.83 1001.85		0.50 0.54
808	864,699.33	2,032,014.33	1001.83	1001.31		-0.52	1001.83		0.54
809	864,748.79	2,032,014.33	1001.83	1001.30		-0.53	1001.82		0.52
810	864,798.24	2,032,014.33	1001.83	1001.27		-0.56	1001.85	CL 5	0.58
811	864,847.70	2,032,014.33	1001.83	1001.30		-0.54	1001.84		0.54
812 813	864,897.15 864,946.61	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.25 1001.29		-0.58 -0.54	1001.81 1001.86		0.57 0.57
814	864,996.06	2,032,014.33	1001.83	1001.29		-0.54	1001.80		0.57
815	865,045.52	2,032,014.33	1001.83	1001.30		-0.53	1001.81	CL 5	0.53
816	865,094.97	2,032,014.33	1001.83	1001.26	cont fill	-0.57	1001.79	CL 5	0.53
817	865,144.43	2,032,014.33	1001.83	1001.30		-0.53	1001.82		0.51
818 819	865,193.88 865,243.34	2,032,014.33 2,032,014.33	1001.83 1001.83	1001.31 1001.30		-0.52 -0.54	1001.83 1001.81		0.52 0.52
820	864,392.80	2,032,014.33	1001.63	1001.30		-0.54	1001.46		0.52
821	864,344.47	2,032,038.23	1001.59	1001.07		-0.52	1001.58		0.51
822	864,296.14	2,032,026.28	1001.71	1001.20	cont fill	-0.51	1001.70	CL 5	0.50
823	864,352.61	2,032,014.33	1001.83	1001.33		-0.50	1001.86		0.53
824 825	864,169.31 864,231.98	2,032,035.10 2,032,057.47	999.00 996.78		cont fill match	-0.51 -0.10	999.00 997.20		0.51 0.52
825	864,306.74	2,032,057.47	996.78		cont fill match	-0.10		topsoil	0.52
827	864,396.76	2,032,072.07	998.04		cont fill	-0.53		topsoil	0.51
828	864,485.92	2,032,073.20	997.66		cont fill	-0.52	997.64	CL 5	0.51
829	864,491.92	2,032,048.93	997.66		cont fill	-0.51	997.74		0.59
830	864,460.34	2,032,035.12	998.99		cont fill	-0.52		topsoil	0.55
831 832	864,526.34 864,625.22	2,032,037.08 2,032,034.87	998.34 999.08		cont fill	-0.54 -0.53	998.33 999.06	topsoil	0.53 0.50
833	864,724.10	2,032,034.99	999.04		cont fill	-0.51		topsoil	0.54
834	864,822.97	2,032,039.88	997.41		cont fill match	-0.02	997.43	topsoil match	0.04
835	864,921.85	2,032,038.61	997.83	997.79	cont fill match	-0.04	997.87	topsoil match	0.08

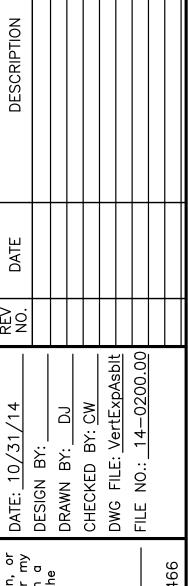
						S/G to Design			S/G to F/G
		Design F/G		S/G As	s-built	Difference	F/G A	s-built	Difference
Point	Northing	Easting	Elevation	Elevation	Desc.		Elevation	Desc.	
836	865,020.72	2,032,036.34 2,032,039.94	998.59 997.39		cont fill cont fill match	-0.55	998.55		0.50
837 838	865,119.60 865,175.09	2,032,039.94	997.39		cont fill match	-0.02 -0.48		topsoil match	0.01 0.53
846	865,195.59	2,032,037.72	1001.58	1001.05		-0.53	1001.58		0.53
847	865,204.80	2,032,062.13	1001.35	1000.85		-0.50			0.51
848	865,164.22	2,032,046.41	999.00		cont fill	-0.57	998.94		0.51
849	865,167.27	2,032,071.41	998.26		cont fill	-0.52	998.25		0.51
850 851	865,295.66 865,386.51	2,032,062.13 2,032,062.13	1001.35 1001.35	1000.77 1000.82		-0.58 -0.53	1001.28 1001.34		0.50 0.52
852	865,426.23	2,032,053.47	1001.33	1000.82		-0.51	1001.34		0.52
853	865,458.43	2,032,028.64	1001.10	1000.56		-0.54	1001.08		0.52
854	865,476.90	2,031,992.43	1000.98	1000.43		-0.55	1000.93		0.50
855	865,478.10	2,031,951.79	1000.86	1000.35		-0.51	1000.86		0.51
856 857	865,463.87 865,449.63	2,031,883.06 2,031,814.32	1001.00 1001.15	1000.49 1000.58		-0.52 -0.57	1000.99 1001.09		0.50 0.51
858	865,435.40	2,031,745.58	1001.13	1000.38		-0.55	1001.09		0.53
859	865,381.33	2,031,832.28	1001.83	1001.31		-0.52	1001.82		0.50
860	865,393.33	2,031,783.74	1001.71	1001.20	cont fill	-0.51	1001.70	CL 5	0.51
861	865,405.66	2,031,733.90	1001.58	1001.02		-0.56			0.51
862 863	865,394.00 865,398.69	2,031,756.78 2,031,894.07	1001.70 1001.65	1001.20 1001.14		-0.50 -0.51	1001.70 1001.66		0.50 0.51
864	865,423.16	2,031,894.07	1001.65	1001.14		-0.51	1001.66		0.51
865	865,410.93	2,031,844.57	1001.53	1001.01		-0.52			0.53
866	865,239.11	2,032,053.65	1001.43	1000.92	cont fill	-0.51	1001.45	CL 5	0.54
867	865,274.46	2,032,018.29	1001.77	1001.24		-0.53	1001.79		0.55
868	865,367.63	2,031,925.12	1001.89	1001.39		-0.50			0.55
869 870	865,336.58 865,305.52	2,031,956.18 2,031,987.24	1001.89 1001.89	1001.38 1001.39		-0.51 -0.50	1001.91 1001.92		0.53 0.52
893	865,381.33	2,031,783.09	1001.83	1001.29		-0.54	1001.82		0.52
894	865,381.33	2,031,733.89	1001.83	1001.29		-0.54	1001.83		0.54
895	865,381.33	2,031,684.70	1001.83	1001.29		-0.54	1001.80		0.51
896	865,381.33	2,031,635.51	1001.83	1001.31		-0.53	1001.81		0.50
897 898	865,381.33 865,381.33	2,031,586.31 2,031,537.12	1001.83 1001.83	1001.31 1001.33		-0.52 -0.50	1001.81 1001.84		0.50 0.51
899	865,381.33	2,031,487.93	1001.83	1001.33		-0.51	1001.85		0.53
900	865,381.33	2,031,438.74	1001.83	1001.31		-0.52			0.52
901	865,381.33	2,031,389.54	1001.83	1001.31		-0.52	1001.83		0.52
902	865,381.33	2,031,340.35	1001.83	1001.30		-0.54	1001.81		0.51
903 904	865,381.33 865,381.33	2,031,291.16 2,031,241.96	1001.83 1001.83	1001.32 1001.31		-0.51 -0.52	1001.84 1001.82		0.53 0.52
905	865,381.33	2,031,192.77	1001.83	1001.30		-0.52	1001.82		0.52
906	865,381.33	2,031,143.58	1001.83	1001.30		-0.53	1001.81	CL 5	0.51
907	865,381.33	2,031,094.38	1001.83	1001.31		-0.52	1001.83		0.51
908	865,381.33	2,031,045.19	1001.83	1001.31		-0.52			0.52
909 910	865,381.33 865,381.33	2,030,996.00 2,030,946.81	1001.83 1001.83	1001.28 1001.32		-0.55 -0.51	1001.81 1001.83		0.53 0.52
911	865,381.33	2,030,897.61	1001.83	1001.32		-0.51			0.52
912	865,381.33	2,030,848.42	1001.83	1001.33	cont fill	-0.50	1001.90	CL 5	0.57
913	865,394.07	2,030,853.82	1001.70	1001.20		-0.50			0.55
914	865,394.01	2,031,656.45	1001.70	1001.17		-0.53			0.52
915 916	865,394.01 865,394.02	2,031,556.12 2,031,455.80	1001.70 1001.70	1001.13 1001.11		-0.57 -0.59	1001.63 1001.63		0.50 0.52
917	865,394.03	2,031,455.47	1001.70	1001.11		-0.53	1001.68	•	0.52
918	865,394.04	2,031,255.14	1001.70	1001.17		-0.53	1001.69		0.52
919	865,394.04	2,031,154.81	1001.70	1001.18		-0.52	1001.70		0.52
920	865,394.05	2,031,054.48	1001.70	1001.17		-0.54			0.52
921 922	865,394.06 865,436.41	2,030,954.15 2,031,705.37	1001.70 998.32	1001.14	cont fill	-0.56 -0.50			0.55 0.50
922	865,413.41	2,031,705.57	999.00		cont fill	-0.50	999.00		0.54
924	865,402.81	2,031,721.16	998.77		cont fill	-0.46			0.56
925	865,402.65	2,031,707.97	998.82	998.31	cont fill	-0.51	998.86		0.55
926	865,413.66	2,031,634.76	995.15		cont fill match	-0.10		topsoil match	0.03
927	865,403.16 865,401.89	2,031,610.36	998.65		cont fill	-0.52	998.65		0.52
928 929	865,401.89 865,402.10	2,031,561.55 2,031,466.94	999.07 999.02		cont fill	-0.52 -0.53			0.54 0.54
930	865,401.28	2,031,366.31	999.27		cont fill	-0.58			0.54

						S/G to			
						Design			S/G to F/G
		Design F/G		S/G A	s-built	Difference	F/G A	s-built	Difference
Point	Northing	Easting	Elevation	Elevation	Desc.		Elevation	Desc.	
931	865,401.98	2,031,268.70	999.04	998.51	cont fill	-0.53	999.02	topsoil	0.51
932	865,401.47	2,031,171.08	999.21	998.64	cont fill	-0.57	999.16	topsoil	0.51
933	865,404.03	2,031,073.46	998.36	997.94	cont fill	-0.42	998.46	topsoil	0.52
934	865,401.76	2,030,975.85	999.11	998.59	cont fill	-0.52	999.09	topsoil	0.50
935	865,400.87	2,030,902.63	999.41	998.90	cont fill	-0.51	999.45	topsoil	0.54
947	865,250.23	2,032,071.76	998.14	997.63	cont fill	-0.51	998.20	topsoil	0.57
948	865,318.37	2,032,073.46	997.57	997.62	cont fill match	0.05	997.62	topsoil match	0.00
949	865,396.86	2,032,074.50	997.05	997.11	cont fill match	0.06	997.13	topsoil match	0.02
950	865,429.93	2,032,065.77	997.00	996.49	cont fill	-0.51	997.07	topsoil	0.58
951	865,466.65	2,032,038.01	997.00	997.03	cont fill match	0.03	997.08	topsoil match	0.05
952	865,487.44	2,031,994.39	997.40	996.89	cont fill	-0.51	997.41	topsoil	0.52
953	865,489.48	2,031,949.64	997.00	996.78	cont fill match	-0.22	996.79	topsoil match	0.01
954	865,475.71	2,031,881.04	997.00	997.11	cont fill match	0.11	997.14	topsoil match	0.03
955	865,459.31	2,031,812.31	997.85	997.41	cont fill	-0.44	997.94		0.53
956	865,449.54	2,031,766.55	998.04	997.53	cont fill	-0.51	998.04	topsoil	0.51
957	865,404.37	2,031,991.88	1001.45	1000.94	cont fill	-0.51	1001.46	topsoil	0.52
				1000.45	cont fill toe		1001.00	topsoil	0.55
				1000.62	cont fill toe		1000.78	topsoil match	0.16
				997.48	cont fill toe		998.04	topsoil	0.56
				998.49	cont fill match		999.02	topsoil	0.53
				998.50	cont fill match		999.05	topsoil	0.54
				997.69	cont fill toe		998.26	topsoil	0.57
				998.38	cont fill toe		998.94	topsoil	0.56
				997.93	cont fill toe		998.51	topsoil	0.58
				998.08	cont fill toe		998.60	topsoil	0.52
				998.29	cont fill toe		998.82	topsoil	0.53
				997.72	cont fill toe		998.23	topsoil	0.51
				997.30	cont fill toe		997.83	topsoil	0.53
				996.83	cont fill toe		997.34	topsoil	0.51
				997.02	cont fill toe		997.55	topsoil	0.53
				997.31	cont fill toe		997.88	topsoil	0.57

AS-BUILT SURVEY 2014 POND 3 VERTICAL EXPANSION SHERCO GENERATING PLANT BECKER, MN

<u>LEGEND:</u>

Denotes dewatering riser
Denotes cleanout pipe

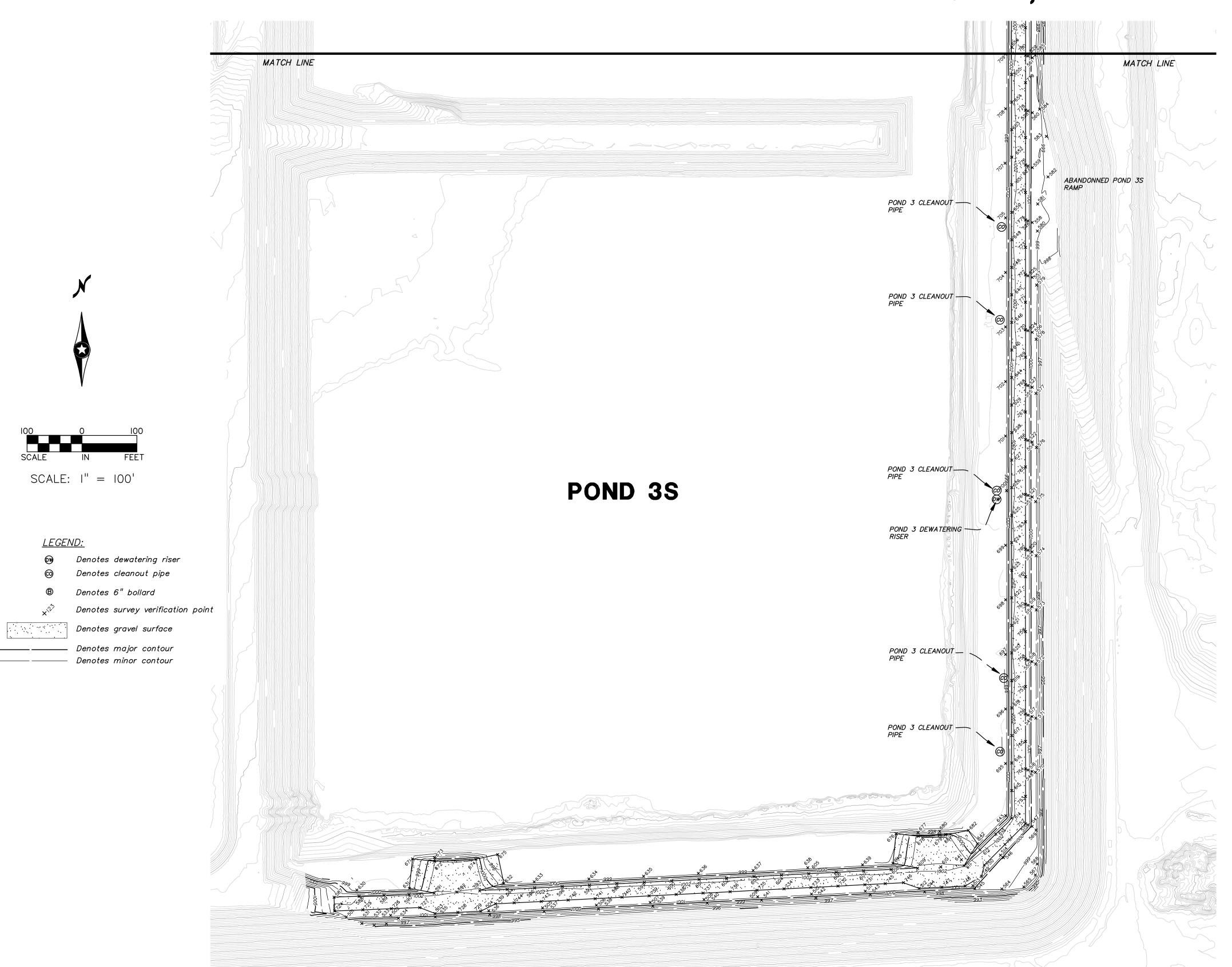

Denotes survey verification point

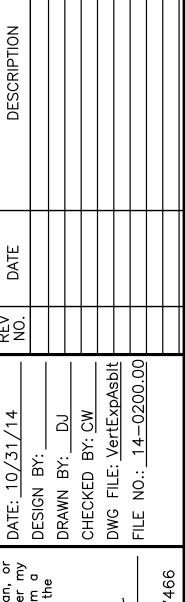
Denotes 6" bollard

Denotes gravel surface

Denotes major contour

Denotes minor contour

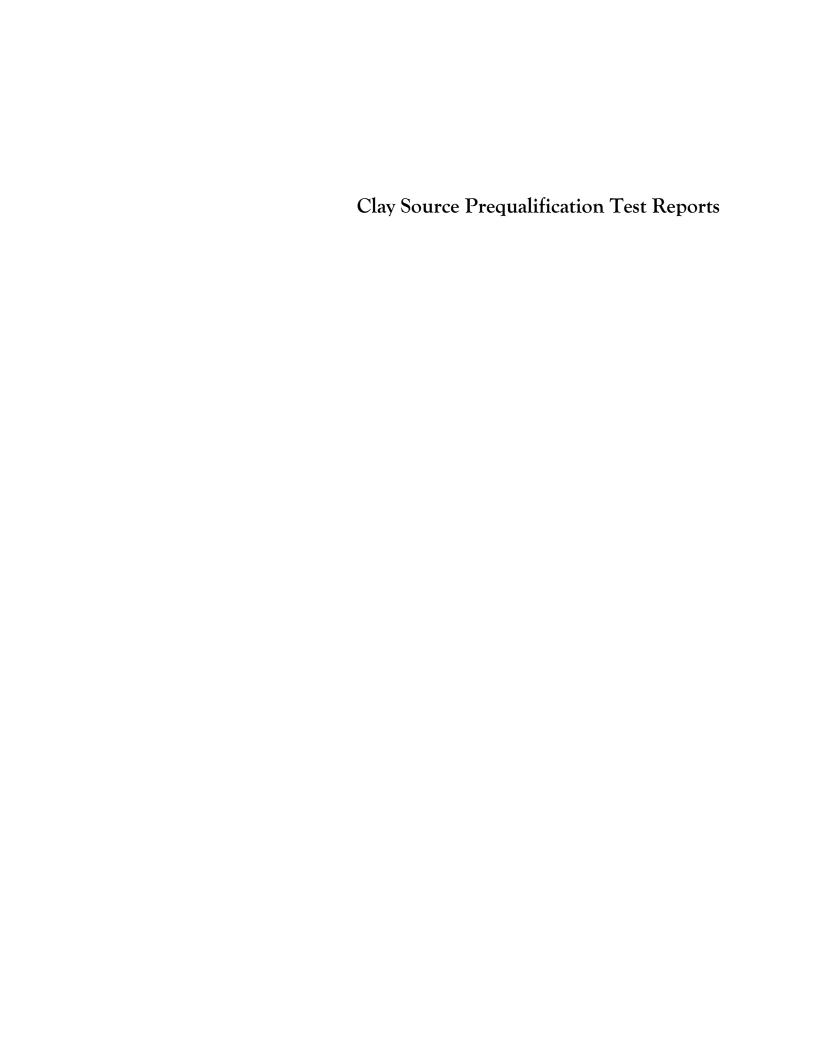

report was prepared by me or under my direct supervision, and that I am duly Licensed Land Surveyor under th laws of the State of Minnesota.


& ASSOCIATES, INC
LAND SURVEYING
CIVIL ENGINEERING
MAPPING
13076 FIRST STRFFT, BECKER, MN 55308-932

VEIT & COMPANY, INC.
SHERO PLANT
POND 3 VERT. EXPANSIC

SHEET NO.

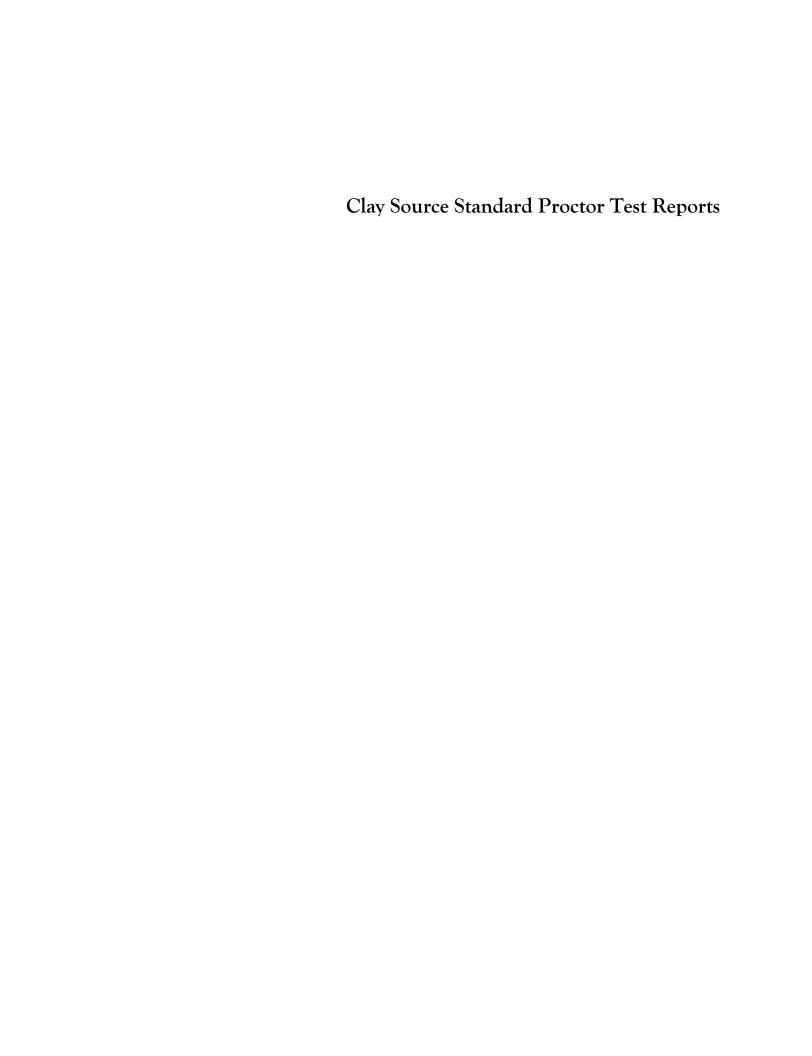
AS-BUILT SURVEY 2014 POND 3 VERTICAL EXPANSION SHERCO GENERATING PLANT BECKER, MN



SHEET NO.

Appendix D - Clay Test Reports

Clay Source Prequalification Test Reports
Clay Source Standard Proctor Test Reports
Clay In-place Density Test Reports
Clay In-place Permeability and Index Property Test Reports


Hydraulic Conductivity Test Data ASTM D5084

Project:	Sherco Pond Date:						
Reported To:		Vei	it & Company,	Inc.		Job No.:	9548
Boring No.:	CLP-1	CLP-2					
Sample No.:							
Date Sampled:							
Location:							
Sample Type:	Bulk	Bulk					
Soil Type:	Clayey Sand w/a little gravel (SC)	Sandy Lean Clay w/a little gravel (CL)					
Soil Type: Atterberg Limits							
LL							
PL							
PI							
Permeability Test	Reconstituted	Reconstituted					
oilling Porosity:							
O Ht. (in):	3.00	3.00					
න් Dia. (in):	2.85	2.85					
Saturation %: Porosity: Ht. (in): Dia. (in): Dry Density (pcf): Water Content:	113.0	112.7					
Water Content:	16.1%	15.9%					
Test Type:	Falling	Falling					
Max Head (ft):	5.0	5.0					
Confining press. (Effective-psi):	2.0	2.0					
Trial No.:	4-8	4-8					
Water Temp °C:	22.0	22.0					
% Compaction	97.6%	97.2%					
% Saturation (After Test)	95.4%	95.4%					
	0		Coefficient of	Permeability T			
K @ 20 °C (cm/sec)		2.0 x 10 ⁻⁸					
K @ 20 °C (ft/min)	1.3 x 10 ⁻⁸	3.9 x 10 ⁻⁸					
Notes:							
	24	01 W 66th Street	FOIL NGINE	ERING	Richfield, Minnesota 55	6423-2031	
·			■ ESTIN	J, INC.		I -	

		La	boratory	Test Sur	nmary						
Project:			Sherco	o Pond			Job:	<u>9548-A</u>			
Client:			Veit & Con	npany, Inc.			Date:	9/24/2014			
		Sa	ample Informa	ation & Class	ification						
Boring #	CLP-1	CLP-2									
Sample #											
Depth (ft)											
Location											
Material Classification	Clayey Sand with a little gravel (SC/CL)	Sandy Lean Clay with a little gravel (CL/SC)									
Atterberg Limits											
Liquid Limit (%)	30.8	30.4									
Plastic Limit (%)	14.0	13.2									
Plasticity Index (%)	16.8	17.2									
		Sa	ample Informa	ation & Class	ification						
Boring #											
Location											
Depth (ft)											
Type or BPF											
Material Classification											
			Atterb	perg Limits							
Liquid Limit (%)											
Plastic Limit (%)											
Plasticity Index (%)											

						(Grain	Siz	e D	istrib	utio	n A	ST	M	D۷	122						No.		9548
	Project: Sh																		+			Date		9/4/14
Repor	ted To: Ve	eit & Co	ompa	any, Inc.				0											-	₹ep	ort	Date	:	9/8/14
г	Location /	Boring	No.	Sam	ple No.	D	epth (ft)	Sample Type	•						5	Soil Cla	assifica	ation						
*	CL	.P-1						Bulk						Clay	ey Sa	ind w	/a littl	e grave	l (SC)					
•	CL	.P-2						Bulk					Sa	ındy l	Lean	Clay	w/a li	ttle grav	vel (CI	ـر				
\Diamond																								
			Gravel									Hydron			ysis									
	Coa	arse	1 3//	Fine		Co 4	Oarse Medium Fine #10 #20 #40 #400 #200					Fines												
100		*	*-*				#10		#20	#40		#100		100										
			Н																					
90							*	···.																
			Ш						*::															
80			H						##												H			
			Н							\ <i>`.</i>				Н										
70										#	<i>\'.</i>	+	+											
			$\parallel \parallel$				++				<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>		+											
60																								
			Ш									X:												
Percent Passing 40												+	Ÿį.											
를 20			Ш										\blacksquare	*										
erce			Н												Ϊ,									
≃ 40																×.								
			Ш														×							
30																		**						
			Н											1					X					
20																				**				
20																						*		
			Ш																				٠,	*
10			H											H										
0	50		20	Щ	5		2			-				ш	.05		.02				005		.002	
1	100		20	10	J		2	1		Grain Si	ize (mn	1)	0.1		.03		.02	0	.01		003		.002	0.001
			C	ther Tests					F	Percent Pa	assing													
		*	-	•	\Diamond				*	•	Ī	\Diamond	7				*		•	\Diamond	,			
Liqu	uid Limit						Mass	(g) 18	927.0	18916	0.0					D ₆₀								
Plas	stic Limit							2"								D ₃₀								
Plasti	city Index						1.	5" 1	0.00	100	.0					D ₁₀								
Wate	r Content	15.5	5	17.1				1 " 9	9.3	99.8	3					C_U								
Dry De	ensity (pcf)						3/	'4" 9	9.3	99.3	3					C_{C}								
Speci	fic Gravity	2.69)*	2.69*			3/	'8" 9	7.9	98.0)		7		Rem	arks:		•	•					
	prosity							#4 9	5.9	95.8	3		1											
Organ	ic Content						#	10 9	0.9	91.7	7		1											
	рН		T			\neg			5.4	87.2			7											
	kage Limit		T						7.7	79.7			1											
	etrometer		T			\dashv	#1		8.7	60.4			7											
	u (psf)		\exists			\dashv	#2		9.3	50.3			7											
	assumed)												_	L										
								5	OII															
		0401	M 00	th Ctroot				E	NG	INEE	RIN	G					Dist.	fiold N			4	00.00	04	



Moisture Density Curve ASTM: D698, Method B Project: **Sherco Pond** 9/4/14 Date: Client: Veit & Company, Inc. Job No. 9548 Boring No. **CLP-2** Sample: Depth(ft): Location: Soil Type: Sandy Lean Clay w/a little gravel (CL) As Received W.C. (%): **17.1** Specific Gravity: 2.67 PI: *Assumed PL: Maximum Dry Density (pcf): 115.9 Opt. Water Content (%): 14.0 118 117 **Proctor Points** Zero Air Voids 116 115 114 Ory Density (PCF) 113 112 111 110 109 108 -10 11 12 13 20 Water Content (%) OIL 2401 W 66th Street Richfield, Minnesota 55423-2031 NGINEERING ESTING, INC.

ET-R18a

Moisture Density Curve ASTM: D698, Method B Project: **Sherco Pond** 9/4/14 Date: Client: Veit & Company, Inc. Job No. 9548 Boring No. **CLP-1** Sample: Depth(ft): Location: Soil Type: Clayey Sand w/a little gravel (SC) PL: As Received W.C. (%): **15.5** Specific Gravity: 2.67 PI: *Assumed Maximum Dry Density (pcf): 115.8 Opt. Water Content (%): 14.7 118 117 **Proctor Points** Zero Air Voids 116 115 114 Ory Density (PCF) 113 112 111 110 109 108 -10 11 12 13 15 20 Water Content (%) OIL 2401 W 66th Street Richfield, Minnesota 55423-2031 NGINEERING ESTING, INC.

ET-R18a

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763) 428 - 5573 Toll Free: (800) 972-6364

www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Report No: ND:26-00822-W5 Issue No: 1

This document shall not be reproduced, except in full, without written

approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By:

9/30/2014 **GENE ERZAR**

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/22/2014 Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Direct Transmission Test Mode:**

GAUGE)

Standard Count: Density: 714 **Model Number:** 3440 Standard Count: Moisture: 2543 Serial Number: 36458

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S2 (SO)	Sandy Lean Clay, a little gravel, brown (CL)	ASTM D 698 (B)	115.9	14.0

CC: Mitch Sumstad

Test	Test Results												
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results			
1	CL-1	26-00822-W4-S2	12	135.1	15.4	+1.4	117.1	101.0	≥97	OK			
2	CL-2	26-00822-W4-S2	12	135.6	15.6	+1.6	117.3	101.2	≥97	OK			
3	CL-3	26-00822-W4-S2	12	136.4	17.0	+3.0	116.6	100.6	≥97	OK			

Loca	Location										
General Location: Pond 3 Clay Test Field Sample ID Location Test Elev/Depth Material/Layer No.											
1	CL-1	N 862402, E 2030846, Elev: 995.7	995.7'	Elevation							
2	CL-2	N 862411, E 2031049, Elev: 996.1	996.1'	Elevation							
3	CL-3	N 862427, E 2031305, Elev: 995.8	995.8'	Elevation							

Comments

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

American Engineering Testing, Inc. Albertville Saint Paul

550 Cleveland Ave N | 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763) 428 - 5573 Toll Free: (800) 972-6364

www.amengtest.com

Report No: ND:26-00822-W2

Issue No: 1

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue:

9/30/2014 Reviewed By: **GENE ERZAR Engineering Assistant**

Suct

Testing Details

Tested By: ALEX STERGER

9/23/2014 **Date Tested:** Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Test Mode:**

GAUGE)

Standard Count: Density: 714 **Model Number:** 3440 Standard Count: Moisture: 2543 **Serial Number:** 36458

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S1 (SO)	Clayey Sand, a little gravel, brown (SC)	ASTM D 698 (B)	115.8	14.7

CC: Mitch Sumstad

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CL-4	26-00822-W4-S1	12	136.3	16.2	+1.5	117.3	101.3	≥97	OK
2	CL-5	26-00822-W4-S1	12	136.1	18.3	+3.6	115.0	99.3	≥97	OK

Loc	ation			
	eral Location: Po Field Sample ID	,	Test Elev/Depth	Material/Layer
1	CL-4	N 862424, E 2031243, Elev: 996.6	996.6'	Elevation
2	CL-5	N 862404, E 2030884, Elev: 997.1	997.1'	Elevation

Comments

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

550 Cleveland Ave N | 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 | Albertville, MN 55301

(651)659-9001 | (763)428-5573 Toll Free: (800)972-6364

www.amengtest.com

Report No: ND:26-00822-W3

Issue No: 1

Field Density Test Report

Client: VEIT & COMPANY INC.

CC: Mitch Sumstad

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue:

Reviewed By:

9/30/2014 GENE ERZAR

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/24/2014 Field Methods: ASTM D 6938

Gauge Type: Troxler 3440 (NUCLEAR DENSITY Test Mode: Direct Transmission

GAUGE)

Model Number:3440Standard Count: Density:714Serial Number:36458Standard Count: Moisture:2543

Proctor InformationSample IDMaterialMethodMDD (Ib/ft³)OMC (%) (Ib/ft³)26-00822-W4-S2 (SO)Sandy Lean Clay, a little gravel, brown (CL)ASTM D 698 (B)115.914.0

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CL-6	26-00822-W4-S2	12	132.8	17.7	+3.7	112.8	97.4	≥97	OK
2	CL-7	26-00822-W4-S2	12	136.0	15.3	+1.3	118.0	101.8	≥97	OK

Loc	ation			
	eral Location: Po Field Sample ID	nd 3 Clay Location	Test Elev/Depth	Material/Layer
1	CL-6	N 862411, E 2030922, Elev: 998.0	998.0'	Elevation
2	CL-7	N 862699, E 2031998, Elev: 995.9	995.9'	Elevation

Comments

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763) 428 - 5573 Toll Free: (800) 972-6364

www.amengtest.com

Report No: ND:26-00822-W6

Issue No: 1

Field Density Test Report

Client: VEIT & COMPANY INC.

CC: Mitch Sumstad

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By:

9/30/2014 **GENE ERZAR**

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/25/2014 Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Direct Transmission Test Mode:**

GAUGE)

Standard Count: Density: 714 **Model Number:** 3440 Standard Count: Moisture: 2543 **Serial Number:** 36458

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S2 (SO)	Sandy Lean Clay, a little gravel, brown (CL)	ASTM D 698 (B)	115.9	14.0

Test	Test Results												
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results			
1	CL-8	26-00822-W4-S2	12	136.5	15.6	+1.6	118.1	101.9	≥97	OK			
2	CL-9	26-00822-W4-S2	12	135.9	17.3	+3.3	115.9	100.0	≥97	OK			
3	CL-10	26-00822-W4-S2	12	135.4	16.1	+2.1	116.6	100.7	≥97	OK			
4	CI-11	26-00822-W4-S2	12	134.2	15.7	+1.7	116.0	100.1	≥97	OK			
5	CL-12	26-00822-W4-S2	12	132.4	16.3	+2.3	113.8	98.3	≥97	OK			
6	CL-13	26-00822-W4-S2	12	132.4	17.2	+3.2	113.0	97.5	≥97	OK			

Loc	ation									
Gene	ral Location: Po	nd 3 Clay								
1	Field Sample ID	Location	Test Elev/Depth	Material/Layer						
No.										
1	CL-8	N 863910, E 2031999, Elev: 996.0	996.0'	Elevation						
2	CL-9	N 863026, E 2031997, Elev: 997.1	997.1'	Elevation						
General Location: Pond 3 Skirt										
Test	Test Field Sample ID Location Test Elev/Depth Material/Layer									
No.										
3	CL-10	N 863545, E 2031997, Elev: 997.0	997.0'	Elevation						
Gene	eral Location: Po	nd 3 Clay								
Test	Field Sample ID	Location	Test Elev/Depth	Material/Layer						
No.										
4	CI-11	N 864045, E 2031998, Elev: 997.1	997.1'	Elevation						
5	CL-12	N 864641, E 2031999, Elev: 996.1	996.1'	Elevation						
6	CL-13	N 865108, E 2031998, Elev: 996.0	996.0'	Elevation						

Comments
(CO) = Compled By Othe

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

American Engineering Testing, Inc. Albertville Saint Paul

550 Cleveland Ave N | 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 |(763)428-5573 Toll Free: (800) 972-6364

www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

CC: Mitch Sumstad

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Report No: ND:26-00822-W7 Issue No: 1

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue:

9/30/2014 Reviewed By: **GENE ERZAR**

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/26/2014 Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Direct Transmission Test Mode:**

GAUGE)

Standard Count: Density: 714 **Model Number:** 3440 Standard Count: Moisture: 2543 **Serial Number:** 36458

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S2 (SO)	Sandy Lean Clay, a little gravel, brown (CL)	ASTM D 698 (B)	115.9	14.0

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CI-14	26-00822-W4-S2	12	133.2	15.5	+1.5	115.3	99.5	≥97	OK
2	CL-15	26-00822-W4-S2	12	133.4	18.0	+4.0	113.1	97.6	≥97	OK
3	CL-16	26-00822-W4-S2	12	132.4	17.3	+3.3	112.9	97.4	≥97	OK

Loca	Location										
General Location: Pond 3 Clay Test Field Sample ID Location Test Elev/Depth											
No.											
1	CI-14	N 865009, E 2031999, Elev: 997.1	997.1'	Elevation							
2	CL-15	N 865364, E 2031033, Elev: 996.1	996.1'	Elevation							
3	CL-16	N 865364, E 2031528, Elev: 996.1	996.1'	Elevation							

Comments

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

550 Cleveland Ave N | 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763) 428 - 5573 Toll Free: (800) 972-6364

www.amengtest.com

Report No: ND:26-00822-W8

Issue No: 1

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue:

9/30/2014 Reviewed By: **GENE ERZAR Engineering Assistant**

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/29/2014 Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Direct Transmission Test Mode:**

GAUGE)

Model Number: 3440 Standard Count: Density: 714 Standard Count: Moisture: 2543 **Serial Number:** 36458

Proctor Information Sample ID Material Method MDD OMC (%) (lb/ft3) 26-00822-W4-S2 (SO) Sandy Lean Clay, a little gravel, brown (CL) ASTM D 698 (B) 115.9 14.0

CC: Mitch Sumstad

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CL-17	26-00822-W4-S2	12	134.0	18.0	+4.0	113.6	98.0	≥97	OK
2	CL-18	26-00822-W4-S2	12	132.5	16.8	+2.8	113.4	97.9	≥97	OK
3	CL-19	26-00822-W4-S2	12	136.2	15.6	+1.6	117.8	101.7	≥97	OK

Location										
General Location: Pond 3 Clay Test Field Sample ID Location Test Elev/Depth Material/Laye										
No.	01.47	N 005000 5 0004000 51 0050								
1	CL-17	N 865363, E 2031602, Elev: 997.0	997.0'	Elevation						
2	CL-18	N 865365, E 2031104, Elev: 997.1	997.1'	Elevation						
3	CL-19	N 863032, E 2031992, Elev: 998.4	998.4'	Elevation						

Comments

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

550 Cleveland Ave N | 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 | Albertville, MN 55301

(651)659-9001 | (763)428-5573 Toll Free: (800)972-6364

www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

CC: Mitch Sumstad

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Issue No: 1

be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By: Suction

Report No: ND:26-00822-W9

9/30/2014 GENE ERZAR Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 9/30/2014 Field Methods: ASTM D 6938

Gauge Type: Troxler 3440 (NUCLEAR DENSITY Test Mode: Direct Transmission

GAUGE)

Model Number:3440Standard Count: Density:714Serial Number:36458Standard Count: Moisture:2543

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S2 (SO)	Sandy Lean Clay, a little gravel, brown (CL)	ASTM D 698 (B)	115.9	14.0

Test	Test Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CL-20	26-00822-W4-S2	12	135.0	17.8	+3.8	114.6	98.9	≥97	OK
2	CL-21	26-00822-W4-S2	12	135.8	15.5	+1.5	117.6	101.5	≥97	OK

Loca	ation			
	eral Location: Po Field Sample ID	nd 3 Clay Location	Test Elev/Depth	Material/Layer
1	CL-20	N 863616, E 2031991, Elev: 998.3	998.3'	Elevation
2	CL-21	N 864300, E 2031993, Elev: 998.2	998.2'	Elevation

(SO) = Sampled By Others

Our compaction testing was done on a will-call basis; therefore, AET cannot comment on the materials used or preparation of the fill, the lift thicknesses, or the compactive effort applied. Our tests only provide the percent compaction level and soil type data at the specific locations and elevations tested.

The Proctor value utilized to obtain the percent compaction is based upon the proctor provided by SET (Soil Engineering Testing).

Legend

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763)428-5573

Toll Free:(800)972-6364

www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Report No: ND:26-00822-W10 Issue No: 1

10/7/2014

This document shall not be reproduced, except in full, without written

approval from American Engineering Testing, Inc.

Date of Issue:

Reviewed By: GENE ERZAR Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 10/2/2014 Field Methods: ASTM D 6938

Gauge Type: Troxler 3440 (NUCLEAR DENSITY Test Mode: Direct Transmission

GAUGE)

Model Number:3440Standard Count: Density: 714Serial Number:36458Standard Count: Moisture: 2543

١	Proctor Information				
	Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
ŀ	26-00822-W4-S2 (SO)	Sandy Lean Clay, a little gravel, brown (CL)	ASTM D 698 (B)	115.9	14.0

CC: Mitch Sumstad

Test	Fest Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	CL-22	26-00822-W4-S2	12	133.2	16.5	+2.5	114.3	98.7	≥97	OK
2	CL-23	26-00822-W4-S2	12	138.5	15.7	+1.7	119.7	103.3	≥97	OK
3	CL-24	26-00822-W4-S2	12	134.7	16.6	+2.6	115.5	99.7	≥97	OK

Loca	Location											
Test	General Location: Pond 3 Clay Test Field Sample ID Location Test Elev/Depth Material/Layer No.											
1	CL-22	N 864829, E 2031992, Elev: 998.3	998.3'	Elevation								
2	CL-23	N 865361, E 2031689, Elev: 998.2	998.2'	Elevation								
3	CL-24	N 865359, E 2031250, Elev: 998.3	998.3'	Elevation								

Comments	Legend
(SO) = Sampled By Others	OMC = Optimum Moisture Content MDD = Maximum Dry Density
	OK = All Results Meet Specification

Clay In-place Permeability and Index Property Test Reports

Hydraulic Conductivity Test Data ASTM D5084

Project:		S	Sherco Pond		Date:	10/6/2014	
Reported To:		Ve	it & Company, I	nc.		Job No.:_	9548-B
Boring No.:	CL TW-1	CL TW-2					
Sample No.:							
Elevation	998.0	998.3					
Location:	N 862429 E 2031302	N 865359 E 2031243					
Sample Type:	TWT	TWT					
	Clayey Sand w/a little gravel (SC)	Clayey Sand w/a little gravel (SC)					
Soil Type: Atterberg Limits							
LL LL	30.1	31.0					
PL	12.7	12.3				1	
PI	17.4	18.7				1	
Permeability Test	Intact	Intact					
ဖ် Saturation %:							
ō Porosity:							
Ht. (in):	2.32	2.77					
Saturation %: Porosity: Ht. (in): Dia. (in): Dry Density (pcf): Water Content:	2.88	2.88					
Dry Density (pcf):	115.9	114.8					
^{മ്} Water Content:	15.5%	16.0%					
Test Type:	Falling	Falling					
Max Head (ft):	5.0	5.0					
Confining press. (Effective-psi):	2.0	2.0					
Trial No.:	5-9	5-9					
Water Temp ℃:	20.0	20.0					
% Compaction							
% Saturation (After Test)	97.2%	97.3%					
			Coefficient of F	Permeability			
K @ 20 °C (cm/sec)	1.3 x 10 ⁻⁸	2.4 x 10 ⁻⁸				 	
K @ 20 ℃ (ft/min)	2.5 x 10 ⁻⁸	4.8 x 10 ⁻⁸					
Notes:							

FOIL NGINEERING ESTING, INC.

					Grain	Size) Di	istributi	on A	STI	M D	422	1		J	lob No	.: 9	548-B
		nerco Pond			_											st Dat		10/3/14
Report	ted To: V	eit & Comp	any, Inc.			0 1									Repo	ort Dat	e:	10/9/14
	Location /	Boring No.	Sam	ple No.	Elevation	Sample Type						Soil Cla	assificatio	n				
*	N 862429	E 2031302	CI	TW1	998.0	Bag				C	layey S	and wit	h a little ខ្	gravel (C	CL)			
•	N 865359	E 2031243	CI	TW2	998.3	Bag				C	layey S	and wit	h a little ខ្	gravel (C	CL)			
\Diamond																		
		Grave					Sar	nd					Ну		er Analy	sis		
100	Cos	arse	Fin 4 3/8	e ##	Coarse #10	Med:	ium 20	#40	Fine #100	#2(00			Fir	nes			
100	*	* * *																
90																	_	
90					*	····												
0.0								4										
80																	_	
								1.										
70								\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\										
								1									#	
60									1									
sing									*\\`\;									
š 50									##`	\.							#	
Percent Passing											<u>``</u> .						\pm	
호 ₄₀											<u>'</u>						\pm	
												×	· ·				_	
30													*`:					
30														X.	.			
•															*	<u>.</u>	#	
20																1	*	
																		**
10																		
0	50	20		5	2			5	2		.05		.02			05	.002	
1	00	20	10			1	(Grain Size (r	nm)	0.1	.03		.02	0.01	.0		.002	0.001
		(Other Tests		_	_	P	ercent Passin		_				T		_		
		*	•	\Diamond			*	•	\Diamond	4		_	*	•	\Diamond			
	id Limit	30.1	31.0		Mass (72.0	21519.0		4		D ₆₀				_		
	tic Limit	12.7	12.3			2" 98		100.0		4		D ₃₀						
	city Index	17.4	18.7		1.			99.4		4		D ₁₀						
	Content	14.7	16.0			1" 97		99.1		4		C _U						
	nsity (pcf)	2 (0*	2 (0*		3/			98.6		┪	D	C _C						
	ic Gravity	2.69*	2.69*		3/			97.0		┪	Re	emarks:						-
	rosity					#4 93 10 89		94.9 91.5		+								
	c Content							1		-								
	pH							86.5		-								
	age Limit				#1			78.5 58.5		\exists								
	trometer ı (psf)				#2			48.4		\exists								
	ssumed)			<u> </u>	#2	4/	.1	40.4		_								
, ,,,	/						OIL		_									
							OIL	4										

Appendix E - Controlled Fill Test Reports

In-Place Proctor Test Reports In-Place Density Test Reports

American Engineering Testing, Inc. [Albertville Saint Paul

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 |(763)428-5573

Toll Free: (800) 972-6364 www.amengtest.com

Report No: PTR:26-00822-W4-S4

Issue No: 2

Proctor Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By:

10/17/2014 **GENE ERZAR**

Engineering Assistant

Sample Details

Sample ID: Sampling Method: Sampled By American Eng & Testing

26-00822-W4-S4

Date Sampled:

CC: Mitch Sumstad

9/29/2014

Source:

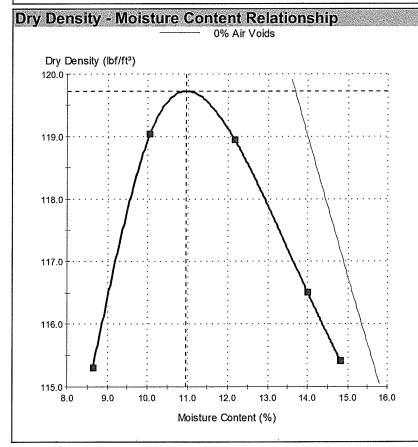
On-Site Fill

Material:

Sand w/ Silt, a little gravel, fine to medium grained, brown (SP-SM)

Specification:

Location:


Control Borrow Area West of Trailer

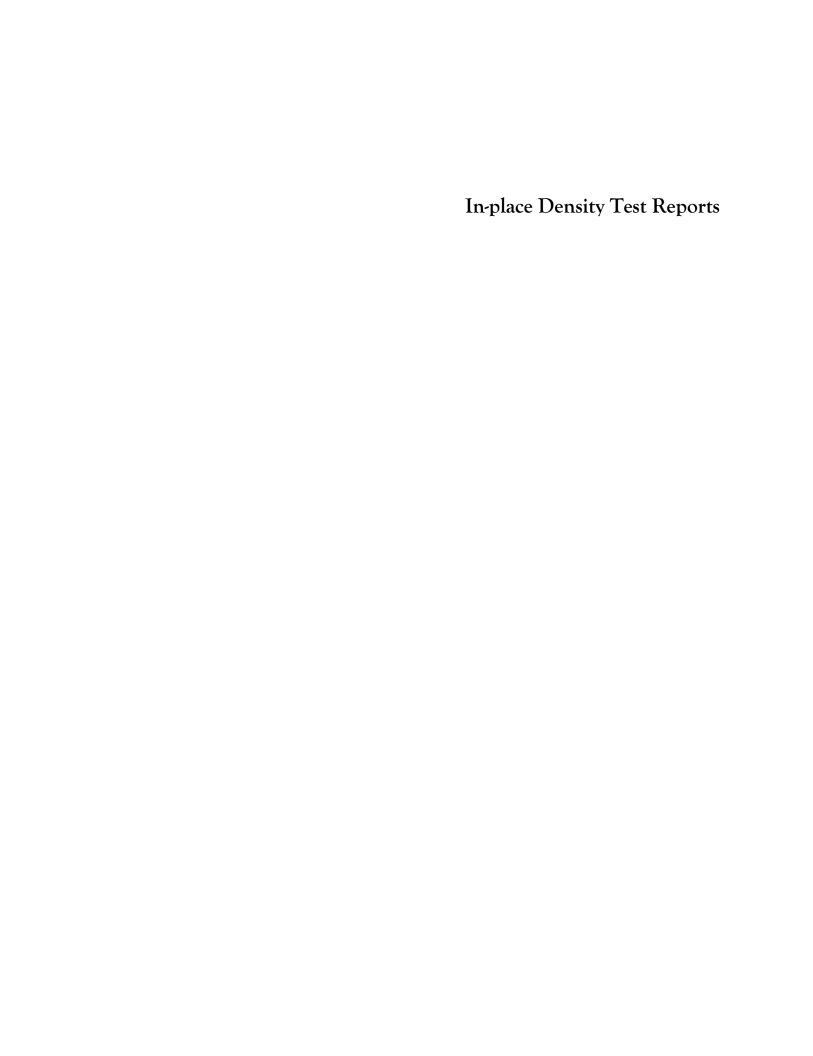
Tested By:

KRISTINE BORDAK

Date Tested:

9/30/2014

Test Results ASTM D 698 - 2007	
Maximum Dry Density (lbf/ft³):	119.7
Corrected Maximum Dry Density (lbf/ft³):	119.7
Optimum Moisture Content (%):	11.0
Corrected Optimum Moisture Content (%):	11.0
Method:	Α
Preparation Method:	Dry
Received Moisture Content (%):	4
Specific Gravity (Fines):	2.60
Retained Sieve No 4 (4.75mm) (%):	9
Passing Sieve No 4 (4.75mm) (%):	91


Comments

Proctor: RFP 1 (AET - 2)

Jar: #7

Intended Use: Clay Berm Fill

Form No: 110031, Report No: PTR:26-00822-W4-S4

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763)428-5573

Toll Free: (800)972-6364 www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Report No: ND:26-00822-W13

Issue No: 1

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By: 10/7/2014 GENE ERZAR

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 10/6/2014 Field Methods: ASTM D 6938

Gauge Type: Troxler 3440 (NUCLEAR DENSITY Test Mode: Direct Transmission

GAUGE)

Model Number:3440Standard Count: Density:714Serial Number:36458Standard Count: Moisture:2529

ĺ	Proctor Information				
	Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
	26-00822-W4-S4	Sand w/ Silt, a little gravel, fine to medium grained, brown (SP-SM)	ASTM D 698 (A)	119.7	11.0

CC: Mitch Sumstad

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	RF-1	26-00822-W4-S4	12	126.4	4.6	-6.4	120.8	100.9	≥95	OK
2	RF-2	26-00822-W4-S4	12	120.2	4.8	-6.2	114.7	95.8	≥95	OK

Loc	ation			
	eral Location: P Field Sample II		Test Elev/Depth	Material/Layer
1	RF-1	N 862414, E 2031278, Elev: 1000.5	1000.5'	Elevation
2	RF-2	N 862426, E 2031277, Elev: 1001.5	1001.5'	Elevation

Comments	Legend
	OMC = Optimum Moisture Content MDD = Maximum Dry Density
	OK = All Results Meet Specification

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

Report No: ND:26-00822-W14

(651)659-9001 |(763)428-5573 Toll Free: (800) 972-6364

www.amengtest.com

Field Density Test Report

This document shall not

be reproduced, except in full, without written

approval from American Engineering Testing, Inc.

Issue No: 1

Client: VEIT & COMPANY INC.

CC: Mitch Sumstad

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Date of Issue:

10/15/2014 **GENE ERZAR**

Reviewed By:

Engineering Assistant

Testing Details

Tested By: ALEX STERGER

Date Tested: 10/7/2014 Field Methods: **ASTM D 6938**

Gauge Type: Troxler 3440 (NUCLEAR DENSITY **Test Mode: Direct Transmission**

GAUGE)

Model Number: 3440 Standard Count: Density: 714 Standard Count: Moisture: 2529 **Serial Number:** 36458

Proctor Information				
Sample ID	Material	Method	MDD (lb/ft³)	OMC (%)
26-00822-W4-S4	Sand w/ Silt, a little gravel, fine to medium grained, brown (SP-SM)	ASTM D 698 (A)	119.7	11.0

Test	Results									
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	RF-3	26-00822-W4-S4	12	125.4	5.5	-5.5	118.9	99.3	≥95	OK
2	RF-4	26-00822-W4-S4	12	126.2	4.7	-6.3	120.5	100.7	≥95	OK

Loc	ation			
	eral Location: P Field Sample II		Test Elev/Depth	Material/Layer
1	RF-3	N 863161, E 2032002, Elev: 1000.5	1000.5'	Elevation
2	RF-4	N 863162, E 2032000, Elev: 1001.5	1001.5'	Elevation

Comments	Legend
	OMC = Optimum Moisture Content MDD = Maximum Dry Density
	OK = All Results Meet Specification

550 Cleveland Ave N|5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 |Albertville, MN 55301

(651)659-9001 | (763)428-5573

Toll Free: (800)972-6364 www.amengtest.com

Field Density Test Report

Client: VEIT & COMPANY INC.

Project: 26-00822

Sherco 2014 Construction Project

Sherco Power Plant

Becker, MN

Report No: ND:26-00822-W16

Issue No: 1

This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Date of Issue: Reviewed By: 10/15/2014 GENE ERZAR

Engineering Assistant

Testing Details

Tested By: ALEX STERGER
Date Tested: 10/14/2014
Field Methods: ASTM D 6938

Gauge Type: Troxler 3440 (NUCLEAR DENSITY

GAUGE)

Model Number: 3440 Serial Number: 36458 Test Mode:

Direct Transmission

Standard Count: Density: 714 Standard Count: Moisture: 2529

Proctor Information

Sample ID Material Method MDD (Ib/ft³)

26-00822-W4-S4 Sand w/ Silt, a little gravel, fine to medium grained, brown (SP-SM)

ASTM D 698 (A) 119.7 11.0

CC: Mitch Sumstad

Test Results										
Test No.	Field Sample ID	Proctor Sample ID	Probe Depth (in.)	Wet Density (lb/ft³)	Moisture Content (%)	OMC Var	Dry Density (lb/ft³)	Comp (%)	Comp Spec	Results
1	RF-5	26-00822-W4-S4	12	120.7	3.6	-7.4	116.5	97.3	≥95	OK
2	RF-6	26-00822-W4-S4	12	125.0	5.4	-5.6	118.6	99.1	≥95	OK
3	RF-7	26-00822-W4-S4	12	118.2	3.3	-7.7	114.4	95.6	≥95	OK
4	RF-8	26-00822-W4-S4	12	120.2	3.8	-7.2	115.8	96.7	≥95	OK

Loc	ation			
1	ral Location: Po Field Sample II		Test Elev/Depth	Material/Layer
1	RF-5	N 864425, E 2031998, Elev: 1000.5	1000.5'	Elevation
2	RF-6	N 864446, E 2031996, Elev: 1001.4	1001.4'	Elevation
3	RF-7	N 865370, E 2031524, Elev: 1000.4	1000.4'	Elevation
4	RF-8	N 865364, E 2031413, Elev: 1001.5	1001.5'	Elevation

Comments	Legend
	OMC = Optimum Moisture Content MDD = Maximum Dry Density OK = All Results Meet Specification

Appendix F - Turf Establishment Information

Seed Mix Tag, Fertilizer Tag, Mulch Information, Erosion Control Blanket Spec Sheet Seed Mix Tag, Fertilizer Tag, Mulch Information, Erosion Control Blanket Spec. Sheet

SEED MIX

CROP 0.13% INERT 1.05 WEEDS 0.25% NOXIOUS 0.01% *DENOTE

STATED TEST 1/14 NET WT 50LBS TOTAL PLS THIS BAG WILL SEED . 6931 ACRES @ 61PLS LB PER ACREAPPLY AT

3660 KENNEBEC DR EAGAN MN

3.24% 87%

6.94% 85%

21.99% 97%

1.99% 37%

7.33% 88%

87%

38%

94%

33%

12.89%

25.15% 12.33%

2.46%

2.43%

.81%

Seed Vendor Approved

MN 25-121 AGASSIZ SEED

SLENDER WHEATGRASS

PERENNIAL RYEGRASS*

PARK KY BLUEGRASS

CANADA BLUEGRASS*

LITTLE BLUESTEM"

CLOVER*

SNAKE RIVER SAND DROPSEED

KIND

SMOOTH BROKE"

SWITCHGRASS*

The supplier warrants at the time of shipment that the seed contained in this package meets current requirements as specified in the Minnesota Department of Transportation Fechnical Memorandums, Special Provisions and Standard Specifications for Construction.

VERIFICATION:

Minnesota Crop Improvement Association verifies that the seed supplier has been approved to supply seed for Minnesota Department of Transportation projects.

NOTICE TO BUYER:

EXCLUSION OF WARRANTIES AND LIMITATIONS OF DAMAGES

Association be liable for any actual, special, incidental or consequential damages including but not limited to the implied warranties of merchantability and fitness for a particular purpose. There are not warranties which extend beyond the description on the face hereof. In no case shall Minnesota Crop Improvement The foregoing verification is in lieu of all other warranties, expressed or implied, for any cause, including breach of contract, breach of warranty, negligence, or any other legal theory, with respect to the sale of this product.

TOTALGERM ORIGIN

CAN

OR

MN

MN

WA

WA

MN

MN

87%

87%

85%

97%

87%

85%

96%

91%

94%

98%

65%

02%

FERTILIZER

GUARANTEED ANALYSIS

Total Nitrogen [N]	
Available Phosphoric Acid [P205]	1.1.9
Soluble Potash [K20]/.7.	
Sulfur	

50 LBS. NET WEIGHT

Manufactured by Centra Sota St. Martin, Minnesota MULCH Synstom, LLC

3480 County Road 21 Mayer, MN 55360 952-955-2412 phone / 952-955-3582 fax

www.neatonbrothers.com / admin@neatonbrothers.com

Submittal for Type 1 Hay Mulch

All mulch products used by Neaton Brothers are grown on company fields. Mulch consists of clean hay, and not other objectionable foreign matter.

All mulch products are applied with Hay Buster by Neaton Brothers employees.

Specification Sheet

SFP-2s

Netting Description * two sided degradable polypropylene green netting

Machine Direction Strand Count
2.13 strands per inch
Transverse Direction Strand Count
2.00 strands per inch
SP Machine Direction Mesh Size
Transverse Direction Mesh Size
SP Machine Direction Break Load
Transverse Direction Break Load
Product Weight

21.30 strands per 10 inches

20.00 strands per 10 inches

0.47 inches, mid strand to midstrand 050 inches, mid strand to mid strand 15.97 lbs per 3 inches 15.00 lbs per 3 inches 17.7 lbs. per 1000 sq. yds.

Thread Description

Polypropylene biodegradable multifilament thread

Straw

Straw is 100% agricultural straw Straw is minimum of 0.5 lbs/sy

Blanket Longevity
Approximately 12 months