CONSTRUCTION CERTIFICATION REPORT

2012 POND 3 CONSTRUCTION PROJECTS POND 3 SOUTH VERTICAL EXPANSION & POND 3 NORTH INTERIOR BENCH CONSTRUCTION

NPDES Permit No. 0002186 Sherburne County (Sherco) Generating Plant Northern States Power Company (dba Xcel Energy, Inc.) Becker, MN

Prepared for:

Xcel Energy, Inc.

November 12th, 2012

Prepared By:

Construction Certification Report 2012 Pond 3 Construction Projects

Table of Contents

		Page
Section 1	Introduction	1
Section 2	Construction Methods and Materials	3
2.1	Topsoil Stripping and Stockpiling	3
2.2	Borrow Area Development	3
2.3	Infiltration Pond Construction	3
2.4	Interior Embankment - Clay Buttress Construction	4
2.5	Clay Barrier	
2.6	Interior Embankment - Bottom Ash Bench Construction	5
2.7	Exterior Embankment Construction	5
2.8	Dewatering System Cleanout Extension	6
2.9	Site Restoration	6
2.9	.1 Topsoil Placement and Turf Establishment	6
2.9	.2 Access Road Construction	6
2.10	Pond 3N Interior Embankment Construction	6
2.1	0.1 Random Fill	7
2.1	1.1 Bottom Ash	7
Section 3	Testing and Quality Control	8
3.1	Surveying	8
3.2	Soil Testing	8
3.2	.1 Random Fill Compaction Testing	8
3.2	.2 Clay Testing	9
3.2	.3 Bottom Ash Material Testing	10
3.2	.4 Topsoil Testing	11
Section 4	Conclusion	12

List of Tables

Table 1	Summary of Pond 3 Random Fill In-place Density Testing
Table 2	Summary of Pond 3 South Clay Source Prequalification Testing
Table 3	Summary of Pond 3 South Clay In-place Density Testing
Table 4	Summary of Pond 3 South Clay In-place Permeability and Index Properties Testing
Table 5	Summary of Pond 3 Bottom Ash In-place Density Testing

List of Figures

Figure 1	Pond 3S Random Fill In-place Density Test Locations
Figure 2	Pond 3S Clay In-place Density and Permeability/Atterberg Locations
Figure 3	Pond 3S Bottom Ash In-place Density Test Locations
Figure 4	Pond 3N Random Fill & Bottom Ash In-place Density Test Locations

List of Appendices

Appendix A	Construction Photographs
Appendix B	Random Fill and Topsoil Test Reports
Appendix C	Clay Testing
Appendix D	Bottom Ash Testing
Appendix E	Survey Verification
Appendix F	Record Drawings

Certification

2012 Pond 3 Construction Projects NPDES Permit No. 0002186

Sherco County (Sherco) Generating Plant Northern States Power (dba Xcel Energy, Inc.)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Daniel J. Riggs, P.E

Date: November 12th, 2012

License No.: 49559

Section 1 Introduction

This report presents the results of field observations and testing performed during the 2012 construction of the Pond 3 South (Pond 3S) Vertical Expansion and the Pond 3 North (Pond 3N) Interior Embankment at Xcel Energy's (Xcel) Sherburne County Generating Plant (Sherco) in Becker, Minnesota. The original phase of Pond 3 development was the construction of Pond 3N to a finished elevation of 976 (operational elevation of 970) in 2004. In 2008, Pond 3N was vertically expanded to a finished elevation of 999 (operational elevation of 993). Pond 3S was constructed in 2010 to a finished elevation of 988 (operational elevation of 982) and hydraulically connected to Pond 3N through a weir at the east end of the Pond 3 center dike. This report documents the second phase of Pond 3S development, which consists of raising Pond 3S to a finished elevation of 994 (operational elevation of 988). Future development of Pond 3 will be another vertical expansion of Pond 3S to match the operational elevation of Pond 3N, then a final vertical expansion of the entire Pond 3 footprint to an operating elevation of 1008.

The Pond 3S 2012 Vertical Expansion consisted of constructing the interior embankment, raising the existing clay barrier from an elevation of 984 to 990, and constructing the final exterior embankment four feet above the finished clay barrier for frost protection. In past projects the interior embankments (embankments constructed inside of the clay barrier) were constructed entirely of compacted bottom ash material excavated from the Bottom Ash Pond, located northwest of Pond 3. In early June of 2012, a combination of factors including decreased water usage for plant operations and increased spring rainfall amounts raised the Pond 3 water level to the maximum operating elevation of 982 ahead of the forecasted schedule. To alleviate this, installation of the clay barrier was conducted earlier than scheduled, and did not allow the necessary two to three weeks needed to dewater and excavate material from the Bottom Ash Pond. Instead, clean common borrow, or random fill, was excavated from a borrow area east of Pond 3S and used to construct the portion of the interior embankment used to support the clay barrier, known as the clay buttress. Once the buttress was completed and the clay barrier was constructed and tested to meet specifications, the water level in the Bottom Ash Pond was lowered and the remaining interior embankment (interior bench) was constructed using bottom ash material. Other activities during Pond 3S construction included piping, topsoil placement, and site restoration activities. Construction activities are more completely described in the subsequent sections of this report.

Pond 3N Interior Embankment construction consisted of raising the existing interior bench from an approximate elevation of 982 to 986 with random fill, and from 986 to 990 with bottom ash material (the Pond 3N clay buttress and clay barrier were previously constructed up to elevation of

995 in 2008). Again, random fill was used instead of bottom ash material due to increased water levels, and then constructed to final elevation using bottom ash material.

Construction was performed in accordance with NPDES Permit No. 0002186 and "Construction Documents, 2012 Ash Construction Projects" prepared by Carlson McCain and dated June 2012. The general contractor was Veit & Company, Inc. (Veit). Excavation activities began in June 2012 and construction was completed in August 2012. Deviations from the Specifications and Drawings are noted on the enclosed Record Drawings and are described in the following sections of this report.

Xcel Energy performed construction management activities and the following companies provided services to complete the 2012 Pond 3 Construction Project:

<u>Company</u> <u>Activity or Products</u>

Carlson McCain, Inc. (Carlson McCain) Design, QA/QC

Veit & Company, Inc. (Veit) Earthwork

Neaton Bros. Turf Establishment (Subcontractor to Veit)

Braun Intertec Corporation Soil Testing

Bogart Pederson, Inc. Survey Verification (Subcontractor to Veit)

Xcel Energy Special Construction Sludge Pipe and Dewatering Well

Construction observation was performed during the project and consisted of observing and recording activities of the general contractor and subcontractor, answering questions and interpreting information contained in the drawings and specifications as requested by the contractor, and directing testing and quality control activities performed by independent testing firms and construction subcontractors.

Section 2 Construction Methods and Materials

The methods of construction, equipment, and materials used during Pond 3 construction are described in this section. Appendix A contains photographs illustrating the various methods and stages of construction, and the Record Drawings in Appendix F show the project as-constructed.

2.1 Topsoil Stripping and Stockpiling

Prior to construction, topsoil from the top and upper slopes of the existing Pond 3S east and south embankment was stripped and stockpiled below the construction area using a dozer and backhoe. Topsoil was also stripped from the south end of the borrow area east of Pond 3S using a dozer and backhoe and stockpiled in the topsoil stockpile southeast of Pond 3S. Topsoil on all pond slopes and embankments was a minimum of 6-inches thick, and ranged from 9-inches to 18-inches in the borrow area.

2.2 Borrow Area Development

Random fill was excavated from the borrow area located east of Pond 3S and used to construct the interior clay buttress and the exterior embankment. Prior to excavation, three soil samples from three different test pits in the borrow area were taken and tested for standard proctor density. Results from the analysis are discussed in Section 3.2.1 and complete results can be found in Appendix B.

Random fill was excavated using a backhoe, loaded into off-road trucks, and hauled to the construction area. Excavation started at the north end of the borrow area where 2010 Pond 3S construction had left off and progressed south. The borrow area was excavated down to an approximate elevation of 945 with three to one (horizontal to vertical) side slopes. Excavated material consisted primarily of poorly graded sand, with some gravel and cobbles.

2.3 Infiltration Pond Construction

An infiltration pond was constructed at the base of the Pond 3S east embankment to capture stormwater run-off from the east pond embankment slope, the northwest access ramp and the low-lying area east of the infiltration pond. Once captured by the infiltration pond, stormwater will infiltrate into the ground or flow into the existing infiltration pond located on the south side of Pond 3S. Three 18-inch corrugated metal culverts are available at the west end of the south infiltration pond for emergency overflow.

Construction began by stripping the topsoil and excavating the north end of the infiltration pond, progressing south. Topsoil was stripped and stockpiled in the topsoil stockpile southeast of Pond

3S and random fill was excavated from the pond and used to construct the random fill clay buttress. Following infiltration pond excavation, the side slopes of the infiltration pond were seeded and covered with erosion blanket.

2.4 Interior Embankment - Clay Buttress Construction

As described in Section 1, the interior embankment was originally planned to be constructed entirely of bottom ash, but was constructed out of both random fill and bottom ash to address higher than expected Pond 3 water levels. The random fill portion of the interior embankment was constructed to support the inside of the clay barrier and is known as the clay buttress.

Construction of the clay buttress began by excavating the random fill above the existing clay anchor and flipping it on to the existing interior embankment. The material was spread into 12-inch thick lifts with a dozer utilizing GPS and compacted with a vibratory smooth drum roller. Water was added during placement and compaction as needed to meet compaction requirements. The remaining random fill used to construct the clay buttress was excavated from the borrow area east of Pond 3S. Random fill was hauled to the construction area using off-road trucks, spread into 12-inch lifts by a GPS dozer, watered as needed and compacted using a vibratory smooth drum roller. Construction started in the northeast corner to the finished elevation of 990 and continued clockwise to the southwest corner. Approximately 16,800 cubic yards of random fill was used to construct the clay buttress. The exterior of the clay buttress was shaped to a 1.5 to 1 slope (horizontal to vertical) using a backhoe, in preparation for the clay barrier construction.

During construction, an independent soil testing firm retained by Xcel, Braun Intertec, performed in-place density testing to verify compliance with project specifications. Compaction testing was performed to meet the required rate of one test per 3,000 cubic yards. A summary of the field density testing performed during Pond 3S construction is presented in Table 1. Testing locations are presented in Figure 1. Complete data for Standard Proctor and field compaction testing are included in Appendix B.

2.5 Clay Barrier

The clay barrier of the Pond 3S south and east embankments was constructed with clay from the prequalified off-site borrow source. The base of the clay barrier was connected to the existing clay anchor at elevation 984 by scarifying and moistening the top of the existing clay prior to placing the first lift of clay. The clay barrier was constructed in one horizontal lift, six inches thick that ran the entire length of the vertical expansion. The subsequent lifts were constructed in this manner to an elevation of 986. Above elevation 986, lifts were limited to 500-feet in length. Each lift was maintained in a rough and moistened condition to promote bonding between lifts and provide

uniformity throughout the clay barrier. Clay was placed by belly-dump or side-dump semis. Following placement, a dozer spread the clay into 9-inch loose lifts approximately 10-feet wide (for semi travel) along the clay barrier alignment. The loose lifts were compacted to at least 97 percent Standard Proctor density at or above the optimum moisture content by a vibratory sheepsfoot roller. Once near final height, a backhoe shaped the exterior of the clay barrier by pulling up the extra clay on the sides to a final width of 8-feet at a slope of 1.5 horizontal to 1 vertical. A vibratory sheepsfoot roller followed behind to compact the clay pulled up by the backhoe. In-place density tests were taken on every lift approximately 100-feet apart.

In-place density and moisture content testing, and laboratory testing of the clay was performed by Braun Intertec. The test results for clay used in the clay barrier are summarized in Tables 2, 3 and 4, and complete clay data is located in Appendix C. Locations of tests are shown on Figure 2.

2.6 Interior Embankment - Bottom Ash Bench Construction

Following installation of the clay barrier, the Bottom Ash Pond was allowed to dewater and excavation began. Bottom ash material was excavated by a backhoe, loaded into off-road trucks, and hauled to the Pond 3S interior embankment inside of the random fill clay buttress. Once placed, the material was spread into 12-inch thick lifts by a GPS dozer, and compacted to 95% Standard Proctor density by a vibratory smooth drum roller. In general, additional water was not needed to achieve the required compaction results.

Construction of the interior bench began by starting a single lift in the northeast corner and progressing clockwise, to the southwest corner. This process allowed time for the bottom ash material to properly dry before subsequent lifts were added. Material that was too wet for construction was discarded into the pond. Once the bench was completed, two ramps were constructed to access the interior embankment in the southwest corner and on the east embankment, as shown on the Record Drawings.

In-place density and moisture content testing was performed by Braun Intertec. The test results for bottom ash used are summarized in Table 5, and complete bottom ash data is located in Appendix D. Locations of tests are shown on Figure 3.

2.7 Exterior Embankment Construction

Construction began on the exterior portion of the embankment (outside of the clay barrier) once all of the in-place clay tests had passed specification. Off-road trucks hauled random fill from the borrow area to the exterior embankment while a dozer spread the random fill into lifts taking care not to damage the clay. Once the clay was properly covered, off-road trucks placed random fill over the entire width of the exterior embankment, to the design grades shown on the Record Drawings.

Table 1 summarizes the random fill in-place density summary, the locations of each test can be found on Figure 1. Complete data can be found in Appendix B.

2.8 Dewatering System Cleanout Extension

During the 2010 construction of Pond 3S, a dewatering system was incorporated to accommodate post-closure dewatering of Pond 3. In order to clean the dewatering pipes at the base of the pond once the pond is closed, clean-out access points were installed as part of the original construction. In 2012, as the embankments were raised, the clean-outs were also raised. The cleanouts were extended from elevation 986 along the inside slope of the interior embankment to an elevation of 992. Each cleanout extension is an 8-inch SDR 17 solid wall polyethylene pipe connected to the existing cleanout pipe with an electrofusion coupling. The existing corrugated metal protective casings were salvaged and reinstalled on the extended cleanouts. Record Drawings of the cleanout extensions can be found in Appendix F.

2.9 Site Restoration

Site restoration includes final grading, topsoil placement and turf establishment, and class 5 placement access road construction.

2.9.1 Topsoil Placement and Turf Establishment

Topsoil stripped and stockpiled as described in Section 2.1 was pushed to the upper slopes and top of the exterior embankments by a backhoe and a dozer. From there, the topsoil was spread in single 6-inch lifts by a dozer utilizing GPS. The topsoiled areas were seeded and covered with an erosion blanket on the slopes or mulched on the flatter areas to minimize erosion until vegetation is fully established.

2.9.2 Access Road Construction

Class 5 aggregate salvaged from the existing roads was spread and compacted on road surfaces and ramps, as shown on the Record Drawings. No Class 5 was imported from off-site.

2.10 Pond 3N Interior Embankment Construction

The Pond 3N Interior Embankment was initially constructed out of random fill from an elevation of approximately 982 to elevation 986. The bottom ash portion of the embankment was constructed from elevation 986 to elevation 990. Construction procedures are discussed below.

2.10.1 Random Fill

Random fill used to construct the Pond 3N Interior Embankment was excavated from a stockpile located north of Pond 3N generated during the 2008 Pond 3N Vertical Expansion. One sample was taken from the stockpile and analyzed for Standard Proctor density.

The random fill stockpile was excavated by a backhoe, and loaded into off-road trucks. Random fill placed by the off-road trucks was spread into 12-inch lifts with a dozer and compacted using vibratory smooth drum roller. Water was added as needed to achieve proper compaction. In general, a single lift was started in the northwest corner and carried clockwise around the pond to the southeast corner. The subsequent lift was started again in the northwest corner and the process continued, up to an elevation of 986. A summary of the field density testing performed is presented in Table 1 and testing locations are presented in Figure 4. Complete data for Standard Proctor and field compaction testing are included in Appendix B.

2.11.1 Bottom Ash

Once the Pond 3S Interior Bench was constructed to finished elevation, the off-road haul trucks began hauling bottom ash to Pond 3N. Construction began in the northwest corner and progressed one lift at a time clockwise around the pond to the southeast corner, allowing the bottom ash material time to dry. In general, water was not needed to meet compaction requirements. Construction continued one lift at a time up to a final elevation of 990. A summary of the field density testing performed is presented in Table 5 and testing locations are presented in Figure 4. Complete data for Standard Proctor and field compaction testing are included in Appendix D.

Section 3 Testing and Quality Control

Testing and quality control activities were conducted by independent consultants, testing firms, and construction contractors. Testing and quality control activities were directed by and results were reported to the on-site Carlson McCain personnel. Testing and quality control procedures and results are presented below.

3.1 Surveying

An independent registered land surveyor, Bogart Pederson & Associates, Inc., was retained by the general contractor to provide location and grade verification as required. Earthwork verification surveying included verifying shots at grade breaks and 50-foot intervals of the clay buttress and clay barrier, and 100-foot intervals on random fill and topsoil thickness verification. Other survey data included clean-out extensions, class 5 aggregate, and a topographic survey of the borrow area. The surveyor collected data using GPS equipment, and periodically provided results of field data gathered during construction for review by Carlson McCain personnel. Complete survey data is contained in Appendix E.

3.2 Soil Testing

The following soil tests were performed during construction: embankment compaction testing, clay source permeability and index property testing, clay barrier in-place compaction and moisture content testing, clay barrier in-place permeability and index property testing, bottom ash material in-place compaction and moisture testing, and topsoil nutrient analysis. Field compaction and laboratory tests were performed by Braun Intertec. Soil testing procedures and test results are described below.

3.2.1 Random Fill Compaction Testing

Soil excavated from the borrow area or north stockpile and used in the Pond 3 embankments was referred to as random fill. Samples of random fill were collected and analyzed for Standard Proctor results. These results were used as compaction criteria for field density testing. The required compaction for embankments was 95 percent of the Standard Proctor maximum dry density. The moisture content was generally below optimum, requiring the contractor to add water during construction in order to obtain density requirements. Compaction testing was performed by Xcel's independent soil testing firm, Braun Intertec, under the direction of Carlson McCain personnel. Testing was performed using a nuclear density gauge, at a minimum frequency of one test per 3,000 cubic yards of material placed.

Samples of random fill were collected at the beginning of the project and as different material types were encountered. Each field density test result was compared to the Standard Proctor results of similar material to determine if the field density met the 95 percent compaction criteria. No density tests were below 95 percent Standard Proctor. Field compaction results are presented in Table 1. Locations of the Pond 3S field compaction tests can be found in Figure 1. Pond 3N tests can be found in Figure 4. Complete data is located in Appendix B.

3.2.2 Clay Testing

The Pond 3S clay barrier was constructed with prequalified clay from an off-site source. Quality control testing performed during construction included in-place compaction and moisture content tests, laboratory analysis of in-place permeability, and index property tests (Atterberg Limits, sieve and hydrometer analysis, and classification). Testing procedures and results are discussed below.

3.2.2.1 Clay Pre-qualification Testing

Clay used during the construction project was imported from an off-site source. The source, referred to as the Anderson pit, is located near Monticello, MN. Carlson McCain personnel collected two clay samples from the pit for pre-qualification testing prior to construction. The samples were sent to Xcel's independent laboratory (Braun Intertec) for analysis of Atterberg Limits, particle size distribution, Standard Proctor, in-place moisture content, and re-compacted permeability. All of the samples tested met the MPCA guidelines for classification, permeability, Atterberg Limits and percent fines. The permeability samples were tested at or slightly above optimum moisture content and at 97 percent of the Standard Proctor maximum dry density; higher than the 95 percent Standard Proctor density in the MPCA guidelines. This was done because two pre-qualification samples from the Anderson Pit collected and tested in 2008 did not meet the minimum permeability tests (1x10⁻⁷ cm/s) when tested at 95 percent Standard Proctor density. When these samples were tested at greater Standard Proctor densities (99 percent in 2008, 97 percent in 2010) the permeability met or exceeded specifications. The results of the clay prequalification testing are summarized in Table 2, with complete results in Appendix C.

3.2.2.2 Clay Barrier In-place Testing

During clay construction activities, a representative from Braun Intertec was on site to perform inplace density and moisture content testing of the clay using a nuclear density gauge. Compaction testing was completed at the minimum rate of once per horizontal lift at intervals of approximately 100 feet. In order to determine passing or failing results, the contractor used 97 percent of the Standard Proctor maximum dry density at or above optimum moisture content. This was done to ensure that the clay met the permeability specification of $1x10^{-7}$ cm/s as discussed in Section 3.2.2.1. When a field density test indicated a failing result, the area received additional compaction if the density was low, or was moistened and reworked to meet the moisture requirement. Additional testing was performed in the same location after the material had been reworked, and this procedure was repeated until passing test results were obtained. In addition to field testing of the clay, placement of the clay was constantly observed and monitored to verify that consistent processing and compaction procedures were being used, and that lift thicknesses were within tolerance. The on-site quality control personnel worked closely with the contractor during clay placement to ensure the clay was placed and compacted to meet the project requirements.

Compaction testing was distributed across the site to give complete coverage of the clay placed. Compaction test locations are shown in Figure 2 and results of clay compaction tests are summarized in Table 3. Complete testing data can be found in Appendix C.

3.2.2.3 Clay Permeability and Index Properties Testing

In addition to prequalification testing, laboratory analysis was completed on additional clay samples collected on-site. The samples were collected by pushing thin-wall tubes into the clay after placement and compaction to recover undisturbed cores of clay. Voids created in the clay barrier during sample collection were backfilled with bentonite. Two samples were collected, one from the east embankment and another from the south embankment. Approximately 3,800 cubic yards of clay were placed, resulting in one test per 1,400 cubic yards, less than the MPCA requirement of one per 3,000 cubic yards. Samples were tested for permeability, Atterberg Limits, sieve and hydrometer analysis, and classification. The coefficient of permeability of the clay samples was 1.1 x 10^8 and 2.7×10^8 cm/s, with an average of 1.9×10^8 cm/s, significantly slower than the required maximum rate of 1×10^7 cm/s. All of the soil classifications and Atterberg Limits test results met the MPCA guidelines. The percent fines in both CLTW-1 and CLTW-2 were less than the 50 percent minimum guideline (48.6% and 47.8% respectively), but the other tests for those samples met the minimum requirements. The results from clay samples collected on site are summarized in Table 4, locations are presented Figure 2, and complete results are included in Appendix C.

3.2.3 Bottom Ash Material Testing

Samples of bottom ash were collected and analyzed for Standard Proctor results, and these results were used as compaction criteria for field density testing. Specifications for bottom ash require 95 percent of the Standard Proctor maximum dry density. Compaction testing was performed by Braun under the direction of Carlson McCain personnel. Testing was performed with a nuclear density gauge at a minimum frequency of one test per 3,000 cubic yards of material placed.

Samples of bottom ash were collected at the beginning of the project and as different material types were encountered. Each field density test result was compared to the Standard Proctor results of similar material to determine if the field density met the 95 percent compaction criteria.

All the in-place density tests passed the compaction. Field compaction results are presented in Table 5. Locations of the field compaction tests can be found in Figure 3 and 4. Complete data is located in Appendix D.

3.2.4 Topsoil Testing

Two topsoil samples were taken from the southeast topsoil stockpile (TS1) and topsoil stripped from the Pond 3S exterior embankment (TS2) and sent to the University of Minnesota for nutrient analysis. Laboratory test results are included in Appendix B.

Section 4 Conclusion

Construction of the Pond 3S Vertical Expansion and the Pond 3 North Interior Embankment at Xcel Energy's Sherburne County Generating Plant has been completed in material conformance with the "Construction Documents, 2012 Ash Construction Projects" prepared by Carlson McCain and in compliance with the requirements for notification, construction, materials, and testing contained in NPDES Permit No. 0002186. This report presents the results of all observation, documentation, and testing performed during the course of construction of this facility.

Table 1
Random Fill In-Place Density Testing Summary
2012 Pond 3 Construction

	Test No.	Date	Northing	Easting	Elevation	In-Place Density (pcf)	In-Place Moisture (%)	Max Dry Density (pcf)	Optimum Moisture (%)	Percent Compaction
	RF-1	6/13/12	862,443	2,031,347	985.2	110.8	9.3	116.6	11.2	95%
	RF-2	6/13/12	862,780	2,031,982	984.7	101.4	11.8	106.2	14.5	95%
	RF-3	6/15/12	862,429	2,031,254	988.4	112.2	10.4	112.3	14.3	100%
	RF-4	6/15/12	862,516	2,031,950	989.8	113.3	8.4	112.3	14.3	101%
Pond 3	RF-5	6/15/12	862,727	2,031,987	988.5	115.1	5.6	112.3	14.3	102%
South	RF-6	6/15/12	862,989	2,031,984	989.9	111.1	13.4	112.3	14.3	99%
Tests	RF-7	6/22/12	862,485	2,030,896	984.1	113.2	4.2	112.3	14.3	101%
	RF-8	6/22/12	863,368	2,031,912	984.0	112.3	3.0	112.3	14.3	100%
	RF-9	6/22/12	862,525	2,031,794	983.4	110.9	4.1	111.3	12.6	100%
	RF-10	6/27/12	863,062	2,032,021	987.8	110.8	4.7	111.3	12.6	100%
	RF-11	6/28/12	862,357	2,031,102	988.2	109.5	2.3	109.7	12.5	100%
	RF-12	6/29/12	865,296	2,031,145	984.1	123.5	6.9	121.3	11.7	102%
	RF-13	6/29/12	865,296	2,031,247	984.2	117.6	9.4	121.3	11.7	97%
Pond 3	RF-14	7/2/12	865,296	2,031,247	985.6	121.6	10.2	121.3	11.7	100%
North	RF-15	7/2/12	865,265	2,031,906	985.3	118.1	11.9	121.3	11.7	97%
Tests	RF-16	7/2/12	864,173	2,031,930	984.1	124.7	7.3	121.3	11.7	103%
	RF-17	7/3/12	865,291	2,030,988	986.1	115.8	6.0	121.3	11.7	95%
	RF-18	7/3/12	865,149	2,031,929	986.1	123.4	7.9	121.3	11.7	102%
	RF-19	7/3/12	862,923	2,032,041	989.5	113.0	5.6	112.3	14.3	101%
	RF-20	7/5/12	862,376	2,031,247	990.6	112.7	9.5	112.3	14.3	100%
	RF-21	7/5/12	862,386	2,030,944	989.3	112.9	3.7	112.3	14.3	101%
	RF-22	7/5/12	862,409	2,031,944	991.7	106.1	4.9	106.2	14.9	100%
	RF-23	7/5/12	862,470	2,032,039	989.6	110.3	5.2	111.3	12.6	99%
D10	RF-24	7/6/12	863,251	2,032,049	990.3	114.4	5.9	112.3	14.3	102%
Pond 3 South	RF-25	7/6/12	862,395	2,031,033	991.4	111.3	7.9	111.3	12.6	100%
Tests	RF-26	7/6/12	862,409	2,031,772	993.0	110.7	5.9	109.7	12.5	101%
	RF-27	7/6/12	862,394	2,031,161	992.7	114.0	5.0	112.3	14.3	102%
	RF-28	7/6/12	862,408	2,031,513	994.1	115.5	3.1	112.3	14.3	103%
	RF-29	7/9/12	863,377	2,032,038	991.9	119.2	5.9	120.1	10.3	99%
	RF-30	7/9/12	863,195	2,032,033	991.7	111.1	3.8	111.3	12.6	100%
	RF-31	7/10/12	862,623	2,032,000	992.5	111.3	4.1	111.3	12.6	100%
	RF-32	7/11/12	862,861	2,032,009	993.9	112.7	7.0	112.3	14.3	100%

Note:

Specifications: Minimum 95% Compaction

Complete laboratory test data (passing tests only) is located in Appendix B.

Table 2
Clay Prequalification Testing Summary
2012 Pond 3 South Vertical Expansion

	Soil	Maximum Dry	Optimum		Atterberg Limits	3	% Passing	Field	Permeability ¹
Sample No.	Classification	Density (pcf)	Moisture Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	No. 200	Moisture Content (%)	(cm/sec)
CS-1	CL/SC	115.9	13.3	31.0	16.0	15.0	52.0	15.4	1.26 x 10 ⁻⁸
CS-2	CL/SC	118.7	13	29.0	17.0	12.0	52.0	14.4	1.0 x 10 ⁻⁸
MPCA Guidelines	CL, CH, SC	NA	NA	<u>≥</u> 25	<u>></u> 13	<u>></u> 12	<u>≥</u> 50	NA	≤1.0 x 10 ⁻⁷

Notes:

¹ Permeability Tested at 97% compaction and optimum moisture content Complete laboratory test data is located in Appendix C

Table 3
Clay In-Place Density Testing Summary
2012 Pond 3 South Vertical Expansion

Test No.	Date	Northing	Easting	Elevation	In-Place Density (pcf)	In-Place Moisture (%)	Max Dry Density (pcf)	Optimum Moisture (%)	Percent Compaction
CL-01	6/22/12	863,331.3	2,032,015.7	985.2	117.6	13.6	115.9	13.3	101%
CL-02	6/22/12	862,823.6	2,032,014.3	984.8	114.3	15.6	115.9	13.3	99%
CL-03	6/22/12	863,081.3	2,032,015.1	986.1	115.3	14.7	115.9	13.3	99%
CL-04	6/22/12	862,470.0	2,031,966.3	986.1	114.5	14.9	115.9	13.3	99%
CL-05	6/22/12	862,391.7	2,030,989.6	985.7	111.0	13.7	115.9	13.3	96%
CL-05A		Restest	of CL-05		116.8	13.9	115.9	13.3	101%
CL-06	6/23/12	862,430.4	2,031,737.9	984.9	113.6	15.0	115.9	13.3	98%
CL-07	6/23/12	862,410.0	2,031,302.9	986.3	113.9	14.4	115.9	13.3	98%
CL-08	6/23/12	862,399.1	2,031,109.6	987.0	117.0	13.9	115.9	13.3	101%
CL-09	6/23/12	862,376.8	2,031,108.2	987.0	115.3	15.2	115.9	13.3	99%
CL-10	6/23/12	862,421.7	2,031,528.1	986.9	114.8	15.1	115.9	13.3	99%
CL-11	6/23/12	862,407.1	2,031,241.3	987.6	119.0	13.6	118.7	13.0	100%
CL-12	6/23/12	862,408.5	2,031,259.7	987.9	117.9	13.4	118.7	13.0	99%
CL-13	6/23/12	862,432.2	2,031,665.3	988.5	112.6	14.7	115.9	13.3	97%
CL-14	6/23/12	862,513.6	2,031,980.3	988.5	117.0	13.5	115.9	13.3	101%
CL-15	6/23/12	863,370.2	2,032,010.6	987.2	108.2	14.5	115.9	13.3	93%
CL-15A		Retest	of CL-15		109.3	15.5	115.9	13.3	94%
CL-15B		Retest o	of CL-15A		111.6	15.1	115.9	13.3	96%
CL-15C		Retest o	f CL-15B		117.6	13.5	115.9	13.3	101%
CL-16	6/25/12	862,697.1	2,032,011.9	986.5	109.2	13.8	115.9	13.3	94%
CL-16A		Retest	of CL-16		112.9	14.0	115.9	13.3	97%
CL-17	6/25/12	862,913.4	2,032,010.3	986.7	119.5	13.5	118.7	13.0	101%
CL-18	6/25/12	863,410.4	2,032,009.2	987.9	117.0	12.8	118.7	13.0	99%
CL-18A		Retest	of CL-18		117.0	12.4	118.7	13.0	99%
CL-18B		Retest o	of CL-18A		119.5	13.5	118.7	13.0	101%
CL-19	6/25/12	862,685.4	2,032,011.7	987.4	107.8	13.3	118.7	13.0	91%
CL-19A		Retest	of CL-19		114.4	13.1	118.7	13.0	96%
CL-19B		Retest o	f CL-19A		117.2	13.3	118.7	13.0	99%
CL-20	6/25/12	862,892.1	2,032,010.3	987.9	113.9	13.9	115.9	13.3	98%
CL-21	6/25/12	863,197.5	2,032,009.1	988.4	114.9	14.2	115.9	13.3	99%
CL-22	6/25/12	863,252.8	2,032,009.2	988.9	118.1	13.2	118.7	13.0	99%
CL-23	6/25/12	862,598.6	2,032,009.6	988.5	114.7	14.7	115.9	13.3	99%
CL-24	6/26/12	863,362.8	2,031,989.1	989.9	107.4	14.6	115.9	13.3	93%
CL-24A		Restest	of CL-24		113.7	14.0	115.9	13.3	98%
CL-25	6/26/12	862,790.5	2,031,989.1	990.0	112.7	15.5	115.9	13.3	97%
CL-26	6/26/12	862,464.3	2,031,702.4	990.0	113.3	14.7	115.9	13.3	98%
CL-27	6/26/12	862,464.3	2,031,302.4	990.0	118.4	14.1	118.7	13.0	100%

Note:

Specifications: Minimum 97% compaction and optimum moisture content (failing tests are noted in bold italics) Complete laboratory test data (passing tests only) is located in Appendix C.

Table 4
Clay In-Place Index Properties and Permeability Testing Summary
2012 Pond 3 South Vertical Expansion

		Soil	In-place Dry	In-place		Atterberg Limits	% Passing No.	In-place Permeability (cm/sec)	
Sample No. ¹		Classification	Density (pcf)	Moisture Content (%)	Liquid Limit	Plastic Limit	Plasticity Index		200 ²
Thinwall:	CLTW-1	SC/CL	119.7	15.9					1.06 x 10 ⁻⁸
Bulk:	CLTW-1	SC/CL		16.4	29.0	15.0	14.0	48.6	
Thinwall:	CLTW-2	SC/CL	116.1	16					2.73 x 10 ⁻⁸
Bulk:	CLTW-2	SC/CL		15.6	31.0	14.0	17.0	47.8	
MPCA Guidelines		CL, CH, SC	NA	NA	<u>></u> 25	<u>≥</u> 13	<u>≥</u> 12	<u>≥</u> 50	≤ 1.0 x 10 ⁻⁷
Average									1.89 x 10 ⁻⁸

Notes:

Complete laboratory test data is located in Appendix C

¹ At each sample location, a bulk sample and thinwall sample was collected

 $^{^2\,\}mbox{Soils}$ with less than min. $\mbox{P}_{200}\,\mbox{have}$ been used successfully when permeability guideline is met

Table 5
Bottom Ash In-Place Density Testing Summary
2012 Pond 3 Construction

	Test No.	Date	Northing	Easting	Elevation	In-Place Density (pcf)	In-Place Moisture (%)	Max Dry Density (pcf)	Optimum Moisture (%)	Percent Compaction
	BA-1	7/17/12	863,459	2,031,929	985.5	82.4	13.8	83.0	30.4	99%
	BA-2	7/23/12	863,265	2,031,919	987.5	85.3	3.0	87.6	26.9	97%
	BA-3	7/23/12	862,525	2,031,842	986.1	95.4	3.0	94.2	20.8	101%
	BA-4	7/23/12	862,477	2,031,194	986.2	86.0	12.6	87.6	26.9	98%
	BA-5	7/24/12	863,406	2,031,936	988.4	88.3	12.6	87.6	26.9	101%
	BA-6	7/25/12	862,923	2,031,920	988.1	82.5	18.3	83.0	30.4	99%
	BA-7	7/25/12	863,359	2,031,947	989.5	92.0	3.2	94.2	20.8	98%
Pond 3	BA-8	7/26/12	863,079	2,031,919	989.3	94.9	1.7	94.2	20.8	101%
South	BA-9	7/26/12	862,586	2,031,957	989.7	95.1	2.6	94.2	20.8	101%
	BA-10	7/26/12	862,527	2,031,822	987.3	96.5	8.4	94.2	20.8	102%
	BA-11	7/26/12	862,487	2,031,717	988.4	95.4	5.5	94.2	20.8	101%
	BA-12	7/26/12	862,473	2,031,389	988.6	89.2	12.3	87.6	26.9	102%
	BA-13	7/26/12	862,493	2,031,074	987.0	82.7	18.4	83.0	30.4	100%
	BA-14	7/26/12	862,477	2,030,886	988.4	91.2	6.1	94.2	20.8	97%
	BA-15	7/27/12	862,493	2,031,624	989.6	102.7	2.4	94.2	20.8	109%
	BA-16	7/27/12	862,498	2,031,256	989.2	93.9	6.4	94.2	20.8	100%
	BA3N-1	7/30/12	865,291	2,031,156	987.1	95.4	7.8	94.2	20.8	101%
	BA3N-2	7/30/12	865,298	2,031,783	987.0	105.6	10.4	100.0	20.9	106%
	BA3N-3	7/31/12	863,918	2,031,935	987.3	103.3	5.9	100.0	20.9	103%
	BA3N-4	7/31/12	864,536	2,031,937	988.0	100.0	3.9	100.0	20.9	100%
	BA3N-5	7/31/12	865,283	2,031,919	988.7	109.0	4.2	100.0	20.9	109%
Pond 3	BA3N-6	7/31/12	865,293	2,031,330	987.9	88.5	10.7	87.6	26.9	101%
North	BA3N-7	8/1/12	865,318	2,031,261	989.3	102.8	5.9	100.0	20.9	103%
	BA3N-8	8/1/12	865,323	2,031,428	990.2	95.5	6.0	94.2	20.8	101%
	BA3N-9	8/1/12	865,285	2,031,916	989.0	108.9	4.8	100.0	20.9	109%
	BA3N-10	8/1/12	865,131	2,031,945	990.0	102.4	8.4	100.0	20.9	102%
	BA3N-11	8/1/12	864,402	2,031,949	989.2	87.6	16.8	87.6	26.9	100%
	BA3N-12	8/1/12	864,036	2,031,942	990.0	98.2	5.1	100.0	20.9	98%

Note:

Specifications: Minimum 95% compaction

Complete laboratory test data is located in Appendix D.

Figures

FIGURE 3

Photo 1 GPS dozer stripping topsoil from the top of the existing Pond 3 South East embankment, looking south.

Photo 2 Middle: Dozer spreading lifts of random fill for the clay barrier buttress. Left: Smooth-drum vibratory roller compacting lifts. Right: Exposed existing clay anchor. Looking east.

Photo 5 6/25/2012 Right: Dozer spreading clay placed by belly dump trucks into lifts. Middle: Laborer checking for rocks larger than 3 inches in diameter. Left: Vibratory sheepsfoot roller compacting clay lifts. Looking southwest.

Photo 7 6/22/2012 Soil testing technician using nuclear gage used to determine clay in-place density and moisture.

Photo 8 6/22/2012 Skidloader extracting thin-wall tube sample to be tested for in-place permeability and index properties. Void created by extracted sample was filled in with granular bentonite.

Photo 11 Background: Backhoe placing topsoil on the constructed random fill embankment.

7/12/2012 Foreground: Dozer spreading topsoil in 6-inch lifts. Looking south.

Photo 12 Left: Laborers placing erosion blanket on topsoil placed in photo 11. Right: Mulch anchored in to the top of the embankment. Looking south.

Photo 13 Backhoe excavating bottom ash to be hauled from the Bottom Ash Pond to Pond 3

7/25/12 South, looking south.

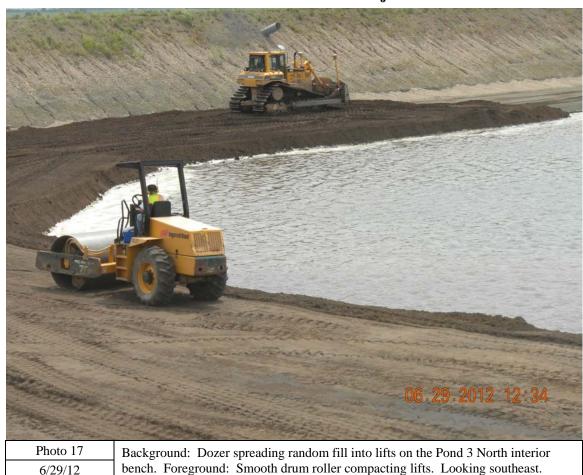


Photo 15	Composted bottom ash on the south and of the interior bonch locking cost
7/26/12	Compacted bottom ash on the south end of the interior bench, looking east.

2012 Pond 3 Construction Projects

Random Fill and Topsoil Test Reports

Pond 3 South Random Fill Standard Proctor Test Reports Pond 3 North Random Fill Standard Proctor Test Reports Pond 3 In-place Density Test Reports Pond 3 Topsoil Nutrient Analysis

Pond 3 South Random Fill Standard Proctor Test Reports

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Report No: PTR:W12-002444-S1 Issue No: 1

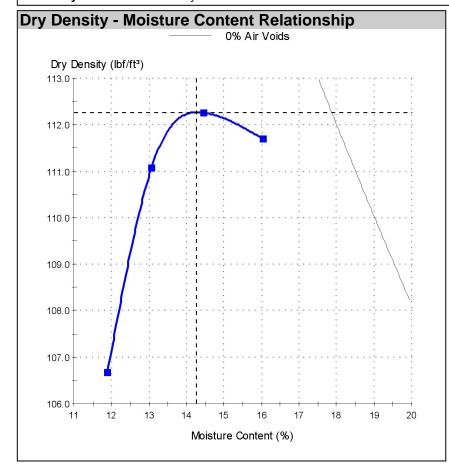
Laboratory Technician II

Date of Issue: 6/13/2012

Sample Details

Sample ID: W12-002444-S1 Alternate Sample ID: RFP-1 **Date Sampled:** Sampled By: 6/12/2012 Client

Sampling Method:


Source:

Material: Poorly Graded Sand

Specification:

Location: Onsite Stockpile

Tested By: Mike Kelly **Date Tested:** 6/13/2012

Test Results									
ASTM D	698 - 07								
Maximum Dry Density (lbf/ft³):	112.3								
Corrected Maximum Dry Density (lbf/ft³):	112.3								
Optimum Moisture Content (%):	14.3								
Corrected Optimum Moisture Content (%):	14.3								
Method:	A								
Preparation Method:	Moist								
Rammer Type:	Hand round								
Specific Gravity (Fines):	2.65								
Specific Gravity Method:	Assumed								
Retained Sieve No 4 (4.75mm) (%):	3								
Passing Sieve No 4 (4.75mm) (%):	97								
Visual Description:	SP Poorly Graded Sand, fine-medium grained, brown								

Comments

The 200 wash value equals 1.5%.

Minneapolis Laboratory **Braun Intertec Corporation**

Phone: (320) 253-9940

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Report No: PTR:W12-002444-S2

Issue No: 1

Mike Kelly

Laboratory Technician II Date of Issue: 6/13/2012

Sample Details

Sample ID: W12-002444-S2 Alternate Sample ID: RFP-2 Date Sampled: Sampled By: Client

Sampling Method: ASTM D75/AASHTO T2/MnDOT 1002 Stockpile

Dry Density - Moisture Content Relationship

Source:

Material: Poorly Graded Sand

Specification:

Location: Onsite Stockpile

Mike Kelly Date Tested: 6/13/2012 Tested By:

0% Air Voids Dry Density (lbf/ft3) 110.0_T 109.0 108.0 107.0 106.0 15 10 11 12 13 14 16 17 18 19 20 21 22

Moisture Content (%)

Test Results - ASTM D 698 - 07 -Maximum Drv 109.7 Density (lbf/ft3): Corrected Maximum 109.7 Dry Density (lbf/ft3): Optimum Moisture 12.5 Content (%): Corrected Optimum 12.5 Moisture Content (%): Method: Preparation Method: Moist Specific Gravity (Fines): 2.65 Specific Gravity Method: Assumed Retained Sieve No 4 2 (4.75mm) (%): Passing Sieve No 4 98 (4.75mm) (%): SP Poorly Graded Sand, Visual Description: fine-medium grained, brown

Comments

The 200 wash value equals 1.6%.

Report No: PTR:W12-002444-S3

Issue No: 1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Mike Kelly Laboratory Technician II

Date of Issue: 6/13/2012

Sample Details

Sample ID: W12-002444-S3 Alternate Sample ID: RFP-3
Date Sampled: Sampled By: Client

Sampling Method: ASTM D75/AASHTO T2/MnDOT 1002 Stockpile

Source:

Material: Poorly Graded Sand

Specification:

Location: Onsite Stockpile

Tested By: Mike Kelly Date Tested: 6/13/2012

Dry Density - Moisture Content Relationship 0% Air Voids Dry Density (lbf/ft3) 107.0 + · · · · 105.0 104.0 103.0 102.0 101.0 10 15 16 17 12 13 19 20 21 22 Moisture Content (%)

9 698 - 07
106.2
106.2
14.9
14.9
A
Moist
Hand round
2.65
Assumed
1
99
SP Poorly Graded Sand, fine-medium grained, brown

Comments

The 200 wash value equals 0.8%.

Report No: PTR:W12-002875-S1

Issue No: 1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Mike Kelly

Laboratory Technician II Date of Issue: 7/11/2012

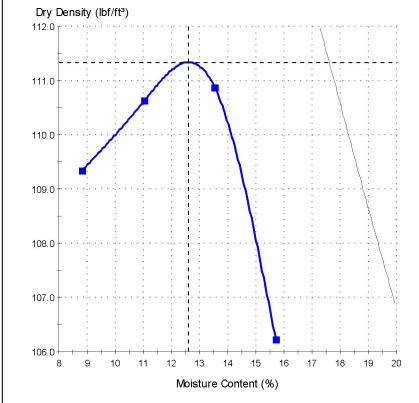
Sample Details

Sample ID: W12-002875-S1

Date Sampled: 6/22/2012

Sampling Method:

Source: Barrow Pit


Material: Poorly Graded Sand

Specification:

Location: Elev: 983.36, N: 862525.26, E: 2031794.21

Tested By: Kanhai Seokaran Date Tested: 6/25/2012

Dry Density - Moisture Content Relationship 0% Air Voids

Test Results

______ASTM D 698 - 07 - Maximum Drv 111.3

Density (lbf/ft3):

Corrected Maximum 111.3

John Blenker

Dry Density (lbf/ft3):

Optimum Moisture

Content (%):

Corrected Optimum 12.6

Moisture Content

(%):

Alternate Sample ID: RFP-5

Sampled By:

Method: A

Preparation Method: Moist

Rammer Type: Hand round

Specific Gravity (Fines): 2.60

Specific Gravity Method: Assumed

Retained Sieve No 4

(4.75mm) (%):

Passing Sieve No 4

(4.75mm) (%):

98

12.6

Visual Description: SP Poorly Graded Sand, fine

grained, brown

Comments

The 200 wash value equals 3.3%.

Report No: PTR:W12-003425-S2

Issue No: 1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Kanhai Seokaran Proctor Supervisor Date of Issue: 7/10/2012

Sample Details

Sample ID:

W12-003425-S2

7/9/2012

Date Sampled:

Alternate Sample ID: RFP-6 Sampled By:

Bill McCain

Sampling Method:

Source:

Onsite material

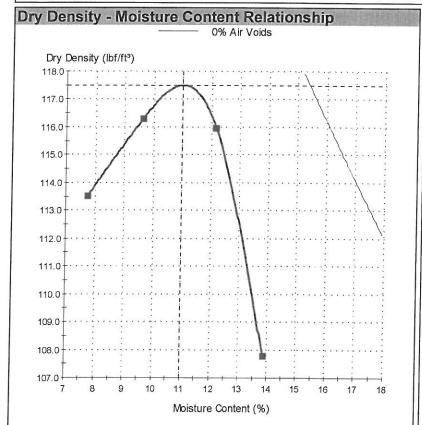
Material:

Poorly Graded Sand

Specification:

Location:

Onsite

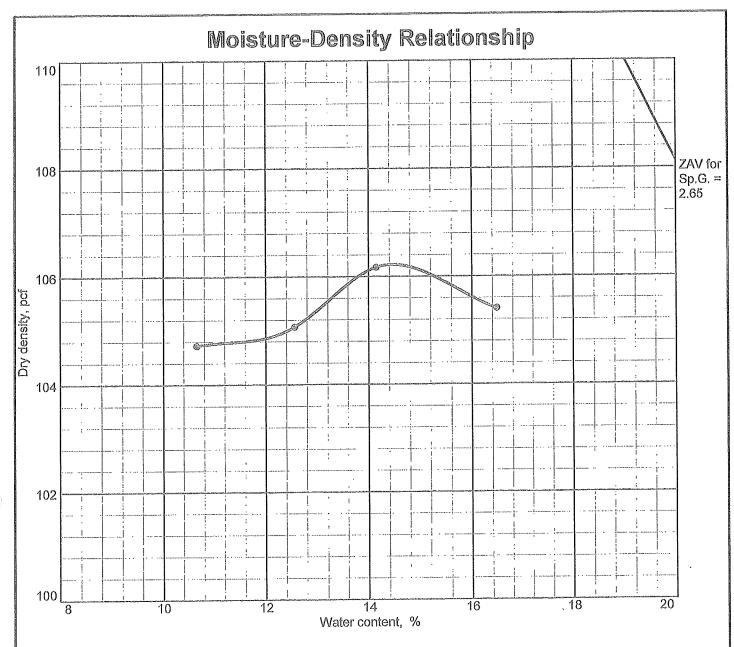

Tested By:

Kanhai Seokaran

Date Tested:

7/10/2012

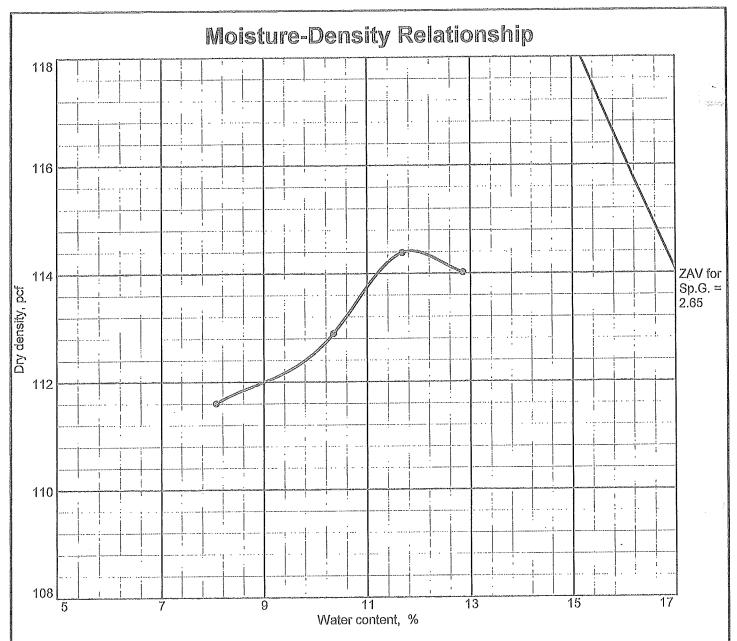
Test Results


ASTM D 698 - 07 **Maximum Dry** 117.5 Density (lbf/ft3): Corrected Maximum 120.1 Dry Density (lbf/ft3): **Optimum Moisture** 11.0 Content (%): Corrected Optimum 10.3 **Moisture Content** (%): Method: В Preparation Method: Moist Rammer Type: Hand round

Specific Gravity (Fines): 2.65 Specific Gravity Method: Assumed Retained Sieve 3/8" (9.5mm) 7 Passing Sieve 3/8" (9.5mm) 93 Specific Gravity (Oversize): 2.75 Excluded Oversize Retained 7 Sieve 3/8" (9.5mm) (%):

SP Poorly Graded Sand, Visual Description: fine-medium grained, gray

Comments


The 200 wash value equals 3.4%.

Test specification: ASTM D 698-07e1 Method A Standard

Elev/	Classii	ication	Nat.	Sp.G.		PI	%>	% <
Depth	USCS	AASHTO	Woist.	oh.o.	E 150		No.4	No.200
	SP		4.3	2.65	N/A	N/A	1.3	1.1

	SP		4.3	2,65	N/A	N/A	1.3	1.1		
		TEST RESULTS	ALLIYADA PARTININA TARIBATAN TARIBATAN TARIBATAN TARIBATAN TARIBATAN TARIBATAN TARIBATAN TARIBATAN TARIBATAN T	A THE LOCAL PROPERTY OF THE PARTY OF THE PAR	ß	//ATERIAL	DESCRIPT	ION		
	m dry density = 106.2 n moisture = 14.5 %		SP - POORLY GRADED SAND, fine-to medium-grained, with a trace of Gravel, brown							
Project N	o.: SC-09-01367B	Client: Xcel Energy Servic	es, Inc.		Remari	Remarks:				
Project:	Pond 3 South Construction	1			Onsite S	Onsite Stockpile				
_© Source	:	Sample No.: R	FP-12 ((0105)					
	1200 CONTROL									

Test specification: ASTM D 698-07e1 Method B Standard

Oversize correction applied to final results

Elev/	Classif	Nat.	Sp.G.	l _{sa} L _{sa}	pj	%>	% <	
Depth	USCS	AASHTO	Moist.		Sea Dest	b 6	3/8 in.	No.200
	SP		10.1	2.65	N/A	N/A	6.1	

	SP		10.1	2.65	N/A	N/A	0.1	and the state of t
		EST RESULTS		THE RESERVE THE PARTY OF THE PA	Ŋ	JIATERIAL	DESCRIPT	'ION
Maximur	m dry density = 116.6	pcf					RADED SAN ith a little Gra	
Optimum	n moisture = 11.2 %						<u>؞ ڛٷٷٷٷٷٷڛۅ؞ڛۄڮٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷٷ</u>	
Project Ne	o.: SC-09-01367B C	lient: Xcel Energy Servic	es, Inc.		Remark	s:		
Project:	Pond 3 South Construction	ı			N. 8626 Elev. 95	89 E. 20319 3.5	14	
Source:		Sample No.: R	FP-18 / Z	(010)				59. lilj
		BRAUN"		_				7
THE COLUMN TO TH		NTERTEC						

Pond 3 North Random Fill Standard Proctor Test Reports

Minneapolis Laboratory
Braun Intertec Corporation

Phone: (320) 253-9940

Test Results

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Elle O Mi

Report No: PTR:W12-002759-S1

Dallas Miner Laboratory Supervisor

Issue No: 1

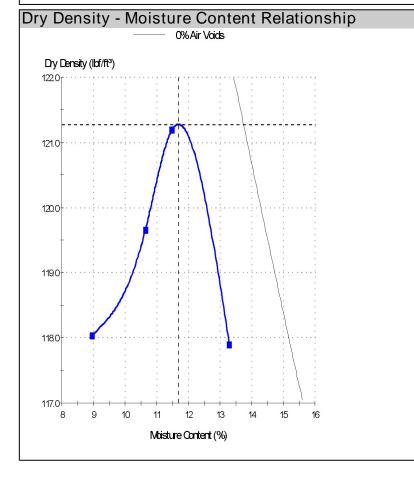
Date of Issue: 6/21/2012

Sample Details

Sample ID: W12-002759-S1 Alternate Sample ID: RFP-4

Date Sampled: Sampled By:

Sampling Method:


Source: Onsite material

Material: Poorly Graded Sand with Silt

Specification:

Location: Becker

Tested By: John Blenker Date Tested: 6/21/2012

ASTM D 698 - 07 L Maximum Dry 121.3 Density (lbf/ft3): Corrected Maximum 121.3 Dry Density (lbf/ft3): Optimum Moisture 11.7 Content (%): Corrected Optimum 11.7 Moisture Content (%): Method: Preparation Method: Moist Rammer Type: Hand round Specific Gravity (Fines): 2.65 Specific Gravity Method: Assumed Retained Sieve No 4 4 (4.75mm) (%): Passing Sieve No 4 (4.75mm) (%): SP-SM Poorly Graded Sand Visual Description: with Silt

Comments

The 200 wash value equals 8.5%.

Pond 3 In-place Density Test Reports

3900 Roosevelt Road

Suile 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 520.253.3054 Web: brouninterfection

Report of Field Compaction Tests

Date:

July 10, 2012

Project:

SC-12-02255

Report: 1

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility

Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

1	Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
	RF-1	6/13/12	N	RFP-18	11.2	116.6	9.3	110.8	95	95	A
	RF-2	6/13/12	N	RFP-12	14.5	106.2	11.8	101.4	95	95	A
	RF-3	6/15/12	N	RFP-1	14.3	112.3	10.4	112.2	100	95	A
	RF-4	6/15/12	N	RFP-1	14.3	112.3	8.4	113.3	101	95	A
,	RF-5	6/15/12	N	RFP-1	14.3	112.3	5.6	115.1	102	95	A
)	RF-6	6/15/12	N	RFP-1	14.3	112.3	13.4	111.1	99	95	A
	RF-7	6/22/12	N	RFP-1	14.3	112.3	4.2	113.2	101	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
RF-1	N: 862443.32 E: 2031347.38	985.2
RF-2	N: 862780.02 E: 2031981.65	984.7
RF-3	N: 862428.70 E: 2031254.08	988.4
RF-4	N: 862516.10 E: 2031949.60	989.8
RF-5	N: 862727.07 E: 2031987.20	988.5
RF-6	N: 862988.90 E: 2031984.20	989.9
RF-7	N: 862485.34 E: 2030895.80	984.1

Elevation Reference:

c:

Braun Interfec Corporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054

Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson

Xcel Energy Services, Inc.

Sherburne Cty. Generating Facility

Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
RF-8	6/22/12	N	RFP-1	14.3	112.3	3.0	112.3	100	95	A
RF-9	6/22/12	N	RFP-5	12.6	111.3	4.1	110.9	100	95	A
RF-10	6/27/12	N	RFP-5	12.6	111.3	4.7	110.8	100	95	A
RF-11	6/28/12	N	RFP-2	12.5	109.7	2.3	109.5	100	95	A
RF-12	6/29/12	N	RFP-4	11.7	121.3	6.9	123.5	102	95	A
RF-13	6/29/12	N	RFP-4	11.7	121.3	9.4	117.6	97	95	A
RF-14	7/2/12	N	RFP-4	11.7	121.3	10.2	121.6	100	95	A

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

	Test	Test Location	Elevation
	RF-8	N: 863368.34 E: 2031911.55	984.0
	RF-9	N: 862525.26 E: 2031794.21	983.4
p0	RF-10	N: 863062.23 E: 2032020.91	987.8
1	RF-11	N: 862357.00 E: 2031102.48	988.2
	RF-12	N: 865295.56 E: 2031144.68	984.1
	RF-13	N: 865296.25 E: 2031247.46	984.2
	RF-14	N: 865296.25 E: 2031247.46	985.6

Elevation Reference:

c:

Braun Interter Corporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054 Web: brauninlerlec.com

Report of Field Compaction Tests

Date:

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800 **Project Description:**

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
RF-15	7/2/12	N	RFP-4	11.7	121.3	11.9	118.1	97	95	A
RF-16	7/2/12	N	RFP-4	11.7	121.3	7.3	124.7	103	95	A
RF-17	7/3/12	N	RFP-4	14.3	121.3	6.0	115.8	95	95	A
RF-18	7/3/12	N	RFP-4	14.3	121.3	7.9	123.4	102	95	A
RF-19	7/3/12	N	RFP-1	14.3	112.3	5.6	113.0	101	95	A
RF-20	7/5/12	N	RFP-1	14.3	112.3	9.5.	112.7	100	95	A
RF-21	7/5/12	N	RFP-1	14.3	112.3	3.7	112.9	101	95	A

Kev

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
RF-15	N: 865264.79 E: 2031906.40	985.3
RF-16	N: 864173.29 E: 2031930.16	984.1
RF-17	N: 865291.02 E: 2030988.35	986.1
RF-18	N: 865148.97 E: 2031929.04	986.1
RF-19	N: 862923.01 E: 2032041.27	989.5
RF-20	N: 862376.10 E: 2031247.41	990.6
RF-21	N: N862385.71 E: 2030943.84	989.3

Elevation Reference:

c:

Braun Interted Corporation

Thomas L. Henkemeyer Project Manager

3900 Rossevelt Road Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 320.253.3054 Fax:

Web: brauninterted.com

Report of Field Compaction Tests

Date:

July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

1	Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
	RF-22	7/5/12	N	RFP-3	14.9	106.2	4.9	106.1	100	95	A
)	RF-23	7/5/12	N	RFP-5	12.6	111.3	5.2	110.3	99	95	A
	RF-24	7/6/12	N	RFP-1	14.3	112.3	5.9	114.4	102	95	A
	RF-25	7/6/12	N	RFP-5	12.6	111.3	7.9	111.3	100	95	A
	RF-26	7/6/12	N	RFP-2	12.5	109.7	5.9	110.7	101	95	A
,	RF-27	7/6/12	N	RFP-1	14.3	112.3	5.0	114.0	102	95	A
<u>"</u>	RF-28	7/6/12	И	RFP-1	14.3	112.3	3.1	115.5	103	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
RF-22	N: 862408.81 E: 2031943.59	991.7
RF-23	N: 862469.51 E: 2032039.31	989.6
RF-24	N: 863251.04 E: 2032049.31	990.3
RF-25	N: 862395.28 E: 2031032.54	991.4
RF-26	N: 862409.35 E: 2031772.46	993
RF-27	N: 862394.26 E: 2031161.39	992.7
RF-28	N: 862408.24 E: 2031513.03	994.1

Elevation Reference:

c:

Braun Interfeq Corporation

Thomas L. Henkemeyer

Societelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320,253,9940 Fox: 320,253,3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800 **Project Description:**

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
RF-29	7/9/12	N	RFP-6	10.3	120.1	5.9	119.2	99	95	A
RF-30	7/9/12	N	RFP-5	12.6	111,3	3.8	111.1	100	95	A
RF-31	7/10/12	N	RFP-5	12.6	111.3	4.1	111.3	100	95	A
RF-32	7/11/12	N	RFP-1	14.3	112.3	7.0	112.7	100	95	A
<u>L</u>										

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
RF-29	N: 863377.35 E: 2032037.85	991.9
RF-30	N: 863195.28 E: 2032032.94	991.7
RF-31	N: 862622.58 E: 2031999.50	992.5
RF-32	N: 862861.21 E: 2032008.60	993.9

Elevation Reference:

c:

Braun Interred Corporation

Thomas L. Henkemeyer Project Manager

Pond 3 Topsoil Nutrient Analysis

University of Minnesota Soil Testing Laboratory

SOIL TEST REPORT

Lawn and Garden

Department of Soil, Water, and Climate Agricultural Experiment Station Minnesota Extension Service Client Copy

> BRAUN INTERTEC - ST CLOUD 3900 ROOSEVELT RD STE 113 ST CLOUD MN 56301 **TOM HENKEMEYER**

Date Received Laboratory No. Report No. Page

07/19/12 112159 54025

07/27/12 Date Reported

Sample/Field Number: TS01 Organic Estimated

Iron ppm Zinc SOIL TEST RESULTS SO4 -S Sulfur mdd Potassium ppm K 85 Phosphorus ppm P 99 Bray Phosphorus ppm P Olsen Nitrate NO3-N ppm

Buffer Index

H

mmhos/cm Soluble Salts

Matter

7.1

1.5

Coarse **Texture** Soil

Lead udd

Magnesium

Calcium

Boron ppm

Copper ppm

Manganese

ppm

tudd-

tudd d

INTERPRETATION OF SOIL TEST RESULTS

Soluble Salts 25 V. High 20 High 175 125 Potassium (K) KKKKKKKKK MO 25 -ow

Excessive Salts 8.0 9.0 10.0 9.0 Alkaline 8.0 7.0 ******************************* 7.0 Possible Problem 0.9 Optimum 6.0 5.0 4.0 5.0 3.0 0 1.0 2.u Satisfactory 4.0 Acid 3.0 Ha

RECOMMENDATIONS FOR: Before seeding or sodding

V. High

High

Medium

LIME RECOMMENDATION: 0 LBS/1,000 SQ.FT

TOTAL AMOUNT OF EACH NUTRIENT TO APPLY PER YEAR:* 1 LBS/1,000 SQ.FT. NITROGEN

1 LBS/1,000 SQ.FT. 45 LBS/ACRE PHOSPHATE

4 LBS/1,000 SQ.FT. 175 LBS/ACRE POTASH

Clippings not removed

Grass not watered

THE APPROXIMATE RATIO OR PROPORTION OF THESE NUTRIENTS IS: 5-5-20

44 LBS/ACRE

During preparation of the seedbed and prior to seeding, till into the top 4-6 inches of soil a fertilizer that supplies the recommended amount of phosphate and potash (ie. a fertilizer that contains little or no nitrogen). Much of the nitrogen applied to this depth will be lost through leaching

fertilization are based on the cultural practices that are used. Contact your county extension educator for more information. Water frequently the first year. Retest soil An additional 0.5 lb. N/1000 sq. ft. (22 lb./ acre) should be applied two weeks after seedling emergence or sodding and watered in. After this, the rates and timing of N Next, rake into the surface prior to seeding an amount of fertilizer that contains only nitrogen such as 34-0-0 or 46-0-0, or a grade that is high in nitrogen but low in phosphate and potash, that will result in 0.5 lb. of nitrogen per 1000 sq. ft. (22 lb./acre) being applied.

*CAUTION! Do not apply more that 1 lb. nitrogen per 1000 sq. ft. in one application to avoid burning the grass. Additional information is provided on the back side of this

after one year to determine maintenance recommendations. It is recommended that clippings not be removed.

County: SHERBURNE. Additional information on the website http://soiltest.cfans.umn.edu/intro.htm or call Yard & Garden Desk 952-443-1426

University of Minnesota Soil Testing Laboratory

SOIL TEST REPORT

Lawn and Garden

Department of Soil, Water, and Climate Agricultural Experiment Station Minnesota Extension Service

Client Copy

BRAUN INTERTEC - ST CLOUD 3900 ROOSEVELT RD STE 113 ST CLOUD MN 56301 TOM HENKEMEYER

Date Received Laboratory No. Report No. Page

07/19/12 07/27/12 112160 54025 Date Reported

Sample/Field Number: TS2

Organic Matter

Estimated **Texture**

Copper Manganese ppm Iron ppm Zinc SOIL TEST RESULTS SO4 -S ppm Sulfur Potassium ppm K 46 Phosphorus ppm P 28 Phosphorus ppm P 16 Nitrate NO3-N ppm Buffer 8.4

H

mmhos/cm Soluble Salts

1.2

Coarse

Lead

Magnesium

Calcium

Boron ppm **Wdd**

tudd d

udd

INTERPRETATION OF SOIL TEST RESULTS

***************************************	3.0 4.0 5.0 6.0 7.0 8.0 9.0 Acid Acid Optimum Alkaline	Soluble Salts	0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Satisfactory Possible Problem Excessive Salts	RECOMMENDATIONS FOR: Before seeding or sodding
	25 V. High	2	225 V. High	RECOMME
	20 High		175 High	
Phosphorus (P) PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	5 10 15 Low Medium	Potassium (K) KKKKKK	25 75 125 Low Medium	

LIME RECOMMENDATION: 0 LBS/1,000 SQ.FT

TOTAL AMOUNT OF EACH NUTRIENT TO APPLY PER YEAR:* 1 LBS/1,000 SQ.FT.

2 LBS/1,000 SQ.FT. 90 LBS/ACRE PHOSPHATE

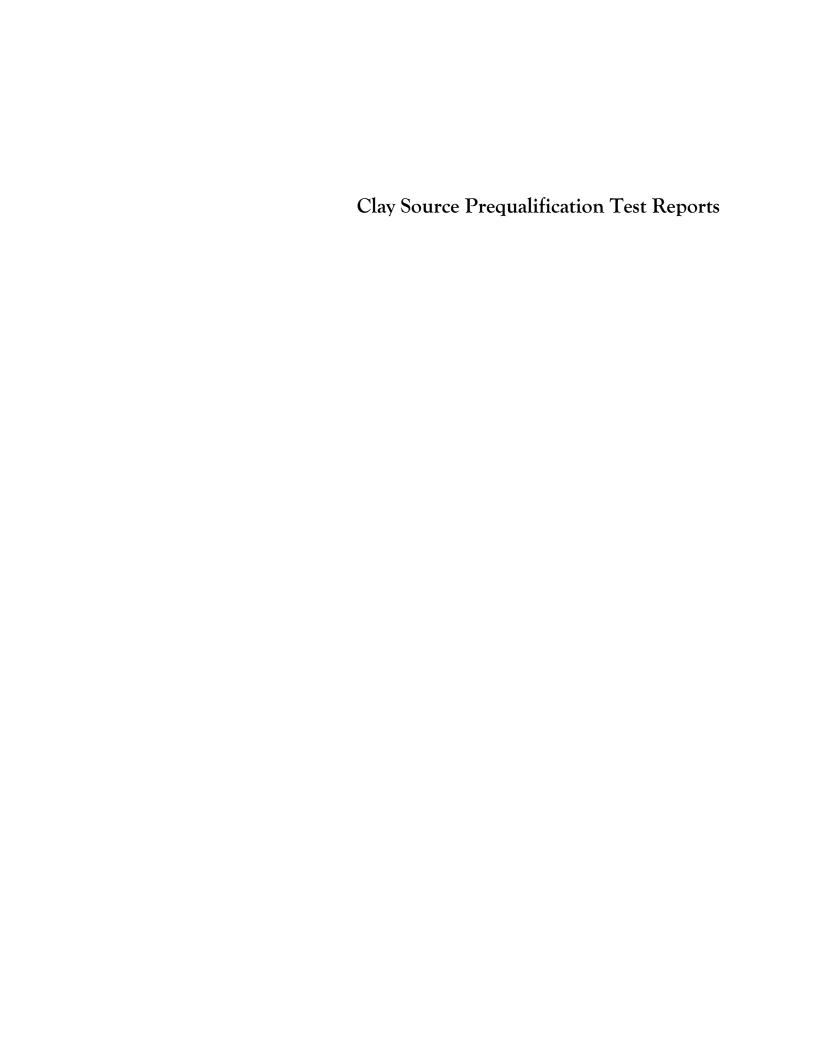
Grass not watered Clippings not removed 6 LBS/1,000 SQ.FT. 260 LBS/ACRE

THE APPROXIMATE RATIO OR PROPORTION OF THESE NUTRIENTS IS: 5-10-30

44 LBS/ACRE

During preparation of the seedbed and prior to seeding, till into the top 4-6 inches of soil a fertilizer that supplies the recommended amount of phosphate and potash (ie. a fertilizer that contains little or no nitrogen). Much of the nitrogen applied to this depth will be lost through leaching.

Next, rake into the surface prior to seeding an amount of fertilizer that contains only nitrogen such as 34-0-0 or 46-0-0, or a grade that is high in nitrogen but low in phosphate and potash, that will result in 0.5 lb. of nitrogen per 1000 sq. ft. (22 lb./acre) being applied.


Contact your county extension educator for more information. Water frequently the first year. Retest soil An additional 0.5 lb. N/1000 sq. ft. (22 lb./ acre) should be applied two weeks after seedling emergence or sodding and watered in. After this, the rates and timing of N after one year to determine maintenance recommendations. It is recommended that clippings not be removed. fertilization are based on the cultural practices that are used.

*CAUTION! Do not apply more that 1 lb. nitrogen per 1000 sq. ft. in one application to avoid burning the grass. Additional information is provided on the back side of this

County: SHERBURNE. Additional information on the website http://soiltest.cfans.umn.edu/intro.htm or call Yard & Garden Desk 952-443-1426

Clay Test Reports

Clay Source Prequalification Test Reports
Clay Source Standard Proctor Test Reports
Clay In-place Density Test Reports
Clay In-place Permeability and Index Property Test Reports

Deport No: MAT:W12-0023

Report No: MAT:W12-002341-S1

Issue No: 2

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James Strew

Jim Streier Geotechnical Laboratory

Date of Issue: 7/11/2012

Limits

Sample Details

Sample ID: W12-002341-S1

Alternate Sample ID: CS-1 Sampled By: Dan Riggs

Sampling Method:

Date Sampled: 6/1/2012 Date Submitted: 6/4/2012

Specification: Hydrometer ASTM D 422

Source:

Material Type: CL Sandy Lean Clay

Sample Location:

Particle Size Distribution

Method: ASTM D 422 - 07

Drying by:

Date Tested: 6/13/2012

Sieve Size	% Passing
3/8in (9.5mm)	100
No.4 (4.75mm)	98
No.10 (2.0mm)	95
No.20 (850µm)	90
No.40 (425µm)	82
No.60 (250µm)	73
No.100 (150µm)	63
No.200 (75µm)	52
30.7 µm	41.7
11.3 µm	33.4
6.9 µm	28.5
5.3 µm	26.2
2.5 µm	22.0
1.3 µm	18.4

Other Test Results

Initial Sample Height (in)

Final Sample Height (in)

Initial Sample Diameter (in)

Final Sample Diameter (in)

Initial Sample Volume (in³)

Final Sample Volume (in³)

Maximum Dry Density (lb/ft3)

Initial Sample Mass (g)

Final Sample Mass (g)

Initial Sample Cross-Section Area (in²)

Final Sample Cross-Section Area (in²)

Description	Method	Result	Limits
Dispersion device	ASTM D 422 - 07		
Dispersion time (min)			
Shape			
Hardness			
Liquid Limit	ASTM D 4318 - 05	31	
Method	Me	ethod B	
Plastic Limit		16	
Plasticity Index		15	
Sample history			
Material retained on 425µm (No. 40) (%)		0.0	
Date Tested	6/1	3/2012	
Temperature (°C)	ASTM D 5084 - 03	22.0	
Cell Pressure (lb/in²)		99.0	
Top Pressure (lb/in²)		91.0	
Bottom Pressure (lb/in²)	94.0		
Effective Pressure (lb/in²)		5.0	
Pressure Differential (lb/in²)		3.0	
Permeant	De-aired ta	p water	
Assumed Specific Gravity		2.700	

2.192

2.192

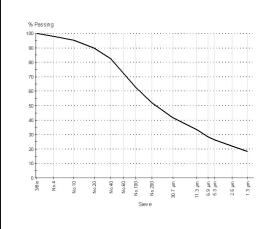
2.803

2.803

6.171

6.171

13.53


13.53

399.5

399.5

115.9

Chart

Comments

N/A

Report No: MAT:W12-002341-S1

Issue No: 2

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James Strew

Jim Streier Geotechnical Laboratory

Date of Issue: 7/11/2012

Limits

Sample Details

Sample ID: W12-002341-S1

Alternate Sample ID: CS-1 Sampled By: Dan Riggs

Sampling Method:

Date Sampled: 6/1/2012 Date Submitted: 6/4/2012

Specification: Hydrometer ASTM D 422

Source:

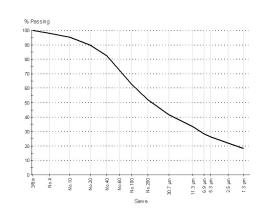
Material Type: CL Sandy Lean Clay

Sample Location:

Particle Size Distribution

Method: ASTM D 422 - 07

Drying by:


Date Tested: 6/13/2012

Sieve Size	% Passing
3/8in (9.5mm)	100
No.4 (4.75mm)	98
No.10 (2.0mm)	95
No.20 (850µm)	90
No.40 (425µm)	82
No.60 (250µm)	73
No.100 (150µm)	63
No.200 (75µm)	52
30.7 µm	41.7
11.3 µm	33.4
6.9 µm	28.5
5.3 µm	26.2
2.5 µm	22.0
1.3 µm	18.4

Other Test Results

Description	Method	Result	Limits
Optimum Moisture Content (%)		13.3	
Relative Compaction (%)		97	
Moisure Content	2.1 % abo	ve optimum	
Dry Density (lb/ft³)		112.5	
Initial Moisture Content (%)		15.4	
Final Moisture Content (%)		18.4	
Initial Saturation (%)		83	
Final Saturation (%)		100	
Initial Hydraulic Gradient		34.4	
Ending Hydraulic Gradient		39.4	
Hydraulic Conductivity (cm/s)		1.32E-08	
Corrected Hydraulic Conductivity (cm/s)		1.26E-08	
Date Tested		6/13/2012	

Chart

Comments

N/A

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Report No: MAT:W12-002341-S2 Issue No: 2

James String

Limits

Date of Issue: 7/11/2012

Jim Streier Geotechnical Laboratory

Sample Details

Sample ID: W12-002341-S2

Alternate Sample ID: CS-2 Sampled By: Dan Riggs

Sampling Method:

Date Sampled: 6/1/2012 Date Submitted: 6/4/2012

Specification: Hydrometer ASTM D 422

Source:

Material Type: CL Sandy Lean Clay

Sample Location:

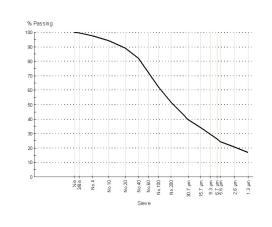
Particle Size Distribution

% Passing

ASTM D 422 - 07 Method:

Drying by:

Sieve Size


Date Tested: 6/13/2012

101010 0120	70 i accing
½in (12.5mm)	100
3/8in (9.5mm)	100
No.4 (4.75mm)	98
No.10 (2.0mm)	94
No.20 (850µm)	89
No.40 (425µm)	82
No.60 (250µm)	72
No.100 (150µm)	62
No.200 (75µm)	52
30.7 μm	39.6
15.7 µm	34.0
9.3 µm	29.4
6.7 µm	26.3
5.6 µm	24.4
2.6 µm	20.7
1.3 µm	17.0

Other Test Results

Method	Result	Limits
ASTM D 422 - 07	7	
ASTM D 4318 - 0	05 29	
ļ	Method B	
	17	
	12	
	0.0	
6	5/13/2012	
ASTM D 5084 - 0	03 22.0	
	99.0	
	91.0	
	94.0	
	5.0	
	3.0	
De-aired	tap water	
	2.700	
	2.214	
	2.214	
	2.803	
	2.803	
	ASTM D 422 - 00 ASTM D 4318 - 0	ASTM D 422 - 07 ASTM D 4318 - 05

Chart

Comments

Initial Sample Cross-Section Area (in²)

Final Sample Cross-Section Area (in²)

Initial Sample Volume (in3)

Final Sample Volume (in³)

Maximum Dry Density (lb/ft3)

Form No: 18909, Report No: MAT:W12-002341-S2

Initial Sample Mass (g)

Final Sample Mass (g)

N/A

6.171

6.171

13.66

13.66

417.8

417.7

118.7

Report No: MAT:W12-002341-S2

Issue No: 2

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James Streins

Jim Streier Geotechnical Laboratory

Date of Issue: 7/11/2012

Limits

Sample Details

Sample ID: W12-002341-S2

Alternate Sample ID: CS-2 Sampled By: Dan Riggs

Sampling Method:

Date Sampled: 6/1/2012 Date Submitted: 6/4/2012

Specification: Hydrometer ASTM D 422

Source:

Material Type: CL Sandy Lean Clay

Sample Location:

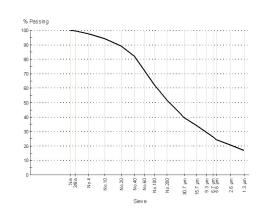
Particle Size Distribution

% Passing

Method: ASTM D 422 - 07

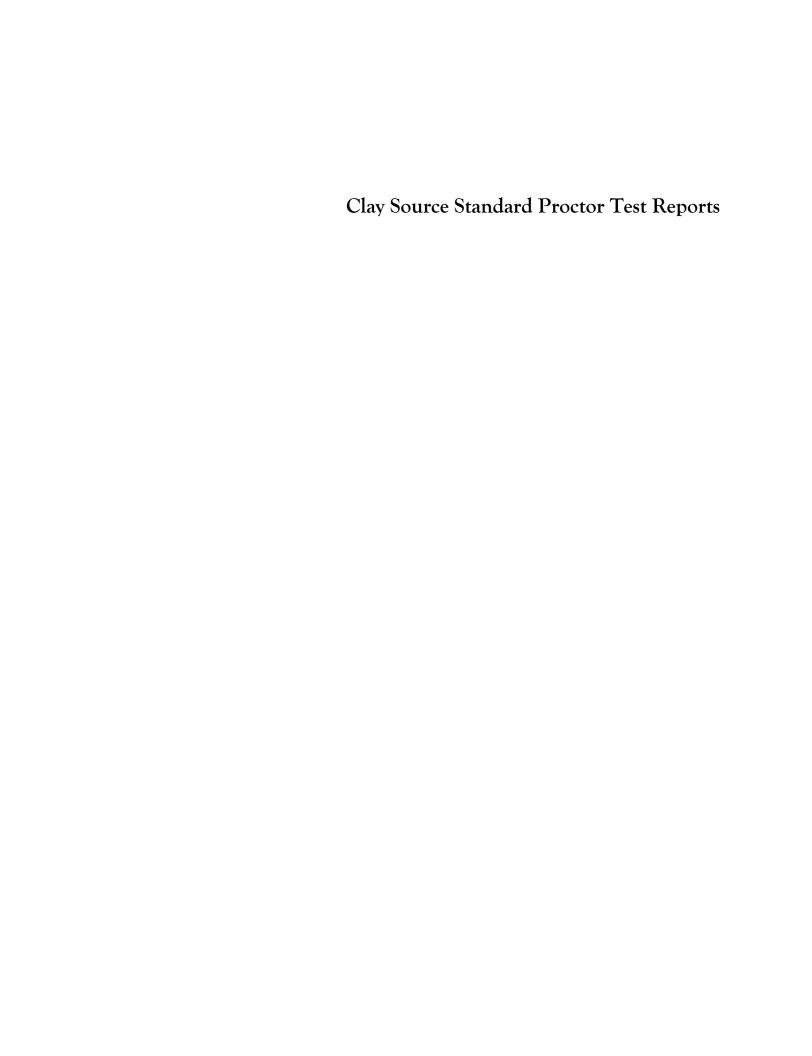
Drying by:

Sieve Size


Date Tested: 6/13/2012

101010 0120	70 1 accing
½in (12.5mm)	100
3/8in (9.5mm)	100
No.4 (4.75mm)	98
No.10 (2.0mm)	94
No.20 (850µm)	89
No.40 (425µm)	82
No.60 (250µm)	72
No.100 (150µm)	62
No.200 (75µm)	52
30.7 μm	39.6
15.7 µm	34.0
9.3 µm	29.4
6.7 µm	26.3
5.6 µm	24.4
2.6 µm	20.7
1.3 µm	17.0

Other Test Results


Description	Method	Result	Limits
Optimum Moisture Content (%)		13.0	
Relative Compaction (%)		98	
Moisure Content	1.4 % abo	ove optimum	
Dry Density (lb/ft³)		116.5	
Initial Moisture Content (%)		14.4	
Final Moisture Content (%)		16.5	
Initial Saturation (%)		87	
Final Saturation (%)		100	
Initial Hydraulic Gradient		36.8	
Ending Hydraulic Gradient		37.5	
Hydraulic Conductivity (cm/s)		1.04E-08	
Corrected Hydraulic Conductivity (cm/s)		9.95E-09	
Date Tested		6/13/2012	

Chart

Comments

N/A

Report No: PTR:W12-002072-S1 **Proctor Report** Issue No: 1

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Mike Kelly Laboratory Technician II

Date of Issue: 6/5/2012

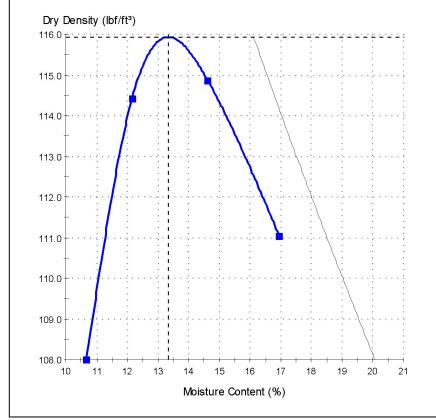
Sample Details

Sample ID: W12-002072-S1

Date Sampled: 6/1/2012

Sampling Method:

Source:


Clavey Sand Material:

Specification: Location:

Mike Kelly Date Tested: 6/4/2012 Tested By:

Dry Density - Moisture Content Relationship

Test Results

Dan Riggs

- ASTM D 698 - 07 -Maximum Drv 115.9

Density (lbf/ft3):

Corrected Maximum 115.9

Dry Density (lbf/ft3):

Optimum Moisture

Content (%):

Corrected Optimum 13.3

Moisture Content

(%):

Alternate Sample ID: CS-1

Sampled By:

Method:

Preparation Method:

Moist Hand round

13.3

Rammer Type: Specific Gravity (Fines):

2.65

Specific Gravity Method:

Retained Sieve No 4

Assumed

(4.75mm) (%):

5

Passing Sieve No 4

95

(4.75mm) (%):

Visual Description:

SC Clayey Sand,

fine-medium grained, brown

Comments

The 200 wash value equals 49.3%.

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Report No: PTR:W12-002076-S1

Issue No: 1

Mike Kelly Laboratory Technician II

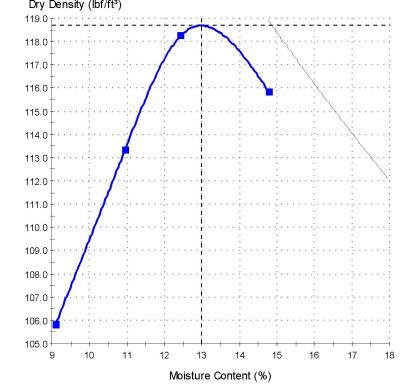
Date of Issue: 6/5/2012

Sample Details

Sample ID: W12-002076-S1

Date Sampled: 6/1/2012

Sampling Method:


Source:

CL Sandy Lean Clay Material:

Specification: Location:

Mike Kelly Date Tested: 6/4/2012 Tested By:

Dry Density - Moisture Content Relationship 0% Air Voids Dry Density (lbf/ft3)

Test Results

Dan Riggs

- ASTM D 698 - 07 -118.7

13.0

Maximum Drv Density (lbf/ft3):

Corrected Maximum 118.7

Dry Density (lbf/ft3):

Optimum Moisture

Content (%):

Corrected Optimum 13.0

Moisture Content

(%):

Alternate Sample ID: CS-2

Sampled By:

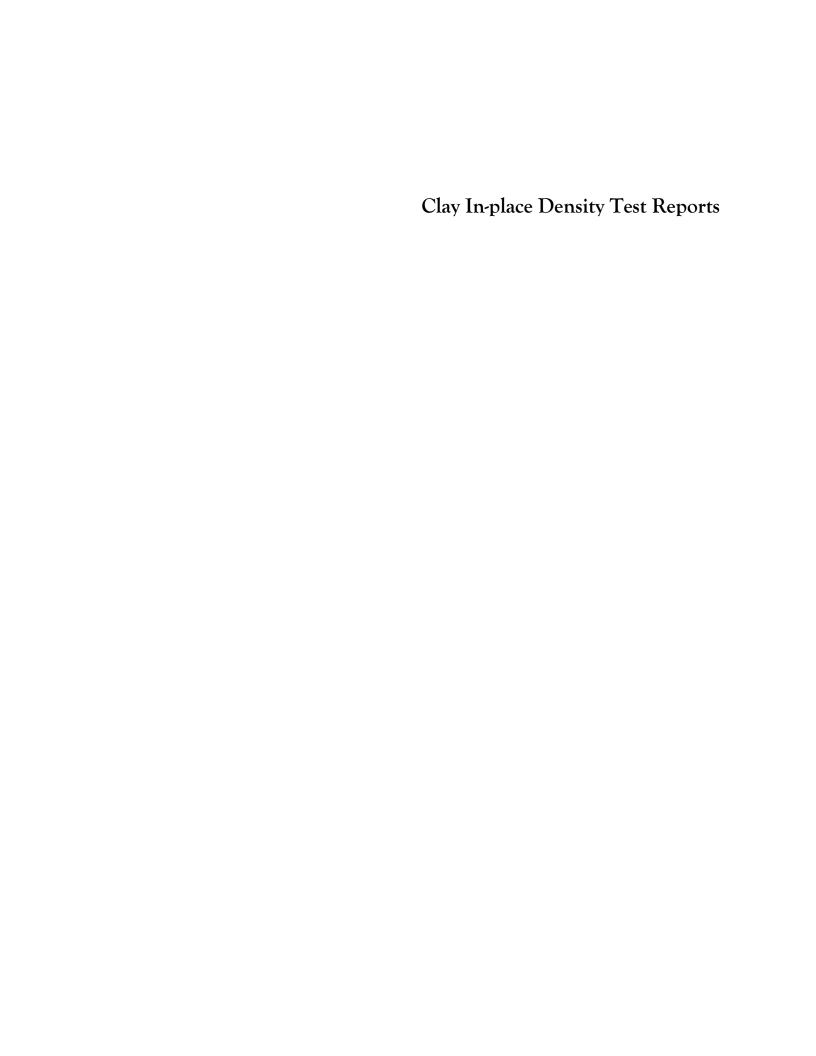
Method: В

Preparation Method: Moist

Rammer Type: Hand round

Specific Gravity (Fines): 2.65

Specific Gravity Method: Assumed


Retained Sieve 3/8" (9.5mm) 2

Passing Sieve 3/8" (9.5mm)

Visual Description: CL Sandy Lean Clay, brown

Comments

The 200 wash value equals 51.1%.

3900 Roosevelt Road Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fux: 320.253.3054

Fux: 320.253.3054 Web: brauninterlec.com

1

Report of Field Compaction Tests

Date: July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800 **Project Description:**

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-01	6/22/12	N	CS-1	13.3	115.9	13.6	117.6	101	97	A
CL-02	6/22/12	N	CS-1	13.3	115.9	15.6	114.3	- 99	97	A
CL-03	6/22/12	N	CS-1	13.3	115.9	14.7	115.3	99	97	A
CL-04	6/22/12	N	CS-1	13.3	115.9	14.9	114.5	99	97	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-01	N: 86331.31 E: 2032015.61	985.2
CL-02	N: 862823.56 E: 2032014.32	984.8
CL-03	N: 863081.35 E: 2032015.12	986.1
CL-04	N: 862470.01 E: 2031966.27	986.1
<u> </u>		

Elevation Reference:

c:

Braun Intertel Corporation

Thomas L. Henkemeyer Project Manager

3900 Roosevelt Road Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fux: 320.253.3054

Fux: 320.253.3054 Web: brauninterlec.com

1

Report of Field Compaction Tests

Date: July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800 **Project Description:**

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-01	6/22/12	N	CS-1	13.3	115.9	13.6	117.6	101	97	A
CL-02	6/22/12	N	CS-1	13.3	115.9	15.6	114.3	- 99	97	A
CL-03	6/22/12	N	CS-1	13.3	115.9	14.7	115.3	99	97	A
CL-04	6/22/12	N	CS-1	13.3	115.9	14.9	114.5	99	97	A
								,		

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-01	N: 86331.31 E: 2032015.61	985.2
CL-02	N: 862823.56 E: 2032014.32	984.8
CL-03	N: 863081.35 E: 2032015.12	986.1
CL-04	N: 862470.01 E: 2031966.27	986.1
<u> </u>		

Elevation Reference:

c:

Braun Intertel Corporation

Thomas L. Henkemeyer Project Manager

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date: July 10, 2012

Project:

SC-12-02255

Report: 2

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800 **Project Description:**

Sherco 2012 Ash Construction Pond 3S Vertical Expansion Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-05	6/22/12	N	CS-1	13.3	115.9	13.9	116.8	101	97	A
CL-06	6/23/12	N	CS-1	13.3	115.9	15.0	113.6	98	97	A
CL-07	6/23/12	N	CS-1	13.3	115.9	14.4	113.9	98	97	A
CL-08	6/23/12	N	CS-1	13.3	115.9	13.9	117.0	101	97	A
CL-09	6/23/12	N	CS-1	13.3	115.9	15.2	115.3	99	97	A
CL-10	6/23/12	N	CS-1	13.3	115.9	15.1	114.8	99	97	A
CL-11	6/23/12	N	CS-2	13.0	118.7	13.6	119.0	100	97	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-05	N: 862391.49 E: 2030991.01	985.8
CL-06	N: 862430.42 E: 2031737.93	984.9
CL-07	N: 862409.97 E: 2031302.93	986.3
CL-08	N: 862376.81 E: 2031108.20	987.0
CL-09	N: 862421.66 E: 2031528.06	986.9
CL-10	N: 862407.06 E: 2031241.31	987.6
CL-11	N: 862408.49 E: 2031259.72	
		987.9

Elevation Reference:

c:

Braun Intertee Corporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054

Web: braunintertec.com

Report of Field Compaction Tests

Date:

Project:

SC-12-02255

Report:

3

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-12	6/23/12	N	CS-2	13.0	118.7	13.4	117.9	99	97	A
CL-13	6/23/12	N	CS-1	13.3	115.9	14.7	112.6	97	97	A
CL-14	6/23/12	N	CS-1	13.3	115.9	13.5	117.0	101	97	A
CL-15	6/23/12	N	CS-1	13.3	115.9	14.3	116.1	100	97	A
CL-16	6/25/12	N	CS-1	13.3	115.9	14.0	112.9	97	97	A
CL-17	6/25/12	N	CS-2	13.0	118.7	13.5	119.5	101	97	A
CL-18	6/25/12	N	CS-2	13.0	118.7	13.4	118.0	99	97	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-12	N: 862432.34 E: 2031665.31	988.5
CL-13	N: 862513.59 E: 2031980.33	988.5
CL-14	N: 863350.72 E: 2032012.88	987.0
CL-15	N; 862675.84 E: 2032014.67	986.3
CL-16	N: 862913.41 E: 2032010.27	986.7
CL-17	N: 863410.46 E: 2032010.97	987.7
CL-18	N: 862892.12 E: 2032010.30	987.9

Elevation Reference:

c:

Braun Intertec Corporation

Thomas L. Henkemeyer

3900 Roose elt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054

Web: braunintertec.com

Report of Field Compaction Tests

Date: July 10, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-19	6/25/12	N	CS-2	13.0	118.7	13.3	117.2	99	97	A
CL-20	6/25/12	N	CS-1	13.3	115.9	13.9	113.9	98	97.	A
CL-21	6/25/12	. N	CS-1	13.3	115.9	14.2	114.9	99	97	A
CL-22	6/25/12	N	CS-2	13.0	118.7	13.2	118.1	99	97	A
CL-23	6/25/12	N	CS-1	13.3	115.9	14.7	114.7	99	97	A
CL-24	6/26/12	N	CS-1	13.3	115.9	14.0	113.7	. 98	97	A
CL-25	6/26/12	N	CS-1	13.3	115.9	15.5	112.7	97	97	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-19	N: 863197.51 E: 2032009.09	988.3
CL-20	N: 862707.55 E: 2032011.09	987.5
CL-21	N: 863252.03 E: 2032009.17	988.9
CL-22	N: 862906.67 E: 2032009.06	988.8
CL-23	N: 862598.58 E: 2032009.61	988.5
CL-24	N: 863362.83, E: 2031989.10	989.9
CL-25	N: 862790.46 E: 2031989.10	990.1

Elevation Reference:

Braun Interfec Corporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Soint Cloud, MN 50301

Phone: 320.253.9740 Fax:

320.253,3054 Web: brounintertec.com

Report of Field Compaction Tests

Date:

July 10, 2012

Project:

SC-12-02255

Report: 5

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
CL-26	6/26/12	N	CS-1	13.3	115.9	14.7	113.3	98	97	A
CL-27	6/26/12	N	CS-2	13.0	118.7	14.1	118.4	100	97	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
CL-26	N: 862464.27 E: 2031702.44	990.0
CL-27	N: 862464.27 E: 2031302.44	990.1
	,	

			-	~		
K.	eva	tion	Кe	rer	en	ce:

Braun Interted Corporation

Thomas L. Henkemeyer

Clay In-place Permeability and Index Property Test Reports

Report No: MAT:W12-003498-S1

James Strice

Issue No: 1

Jim Streier

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Geotechnical Laboratory Date of Issue: 7/11/2012

Particle Size Distribution Method:

Drying by: Date Tested:

Sieve Size

% Passing

Limits

Sample Details

Sample ID:

W12-003498-S1

Alternate Sample ID:

CLTW-1

Sampled By: Sampling Method: John Blenker Soil Boring Shelby Tube

Date Sampled: Date Submitted: 6/22/2012

6/28/2012

Specification:

Source: Monticello, MN Material Type:

Sample Location:

Clayey Sand N:862813.03 E:2032010.56 Elev=985.93

Other Test Results

Description	Method	Result	Limits
Temperature (°C)	ASTM D 5084 - 03	3 22.0	
Cell Pressure (lb/in²)		99.0	
Top Pressure (lb/in²)		91.0	
Bottom Pressure (lb/in²)		94.0	
Effective Pressure (lb/in²)		5.0	
Pressure Differential (lb/in²)		3.0	
Permeant	De-aired tag		
Assumed Specific Gravity		2.750	
Initial Sample Height (in)		2.876	
Final Sample Height (in)		2.876	
Initial Sample Diameter (in)		2.828	
Final Sample Diameter (in)		2.828	1
Initial Sample Cross-Section Area (in²)		6.281	1
Final Sample Cross-Section Area (in²)		6.281	
Initial Sample Volume (in³)		18.06	/
Final Sample Volume (in³)		18.06	
Initial Sample Mass (g)		567.5	
Final Sample Mass (g)		567.5	1
Initial Dry Density (lb/ft³)		119.7	1
Final Dry Density (lb/ft³)		119.7	1
Initial Moisture Content (%)		15.9	
Final Moisture Content (%)		15.8	1
Initial Saturation (%)		100	
Final Saturation (%)		100	
Initial Hydraulic Gradient		27.8	ļ
Ending Hydraulic Gradient	n 00	28.3	
Hydraulic Conductivity (cm/s)		1E-08	ľ
Corrected Hydraulic Conductivity (cm/s)		06E-08	ľ
Date Tested	7/11	1/2012	

Chart

Comments

N/A

Form No: 18909, Report No: MAT:W12-003498-S1

© 2000-2011 QESTLab by SpectraQEST.com

Page 1 of 1

Particle Size Distribution

Report No: MAT:W12-003498-S2

Issue No: 1

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James String Jim Streier Geotechnical Laboratory

Date of Issue: 7/11/2012

Sample Details

Sample ID:

W12-003498-S2

Alternate Sample ID:

CLTW-2

Sampled By:

PM:

John Blenker

Sampling Method: Date Sampled:

Soil Boring Shelby Tube

6/22/2012

Date Submitted:

6/28/2012

Specification:

Source: Material Type: Monticello, MN

Clayey Sand

Sample Location:

N:862464.27 E:2031302.44 Elev=990.1

Sieve Size

Method:

Drying by: Date Tested:

% Passing

Limits

Oth	ner 7	Test	Resu	Its

Description	Method	Result	Limits
Temperature (°C)	ASTM D 5084 - 03	22.0	87-17-1 W
Cell Pressure (lb/in²)		99.0	
Top Pressure (lb/in²)		91.0	
Bottom Pressure (lb/in²)		94.0	
Effective Pressure (lb/in²)		5.0	
Pressure Differential (lb/in²)		3.0	
Permeant	De-aired ta	p water	
Assumed Specific Gravity		2.750	
Initial Sample Height (in)		2.729	
Final Sample Height (in)		2.729	
Initial Sample Diameter (in)		2.862	
Final Sample Diameter (in)		2.862	
Initial Sample Cross-Section Area (in²)		6.433	
Final Sample Cross-Section Area (in²)		6.433	
Initial Sample Volume (in³)		17.56	
Final Sample Volume (in³)		17.56	
Initial Sample Mass (g)		535.0	
Final Sample Mass (g)		535.0	
Initial Dry Density (lb/ft³)		116.1	1
Final Dry Density (lb/ft³)		116.1	I
Initial Moisture Content (%)		16.0	
Final Moisture Content (%)		17.4	l
Initial Saturation (%)		92	
Final Saturation (%)		100	
Initial Hydraulic Gradient		28.6	1
Ending Hydraulic Gradient	ALC: SOME	29.1	1
Hydraulic Conductivity (cm/s)		86E-08	1
Corrected Hydraulic Conductivity (cm/s)		3E-08	
Date Tested	7/1	1/2012	

Chart

Comments

N/A

Form No: 18909, Report No: MAT:W12-003498-S2

© 2000-2011 QESTLab by SpectraQEST.com

Page 1 of 1

Minneapolis Laboratory **Braun Intertec Corporation**

Phone: (320) 253-9940

Material Test Re	port
------------------	------

Client: Travis Peterson

Xcel Energy Services, Inc.
Sherburn County Generating Facility
Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James String

Report No: MAT:W12-003246-S1

Jim Streier

Issue No: 1

Geotechnical Laboratory Date of Issue: 7/3/2012

Sample Details

Sample ID:

W12-003246-S1

Alternate Sample ID:

CLTW-1 John Blenker

Sampled By: Sampling Method:

Date Sampled:

6/22/2012

Date Submitted:

6/28/2012 ASTM D 422

Specification: Source:

Material Type:

Clayey Sand

Sample Location:

N:862813.03 E:2032010.56

Other Test Results			
Description	Method	Result	Limits
Dispersion device	ASTM D 422 - 07		
Dispersion time (min)			
Shape			
Hardness			
Liquid Limit	ASTM D 4318 - 05	29	
Method		Method B	
Plastic Limit		15	
Plasticity Index		14	
Sample history			
Material retained on 425µm (No. 40) (%)		0.0	
Date Tested		7/3/2012	

C	O	n	1	r	n	e	n	ts

N/A

Report No: MAT:W12-003246-S1

Issue No: 1

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com PM:

James String

Jim Streier Geotechnical Laboratory Date of Issue: 7/3/2012

Sample Details

Sample ID: W12-003246-S1 CLTW-1 Alternate Sample ID: Sampled By: John Blenker

Sampling Method:

Date Sampled: 6/22/2012 Date Submitted: 6/28/2012 Specification: ASTM D 422

Source:

Material Type: Clayey Sand

N:862813.03 E:2032010.56 Sample Location:

Atterberg Limit:

Liquid Limit: 29 Plastic Limit: 15 Plasticity Index: 14 Linear Shrinkage (%): N/A

Sample Description:

Grading: ASTM D 422 - 07

Drying by:

Date Tested: 7/3/2012

Sieve Size	% Passing
3/4in (19.0mm)	100
3/8in (9.5mm)	99
No.4 (4.75mm)	96
No.10 (2.0mm)	92
No.20 (850µm)	86
No.40 (425µm)	78
No.60 (250µm)	69
No.100 (150µm)	59
No.200 (75µm)	49
28.8 µm	39.0
15.0 µm	32.5
8.7 µm	28.1
6.1 µm	25.1
5.2 µm	23.2
1.5 µm	17.1

D85: 0.7698 D60: 0.1584 D50: 0.0825 D30: 0.0110 D15: 0.0010 D10: 0.0004

Particle Size Distribution

	%in	3/8in	No.4	No.10	No.20	No.40	No.60	No.100	No.200	28.8 µm	15 µm	8.7 µm	8.5 開		1.5 µm
0			+	+		\pm	+	+	+		<u> </u>	-	-		<u>+</u>
+											1				
ıo‡	 												.l		
20 + · · ·	 								• • • • •		• • • •			_	7
+												1	\		
30	 										٠. :	···			. i
+										1	\				
40	 														. l
50 + · · ·	 								1						
†								1							
60	 							/			٠				
1							1	(The state of the s		
70	 						\								١
80 +	 					1					• • • •				
+					1										
90	 										٠				
ωŢ			_								1				1
00 T · ·															

COBBLES	GRA	VEL		SAND		FIN	IES
(0.0%)	Coarse (0.0%)	Fine (3.9%)	Coarse (4.6%)	Medium (13.1%)	Fine (29.8%)	Silt (25.7%)	Clay (22.9%)

Limits

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com James Strews

Report No: MAT:W12-003246-S2

Jim Streier

Issue No: 1

Geotechnical Laboratory Date of Issue: 7/3/2012

Sample Details

Sample ID:

W12-003246-S2

Alternate Sample ID:

CLTW-2

Sampled By:

John Blenker

Sampling Method: Date Sampled:

6/26/2012

Date Submitted:

6/28/2012

Specification: Source:

ASTM D 422

Material Type:

Clayey Sand

Sample Location:

N:862464.27 E:2031302.44

Description	Method	Result	Limits
Dispersion device	ASTM D 422 - 07	27 124	
Dispersion time (min)			
Shape			
Hardness			
Liquid Limit	ASTM D 4318 - 05	31	
Method		Method B	
Plastic Limit		14	
Plasticity Index		17	
Sample history			
Material retained on 425 µm (No. 40) (%)		0.0	
Date Tested		7/3/2012	

Comments

N/A

Report No: MAT:W12-003246-S2

Issue No: 1

Material Test Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

James Strius

Jim Streier Geotechnical Laboratory Date of Issue: 7/3/2012

Sample Details

Sample ID: W12-003246-S2

Alternate Sample ID: CLTW-2 Sampled By: John Blenker

Sampling Method:

Particle Size Distribution

Date Sampled:6/26/2012Date Submitted:6/28/2012Specification:ASTM D 422

Source:

Material Type: Clayey Sand

Sample Location: N:862464.27 E:2031302.44

Atterberg Limit:

Liquid Limit: 31
Plastic Limit: 14
Plasticity Index: 17
Linear Shrinkage (%): N/A

Sample Description:

Grading: ASTM D 422 - 07

Drying by:

Date Tested: 7/3/2012

100				• • •							
90											
80			\.								
+			1								
70 + · · · · · · ·				1						1	
60 - · · · · · · ·				٠	/		• • • • •		• • • • •		
50											
40						\					
40 7								\			
30 - · · · · · ·			•••	• • • •			••••		/		
20 - · · · · · ·											\
10											
+											
3/8in + 0	No.10	No.20	No.40	No.60	No.100 +	No.200 -	29.7 µm +	17.7 µm -	9.4 µm	ᄩ	1.5 µm -

COBBLES	GRAVEL			SAND		FIN	ES
(0.0%)	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	(0.0%)	(2.0%)	(4.0%)	(14.6%)	(31.6%)	(25.2%)	(22.6%)

Sieve Size	% Passing	Limits
3/8in (9.5mm)	100	
No.4 (4.75mm)	98	
No.10 (2.0mm)	94	
No.20 (850µm)	88	
No.40 (425µm)	79	
No.60 (250µm)	68	
No.100 (150µm)	58	
No.200 (75µm)	48	
29.7 μm	38.2	
17.7 µm	32.9	
9.4 µm	28.2	
6.4 µm	24.7	
5.4 µm	23.2	
1.5 µm	17.2	

 D85:
 0.6625
 D60:
 0.1637
 D50:
 0.0867

 D30:
 0.0120
 D15:
 0.0009
 D10:
 0.0003

Bottom Ash Test Reports

Bottom Ash Standard Proctor Test Reports Bottom Ash In-place Density Test Reports (Pond 3S) Bottom Ash In-place Density Test Reports (Pond 3N)

Proctor Report

Minneapolis Laboratory Braun Intertec Corporation Phone: (320) 253-9940

Report No: PTR:W12-003435-S1

Issue No: 1

Client:

Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Kankai Gohastan

Kanhai Seokaran

Proctor Supervisor Date of Issue: 7/10/2012

Sample Details

Sample ID:

W12-003435-S1

Alternate Sample ID: BAP-01

Date Sampled:

7/9/2012

Client

Sampled By: C

Sampling Method:

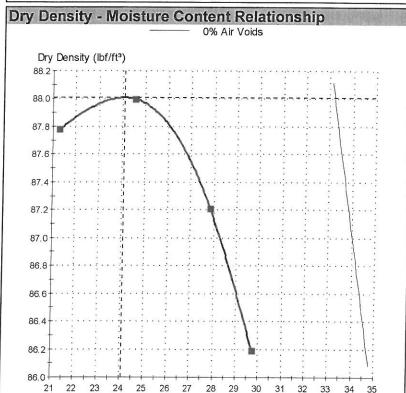
Source:

Onsite material

Material:

Specification:

Location:


Onsite

Tested By:

Kanhai Seokaran

Date Tested:

7/10/2012

Moisture Content (%)

Test Results ASTM D 698 - 07	
Maximum Dry Density (lbf/ft³):	88.0
Corrected Maximum Dry Density (lbf/ft³):	94.2
Optimum Moisture Content (%):	24.1
Corrected Optimum Moisture Content (%):	20.8
Method:	В
Preparation Method:	Moist
Rammer Type:	Hand round
Specific Gravity (Fines):	2.65
Specific Gravity Method:	Assumed
Retained Sieve 3/8" (9.5mm) (%):	14
Passing Sieve 3/8" (9.5mm) (%):	86
Specific Gravity (Oversize):	2.65
Excluded Oversize Retained Sieve 3/8" (9.5mm) (%):	14
Visual Description:	Bottom Ash

Comments

The 200 wash value equals 1.4%.

Report No: PTR:W12-003425-S1

Issue No: 1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Kanta Golostar

Kanhai Seokaran **Proctor Supervisor**

Date of Issue: 7/10/2012

Sample Details

Sample ID:

W12-003425-S1

Alternate Sample ID: BAP-02

Date Sampled: 7/9/2012 Sampled By:

Client

Sampling Method:

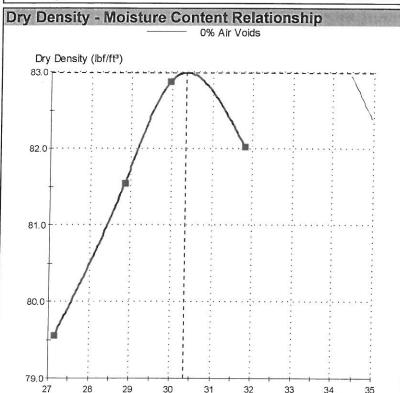
Source:

Onsite material

Material:

Specification:

Location:


Onsite

Tested By:

Kanhai Seokaran

Date Tested:

7/10/2012

Moisture Content (%)

Test Results -ASTM D 698 - 07-Maximum Dry Density (lbf/ft3): 83.0 **Corrected Maximum Dry Density** 83.0 (lbf/ft3): **Optimum Moisture Content (%):** 30.4 **Corrected Optimum Moisture** 30.4 Content (%): Method: В Preparation Method: Moist Rammer Type: Hand round Specific Gravity (Fines): 2.45 Specific Gravity Method: Assumed Retained Sieve 3/8" (9.5mm) (%): 3 Passing Sieve 3/8" (9.5mm) (%): 97 Specific Gravity (Oversize): 2.45 Excluded Oversize Retained Sieve 3/8" (9.5mm) (%): Visual Description: Bottom Ash

Comments

The 200 wash value equals 6.0%.

Proctor Report

Minneapolis Laboratory Braun Intertec Corporation Phone: (320) 253-9940

Report No: PTR:W12-003425-S3

Issue No: 1

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Kanhai Seokaran

Proctor Supervisor Date of Issue: 7/10/2012

Sample Details

Sample ID:

W12-003425-S3

Alternate Sample ID: BAP-03

Date Sampled:

7/9/2012

Cli

Client

Sampling Method:

Source:

Onsite material

Material:

Specification:

Location:

Onsite

Tested By:

Kanhai Seokaran

Date Tested:

Sampled By:

7/10/2012

Test Results	Mark &
ASTM D 698 - 07	
Maximum Dry Density (lbf/ft³):	84.4
Corrected Maximum Dry Density (lbf/ft³):	87.6
Optimum Moisture Content (%):	29.0
Corrected Optimum Moisture Content (%):	26.9
Method:	В
Preparation Method:	Moist
Rammer Type:	Hand round
Specific Gravity (Fines):	2.50
Specific Gravity Method:	Assumed
Retained Sieve 3/8" (9.5mm) (%):	7
Passing Sieve 3/8" (9.5mm) (%):	93
Specific Gravity (Oversize):	2.65
Excluded Oversize Retained Sieve 3/8" (9.5mm) (%):	7
Visual Description:	Bottom Ash

Comments

The 200 wash value equals 5.5%.

Report No: PTR:W12-003435-S2

Issue No: 1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Kankai Johassar

Kanhai Seokaran Proctor Supervisor

Date of Issue: 7/10/2012

Sample Details

Sample ID:

W12-003435-S2

Alternate Sample ID: BAP-04

Date Sampled: 7/9/2012

Sampled By:

Client

Sampling Method:

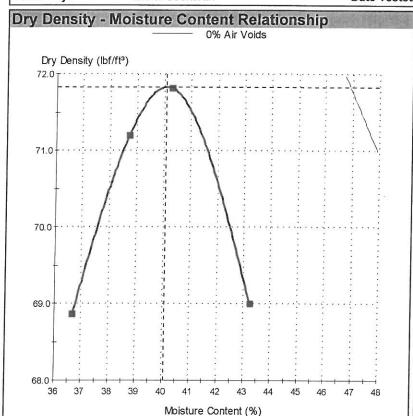
Source:

Onsite material

Material:

Specification:

Location:


Onsite

Tested By:

Kanhai Seokaran

Date Tested:

7/10/2012

Test Results ASTM D 698 - 07. Maximum Dry Density (lbf/ft3): 71.8 Corrected Maximum Dry Density 71.8 (lbf/ft³): Optimum Moisture Content (%): 40.1 **Corrected Optimum Moisture** 40.1 Content (%): Method: Α Preparation Method: Moist Rammer Type: Hand round Specific Gravity (Fines): 2.50 Specific Gravity Method: Assumed Retained Sieve No 4 (4.75mm) (%): 3 Passing Sieve No 4 (4.75mm) (%): 97 Specific Gravity (Oversize): 2.50 Excluded Oversize Retained Sieve No 4 (4.75mm) (%): Visual Description: Bottom Ash

Comments

The 200 wash value equals 9.4%.

John Blenker

) 253-9940 Report No: PTR:W12-004162-S1

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com

Kambai Gohastan

Kanhai Seokaran Proctor Supervisor Date of Issue: 7/26/2012

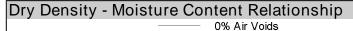
72.1

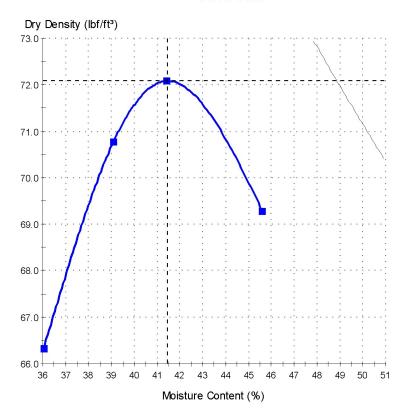
Issue No: 1

Sample Details

Sample ID: W12-004162-S1

Date Sampled: 7/25/2012


Sampling Method:


Source: Onsite material Material: Bottom Ash

Specification:

Location: N: 862923.44 E:2031919.59

Tested By: Kanhai Seokaran Date Tested: 7/26/2012

Test Results

_____ASTM D 698 - 07 _____ Maximum Dry Density (lbf/ft³): 72.1

Corrected Maximum Dry Density (lbf/ft³):

Alternate Sample ID: BAP-5

Sampled By:

Optimum Moisture Content (%): 41.5

Corrected Optimum Moisture 41.5

Content (%):

Method: A
Preparation Method: Moist

Rammer Type: Hand round

Specific Gravity (Fines): 2.65
Specific Gravity Method: Assumed

Retained Sieve No 4 (4.75mm) (%): 2
Passing Sieve No 4 (4.75mm) (%): 98

Visual Description: Bottom Ash

Comments

The 200 wash value equals 32.8%.

Proctor Report

Client: Travis Peterson

Xcel Energy Services, Inc.

Sherburn County Generating Facility

Becker, MN, 55308-8800

Project: SC-12-02255

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, MN, 55308

PM: Thomas L Henkemeyer, thenkemeyer@BraunIntertec.com Report No: PTR:W12-004331-S1 Issue No: 1

Kanka Gohosta

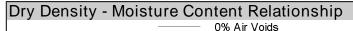
Kanhai Seokaran **Proctor Supervisor**

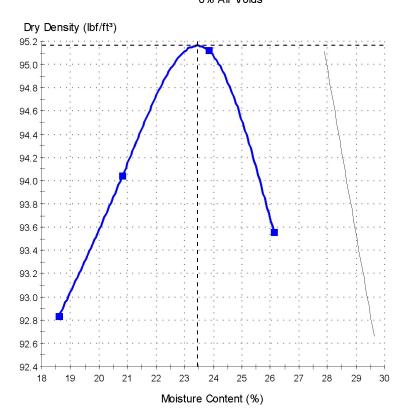
Date of Issue: 7/31/2012

Sample Details

Sample ID: W12-004331-S1

Date Sampled: 7/30/2012


Sampling Method:


Source: On-site Material: Bottom Ash

Specification:

Location: N:865298.43 E:2031783.24

Date Tested: 7/31/2012 Tested By: Kanhai Seokaran

Test Results

John Blenker

- ASTM D 698 - 07 -Maximum Dry Density (lbf/ft3): 95.2

Corrected Maximum Dry Density 100.0 (lbf/ft³):

Alternate Sample ID: BAP-06

Sampled By:

Optimum Moisture Content (%): 23.4 Corrected Optimum Moisture 20.9

Content (%):

Method: В

Preparation Method: Moist Rammer Type: Hand round

Specific Gravity (Fines): 2.65 Specific Gravity Method: Assumed

Retained Sieve 3/8" (9.5mm) (%): 11 Passing Sieve 3/8" (9.5mm) (%): 89 Specific Gravity (Oversize): 2.65

Excluded Oversize Retained Sieve 3/8"

(9.5mm) (%):

Visual Description: Bottom Ash

Comments

The 200 wash value equals 15.5%.

11

Bottom Ash In-place Density Test Reports (Pond 3S)

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320,253,9940 Fox: 320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 31, 2012

Project:

SC-12-02255

Report:

1

Client:

Travis Peterson

Xcel Energy Services, Inc. Sherburne Cty. Generating Facility

Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
BA-1	7/17/12	N	BAP-2	30.4	83.0	13.8	82.4	99	95	A
BA-2	7/23/12	N	BAP-3	26.9	87.6	3.0	85.3	97	95	A
BA-3	7/23/12	N	BAP-1	20.8	94.2	3.0	95.4	101	95	A
BA-4	7/23/12	N	BAP-3	26.9	87.6	12.6	86.0	98	95	A
BA-5	7/24/12	N	BAP-3	26.9	87.6	12.6	88.3	101	95	A
BA-6	7/25/12	N	BAP-2	30.4	83.0	18.3	82.5	99	95	A
BA-7	7/25/12	N	BAP-1	20.8	94.2	3.2	92.0	98	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
BA-1	N: 863458.56 E: 2031929.07	985.46
BA-2	N: 863264.24, E: 2031919.35	987.52
BA-3	N: 862524.59, E: 2031842.03	986.12
BA-4	N: 862477.15, E: 2031193.72	986.23
BA-5	N: 863406.08, E: 2031936.38	988.42
BA-6	N: 862923.44, E: 2031919.39	988.08
BA-7	N: 863359.24, E: 2031947.03	989.50

Elevation Reference:

c:

Braun Intertec Aorporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 31, 2012

Project:

SC-12-02255

Report: 2

Client:

Travis Peterson Xcel Energy Services, Inc.

Sherburne Cty. Generating Facility

Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)		Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
BA-8	7/26/12	N	BAP-1	20.8	94.2	1.7	94.9	101	95	A
BA-9	7/26/12	N	BAP-1	20.8	94.2	2.6	95.1	101	95	A
BA-10	7/26/12	N	BAP-1	20.8	94.2	8.4	96.5	102	95	A
BA-11	7/26/12	N	BAP-1	20.8	94.2	5.5	95.4	101	95	A
BA-12	7/26/12	N	BAP-3	26.9	87.6	12.3	89.2	102	95	A
BA-13	7/26/12	N	BAP-2	30.4	83.0	18.4	82.7	100	95	A
BA-14	7/26/12	N	BAP-1	20.8	94.2	6.1	91.2	97	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
BA-8	N: 863079.14, E: 2031919.09	989.26
BA-9	N: 862586.38, E: 2031957.32	989.65
BA-10	N: 862526.65, E: 2031821.85	987.32
BA-11	N: 862486.64, E: 2031717.31	988.43
BA-12	N: 862473.37, E: 2031388.80	
BA-13	N: 862493.01, E: 2031074.37	988.59
	N: 862477.30, E: 2030886.30	987.01
		988.37

Elevation Reference:

c:

Braun Intertec Oprporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Phone: 320.253.9940 Fax: 320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 31, 2012

Project:

SC-12-02255

Report:

3

Client:

Travis Peterson

Xcel Energy Services, Inc.

Sherburne Cty. Generating Facility

Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becker, Minnesota

Test	Date	Туре	Soil ID and Classification		Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
BA-15	7/27/12	N	BAP-1	20.8	94.2	2.4	102.7	109	95	A
BA-16	7/27/12	N	BAP-1	20.8	94.2	6.4	93.9	100	95	A
			ε							

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test Location	Elevation
N: 862492.56, E: 2031624.42	989.60
N: 862498.20, E: 2031255.47	989.23
-	Test Location N: 862492.56, E: 2031624.42 N: 862498.20, E: 2031255.47

Elevation Reference:

c:

Braun Intertec Corporation

Thomas L. Henkemeyer

Bottom Ash In-place Density Test Reports (Pond 3N)

3900 Roosevelt Road

Suite 113

Saint Cloud, MN 56301

Fax:

Phone: 320.253.9940 320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

July 31, 2012

Project:

SC-12-02255

Report: 1

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion Becker, Minnesota

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
BA3N-1	7/30/12	N	BAP-1	20.8	94.2	7.8	95.4	101	95	A
BA3N-2	7/30/12	N	BAP-6	20.9	100.0	10.4	105.6	106	95	A
BA3N-3	7/31/12	N	BAP-6	20.9	100.0	5.9	103.3	103	95	A
BA3N-4	7/31/12	N	BAP-6	20.9	100.0	3.9	100.0	100	95	A
BA3N-5	7/31/12	N	BAP-6	20.9	100.0	4.2	109.0	109	95	A
BA3N-6	7/31/12	N	BAP-3	26.9	87.6	10.7	88.5	101	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
BA3N-1	N: 865290.64, E: 2031155.59	987.07
BA3N-2	N: 865298.43, E: 2031783.24	987.04
BA3N-3	N: 863918.31, E: 2031934.96	987.34
BA3N-4	N: 864535.88, E: 2031936.91	988.01
BA3N-5	N: 865283.19, E: 2031919.16	988.70
BA3N-6	N: 865293.42, E: 2031329.83	987.93
		767.93

Elevation Reference:

c:

Braun Intertec Corporation

Thomas L. Henkemeyer

3900 Roosevelt Road

Suite 113 Saint Cloud, MN 56301 Phone: 320.253.9940 Fax:

320.253.3054 Web: braunintertec.com

Report of Field Compaction Tests

Date:

August 2, 2012

Project:

SC-12-02255

Report:

Client:

Travis Peterson Xcel Energy Services, Inc. Sherburne Cty. Generating Facility Becker, MN 55308-8800

Project Description:

Sherco 2012 Ash Construction Pond 3S Vertical Expansion

Becl	cer,	Mi	nneso	t
	,			

Test	Date	Туре	Soil ID and Classification	Optimum Moisture* (%)	Max. Lab Dry Density* (pcf)	Inplace Moisture (%)	Inplace Dry Density (pcf)	Relative Compaction (%)	Specified Minimum Compact. (%)	Comments
BA3N-7	8/1/12	N	BAP-06	20.9	100.0	5.9	102.8	103	95	A
BA3N-8	8/1/12	N	BAP-01	20.8	94.2	6.0	95.5	101	95	A
BA3N-9	8/1/12	N	BAP-06	20.9	100.0	4.8	108.9	109	95	A
BA3N-10	8/1/12	N	BAP-06	20.9	100.0	8.4	102.4	102	95	A
BA3N-11	8/1/12	N	BAP-03	26.9	87.6	16.8	87.6	100	95	A
BA3N-12	8/1/12	N	BAP-06	20.9	100.0	5.1	98.2	98	95	A

Key:

N = Nuclear, ASTM D 2922

SC = Sand Cone, ASTM D 1556

* = O.M. and M.L.D.D. rounded to nearest 0.1

A = Test results comply with specifications.

B = Test results do not comply with specifications.

C = Test results comply with air-voids specifications.

Test	Test Location	Elevation
BA3N-7	N: 865318.49, E: 2031361.15	989.29
BA3N-8	N: 865323.25, E: 2031428.33	980.16
BA3N-9	N: 865285.37, E: 2031916.18	989.04
BA3N-10	N: 865130.82, E: 2031945.40	989.98
BA3N-11	N: 864402.39, E: 2031948.93	989.15
BA3N-12	N: 864035.73, E: 2031941.96	989.99
		307.79

Elevation Reference:

c:

Braun Interlec Corporation

Thomas L. Henkemeyer Project Manager

Survey Verification Data

Survey Verification Data Tabulation Survey Verification Drawings

Pond 3 South 2012 Construction - Survey Tabulation

			(A)	(B)	(C)	(D)	(E)	(F)
Verification Point No.	Northing	Easting	Finshed Grade	Subgrade		Finish	ed Grade	
FOIII NO.			Design Elevation	As-Built Elevation	As-Built Elevation	Difference From Design Elevation (C-A)	Material Thickness, ft (C-B)	Finished Grade Description
200	862,354.39	2,030,899.58	995.00	994.44	994.99	-0.01	0.55	Topsoil
201	862,359.25	2,030,993.03	995.00	994.42	994.93	-0.07	0.51	Topsoil
202	862,364.10	2,031,086.49	995.00	994.36	994.91	-0.09	0.55	Topsoil
203	862,368.95	2,031,179.94	995.00	994.37	994.94	-0.06	0.57	Topsoil
204	862,373.80	2,031,273.40	995.00	994.33	994.95	-0.05	0.61	Topsoil
205	862,378.66	2,031,366.85	995.00	994.36	994.98	-0.02	0.62	Topsoil
206	862,383.51	2,031,460.30	995.00	994.35	994.92	-0.08	0.57	Topsoil
207	862,388.36	2,031,553.76	995.00	994.37	994.93	-0.07	0.56	Topsoil
208	862,393.22	2,031,647.21	995.00	994.35	994.91	-0.09	0.56	Topsoil
209	862,398.07	2,031,740.67	995.00	994.48	994.98	-0.02	0.50	Topsoil
210	862,402.92	2,031,834.12	995.00	994.38	994.94	-0.06	0.56	Topsoil
211	862,407.77	2,031,927.57	995.00	994.54	995.05	0.05	0.51	Topsoil
212	862,467.40	2,031,987.20	995.00	994.40	995.02	0.02	0.63	Topsoil
213	862,527.02	2,032,046.82	995.00	994.51	995.02	0.02	0.51	Topsoil
214	862,462.39	2,032,046.82	995.00 995.00	994.42	995.09	0.09	0.67	Topsoil Topsoil
215	862,427.27	2,032,032.81		994.36	995.05 994.90	0.05	0.68	Topsoil
216 217	862,411.45	2,031,998.46	995.00 995.00	994.35 994.43	994.90	-0.10 0.00	0.56 0.58	•
1	862,627.02	2,032,046.82	995.00					Topsoil Topsoil
218	862,727.02	2,032,046.82		994.46	994.95	-0.05	0.50	Topsoil
219 220	862,827.02	2,032,046.82	995.00 995.00	994.52 994.47	995.03 995.04	0.03 0.04	0.51 0.57	Topsoil
221	862,927.02	2,032,046.82	995.00	994.40		-0.10	0.57	Topsoil
222	863,027.02 863,127.02	2,032,046.82	995.00	994.47	994.90 994.97	-0.10	0.50	Topsoil
223	·			994.41	994.91	-0.03	0.50	Topsoil
224	863,227.02 863,327.02	2,032,046.82 2,032,046.82	995.00 995.00	994.44	994.96	-0.09	0.52	Topsoil
225	863,427.02	2,032,046.82	995.00	994.50	995.00	0.00	0.50	Topsoil
226	863,526.67	2,032,046.82	995.00	994.41	995.04	0.04	0.63	Topsoil
227	862,410.03	2,030,857.91	994.00	993.55	994.05	0.05	0.51	Class 5
228	862,411.67	2,030,889.43	994.00	993.42	994.03	0.03	0.61	Class 5
229	862,414.26	2,030,939.37	994.00	993.44	993.97	-0.03	0.53	Class 5
230	862,416.85	2,030,989.30	994.00	993.37	994.06	0.06	0.69	Class 5
231	862,391.89	2,030,990.60	994.43	993.87	994.45	0.02	0.58	Class 5
232	862,389.29	2,030,940.66	994.43	993.93	994.45	0.02	0.52	Class 5
233	862,386.70	2,030,890.73	994.43	994.04	994.56	0.13	0.51	Class 5
234	862,384.30	2.030.844.59	994.43	994.18	994.73	0.30	0.55	Class 5
235	862.352.39	2.030.828.06	995.00	994.96	995.81	0.81	0.85	Topsoil
236	862,421.59	2,031,080.61	994.00	993.40	993.90	-0.10	0.50	Topsoil
237	862,426.33	2,031,171.93	994.00	993.39	993.93	-0.07	0.54	Topsoil
238	862,431.08	2,031,263.24	994.00	993.43	993.98	-0.02	0.54	Topsoil
239	862,435.82	2,031,354.55	994.00	993.43	993.99	-0.01	0.56	Topsoil
240	862,440.56	2,031,445.87	994.00	993.40	993.94	-0.06	0.54	Topsoil
241	862,445.30	2,031,537.18	994.00	993.51	994.02	0.02	0.51	Topsoil
242	862,450.04	2,031,628.50	994.00	993.55	994.07	0.07	0.51	Topsoil
243	862,454.78	2,031,719.81	994.00	993.41	993.93	-0.07	0.52	Topsoil
244	862,459.52	2,031,811.12	994.00	993.57	994.09	0.09	0.51	Topsoil
245	862,464.27	2,031,902.44	994.00	993.53	994.04	0.04	0.52	Topsoil
246	862,507.60	2,031,945.77	994.00	993.41	993.95	-0.05	0.54	Topsoil
247	862,550.93	2,031,989.10	994.00	993.57	994.09	0.09	0.51	Topsoil
248	862,641.36	2,031,989.10	994.00	993.48	994.00	0.00	0.52	Topsoil
249	862,731.80	2,031,989.10	994.00	993.43	993.93	-0.07	0.50	Topsoil
250	862,822.23	2,031,989.10	994.00	993.40	993.89	-0.11	0.50	Topsoil
251	862,912.67	2,031,989.10	994.00	993.42	993.95	-0.05	0.53	Topsoil
252	863,003.10	2,031,989.10	994.00	993.40	993.92	-0.08	0.53	Topsoil
253	863,093.54	2,031,989.10	994.00	993.41	993.96	-0.04	0.54	Class 5
254	863,093.54	2,032,014.10	994.43	993.85	994.38	-0.05	0.53	Class 5

Pond 3 South 2012 Construction - Survey Tabulation

			(A)	(B)	(C)	(D)	(E)	(F)
Verification	Northing	Easting	Finshed Grade	Subgrade	. ,		ed Grade	, ,
Point No.	· ·	C	Design Elevation	As-Built Elevation	As-Built Elevation	Difference From Design Elevation (C-A)	Material Thickness, ft (C-B)	Finished Grade Description
255	863,142.00	2,032,014.10	994.43	993.90	994.41	-0.02	0.51	Class 5
256	863,142.00	2,031,989.10	994.00	993.42	994.00	0.00	0.58	Class 5
257	863,190.46	2,031,989.10	994.00	993.43	993.97	-0.03	0.54	Class 5
258	863,190.46	2,032,014.10	994.43	993.85	994.36 994.45	-0.07	0.51	Class 5
259 260	863,236.45 863,236.45	2,032,014.10 2,031,989.10	994.43 994.00	993.94 993.44	994.45	0.02 0.06	0.51 0.62	Class 5 Class 5
261	863,282.44	2,031,989.10	994.00	993.46	993.99	-0.01	0.52	Class 5
262	863,282.44	2,032,014.10	994.43	993.84	994.37	-0.06	0.53	Class 5
263	863,328.43	2,032,014.10	994.43	993.98	994.48	0.05	0.50	Class 5
264	863,328.43	2,031,989.10	994.00	993.45	993.98	-0.02	0.53	Class 5
265	863,374.42	2,031,989.10	994.00	993.54	994.05	0.05	0.52	Class 5
266	863,374.42	2,032,014.10	994.43	993.84	994.43	0.00	0.60	Class 5
267 268	863,420.41 863,420.41	2,032,014.10 2,031,989.10	994.43 994.00	993.86 993.41	994.38 993.92	-0.05 -0.08	0.52 0.51	Class 5 Class 5
269	863,466.40	2,031,989.10	994.00	993.41	993.92	-0.08	0.51	Class 5
270	863,466.40	2,032,014.10	994.43	993.88	994.40	-0.03	0.52	Class 5
271	863,512.39	2,032,014.10	994.43	993.95	994.45	0.02	0.50	Class 5
272	863,512.39	2,031,989.10	994.00	993.45	994.07	0.07	0.62	Class 5
273	863,558.40	2,031,989.10	994.00	993.40	993.89	-0.11	0.49	Class 5
274	863,558.40	2,032,014.10	994.43	993.66	994.47	0.04	0.81	Class 5
11275	863,556.94	2,031,977.94	990.29	989.87	990.41	0.11	0.54	Topsoil
11275	863,478.31	2,031,977.78	990.29	989.74	990.32	0.03	0.58	Topsoil
11277	863,399.38	2,031,977.97	990.29	989.82	990.41	0.11	0.58	Topsoil
11278	863,320.53	2,031,977.91	990.29	989.82	990.33	0.03	0.51	Topsoil
11279	863,241.70	2,031,977.85	990.29	989.74	990.26	-0.03	0.52	Topsoil
11280	863,042.13	2,031,977.88	990.29	989.69	990.32	0.03	0.63	Topsoil
11281	862,945.17	2,031,977.82	990.29	989.79	990.31	0.02	0.52	Topsoil
11282	862,847.72	2,031,977.93	990.29 990.29	989.77 989.79	990.28	-0.01 0.01	0.52 0.51	Topsoil Topsoil
11283 11284	862,750.75 862,653.26	2,031,977.88 2,031,977.88	990.29	989.79	990.30 990.27	-0.02	0.55	Topsoil
11285	862,556.36	2,031,977.86	990.29	989.75	990.27	-0.03	0.52	Topsoil
11286	862,515.38	2,031,938.09	990.29	989.84	990.35	0.06	0.51	Topsoil
11287	862,475.53	2,031,897.57	990.29	989.85	990.44	0.15	0.59	Topsoil
11288	862,470.26	2,031,800.99	990.29	989.81	990.43	0.13	0.62	Topsoil
11289	862,465.26	2,031,705.30	990.29	989.71	990.27	-0.02	0.56	Topsoil
11290	862,460.42	2,031,609.52	990.29	989.74	990.32	0.02	0.57	Topsoil
11291 11292	862,455.35 862,450.42	2,031,513.65 2,031,417.89	990.29 990.29	989.77 989.74	990.45 990.29	0.15 0.00	0.68 0.55	Topsoil Topsoil
11292	862,445.45	2,031,417.89	990.29	989.73	990.25	-0.05	0.55	Topsoil
11294	862,440.38	2,031,226.36	990.29	989.76	990.28	-0.01	0.52	Topsoil
11295	862,435.43	2,031,130.48	990.29	989.77	990.29	0.00	0.52	Topsoil
11296	862,430.50	2,031,034.81	989.77	989.69	990.26	0.50	0.57	Topsoil
333	862,334.71	2,030,911.93	988.00	987.40	988.01	0.01	0.61	Topsoil
334	862,340.32	2,031,020.06	988.00	987.53	988.04	0.04	0.51	Topsoil
335 336	862,345.57 862,350.62	2,031,121.15 2,031,218.31	988.00 988.00	987.56 987.43	988.08 988.07	0.08 0.07	0.52 0.65	Topsoil Topsoil
337	862,355.71	2,031,218.31	988.00	987.43	988.07	0.07	0.50	Topsoil
338	862,360.75	2,031,413.42	988.00	987.46	987.98	-0.02	0.52	Topsoil
339	862,363.33	2,031,463.16	988.00	987.41	988.06	0.06	0.66	Topsoil
340	862,368.44	2,031,561.64	988.00	987.58	988.08	0.08	0.50	Topsoil
341	862,373.54	2,031,659.80	988.00	987.57	988.06	0.06	0.49	Topsoil
342	862,378.59	2,031,757.00	988.00	987.49	988.04	0.04	0.55	Topsoil
343	862,383.68	2,031,855.07	988.00	987.48	987.98	-0.02	0.50	Topsoil
344	862,388.56	2,031,947.52	988.00	987.40	988.07	0.07	0.67	Topsoil

Pond 3 South 2012 Construction - Survey Tabulation

			(A)	(B)	(C)	(D)	(E)	(F)
Verification Point No.	Northing	Easting	Finshed Grade	Subgrade		Finish	ed Grade	
			Design Elevation	As-Built Elevation	As-Built Elevation	Difference From Design Elevation (C-A)	Material Thickness, ft (C-B)	Finished Grade Description
345	862,391.42	2,032,001.88	988.00	987.34	987.90	-0.10	0.55	Topsoil
346	862,405.44	2,032,038.70	988.00	987.33	987.90	-0.10	0.57	Topsoil
347	862,429.91	2,032,059.25	988.00	987.43	988.01	0.01	0.58	Topsoil
348	862,483.29	2,032,067.13	988.00	987.41	988.07	0.07	0.67	Topsoil
349	862,576.34	2,032,067.12	988.00	987.45	988.04	0.04	0.59	Topsoil
350	862,676.04	2,032,067.12	988.00	987.54	988.09	0.09	0.55	Topsoil
351	862,775.39	2,032,067.12	988.00	987.53	988.07	0.07	0.54	Topsoil
352	862,875.23	2,032,067.12	988.00	987.44	987.96	-0.04	0.52	Topsoil
353	862,974.18	2,032,067.12	988.00	987.41	988.09	0.09	0.68	Topsoil
354	863,074.42	2,032,067.12	988.00	987.43	987.95	-0.05	0.52	Topsoil
355	863,173.77	2,032,067.12	988.00	987.47	987.97	-0.03	0.51	Topsoil
356	863,273.72	2,032,067.12	988.00	987.49	988.05	0.05	0.56	Topsoil
357	863,373.01	2,032,067.12	988.00	987.59	988.10	0.10	0.51	Topsoil
275*	863,557.00	2,031,976.35	989.75	989.82	989.80			Topsoil
276*	863,478.19	2,031,976.35	989.75	989.60	989.82			Topsoil
277*	863,399.38	2,031,976.35	989.75		989.85			Topsoil
278*	863,320.57	2,031,976.35	989.75	989.58	989.74			Topsoil
279*	863,241.76	2,031,976.35	989.75	989.74	989.81			Topsoil
280*	863,042.25	2,031,976.35	989.75	989.72	989.81			Topsoil
281*	862,945.04	2,031,976.35	989.75	989.71	989.74			Topsoil
282*	862,847.84	2,031,976.35	989.75	989.71	989.67			Topsoil
283*	862,750.63	2,031,976.35	989.75	989.82	989.77			Topsoil
284*	862,653.42	2,031,976.35	989.75	989.70	989.70			Topsoil
285*	862,556.21	2,031,976.35	989.75	989.64	989.83			Topsoil
286*	862,516.61	2,031,936.75	989.75	989.79	989.79			Topsoil
287*	862,476.75	2,031,896.89	989.75	989.73	989.77			Topsoil
288*	862,471.77	2,031,801.09	989.75	989.76	989.78			Topsoil
289*	862,466.80	2,031,705.30	989.75	989.74	989.68			Topsoil
290*	862,461.82	2,031,609.51	989.75	989.71	989.79			Topsoil
291*	862,456.85	2,031,513.72	989.75	989.66	989.73			Topsoil
292*	862,451.88	2,031,417.93	989.75	989.72	989.81			Topsoil
293*	862,446.90	2,031,322.14	989.75	989.64	989.78			Topsoil
294*	862,441.93	2,031,226.35	989.75	989.72	989.72			Topsoil
295*	862,436.95	2,031,130.56	989.75	989.78	989.79			Topsoil
296*	862,431.98	2,031,034.77	989.75	989.68	989.76			Topsoil

^{*}Original survey points. Refer to points 11275 to 11296 for the correct surveyed location.

Verification		Design		Location	As-Built Subgrade Survey			As-Built	Finished Grade	Clay Thickness (6' MIN*)	Clay Width	
Point No.	Northing	Easting	Elevation	Description	Northing	Easting	Elevation	Northing	Easting	Elevation	(FIN1-SG1 or SG2)	(8' MIN)
1	862,394.53	2,030,964.44	984	SG2	862,394.55	2,030,964.40	983.81					
2	862,395.53	2,030,964.39	990	FIN1				862,395.53	2,030,964.41	990.02		
3	862,386.54	2,030,964.85	984	SG1	862,386.57	2,030,964.81	983.84					
4	862,403.52	2,030,963.98	990	SG3/FIN2	862,403.50	2,030,963.96	989.88	862,403.51	2,030,963.95	990.11	6.18	8.0
5	862,393.21	2,030,938.94	984	SG2	862,393.17	2,030,939.03	984.01					
6	862,394.17	2,030,938.25	990	FIN1				862,394.17	2,030,938.31	990.09		
7	862,385.18	2,030,938.66	984	SG1	862,385.15	2,030,938.69	983.98	,	, ,			
8	862,402.17	2,030,937.89	990	SG3/FIN2	862,402.27	2,030,938.01	989.63	862,402.14	2,030,937.84	990.11	6.11	8.0
9	862,406.11	2,031,013.91	990	SG3/FIN2	862,406.12	2,031,013.89	989.89	862,406.13	2,031,013.90	990.20		
10	862,397.13	2,031,014.37	984	SG2	862,397.14	2,031,014.39	983.83	002,100110	2,001,010.00	000.20		
11	862,398.12	2,031,014.32	990	FIN1	002,007.14	2,001,014.00	300.00	862,398.18	2,031,014.30	990.16		
12	862,389.14	2,031,014.78	984	SG1	862,389.16	2,031,014.92	983.83	002,330.10	2,031,014.30	330.10	6.33	8.0
		1	1		1	1	1			1	1	
13	862,408.71	2,031,063.85	990	SG3/FIN2	862,408.75	2,031,063.82	989.73	862,408.77	2,031,063.80	990.07		
14	862,399.72	2,031,064.31	984	SG2	862,399.70	2,031,064.30	983.80					
15	862,400.72	2,031,064.26	990	FIN1				862,400.67	2,031,064.32	990.03		
16	862,391.73	2,031,064.72	984	SG1	862,391.73	2,031,064.69	983.90				6.13	8.1
17	862,411.30	2,031,113.78	990	SG3/FIN2	862,411.38	2,031,113.72	989.67	862,411.33	2,031,113.78	990.22		
18	862,402.31	2,031,114.24	984	SG2	862,402.40	2,031,114.15	983.74					
19	862,403.31	2,031,114.19	990	FIN1				862,403.32	2,031,114.18	990.26		
20	862,394.32	2,031,114.65	984	SG1	862,394.30	2,031,114.61	984.09				6.16	8.0
21	862,413.89	2,031,163.71	990	SG3/FIN2	862,413.87	2,031,163.72	989.95	862,413.89	2,031,163.68	990.16		
22	862,404.90	2,031,164.17	984	SG2	862,404.86	2,031,164.20	983.81	002,110.00	2,001,100.00	000110		
23	862,405.90	2,031,164.12	990	FIN1	302,101100	2,001,101120	000.01	862,405.90	2,031,164.13	990.08		
24	862,396.91	2,031,164.58	984	SG1	862,396.96	2,031,164.57	983.90	002, 100.00	2,001,101.10	000.00	6.18	8.0
0.7	000 //0 //	0.004.515.5	000	000/=:::	000 (10 = 1	0.004.010.55	000 =0	000 //0 ==		000.10		
25	862,416.48	2,031,213.64	990	SG3/FIN2	862,416.54	2,031,213.58	989.78	862,416.50	2,031,213.68	990.10	4	
26	862,407.50	2,031,214.11	984	SG2	862,407.55	2,031,214.07	983.77	000 400 50	0.004.044.00	000.05	4	
27	862,408.50	2,031,214.05	990	FIN1	000 000 55	0.004.044.50	000.04	862,408.53	2,031,214.06	990.05		0.0
28	862,399.51	2,031,214.52	984	SG1	862,399.55	2,031,214.59	983.84		<u> </u>	<u> </u>	6.21	8.0
29	862,419.08	2,031,263.58	990	SG3/FIN2	862,419.09	2,031,263.55	989.63	862,419.12	2,031,263.55	990.11		
30	862,410.09	2,031,264.04	984	SG2	862,410.04	2,031,264.07	983.85					
31	862,411.09	2,031,263.99	990	FIN1				862,411.12	2,031,263.93	990.04		
32	862,402.10	2,031,264.45	984	SG1	862,402.14	2,031,264.41	984.04				6.00	8.0
33	862,421.67	2,031,313.51	990	SG3/FIN2	862,421.72	2,031,313.51	989.91	862,421.69	2,031,313.49	990.14		
34	862,412.68	2,031,313.97	984	SG2	862,412.71	2,031,313.98	983.93	502, 121.00	2,001,010.40	000.11	1	
35	862,413.68	2,031,313.92	990	FIN1	002,412.71	2,001,010.90	500.50	862,413.68	2,031,313.88	990.17	-	
36	862,404.69	2,031,313.92	984	SG1	862,404.71	2,031,314.37	983.73	552,415.00	2,001,010.00	330.17	6.44	8.0

Tolerance:

Thickness: -0.0 to +0.2 feet

P:\Projects\XCEL\SHC0601 Pond 3S General Services\2012 construction\Cert Report\Appendix E - Survey Verification\ Pond 3S Clay Barrier Survey Verification_Cert Report

Verification		Design	I	Location	As-Bu	ilt Subgrade Su	ırvey	As-Built	Finished Grade	Clay Thickness	Clay Width	
Point No.	Northing	Easting	Elevation	Description	Northing	Easting	Elevation	Northing	Easting	Elevation	(6' MIN*) (FIN1-SG1 or SG2)	(8' MIN)
37	862,424.26	2,031,363.44	990	SG3/FIN2	862,424.24	2,031,363.48	989.86	862,424.26	2,031,363.45	990.23		
38	862,415.27	2,031,363.90	984	SG2	862,415.35	2,031,363.95	983.98					
39	862,416.27	2,031,363.85	990	FIN1				862,416.25	2,031,363.80	990.00		
40	862,407.29	2,031,364.31	984	SG1	862,407.22	2,031,364.37	984.08				5.92	8.0
41	862,426.72	2,031,410.74	990	SG3/FIN2	862,426.76	2,031,410.72	990.00	862,426.73	2,031,410.71	990.15		
42	862,417.73	2,031,411.20	984	SG2	862,417.81	2,031,411.13	984.26	Í	, , ,			
43	862,418.73	2,031,411.15	990	FIN1				862,418.77	2,031,411.21	990.03		
44	862,409.74	2,031,411.61	984	SG1	862,409.74	2,031,411.63	983.99	,	, ,		6.04	8.0
45	862,429.45	2,031,463.31	990	SG3/FIN2	862,429.47	2,031,463.29	990.00	862,429.38	2,031,463.32	990.03		
46	862,420.46	2,031,463.77	984	SG2	862,420.46	2,031,463.76	983.99	002, 120.00	2,001,100.02	000.00		
47	862,421.46	2,031,463.72	990	FIN1	002,420.40	2,001,400.70	300.33	862,421.44	2,031,463.66	990.02		
48	862,412.47	2,031,464.18	984	SG1	862,412.44	2,031,464.26	984.39	002,721.77	2,031,403.00	330.02	5.64	8.0
						•			•			
49	862,432.04	2,031,513.24	990	SG3/FIN2	862,432.07	2,031,513.18	989.90	862,432.04	2,031,513.27	990.08		
50	862,423.05	2,031,513.70	984	SG2								
51	862,424.05	2,031,513.65	990	FIN1				862,424.07	2,031,513.73	990.07		
52	862,415.06	2,031,514.11	984	SG1	862,415.10	2,031,514.20	984.08		<u> </u>		5.99	8.0
53	862,434.63	2,031,563.17	990	SG3/FIN2	862,434.58	2,031,563.13	989.88	862,434.61	2,031,563.10	990.20		
54	862,425.65	2,031,563.63	984	SG2	862,425.63	2,031,563.57	984.23					
55	862,426.64	2,031,563.58	990	FIN1				862,426.62	2,031,563.56	990.02		
56	862,417.66	2,031,564.04	984	SG1	862,417.65	2,031,563.98	984.22				5.80	8.0
57	862,437.23	2,031,613.11	990	SG3/FIN2	862,437.26	2,031,613.15	989.94	862,437.22	2,031,613.07	990.07		
58	862,428.24	2,031,613.57	984	SG2	862,428.28	2,031,613.52	983.91	002,437.22	2,031,013.07	330.07		
59	862,429.24	2,031,613.52	990	FIN1	002,420.20	2,031,013.32	903.91	862,429.23	2,031,613.50	990.06		
60	862,420.25	2,031,613.98	984	SG1	862,420.24	2,031,613.98	984.03	002,429.23	2,031,013.30	990.00	6.02	8.0
			•		-				•			
61	862,439.82	2,031,663.04	990	SG3/FIN2	862,439.85	2,031,663.02	989.93	862,439.86	2,031,663.05	990.16		
62	862,430.83	2,031,663.50	984	SG2	862,430.82	2,031,663.38	984.01					
63	862,431.83	2,031,663.45	990	FIN1				862,431.90	2,031,663.49	990.26		
64	862,422.84	2,031,663.91	984	SG1	862,422.78	2,031,663.87	983.95				6.30	8.0
65	862,442.41	2,031,712.97	990	SG3/FIN2	862,442.44	2,031,712.99	989.95	862,442.39	2,031,712.90	990.10		
66	862,433.42	2,031,712.97	984	SG2	862,433.42	2,031,713.48	983.90	502,442.59	2,001,712.90	330.10	-	
67	862,434.42	2,031,713.43	990	FIN1	002,433.42	2,031,713.40	303.30	862,434.42	2,031,713.33	990.05		
68	862,425.43	2,031,713.84	984	SG1	862,425.37	2,031,713.83	983.88	002,434.42	2,001,110.00	990.00	6.18	8.0
		1	I		1	1	1		1	I	·	
69	862,445.01	2,031,762.90	990	SG3/FIN2	862,444.99	2,031,762.89	989.81	862,444.99	2,031,762.87	990.24	_	
70	862,436.02	2,031,763.37	984	SG2	862,436.03	2,031,763.42	983.89				4	
71	862,437.02	2,031,763.31	990	FIN1				862,437.04	2,031,763.32	990.14	<u> </u>	
72	862,428.03	2,031,763.78	984	SG1	862,428.06	2,031,763.66	983.79				6.35	8.0

Tolerance:

Thickness: -0.0 to +0.2 feet

P:\Projects\XCEL\SHC0601 Pond 3S General Services\2012 construction\Cert Report\Appendix E - Survey Verification\ Pond 3S Clay Barrier Survey Verification_Cert Report

Verification		Design		Location	As-Bu	ilt Subgrade Su	ırvey	As-Built	Finished Grade	Clay Thickness (6' MIN*)	Clay Width	
Point No.	Northing	Easting	Elevation	Description	Northing	Easting	Elevation	Northing	Easting	Elevation	(FIN1-SG1 or SG2)	(8' MIN)
73	862,447.60	2,031,812.84	990	SG3/FIN2	862,447.55	2,031,812.82	990.10	862,447.60	2,031,812.87	990.29		
74	862,438.61	2,031,813.30	984	SG2	862,438.64	2,031,813.27	983.97					
75	862,439.61	2,031,813.25	990	FIN1				862,439.54	2,031,813.29	990.18		
76	862,430.62	2,031,813.71	984	SG1	862,430.64	2,031,813.76	983.63				6.55	8.1
77	862,450.19	2,031,862.77	990	SG3/FIN2	862,450.17	2,031,862.74	989.99	862,450.18	2,031,862.81	990.19		
78	862,441.20	2,031,863.23	984	SG2	862,441.27	2,031,863.28	983.79	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
79	862,442.20	2,031,863.18	990	FIN1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,_,,		862,442.23	2,031,863.23	990.13		
80	862,433.21	2,031,863.64	984	SG1	862,433.21	2,031,863.58	983.66	002, : :2:20	2,001,000.20	000110	6.48	8.0
	·						•			•		
81	862,452.52	2,031,907.67	990	SG3/FIN2	862,452.55	2,031,907.66	989.84	862,452.55	2,031,907.66	990.31		
82	862,443.71	2,031,911.58	984	SG2	862,443.69	2,031,911.53	983.87					
83	862,444.69	2,031,911.15	990	FIN1				862,444.72	2,031,911.22	990.18		
84	862,435.88	2,031,915.07	984	SG1	862,435.93	2,031,915.07	983.84				6.33	8.6
85	862,489.64	2,031,944.78	990	SG3/FIN2	862,489.63	2,031,944.74	989.74	862,489.67	2,031,944.75	990.09		
86	862,483.27	2,031,951.14	984	SG2	862,483.40	2,031,951.28	983.94					
87	862,483.98	2,031,950.44	990	FIN1				862,484.02	2,031,950.37	990.09		
88	862,477.62	2,031,956.80	984	SG1	862,477.64	2,031,956.93	983.50				6.59	8.0
	T	T			·	T	T		T	l		
89	862,528.04	2,031,983.18	990	SG3/FIN2	862,528.03	2,031,983.17	989.65	862,528.11	2,031,983.20	990.11	_	
90	862,521.68	2,031,989.55	984	SG2	862,521.61	2,031,989.60	983.70				_	
91	862,522.38	2,031,988.84	990	FIN1				862,522.33	2,031,988.91	990.06		
92	862,516.02	2,031,995.20	984	SG1	862,515.95	2,031,995.14	983.25				6.80	8.1
93	862,570.62	2,032,001.10	990	SG3/FIN2	862,570.62	2,032,001.06	989.71	862,570.65	2,032,001.10	990.29		
94	862,570.62	2,032,001.10	984	SG2	862,570.55	2,032,001.08	983.95	002,570.05	2,032,001.10	330.23		
95	862,570.62	2,032,010.10	990	FIN1	002,070.00	2,032,010.00	303.33	862,570.66	2,032,009.06	990.06		
96	862,570.62	2,032,003.10	984	SG1	862,570.57	2,032,018.10	983.72	002,570.00	2,032,003.00	330.00	6.34	8.0
00	002,070.02	2,002,010.10	001	001	002,010.01	2,002,010.10	000.72		L	<u>l</u>	0.0 .	0.0
97	862,620.62	2,032,001.10	990	SG3/FIN2	862,620.57	2,032,001.08	989.65	862,620.61	2,032,001.09	990.30		
98	862,620.62	2,032,010.10	984	SG2	862,620.64	2,032,010.07	984.12	,	, ,			
99	862,620.62	2,032,009.10	990	FIN1	. ,	,,.		862,620.58	2,032,009.09	990.24		
100	862,620.62	2,032,018.10	984	SG1	862,620.64	2,032,018.05	983.93	. ,	,,		6.31	8.0
		•			_	•	•		•	•		
101	862,670.62	2,032,001.10	990	SG3/FIN2	862,670.58	2,032,001.19	989.68	862,670.60	2,032,001.10	990.25		
102	862,670.62	2,032,010.10	984	SG2	862,670.67	2,032,010.11	984.00					
103	862,670.62	2,032,009.10	990	FIN1				862,670.63	2,032,009.10	990.15		
104	862,670.62	2,032,018.10	984	SG1	862,670.67	2,032,018.08	983.83				6.32	8.0
45-		I a aaa		000:		T = === :			I		Ţ T	
105	862,720.62	2,032,001.10	990	SG3/FIN2	862,720.51	2,032,001.09	989.51	862,720.67	2,032,001.14	990.19	1	
106	862,720.62	2,032,010.10	984	SG2	862,720.59	2,032,010.10	983.63				1	
107	862,720.62	2,032,009.10	990	FIN1				862,720.61	2,032,009.13	990.06	<u> </u>	
108	862,720.62	2,032,018.10	984	SG1	862,720.58	2,032,018.07	983.32				6.74	8.0

Tolerance:

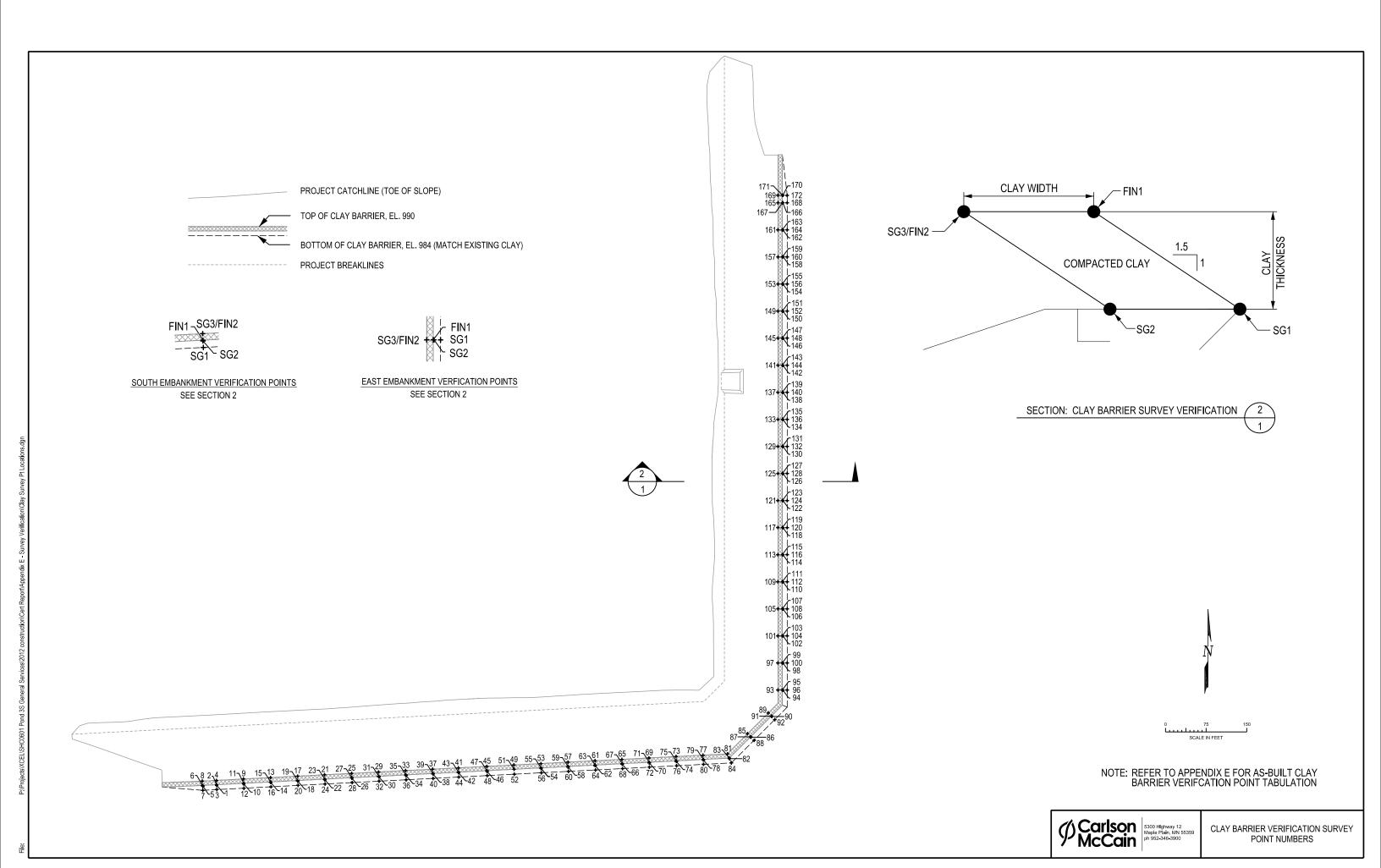
Thickness: -0.0 to +0.2 feet

P:\Projects\XCEL\SHC0601 Pond 3S General Services\2012 construction\Cert Report\Appendix E - Survey Verification\ Pond 3S Clay Barrier Survey Verification_Cert Report

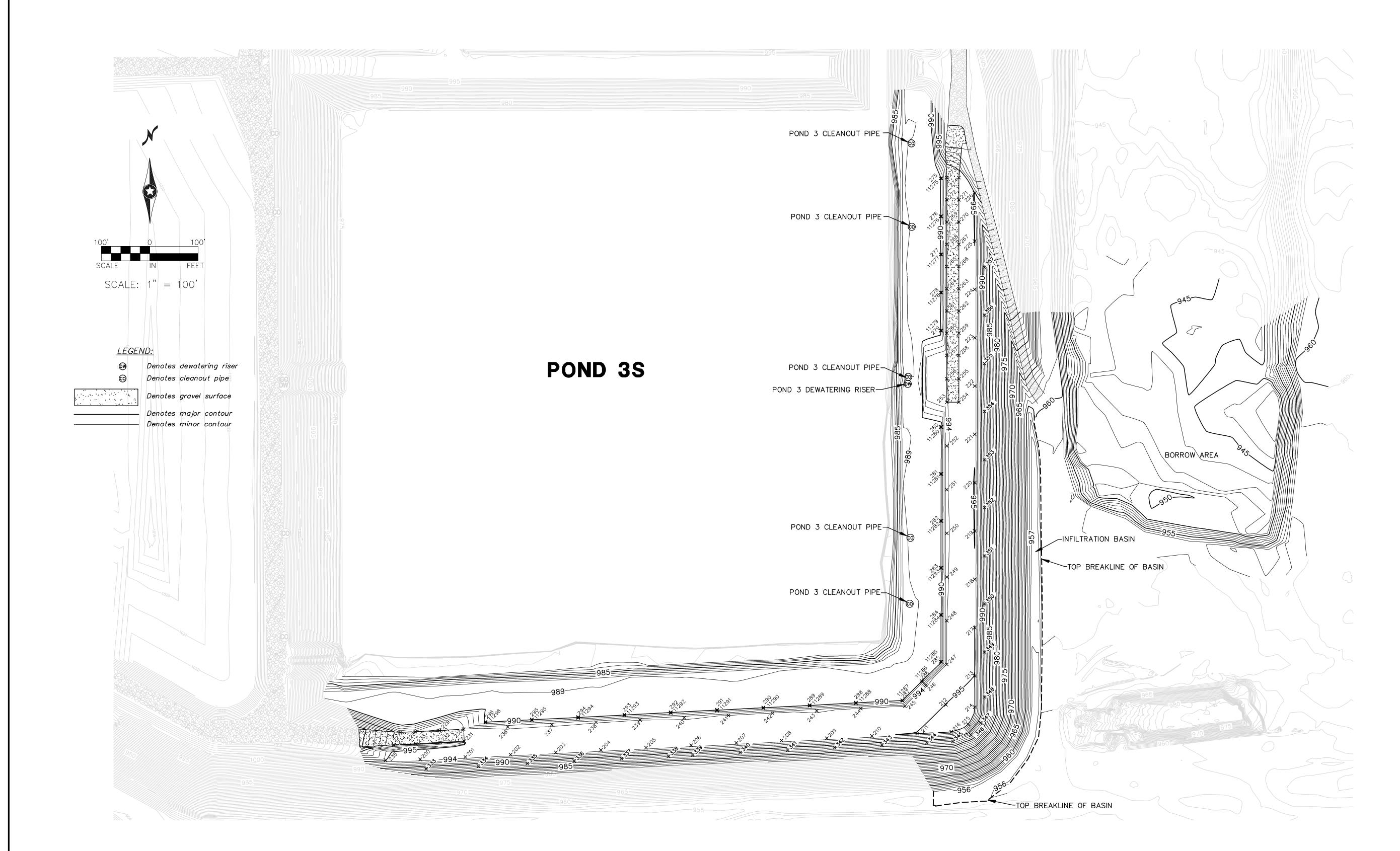
Carlson McCain, Inc.

Verification		Design		Location	As-Built Subgrade Survey			As-Built	Finished Grade	Clay Thickness (6' MIN*)	Clay Width	
Point No.	Northing	Easting	Elevation	Description	Northing	Easting	Elevation	Northing	Easting	Elevation	(FIN1-SG1 or SG2)	(8' MIN)
109	862,770.62	2,032,001.10	990	SG3/FIN2	862,770.65	2,032,001.01	989.54	862,770.57	2,032,001.05	990.11		
110	862,770.62	2,032,010.10	984	SG2	862,770.59	2,032,010.13	983.76					
111	862,770.62	2,032,009.10	990	FIN1				862,770.63	2,032,009.08	990.14		
112	862,770.62	2,032,018.10	984	SG1	862,770.53	2,032,018.12	983.34				6.80	8.0
113	862,820.62	2,032,001.10	990	SG3/FIN2	862,820.56	2,032,001.11	989.74	862,820.59	2,032,001.07	990.16		
114	862,820.62	2,032,010.10	984	SG2	862,820.61	2,032,010.07	983.70	,	, ,			
115	862,820.62	2,032,009.10	990	FIN1	•			862,820.61	2,032,009.08	990.18		
116	862,820.62	2,032,018.10	984	SG1	862,820.63	2,032,018.06	983.70	, , , , , , , , , , , , , , , , , , , ,	, ,		6.47	8.0
447	000 070 00	0 000 004 40	000	000/5110	000 070 50	0.000.004.00	000.00	000 070 07	0.000.004.44	000.04		
117	862,870.62	2,032,001.10	990	SG3/FIN2	862,870.58	2,032,001.08	989.86	862,870.67	2,032,001.11	990.04		
118	862,870.62	2,032,010.10	984	SG2	862,870.60	2,032,010.10	983.97	000 070 05	0.000.000.45	000.00		
119	862,870.62	2,032,009.10	990	FIN1	000 070 55	0.000.040.04	202.27	862,870.65	2,032,009.15	990.20		0.0
120	862,870.62	2,032,018.10	984	SG1	862,870.55	2,032,018.01	983.97				6.23	8.0
121	862,920.62	2,032,001.10	990	SG3/FIN2	862,920.59	2,032,001.01	989.67	862,920.58	2,032,001.09	990.11		
122	862,920.62	2,032,010.10	984	SG2	862,920.68	2,032,010.12	983.98	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,			
123	862,920.62	2,032,009.10	990	FIN1	, , , , , , , , , , , , , , , , , , , ,	, , , , , , ,		862,920.61	2,032,009.12	990.04		
124	862,920.62	2,032,018.10	984	SG1	862,920.56	2,032,018.01	983.95	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			6.09	8.0
						•			•			
125	862,970.62	2,032,001.10	990	SG3/FIN2	862,970.67	2,032,001.14	989.72	862,970.59	2,032,001.12	990.12		
126	862,970.62	2,032,010.10	984	SG2	862,970.65	2,032,010.11	984.00					
127	862,970.62	2,032,009.10	990	FIN1				862,970.63	2,032,009.15	990.15		
128	862,970.62	2,032,018.10	984	SG1	862,970.70	2,032,018.11	984.03				6.12	8.0
129	863,020.62	2,032,001.10	990	SG3/FIN2	863,020.61	2,032,001.14	989.87	863,020.60	2,032,001.12	990.05		
130	863,020.62	2,032,001.10	984	SG2	863,020.68	2,032,010.08	983.83	003,020.00	2,032,001.12	990.03		
131	863,020.62	2,032,010.10	990	FIN1	803,020.00	2,032,010.00	903.03	863,020.64	2,032,009.15	989.98		
132	863,020.62	2,032,009.10	984	SG1	863,020.55	2,032,018.07	984.10	003,020.04	2,032,009.13	303.30	5.87	8.0
		, ,					•					
133	863,070.62	2,032,001.10	990	SG3/FIN2	863,070.58	2,032,001.11	989.86	863,070.59	2,032,001.16	990.22		
134	863,070.62	2,032,010.10	984	SG2	863,070.60	2,032,010.09	983.96					
135	863,070.62	2,032,009.10	990	FIN1				863,070.57	2,032,009.15	990.25		
136	863,070.62	2,032,018.10	984	SG1	863,070.62	2,032,018.12	983.98				6.27	8.0
107	062 400 00	2,032,001.10	000	SC2/EIND	062 400 50	2 022 004 40	000.00	062 400 00	2 022 004 00	000.47		
137	863,120.62		990	SG3/FIN2	863,120.56	2,032,001.18	989.96	863,120.63	2,032,001.06	990.17	-	
138	863,120.62	2,032,010.10	984	SG2	863,120.56	2,032,010.09	983.97	962 100 00	2 022 000 40	000.45	-	
139 140	863,120.62 863,120.62	2,032,009.10 2,032,018.10	990 984	FIN1 SG1	863,120.61	2,032,018.04	983.97	863,120.63	2,032,009.12	990.15	6.17	8.1
1 10	000,120.02	_,002,010.10			000,120.01	_,002,010.04	000.07		ı	I.	J. 17	5.1
141	863,170.62	2,032,001.10	990	SG3/FIN2	863,170.60	2,032,001.12	989.94	863,170.60	2,032,001.14	990.22		
142	863,170.62	2,032,010.10	984	SG2	863,170.50	2,032,010.14	984.10					
143	863,170.62	2,032,009.10	990	FIN1				863,170.57	2,032,009.13	990.20		
144	863,170.62	2,032,018.10	984	SG1	863,170.54	2,032,018.11	984.02				6.18	8.0

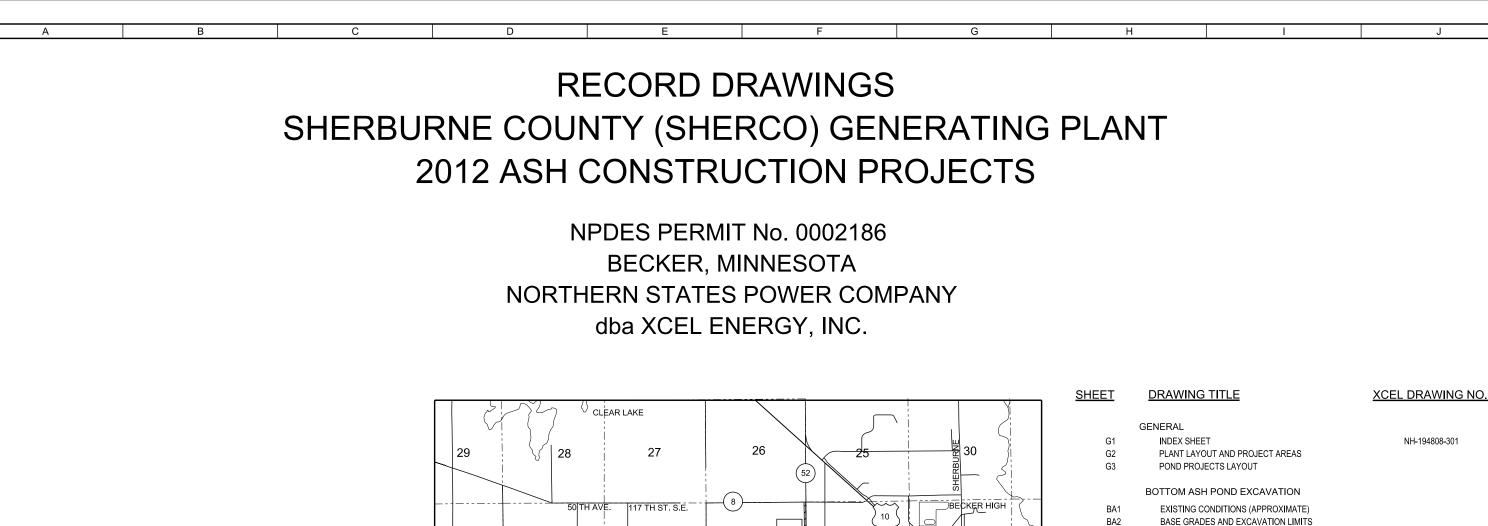
Tolerance:

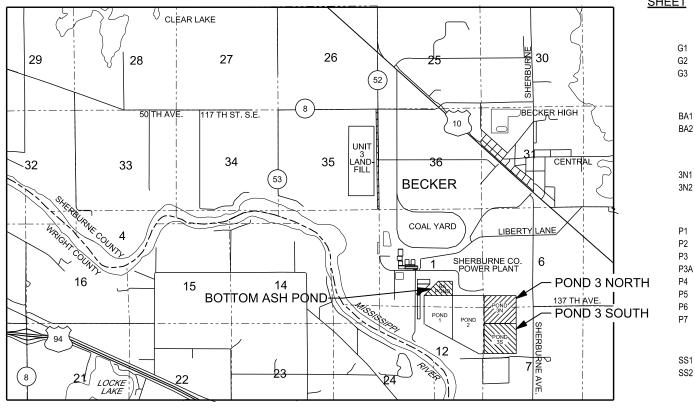

Thickness: -0.0 to +0.2 feet

P:\Projects\XCEL\SHC0601 Pond 3S General Services\2012 construction\Cert Report\Appendix E - Survey Verification\ Pond 3S Clay Barrier Survey Verification_Cert Report


Carlson McCain, Inc.

Verification Point No.	Design				As-Built Subgrade Survey			As-Built Finished Grade Survey			Clay Thickness	Oleve Milatole
	Northing	Easting	Elevation	Location Description	Northing	Easting	Elevation	Northing	Easting	Elevation	(6' MIN*) (FIN1-SG1 or SG2)	Clay Width (8' MIN)
145	863,220.62	2,032,001.10	990	SG3/FIN2	863,220.60	2,032,001.05	989.99	863,220.65	2,032,001.12	990.19		
146	863,220.62	2,032,010.10	984	SG2	863,220.61	2,032,010.13	983.99					
147	863,220.62	2,032,009.10	990	FIN1				863,220.63	2,032,009.09	990.22		
148	863,220.62	2,032,018.10	984	SG1	863,220.67	2,032,018.04	983.98				6.24	8.0
149	863,270.62	2,032,001.10	990	SG3/FIN2	863,270.60	2,032,001.13	989.97	863,270.60	2,032,001.11	990.35		
150	863,270.62	2,032,010.10	984	SG2	863,270.58	2,032,010.07	984.00	000,=:0:00	_,_,_,_,			
151	863,270.62	2,032,009.10	990	FIN1	,			863,270.64	2,032,009.15	990.19		
152	863,270.62	2,032,010.10	984	SG1	863,270.63	2,032,018.13	983.99	,			6.20	8.0
153	863,320.62	2 022 004 40	990	CC2/FIND	002 220 05	2 022 004 00	989.91	000 000 00	0.000.004.40	990.33	T I	
153	863,320.62	2,032,001.10 2,032,010.10	990	SG3/FIN2 SG2	863,320.65 863,320.67	2,032,001.06 2,032,010.10	983.98	863,320.60	2,032,001.16	990.33	-	
155	863,320.62	2,032,010.10	990	FIN1	003,320.07	2,032,010.10	903.90	863,320.67	2,032,009.17	990.23	-	
156	863,320.62	2,032,009.10	984	SG1	863,320.54	2,032,018.00	983.98	603,320.07	2,032,009.17	990.23	6.25	8.0
		, ,			,				•	•		
157	863,370.62	2,032,001.10	990	SG3/FIN2	863,370.67	2,032,001.09	989.68	863,370.65	2,032,001.12	990.29		
158	863,370.62	2,032,010.10	984	SG2	863,370.91	2,032,010.49	984.00					
159	863,370.62	2,032,009.10	990	FIN1				863,370.64	2,032,009.12	990.14		
160	863,370.62	2,032,018.10	984	SG1	863,370.58	2,032,018.11	983.99				6.15	8.0
161	863,420.62	2,032,001.10	990	SG3/FIN2	863,420.63	2,032,001.10	989.92	863,420.61	2,032,001.09	990.36		
162	863,420.62	2,032,001.10	984	SG2	863,420.66	2,032,001.10	983.95	000,420.01	2,032,001.03	330.30	-	
163	863,420.62	2,032,009.10	990	FIN1	000, 120.00	2,002,010.00	000.00	863,420.59	2,032,009.07	990.13		
164	863,420.62	2,032,018.10	984	SG1	863,420.58	2,032,018.11	983.98	000, 120100	2,002,000.01	333113	6.16	8.0
165	863,470.62	2,032,001.10	990	SG3/FIN2	863,470.60	2,032,001.04	989.60	863,470.59	2,032,001.14	990.19		
166	863,470.62	2,032,010.10	984	SG2	863,470.65	2,032,010.07	983.99					
167	863,470.62	2,032,009.10	990	FIN1				863,470.63	2,032,009.16	990.08	<u> </u>	
168	863,470.62	2,032,018.10	984	SG1	863,470.67	2,032,018.04	984.32				5.77	8.0
169	863,484.32	2,032,001.10	990	SG3/FIN2	863,484.34	2,032,001.09	989.97	863,484.34	2,032,001.11	990.21		
170	863,484.32	2,032,010.10	984	SG2	863,484.26	2,032,010.02	984.36	222, 10	-,,		1	
171	863,484.32	2,032,009.10	990	FIN1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		863,484.33	2,032,009.16	990.11	1	
172	863,484.32	2,032,018.10	984	SG1	863,484.19	2,032,017.97	985.02	,			5.09	8.0


AS-BUILT SURVEY POND 3 SOUTH VERTICAL EXPANSION SHERCO GENERATING PLANT BECKER, MN


VEIT & COMPANY, INC.
SHERCO PLANT
POND 3S VERT. EXPANSION

SHEET 1

Record Drawings

SURVEY DATA

RESTORATION PLAN

POND 3 NORTH

DEWATERING WELL CONNECTION

PRE-CONSTRUCTION CONDITIONS

AS-BUILT FINISHED GRADING PLAN

POND 3S VERTICAL EXPANSION

FINISHED GRADING PLAN

EMBANKMENT SECTIONS

SECTIONS AND DETAILS

INTERIOR BENCH AS-BUILT PLAN AND SECTION

CLAY BARRIER AND BOTTOM ASH GRADING PLAN

PIPELINE ALIGNMENT DATA SECTIONS AND DETAILS

POND SCRUBBER SOLIDS PIPELINE CONSTRUCTION

SITE LOCATION MAP

Ш														
NO	REVISION	ZONE	DATE	BY	СНК	ENG	NO	REVISION	ZONE	DATE	BY	снк	ENG	
							Α	ISSUED FOR BIDDING		3/1/2012	DJR	XCEL	DJR	1
							0	ISSUED FOR CONSTRUCTION		6/12/2012	DJR	XCEL	DJR	
							1	RAISED CLAY AND BOTTOM ASH TO ELEV. 990 (SHEETS P1-P7)		6/14/2012	DJR	XCEL	DJR	
							•	RECORD DRAWINGS (ADDED SHEETS: 3N2, P3A, SS1 & SS2)		10/24/2012	DJR	XCEL	DJR	

www.CarlsonMcCain.com

AL	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PREPARED BY ME OR UNDER MY SUPERVISION AND THAT I AM A DULY REGISTERED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA	
	FIRST NAME:DANIEL J. RIGGS	D

DATE: 10/24/2012 LICENSE# 4955

⊘ Xcel Energy®									
		NORTHERN STATES F	OWER COMPAN	1Y					
SHERCO GENERATING PLANT									
BECKER, MINNESOTA									
DJR		DATE:10/24/2012	CHK: XCEL	DATE: 10/24					

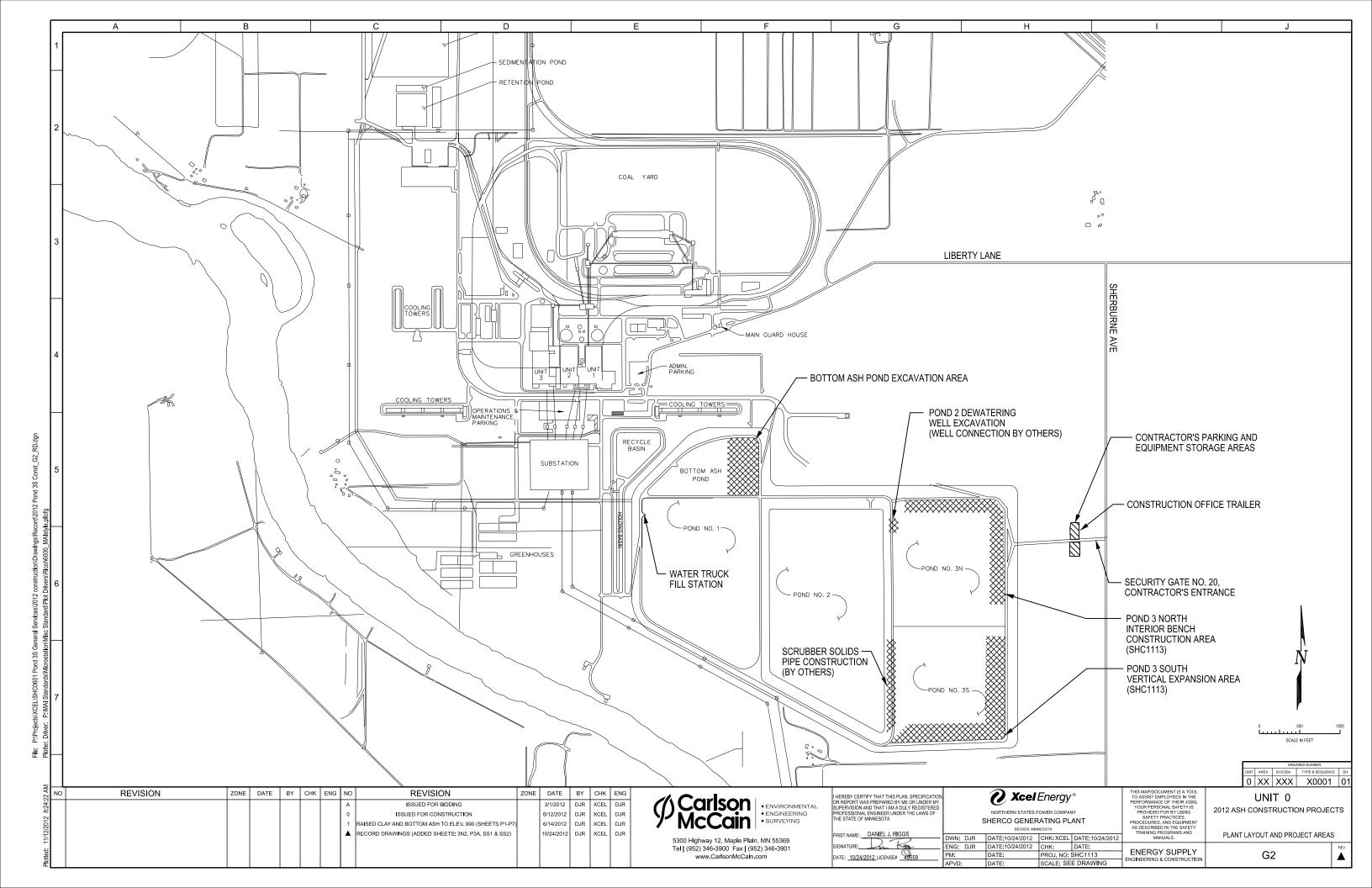
PROJ. NO: SHC1113

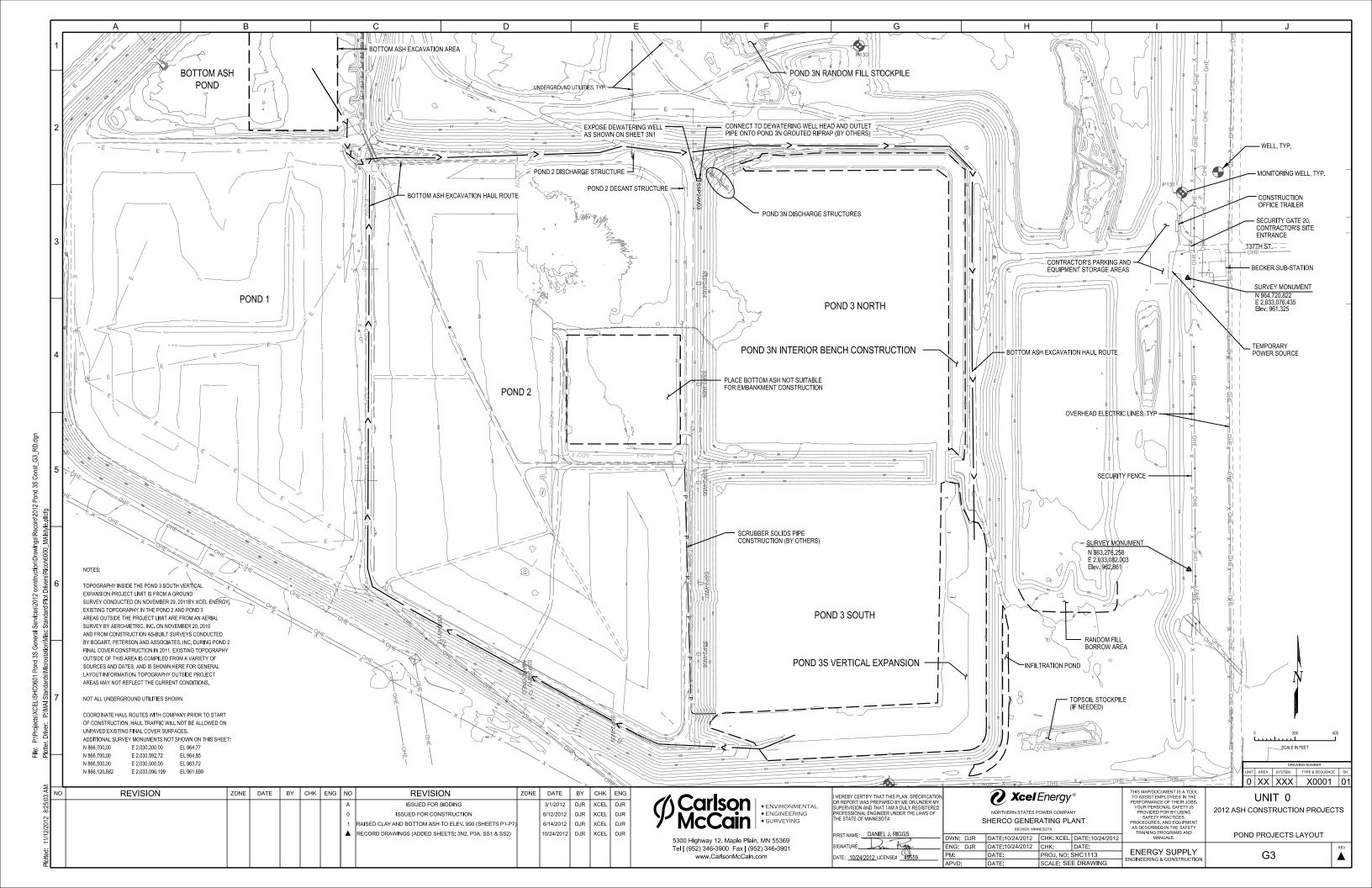
		0	XX	XXX	X0001		0
THIS MAP/DOCUMENT IS A TOOL TO ASSIST EMPLOYEES IN THE PERFORMANCE OF THEIR JOBS. YOUR PERSONAL SAFETY IS PROVIDED FOR BY USING SAFETY PRACTICES. PROCEDURES, AND EQUIPMENT AS DESCRIBED IN THE SAFETY TRAINING PROGRAMS AND MANUALS.	2012 ASH	H C	UNI TRNC	T 0	ON PROJEC	СТ	s
ENERGY SUPPLY ENGINEERING & CONSTRUCTION			G	1		F	REV

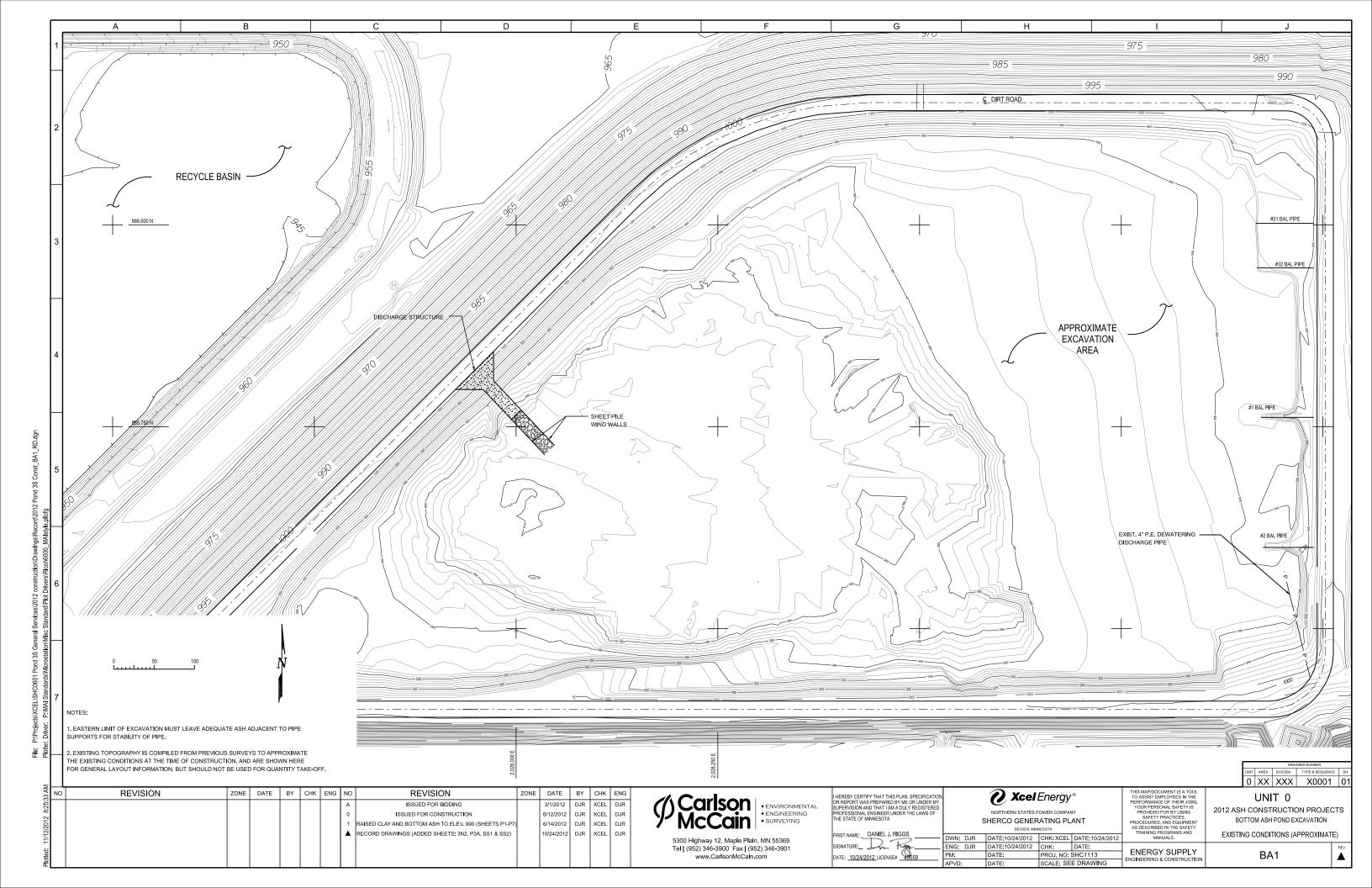
JCTION PROJECTS SHEET

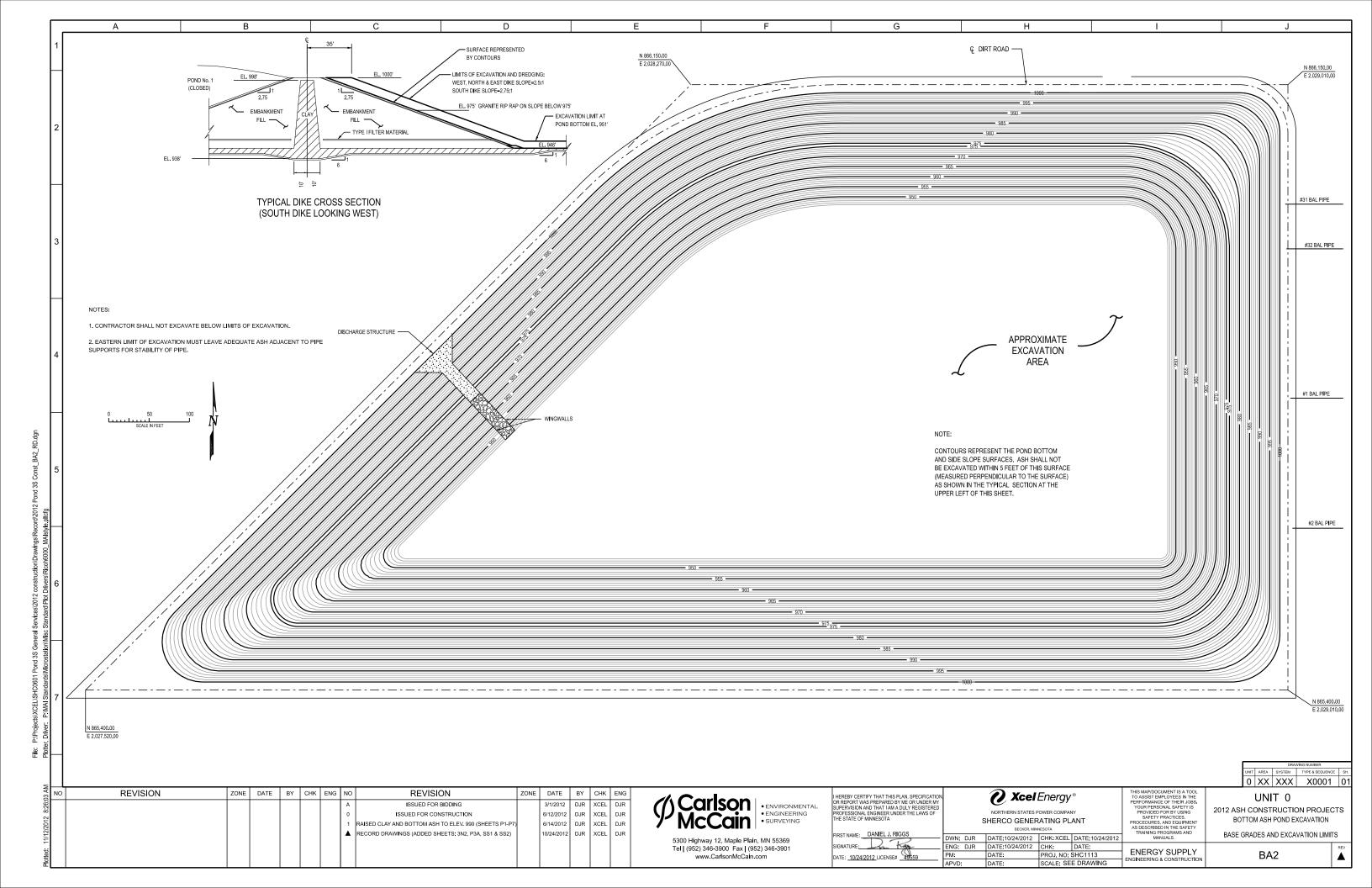
NH-194808-302

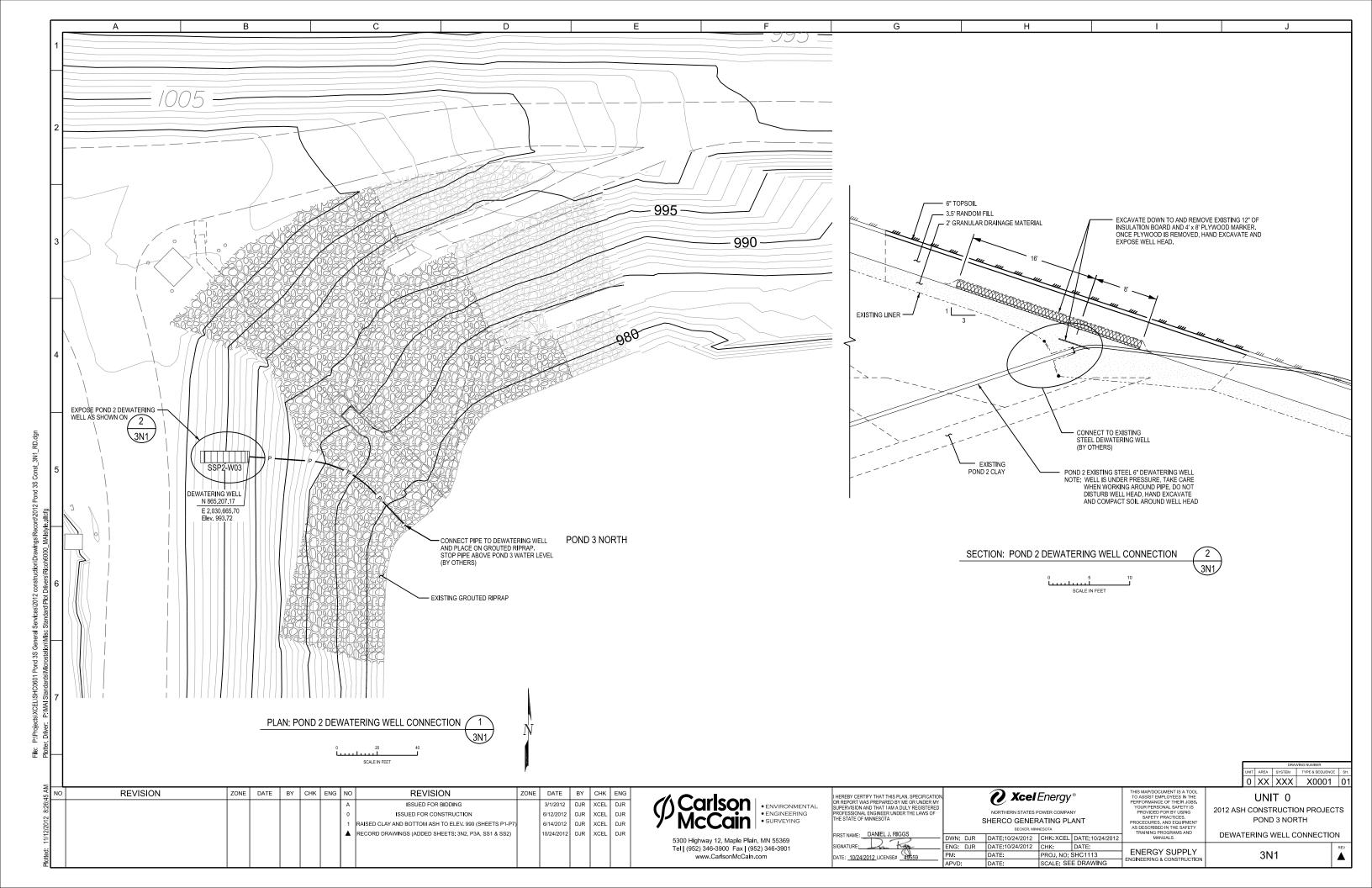
NH-194808-304


NH-194808-305


NH-194808-306


NH-194808-307


NH-91542-751


NH-91542-752

