Direct Testimony and Schedules Jannell E. Marks

Before the North Dakota Public Service Commission State of North Dakota

In the Matter of the Application of Northern States Power Company for Authority to Increase Rates for Gas Service in North Dakota

> Case No. PU-21-____ Exhibit___(JEM-1)

> > **Sales Forecast**

September 1, 2021

Table of Contents

I.	Introduction and Qualifications	1
II.	Customer and Sales Forecast	2
III.	Overview of Sales and Customer Forecasting Methodolog	gy 13
IV.	Statistically Modeled Forecasts	15
V.	Weather Normalization of Test Year Sales	18
VI.	Data Preparation	20
VII.	Unbilled Sales and Calendar-Month Sales Derivation	21
VIII.	Conclusion	24
	Schedules	
Resume	e	Schedule 1
Definition of Terms So		Schedule 2
Test Year Sales and Customers by Customer Class Sch		Schedule 3
Test Year 2022 Dkt Gas Sales Regression Models Sch		Schedule 4
Test Year 2022 Gas Customer Counts Regression Models Sched		

Case No. PU-21-____ Marks Direct

I. INTRODUCTION AND QUALIFICATION	I.	INTRODUCTION	AND QUA	LIFICATION
-----------------------------------	----	--------------	---------	------------

_
$^{\circ}$
/
4

1

- 3 Q. PLEASE STATE YOUR NAME AND OCCUPATION.
- 4 A. My name is Jannell E. Marks. I am the Director of the Sales, Energy and
- 5 Demand Forecasting department for Xcel Energy Services Inc. (XES), which
- 6 provides services to Northern States Power Company (Xcel Energy, NSP or
- 7 the Company).

8

- 9 Q. Please summarize your qualifications and experience.
- 10 A. I graduated from Colorado State University with a Bachelor of Science degree
- in statistics. I began my employment with Public Service Company of
- 12 Colorado in 1982 in the Economics and Forecasting department, and in
- August 2000, following the merger of New Centuries Energy Inc. and NSP, I
- assumed the position of Manager, Economics and Energy Forecasting with
- 15 XES. I was promoted to my current position with XES in February 2007. My
- resume is included as Exhibit___(JEM-1), Schedule 1.

17

- 18 Q. What is the purpose of your testimony in this proceeding?
- 19 A. I sponsor the Company's forecasts of sales and customers for the 2022 test
- year. I recommend that the North Dakota Public Service Commission
- 21 (Commission) adopt my forecasts of sales and customers for the purpose of
- determining the revenue requirement and final rates in this proceeding. In
- support of my recommended forecasts, I first compare our customer and sales
- forecast to historical customer and decatherm (Dkt) sales trends for Xcel
- 25 Energy's North Dakota service territory. Then I present details of the
- 26 methods I used to develop the gas Dkt sales and customer forecasts and the
- 27 results.

1	Q.	ARE THERE DEFINED TERMS YOU PLAN TO USE IN YOUR TESTIMONY?
2	Α.	Yes. The definitions of terms that are included in my testimony are provided
3		in Exhibit(JEM-1), Schedule 2.
4		
5		
6		II. CUSTOMER AND SALES FORECAST
7		
8	Q.	WHAT GEOGRAPHICAL AREA DO THE TEST YEAR SALES REFLECT?
9	Α.	My testimony and exhibits reflect gas usage and customers in Xcel Energy's
10		North Dakota service territory. Xcel Energy's North Dakota service territory
11		includes approximately 60,000 customers in and around Fargo and Grand
12		Forks, North Dakota.
13		
14	Q.	PLEASE DESCRIBE THE CUSTOMER CATEGORIES INCLUDED IN XCEL ENERGY'S
15		CUSTOMER AND SALES FORECASTS.
16	Α.	The following customer classes comprise Xcel Energy's North Dakota gas
17		customer and sales forecasts:
18		• Residential - service to any residential customer for domestic use of
19		natural gas.
20		• Commercial and Industrial - service to any commercial and industrial
21		customer for general use of natural gas.
22		• Small Interruptible – interruptible service to a commercial or industrial
23		customer whose maximum hourly requirements are in excess of 10
24		Therms and whose maximum daily requirements are less than 2,000
25		Therms.
26		• Large Interruptible – interruptible service to a commercial or industrial
27		customer whose maximum hourly requirements are in excess of 10

1		Therms and whose maximum daily requirements are 2,000 Therms or
2		more.
3		• Large Commercial Interruptible Transportation Service – interruptible service
4		to a customer who has made arrangements to have gas other than
5		Company system supply delivered to a Company town border station,
6		whose maximum daily requirements are more than 2,000 Therms.
7		• Large Commercial Firm Transportation Service – firm service to a customer
8		who has made arrangements to have gas other than Company system
9		supply delivered to a Company town border station and whose
10		maximum daily requirements are more than 2,000 Therms.
11		
12		The Large Commercial Interruptible Transportation Service and Large
13		Commercial Firm Transportation Service classes are comprised of a small
14		number of customers. Therefore, to maintain customer confidentiality,
15		information for the Large Commercial Interruptible Transportation Service
16		class has been combined with the Large Interruptible class, and information
17		for the Large Commercial Firm Transportation Service class has been
18		combined with the Commercial and Industrial class.
19		
20	Q.	HOW ARE CUSTOMER AND SALES FORECASTS USED IN THIS PROCEEDING?
21	Α.	The customer and sales forecasts are used to calculate the following:
22		1) Test year revenue under present rates; and
23		2) Test year revenue under proposed rates.

Q. PLEASE PROVIDE AN OVERVIEW OF THE ECONOMIC LANDSCAPE OF XCEL

1

2

2		Energy's North Dakota gas service territory.
3	Α.	Xcel Energy's North Dakota customers are primarily located in Fargo, West
4		Fargo, and Grand Forks, with 94 percent of the customer base in these three
5		locations. Just over two-thirds of the customers are located in Fargo and
6		West Fargo and 25 percent are in Grand Forks.
7		
8	Q.	WHAT IMPACT HAS THE COVID-19 PANDEMIC HAD ON THE NORTH DAKOTA
9		ECONOMY?
10	Α.	Like most areas of the country, the COVID-19 pandemic negatively impacted
11		the North Dakota economy in 2020. Total nonfarm employment for the
12		state, as reported by the U.S. Bureau of Labor Statistics, declined 12.3 percent
13		from 440,300 in February 2020 to 386,000 in April 2020. By the end of 2020,
14		employment had improved to 407,900, which was 7.4 percent below February
15		2020 levels. ¹ Combined, Fargo and Grand Forks non-farm employment
16		declined 12.2 percent from 199,300 in February 2020 to 175,000 in April 2020,
17		and recovered to 191,600 in December 2020, which was 3.9 percent below
18		February 2020 levels. ²
19		
20	Q.	What economic effects are expected from COVID-19 during 2021
21		AND THE 2022 TEST YEAR?
22	Α.	While 2020 experienced the greatest economic impact from the pandemic, the
23		effects will linger throughout 2021 and into the 2022 test year. As of June
24		2021, preliminary North Dakota employment counts totaled 415,500 and
	¹ htt	ps://www.bls.gov/eag/eag.nd.htm, accessed July 26, 2021.

Case No. PU-21-Marks Direct

² https://www.bls.gov/eag/eag.nd fargo msa.htm and

https://www.bls.gov/eag/eag.nd grandforks msa.htm, accessed July 26, 2021.

1	remained 5.6 percent below the pre-pandemic levels, and preliminary Fargo
2	and Grand Forks employment counts total 195,200 and remained 2.1 percent
3	below pre-pandemic levels. It may take several more years for the state-level
4	employment to return to pre-pandemic levels. However, given the level of
5	recovery to-date in Fargo and Grand Forks, employment in these areas likely
6	will return to pre-pandemic levels by early 2022.

8 Q. At a high level, how did the pandemic affect gas sales and customer growth in 2020?

A. Customer counts increased by 1.9 percent in 2020, which is the first time annual growth has been below 2 percent since 2011. Total sales increased by 0.6 percent, with Residential sales increasing 3.0 percent and combined Commercial and Industrial and Interruptible sales decreasing 0.3 percent. The Residential sales growth was stronger than average historical growth (which I discuss later in my testimony) and driven by an increase in use per customer as people spent more time at home and in some cases working from home due to the pandemic. The 0.3 percent decline in the combined non-Residential classes reflects the slowdown in business activity with some businesses operating at reduced capacity due pandemic-related restrictions. I note that customer movement between the Commercial and Industrial and Interruptible classes in 2020 result in some large positive and negative class-level growth rates which mask underlying trends that are identifiable when all the classes are combined.

- Q. How do you expect the pandemic to affect gas sales and customer growth in 2021 and 2022?
- 27 A. In summary, we expect a reduction in Residential sales in 2021 relative to the

Case No. PU-21-____ Marks Direct

1

pandemic-inflated levels seen in 2020, and then modest growth in sales in

2		2022. We expect sales in the combined Commercial and Industrial and
3		Interruptible sectors to increase in both 2021 and 2022 as the economy
4		continues to recover.
5		
6	Q.	WHAT IS XCEL ENERGY'S FORECAST OF GAS SALES AND CUSTOMERS FOR THE
7		TEST YEAR ENDING DECEMBER 31, 2022?
8	Α.	Exhibit(JEM-1), Schedule 3 summarizes monthly test year Dkt sales and
9		number of customers for each customer class. Total sales are projected to be
10		14,027,908 Dkt for the test year, with an average of 60,991 total customers.
11		For context, total sales in 2020 were 13,444,197 Dkt with an average of 59,270
12		total customers.
13		
14	Q.	WHAT HAS BEEN THE HISTORICAL CUSTOMER GROWTH IN NORTH DAKOTA?
15	Α.	Since 2007, Xcel Energy's test year in its last North Dakota gas rate case, the
16		total number of gas customers has increased by 34 percent or 15,018
17		customers, growing from 44,252 in 2007 to 59,270 in 2020. This equals a 2.3
18		percent average annual growth rate over this period of time. The largest class
19		of customers is the Residential class, which represented 85 percent of total
20		customers in 2020 and has averaged growth of 2.3 percent per year on average
21		during the period from 2007 through 2020. The Commercial and Industrial
22		class accounted for 14.9 percent of total customers in 2020, and averaged
23		growth of 2.5 percent 2007 through 2020. The remaining 0.1 percent of
24		customers are in the Interruptible classes and in aggregate has been decreasing,

driven by a 3.9 percent average annual decline between 2007 and 2020 in the
Small Interruptible class.³

3

- 4 Q. How does the projected test year customer growth compare with historical growth?
- 6 Test year total customer growth is expected to slow from the 2007-2020 7 average historical growth, but be in line with the trend of slower growth seen 8 in more recent years. As shown in Figure 1 below, customer growth in the 9 entire Xcel Energy North Dakota service territory has slowed over the past 10 four years from the high rates of growth experienced in 2015 and 2016. After 11 adding over 1,700 customers in 2015, customer additions dropped below 12 1,100 additions in 2020. This slowing in customer growth since 2015 is 13 consistent with a slowdown in population growth, as demonstrated in Figure 14 2. Total customer additions throughout the system in 2021 are forecasted to be slightly lower than 2020 and the 2022 test year North Dakota customer 15 16 counts are expected to increase by 767 or 1.3 percent. However, while overall 17 system growth has slowed from the fast pace seen a few years ago, we are still 18 seeing customer growth in North Dakota. The total average number of 19 customers in 2022 is expected to be 38 percent or nearly 17,000 customers 20 higher than 2007 customer counts, with average growth of 2.2 percent from 21 2007 through 2022.

.

³ The Transport class consists of three customers as of January 2021.

Figure 1
2008-2022 Annual Change in Customers

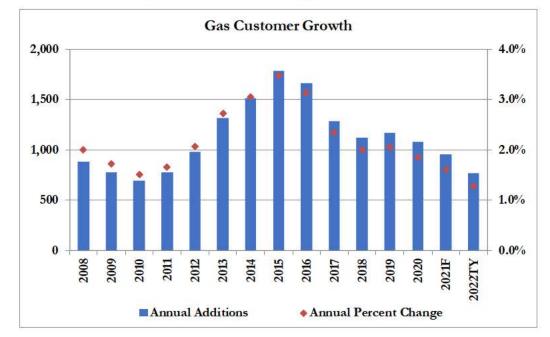


Figure 2
2015-2020 Annual Percent Change in Customers and Population

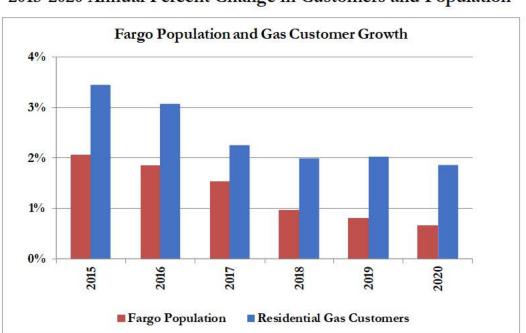


Table 1 below provides the historical and forecast annual customer growth rate by class for the time period 2007-2022. I will explain the methodologies used to develop this forecast in the following section of my testimony.

Table 1
2007-2022 Average Annual Percent Change in Customers

Customer Class	2007-2012 Average	2013-2017 Average	2018-2020 Average	2021 Forecast	2022 Test Year
Residential	1.8%	2.9%	2.0%	1.6%	1.3%
Commercial & Industrial	2.0%	3.1%	2.1%	1.6%	1.4%
Interruptible	-2.5%	-4.4%	-5.6%	0.0%	-1.6%
Total	1.8%	2.9%	2.0%	1.6%	1.3%

Q. WHAT HAS BEEN THE HISTORICAL WEATHER NORMALIZED GAS SALES GROWTH IN NORTH DAKOTA?

A. After normalizing for weather, ⁴ Xcel Energy's North Dakota service territory total gas sales have increased an average of 2.3 percent per year during the period of 2007 through 2020. Sales increases have been recorded in nearly every year since 2007, with declines seen in only two years, as shown in Figure 3 below. From 2007 to 2020, Residential sales have increased 1.9 percent, Commercial and Industrial sales have increased 3.6 percent, Small Interruptible sales have decreased 1.9 percent, and Large Interruptible sales have increased 1.3 percent per year on average.

⁴ In order to calculate sales growth from year to year not influenced by weather, the Company estimates the Dkt impact of abnormal weather to arrive at "weather normalized" (W/N) sales. The Company uses actual and normal weather, along with the actual number of customers and weather response coefficients

to conduct this weather normalization of historical sales. The weather normalization is performed for the Residential, Commercial and Industrial, Small Interruptible, and Large Interruptible sales classes.

2

1

Figure 3 2007-2022 W/N Gas Sales

Total Sales

2015

2016

Sales (000 Dkt)

2017

2018

45

20,000

16,000

12,000

8,000

4,000

0

2008

2009

2010

6 7

8 9 10

11 12

13 14

15

16

Q. HOW DO 2022 TEST YEAR SALES COMPARE TO HISTORICAL SALES?

Annual Percent Change

2011

2012

2013

2014

A. Total Dkt sales reflected in the 2022 test year are expected to improve 4.3 percent from 2020 weather normalized levels or 2.1 percent per year on average. Table 2 below provides the historical and forecast annual weather normalized sales growth rate by class for the time period 2007-2022. I will explain the methodologies used to develop this forecast in the following section of my testimony.

16.0%

12.0%

8.0%

4.0%

0.0%

-4.0%

Table 2

2 2007-2022 Average Annual Percent Change in W/N Sales

Customer Class	2007- 2020 Average	2021 Forecast	2022 Test Year
Residential	1.9%	-0.7%	0.8%
Commercial & Industrial	3.6%	5.5%	-1.1%
Small Interruptible	-1.9%	0.0%	-0.2%
Large Interruptible	1.3%	6.8%	4.4%
Total	2.3%	3.7%	0.6%

11 Q. PLEASE DISCUSS HISTORICAL AND PROJECTED RESIDENTIAL SALES.

A. Residential sales accounted for 29.5 percent of total sales in 2020 and have increased at an average annual rate of 1.9 percent over the 2007 to 2020 time period. This growth has been driven by a 2.3 percent average annual increase in the number of residential customers as I previously discussed, partially offset by a 0.3 percent average annual decline in use per customer. Use per customer is expected to decrease in 2021 and then decrease slightly again in 2022 as people return to pre-pandemic activities.

Q. PLEASE DISCUSS HISTORICAL AND PROJECTED FIRM COMMERCIAL AND INDUSTRIAL SALES.

share of total sales in 2020 (46.3 percent) and have increased at an average annual rate of 3.6 percent over the 2007 to 2020 time period. Firm Commercial and Industrial sales are expected to increase in 2021 as businesses recover from the pandemic and then decline slightly in 2022, with 2022 sales projected to be 4.4 percent higher than 2020 sales.

1	Q.	PLEASE DISCUSS HISTORICAL AND PROJECTED INTERRUPTIBLE SALES.
2	Α.	Sales to the Small Interruptible and Large Interruptible classes account for
3		about 24 percent of total sales. Small Interruptible sales have been declining
4		1.9 percent per year on average since 2007 as customers migrate from the
5		Interruptible class to the Commercial and Industrial class. The Small
6		Interruptible class is expected to continue declining in 2021 and 2022, with
7		2022 sales projected to be 0.2 percent lower than 2020. Sales in the Large
8		Interruptible class are very volatile due to customers moving into or out of
9		this class. Sales in the sector declined significantly in 2020 with customer
10		movement to the Commercial and Industrial class and are expected to increase
11		in both 2021 and 2022.
12		
13	Q.	PLEASE DISCUSS THE FIRM AND INTERRUPTIBLE TRANSPORT CLASSES.
14	Α.	Prior to 2021, the Interruptible Transport class had a single customer, and
15		there were no customers in the Firm Transport class. [TRADE SECRET
16		BEGINS
17		
18		
19		
20		
21		
22		TRADE SECRET ENDS]

Case No. PU-21-___ Marks Direct

III. OVERVIEW OF SALES AND

1

2		CUSTOMER FORECASTING METHODOLOGY
3		
4	Q.	Please describe in general terms the methods used to forecast
5		SALES AND CUSTOMERS.
6	Α.	The sales forecast was prepared in February 2021 using a combination of
7		econometric and statistical forecasting techniques and analyses. The forecast
8		was based on actual customers and sales through December 2020.
9		
10	Q.	How were the test year sales forecasts developed for the
11		RESIDENTIAL, COMMERCIAL AND INDUSTRIAL, SMALL INTERRUPTIBLE, AND
12		MEDIUM INTERRUPTIBLE CUSTOMER CLASSES?
13	Α.	Regression models were developed as the foundation for the sales forecasts of
14		the Residential, Commercial and Industrial, Small Interruptible, and Large
15		Interruptible customer classes. Regression techniques are very well-known,
16		proven methods of forecasting and are commonly accepted by forecasters
17		throughout the utility industry. This method provides reliable, accurate
18		projections, accommodates the use of predictor variables, such as economic or
19		demographic indicators and weather, and allows clear interpretation of the
20		model. Xcel Energy has been using these types of regression models since
21		1991.
22		
23		Monthly sales forecasts for these customer classes were developed based on
24		regression models designed to define a statistical relationship between the
25		historical sales and the independent predictor variables, including historical
26		economic indicators, historical weather (expressed in heating-degree days

1	(HDD), ⁵ number of billing days, and historical number of customers. In all of
2	the models, monthly historical data from January 2008 through December
3	2020 was used to determine these relationships. The modeled relationships
4	were then simulated over the forecast period by assuming normal weather
5	(expressed in terms of 20-year-averaged HDD) and the projected levels of the
6	independent predictor variables.

7

Q. What process was used to forecast sales in the other customerCLASSES?

10 A. Sales in the Firm Transport and Interruptible Transport classes were 11 developed by assessing historical trends of each customer in these classes.

12

13 Q. What process was used for forecasting number of customers?

A. The number of customers by customer class for the Residential and Commercial and Industrial classes is forecasted using demographic data in regression models. The historical number of customers by class is derived from the Company's billing system. The customer forecasts for all other classes were developed either by holding constant the average number of customers at the December 2020 level or applying a trend based on historical actual data.

_

⁵ I describe the calculation of HDD in Section VI.

1 IV .	STATISTICALLY M	ODELED FORECASTS
---------------	-----------------	------------------

\mathbf{a}
Z

Q. Please describe the regression models and associated analysis used
 in XCEL Energy's statistical projections of sales and customers.

A. The regression models used in Xcel Energy's statistical projections of sales are provided in Exhibit___(JEM-1), Schedule 4, and the regression models used in Xcel Energy's statistical projections of customers are provided in Exhibit___(JEM-1), Schedule 5. These schedules include, by customer class, the models with their summary statistics and descriptions for each variable included in the model.

11

- Q. What techniques did XCEL Energy employ to evaluate the REASONABLENESS OF ITS QUANTITATIVE FORECASTING MODELS AND SALES PROJECTIONS?
- 15 A. There are a number of quantitative and qualitative validity tests that are applicable to regression analysis.

17

18

19

20

21

22

23

24

25

26

27

First, the coefficient of determination (R-squared) test statistic is a measure of the quality of the model's fit to the historical data (expressed as a decimal number between 0.0 and 1.0). It represents the proportion of the variation of the historical sales around their mean value that can be attributed to the functional relationship between the historical sales and the explanatory variables included in the model. If the R-squared statistic is high, the model is explaining a high degree of the historical sales variability. The regression models used to develop the Residential, Commercial and Industrial, and Small Interruptible sales forecast demonstrate very high R-squared statistics, ranging between 0.924 and 0.996. The regression model used to develop the Medium

Case No. PU-21-____ Marks Direct

Interruptible sales forecast demonstrated an R-squared statistic of 0.703, which is acceptable given the amount of volatility seen in the historical sales in this class.

Next, the t-statistics of the variables indicate the degree of correlation between that variable's data series and the sales data series being modeled. The t-statistic is a measure of the statistical significance of each variable's individual contribution to the prediction model. Generally, the absolute value of each t-statistic should be greater than 1.98 to be considered statistically significant at the 95 percent confidence level and greater than 1.66 to be considered statistically significant at the 90 percent confidence level. This criterion was applied in the development of the regression models used to develop the sales forecast. The final regression models used to develop the Company's test year sales forecast tested satisfactorily under this standard. All variables except for one were statistically significant at greater than the 92 percent confidence level, and most variables were statistically significant at the 95 percent confidence level or higher. The one variable with a lower confidence interval was the Billing Days variable in the Large Interruptible sales model, which was statistically significant at the 73 percent confidence level.

In addition, each model was inspected for the presence of first-order autocorrelation, as measured by the Durbin-Watson (DW) test statistic. Autocorrelation refers to the correlation of the model's error terms for different time periods. For example, an overestimate in one period is likely to lead to an overestimate in the succeeding period, and vice versa, under the presence of first-order autocorrelation. Thus, when forecasting with a regression model, absence of autocorrelation between the error terms is very

important. The DW test statistic ranges between 0 and 4 and provides a measure to test for autocorrelation. In the absence of first-order autocorrelation, the DW test statistic equals 2.0. Autocorrelation was present in each of the Company's initial regression models. Therefore, the Company applied an autocorrelation correction process so that the final regression models used to develop the sales forecast tested satisfactorily for the absence of first-order autocorrelation, as measured by the DW test statistic.

Next, the Company conducted a graphical inspection of each model's error terms (*i.e.* actual less predicted) to verify that the models were not misspecified, and that statistical assumptions pertaining to constant variance among the residual terms and their random distribution with respect to the predictor variables were not violated. Analysis of each model's residuals indicated that the residuals were homoscedastic (constant variance) and randomly distributed, indicating that the regression modeling technique was an appropriate selection for each customer class' sales that were statistically modeled.

Finally, the statistically-modeled sales forecasts for each customer class have been reviewed for reasonableness as compared to the respective monthly sales history for that class. Graphical inspection reveals that the patterns of the test year sales forecast fit well with the respective historical patterns for each customer class. The annual total forecast sales have been compared to their respective historical trends for consistency. Similar qualitative tests for reasonableness and consistency have been performed for the customer level projections.

1		The results of these quantitative and qualitative validity tests support the
2		reasonableness of the quantitative forecasting models and test year customer
3		count and sales projections.
4		
5		
6		V. WEATHER NORMALIZATION OF TEST YEAR SALES
7		
8	Q.	HOW DID XCEL ENERGY ADJUST ITS TEST YEAR SALES FORECAST FOR THE
9		INFLUENCE OF WEATHER ON SALES?
10	Α.	Residential, Commercial and Industrial, Small Interruptible, and Large
11		Interruptible sales projections were developed through the application of
12		quantitative statistical models. For each of these classes, sales were not
13		weather-adjusted prior to developing the respective statistical models. The
14		respective regression models used to forecast sales included weather, as
15		measured in terms of heating-degree days, as an explanatory variable. In this
16		way, the historical weather impact on historical consumption for each class
17		was modeled through the respective coefficients for the HDD variables
18		included in each class' model. Test year sales were then projected by
19		simulating the established statistical relationships over the forecast horizon.
20		
21	Q.	How was normal weather determined?
22	Α.	Normal daily weather was calculated based on the average of historical HDD
23		for the 20-year time period 2001 to 2020. These normal HDD were related to
24		the forecasted billing month in the same manner as were the actual HDD.

Case No. PU-21-____ Marks Direct

Q. What was XCEL Energy's measure of weather, and what was the

1

2		SOURCE?
3	Α.	The measure of weather used was HDD, using a 65-degree temperature base.
4		This information was obtained from the National Oceanic and Atmospheric
5		Administration (NOAA) weather station in Fargo, North Dakota, which
6		captures the weather impact to our service area.
7		
8	Q.	Is it appropriate to use the Fargo weather station to represent
9		XCEL ENERGY'S NORTH DAKOTA SERVICE TERRITORY?
10	Α.	Yes, it is. As I mentioned previously, about two thirds of Xcel Energy's
11		North Dakota gas customers reside within the Fargo area. The coefficients
12		for the HDD variables included in each class' model were determined based
13		on the historical relationship between sales throughout Xcel Energy's eastern
14		North Dakota service territory and Fargo weather. Therefore, the coefficients
15		accurately reflect the distribution of customers geographically within the
16		North Dakota service territory. Since this geographic distribution is not
17		expected to change during the test year, it is appropriate to use this historical
18		relationship and Fargo weather.
19		
20	Q.	DID THE WEATHER REFLECT THE SAME BILLING DAYS AS THE SALES DATA?
21	Α.	Yes. The HDD were weighted by the number of times a particular day was
22		included in a particular billing month. These weighted HDD were divided by
23		the total billing days to arrive at average daily HDD for a billing month.

19

Case No. PU-21-____ Marks Direct

1		VI. DATA PREPARATION
2		
3	Q.	Please describe the data and data sources XCEL Energy used to
4		DEVELOP THE TEST YEAR SALES AND CUSTOMER COUNT FORECASTS.
5	Α.	Historical billing-month sales and number of customers were obtained from
6		Xcel Energy's billing system reports. Monthly historical data from January
7		2008 through December 2020 was obtained and used.
8		
9	Q.	WHAT IS THE SOURCE OF WEATHER DATA?
10	Α.	As I explained previously in my testimony, NOAA weather data measured at
11		the Fargo weather station was my data source, and the measure of weather
12		used was HDD. Eight temperature readings per day were obtained, and the
13		average daily temperature was determined by averaging the eight temperature
14		readings. The Company used HDD as a measure of cold weather. HDD
15		were calculated for each day by subtracting the average daily temperature from
16		65 degrees Fahrenheit. For example, if the average daily temperature was 45
17		degrees Fahrenheit, then 65 minus 45 or 20 HDD were calculated for that day.
18		If the average daily temperature was greater than 65 degrees Fahrenheit, then
19		that day recorded zero HDD. Normal daily HDD were calculated by
20		averaging 20 years of daily HDD using data from 2001 to 2020.
21		
22	Q.	WHAT WAS YOUR SOURCE OF ECONOMIC AND DEMOGRAPHIC DATA?
23	Α.	Historical and forecasted economic and demographic variables for the state
24		and the Fargo metropolitan area were obtained from IHS Markit, a respected
25		economic forecasting firm frequently relied on by forecasting professionals

Case No. PU-21-____ Marks Direct

26

27

and by the Company since the 1990s. These variables include Fargo and

North Dakota employment and Fargo population. This information is used to

1		determine the historical relationship between customers and sales, and
2		economic and demographic measures. The Company used the most current
3		economic and demographic data available from IHS Markit at the time of
4		modeling.
5		
6		
7		VII. UNBILLED SALES AND CALENDAR-MONTH SALES
8		DERIVATION
9		
10	Q.	PLEASE EXPLAIN THE TERM "UNBILLED SALES".
11	Α.	Xcel Energy reads gas meters each working day according to a meter-reading
12		schedule based on 21 billing cycles per billing month. Meters read early in the
13		month mostly reflect consumption that occurred during the previous month
14		Meters read late in the month mostly reflect consumption that occurred
15		during the current month. Therefore, the "billing month" sales recorded by
16		the current month's meter reads reflect consumption that occurred in both the
17		previous month and the current month. Thus, billing-month sales lag
18		calendar-month sales. Unbilled sales reflect gas consumed in the current
19		calendar month that is not billed to the customer until the succeeding month.
20		
21	Q.	WHAT IS THE PURPOSE OF THE UNBILLED SALES ADJUSTMENT?
22	Α.	The purpose is to align the test year revenues with the relevant projected test
23		year expenses, which have been estimated on a calendar-month basis.
24		
25	Q.	Is XCEL Energy reflecting unbilled revenue on its books for
26		ACCOUNTING AND FINANCIAL PURPOSES?
27	Α.	Yes. Xcel Energy adopted this practice during fiscal year 1992.

Q. How were the estimated monthly net unbilled sales volumes

1

2		DETERMINED?
3	Α.	Xcel Energy determined its test year monthly net unbilled sales as the
4		difference between the estimated monthly calendar-month sales, and the
5		projected billing-month sales. The projected billing-month sales were created
6		using the statistical models and other forecasting methods previously
7		described.
8		
9	Q.	HOW WERE THE ESTIMATED MONTHLY CALENDAR-MONTH SALES
10		DETERMINED?
11	Α.	For the Residential, Commercial and Industrial, Small Interruptible, and Large
12		Interruptible classes, Xcel Energy calculated the test year calendar-month sales
13		based on the projected billing-month sales. The test year calendar-month
14		sales were calculated in terms of the sales load component that is not
15		associated with weather (base load), and the sales load component that is
16		influenced by weather (total weather load). The weather was measured in
17		terms of normal HDD, as described above. The base-load sales and the total
18		weather sales components were calculated for each class. The two
19		components were then combined to provide the total calendar-month
20		volumes.
21		
22		The calendar-month base-load component was calculated as follows:
23		Step 1 The billing-month total weather load was calculated. This was
24		accomplished by multiplying the billing-month sales weather
25		normalization regression coefficients (defined in terms of billing-
26		month HDD and number of customers), times billing-month normal
27		HDD, times the projected customers.

1	Step 2	The billing-month base-load component was calculated by taking the
2		difference between the projected total billing-month sales and the
3		billing-month total weather load (as calculated in Step 1).
4	Step 3	The billing-month base-load sales per billing day was determined by
5		dividing the billing-month base-load sales (from Step 2) by the
6		average number of billing days per billing month.
7	Step 4	The calendar-month base-load sales were then calculated by
8		multiplying the billing-month base-load sales per billing day (from
9		Step 3) times the number of days in the calendar month.
10		
11	The cal	endar-month total weather load component was calculated the same
12	way the	billing-month total weather load was calculated (as described in Step 1
13	above).	However, the calculation was performed by substituting the calendar-
14	month s	sales weather normalization regression coefficient (defined in terms of
15	calenda	r-month HDD and number of customers) and the calendar-month
16	normal	HDD THI. The calendar-month total sales were calculated by
17	combin	ing the calendar-month base-load and calendar-month total weather
18	load cor	mponents.
19		
20	The Fir	m Transport and Interruptible Transport classes are forecasted on a
21	calenda	r-month basis. Therefore, for these classes, no conversion from a
22	billing-r	nonth sales forecast to a calendar-month sales forecast is necessary.

Case No. PU-21-____ Marks Direct

1		VIII. CONCLUSION
2		
3	Q.	IN YOUR OPINION, DO THE XCEL ENERGY SALES AND CUSTOMER FORECASTS
4		PROVIDE A REASONABLE BASIS FOR ESTABLISHING RATES IN THIS CASE?
5	Α.	Yes. The forecast data is reasonable based on the economic conditions that
6		were foreseeable when the forecast was developed and supports the test year
7		revenue projections.
8		
9	Q.	DOES THIS CONCLUDE YOUR DIRECT TESTIMONY?
10	Α.	Yes, it does.

24

Resume

Jannell E. Marks Director, Sales, Energy and Demand Forecasting 1800 Larimer Street, Denver, Colorado 80202

February 2007 – Present

Director, Sales, Energy and Demand Forecasting

Responsible for the development of forecasted sales data and economic conditions for Xcel Energy's operating companies, and the presentation of this information to Xcel Energy's senior management, other Xcel Energy departments, and externally to various regulatory and reporting agencies. Also responsible for Xcel Energy's Load Research function, which designs, maintains, monitors, and analyzes electric load research samples in the Xcel Energy operating companies' service territories. Additionally, responsible for developing and implementing forecasting, planning, and load analysis studies for regulatory proceedings. Testified on forecasting issues before the Colorado Public Utilities Commission, the Minnesota Public Utilities Commission, the North Dakota Public Service Commission, the Public Utilities Commission of Texas, the South Dakota Public Utilities Commission, and the Public Service Commission of Wisconsin.

August 2000 – February 2007

Manager, Energy Forecasting, Xcel Energy

Responsible for the development and presentation of forecasted data for Xcel Energy's operating companies. Also responsible for reporting historical and statistical information to various regulatory agencies and others. Testified on forecasting issues before the Public Utility Commission of Texas, the Colorado Public Utilities Commission, and the Minnesota Public Utilities Commission.

May 1997 – August 2000

Manager, Demand, Energy and Customer Forecasts, New Century Energies, Inc.

Responsible for developing demand, energy, and customer forecasts for New Century Energies, Inc.'s operating companies. Also directed the preparation of statistical reporting for regulatory agencies and others regarding historical and forecasted reports. Testified on forecasting issues before the Public Utility Commission of Texas and the Colorado Public Utilities Commission.

1991 - 1997

Senior Research Analyst, Public Service Company of Colorado Responsible for developing the customer and sales forecasts for Public Service Company of Colorado and the economic, customer, sales and demand forecasts for Cheyenne Light, Fuel and Power Company.

1982 - 1991

Research Analyst, Public Service Company of Colorado

Education

Colorado State University – Bachelor of Science: Statistics 1982

Memberships

Edison Electric Institute Load Forecasting Group Itron Energy Forecasting Group

Definition of Terms

Base Load - Component of sales not associated with weather.

Billing Days - Based on the meter reading schedule for the 21 billing cycles. For example, there are approximately 651 (21 cycles * 31 days) billing days during a typical billing month period.

Billing-Month Sales - Billed sales based on the meter reading schedule for the 21 billing cycles.

Calendar-Month Sales - Estimated sales, equal to the billing month sales, adjusted for the estimated unbilled sales of the current calendar month, less the estimated unbilled sales from the previous calendar month.

Commission – North Dakota Public Service Commission.

Company – Northern States Power Company, a Minnesota corporation.

Dkt – decatherm; measure of gas sales

DW Test Statistic - Durbin-Watson test statistic; tests for the presence of first-order autocorrelation. In the absence of first-order autocorrelation, the statistic equals 2.0.

Error Terms - The difference between the actual values of the data series being modeled (customers or sales) and the regression model's predicted, or "fitted" values for that series. Also called Residual Terms.

HDD - Heating Degree Days - Measure of weather. Calculated by subtracting the average daily temperature from a base of 65 degrees Fahrenheit.

NOAA – National Oceanic and Atmospheric Administration.

Normal Weather – the average of twenty years of historical weather.

NSP – Northern States Power Company

Case No. PU-21-____ Exhibit___(JEM-1) Schedule 2, Page 2 of 2

Definition of Terms (continued)

R-squared - Coefficient of determination; measures the quality of the model's fit to the historical data. The higher the R-squared statistic, the better the model is explaining the historical data.

Regression Model - Statistical technique employing multiple independent variables to model the variation of the dependent variable about its mean value.

Residual Terms - The difference between the actual values of the data series being modeled (customers or sales) and the regression model's predicted, or "fitted" values for that series. Also called Error Terms.

t-Statistic - Measures the importance of the independent variable to the regression. The higher the absolute value of the t-statistic, the more likely it is that the variable has a relationship to the dependent variable and is making an important contribution to the equation.

Test Year – January 1, 2022-December 31, 2022.

Total Weather Load - Component of sales influenced by weather.

Unbilled Sales – Gas consumed in the current month but not billed to customers until the succeeding month.

W/N – Weather normalized

Weather Normalized – Dkt sales adjusted to remove the impact of abnormal weather.

Xcel Energy – Northern States Power Company.

XES – Xcel Energy Services Inc.

	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N
1	Xcel Energy - North Dakota State									-				
2	Test Year Sales and Customers by	Customer Cl	ass											
3														
4	Weather Normalized Calendar Mon	nth Sales (Dl	kt)											
5														
6		<u>Jan 2022</u>	Feb 2022	Mar 2022	Apr 2022	May 2022	<u>Jun 2022</u>	Jul 2022	Aug 2022	Sep 2022	Oct 2022	Nov 2022	Dec 2022	Year 2022
7														
8	Residential	809,937	657,232	508,332	268,066	115,625	65,974	40,634	46,461	76,703	230,885	452,737	696,491	3,969,079
9	Commercial & Industrial (1)	1,095,403	901,593	817,960	458,161	302,599	211,869	172,669	190,478	233,560	416,344	691,096	1,003,200	6,494,932
	Small Interruptible	75,133	67,318	68,523	44,142	32,884	26,130	23,993	28,070	29,725	45,440	60,146	68,408	569,913
11	Large Interruptible (2)	356,567	295,193	303,408	164,409	190,548	191,410	143,589	164,599	216,042	349,240	291,310	327,669	2,993,984
12														
13	Total Sales	2,337,040	1,921,337	1,698,222	934,777	641,656	495,384	380,886	429,608	556,031	1,041,909	1,495,291	2,095,768	14,027,908
14														
15														
16														
17	- 1000000000000000000000000000000000000													
18		1 2022	E 1 2022	M 2022	4 2022	M 2002	1 2022	I 1 2022	4 2022	6 2022	0 + 2022	NI 2022	D 2022	V 2022
19 20		<u>Jan 2022</u>	Feb 2022	Mar 2022	Apr 2022	May 2022	<u>Jun 2022</u>	<u>Jul 2022</u>	Aug 2022	Sep 2022	Oct 2022	Nov 2022	Dec 2022	<u>Year 2022</u>
20	Residential	51,682	51,689	51,684	51,672	51,679	51,666	51,679	51,741	51,827	51,994	52,139	E2 27E	E1 011
	Commercial & Industrial ⁽¹⁾	,	· ·			,	,	,		,	,	,	52,275	51,811
		9,079	9,086	9,092	9,083	9,075	9,068	9,056	9,064	9,074	9,106	9,139	9,179	9,092
	Small Interruptible	64	64	63	63	63	63	63	63	63	63	63	63	63
	Large Interruptible ⁽²⁾	25	25	25	25	25	25	25	25	25	25	25	25	25
25	T . 1.C	(0.050	ZO 0Z4	(0.0(4	(0.042	(0.042	(0.000	(0.000	60.002	20.000	Z4 400	(1.244	(1.5.40	ZO 004
26	Total Customers	60,850	60,864	60,864	60,843	60,842	60,822	60,823	60,893	60,989	61,188	61,366	61,542	60,991

⁽¹⁾ Includes Large Commercial Firm Transportation (2) Includes Large Interruptible Transportation

Xcel Energy North Dakota Residential 2022 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value Definition	
ResCust_HDD65_Jan	0.009	0.000	59.863	0.00% January HDD65 * January custom	ers
ResCust_HDD65_Feb	0.009	0.000	52.299	0.00% February HDD65 * February custo	mers
ResCust_HDD65_Mar	0.009	0.000	47.624	0.00% March HDD65 * March customers	
ResCust_HDD65_Apr	0.008	0.000	21.279	0.00% April HDD65 * April customers	
ResCust_HDD65_May	0.007	0.000	24.218	0.00% May HDD65 * April customers	
ResCust_HDD65_Jun	0.003	0.002	2.251	2.59% June HDD65 * April customers	
ResCust_HDD65_Oct	0.006	0.001	10.087	0.00% October HDD65 * April customers	
ResCust_HDD65_Nov	0.007	0.000	20.731	0.00% November HDD65 * November cu	stomers
ResCust_HDD65_Dec	0.008	0.000	39.647	0.00% December HDD65 * December cu	stomers
EconBoom	16355.486	4118.875	3.971	0.01% Binary variable beginning January	2014
Billing_Days	1145.715	127.897	8.958	0.00% Billing Days	
WinterTrend	-127.389	49.960	-2.550	1.19% Trend variable October through Ap	oril
Dec16	-44002.722	13385.222	-3.287	0.13% Binary variable December 2016	
Apr	29922.720	16559.936	1.807	7.30% Binary variable April	
Jun	19806.015	10867.280	1.823	7.05% Binary variable June	
AR(1)	0.286	0.080	3.581	0.05% First order autoregressive term	
SMA(1)	0.315	0.086	3.675	0.03% First order seasonal moving avera	ge term

Xcel Energy North Dakota Residential 2022 Test-Year Sales Forecast

Model Statistics	
Iterations	10
Adjusted Observations	155
Deg. of Freedom for Error	138
R-Squared	0.997
Adjusted R-Squared	0.996
AIC	19.231
BIC	19.565
F-Statistic	NA
Prob (F-Statistic)	NA
Log-Likelihood	-1,693.36
Model Sum of Squares	8,803,281,235,178.21
Sum of Squared Errors	27,994,993,851.02
Mean Squared Error	202,862,274.28
Std. Error of Regression	14,242.97
Mean Abs. Dev. (MAD)	9,983.82
Mean Abs. % Err. (MAPE)	6.07%
Durbin-Watson Statistic	2.084
Durbin-H Statistic	NA
Ljung-Box Statistic	26.42
Prob (Ljung-Box)	0.332
Skewness	0.119
Kurtosis	4.217
Jarque-Bera	9.937
Prob (Jarque-Bera)	0.007

October HDD65 * April customers

Xcel Energy North Dakota Commercial and Industrial 2022 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value Definition
SmCommCust_HDD65_Jan	0.059	0.001	56.131	0.00% January HDD65 * January customers
SmCommCust_HDD65_Feb	0.059	0.001	48.681	0.00% February HDD65 * February customers
SmCommCust_HDD65_Mar	0.058	0.001	48.600	0.00% March HDD65 * March customers
SmCommCust_HDD65_Apr	0.051	0.002	30.363	0.00% April HDD65 * April customers
SmCommCust_HDD65_May	0.045	0.003	14.457	0.00% May HDD65 * May customers
SmCommCust_HDD65_Jun	0.032	0.008	3.924	0.01% June HDD65 * June customers
SmCommCust_HDD65_Oct	0.030	0.003	9.380	0.00% October HDD65 * April customers
SmCommCust_HDD65_Nov	0.044	0.002	21.415	0.00% November HDD65 * November customers
SmCommCust_HDD65_Dec	0.055	0.001	42.624	0.00% December HDD65 * December customers
Rate_Shift_Oct	44107.509	11357.990	3.883	0.02% Binary variable beginning January 2017
EE_ND	245.971	23.222	10.592	0.00% ND Total Employment (thousands)
Dec12	113772.923	19310.756	5.892	0.00% Binary variable December 2012
Jan13	-149569.498	19511.135	-7.666	0.00% Binary variable January 2013
Jan2015	38857.400	17653.841	2.201	2.95% Binary variable January 2015
Mar2015	50213.422	17753.981	2.828	0.54% Binary variable March 2015
AR(1)	0.591	0.071	8.356	0.00% First order autoregressive term
SAR(1)	0.379	0.094	4.046	0.01% First order seasonal autoregressive term

Xcel Energy North Dakota Commercial and Industrial 2022 Test-Year Sales Forecast

Model Statistics		
Iterations	16	
Adjusted Observations	143	
Deg. of Freedom for Error	126	
R-Squared	0.995	
Adjusted R-Squared	0.994	
AIC	20.150	
BIC	20.502	October HDD65 * April customers
F-Statistic	NA	
Prob (F-Statistic)	NA	
Log-Likelihood	-1,626.62	
Model Sum of Squares	12,240,256,946,104.90	
Sum of Squared Errors	63,541,090,531.89	
Mean Squared Error	504,294,369.30	
Std. Error of Regression	22,456.50	
Mean Abs. Dev. (MAD)	15,174.82	
Mean Abs. % Err. (MAPE)	5.18%	
Durbin-Watson Statistic	2.243	
Durbin-H Statistic	NA	
Ljung-Box Statistic	37.68	
Prob (Ljung-Box)	0.0374	
Skewness	1.038	
Kurtosis	6.718	
Jarque-Bera	108.046	
Prob (Jarque-Bera)	0.0000	

Xcel Energy North Dakota Small Interruptible 2022 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value Definition
CONST	26989.829	1151.082	23.447	0.00% Constant term
SVICust_HDD65_Jan	0.447	0.023	19.121	0.00% January HDD65 * January customers
SVICust_HDD65_Feb	0.466	0.028	16.378	0.00% February HDD65 * February customers
SVICust_HDD65_Mar	0.563	0.028	20.443	0.00% March HDD65 * March customers
SVICust_HDD65_Apr	0.416	0.040	10.494	0.00% April HDD65 * April customers
SVICust_HDD65_May	0.612	0.076	8.103	0.00% May HDD65 * May customers
SVICust_HDD65_Jun	0.550	0.256	2.151	3.34% October HDD65 * April customers
SVICust_HDD65_Oct	0.321	0.096	3.345	0.11% October HDD65 * October customers
SVICust_HDD65_Nov	0.341	0.050	6.795	0.00% November HDD65 * November customers
SVICust_HDD65_Dec	0.420	0.029	14.651	0.00% December HDD65 * December customers
Feb18	-19957.110	7213.500	-2.767	0.65% Binary variable February 2018
Feb14	-35096.702	7424.375	-4.727	0.00% Binary variable February 2014
Mar18	26465.917	7064.684	3.746	0.03% Binary variable March 2018
AR(1)	-0.238	0.087	-2.747	0.69% First order autoregressive term
SAR(1)	0.611	0.093	6.541	0.00% First order seasonal autoregressive term
SMA(1)	-0.532	0.123	-4.314	0.00% First order seasonal moving average term

Xcel Energy North Dakota Small Interruptible 2022 Test-Year Sales Forecast

Model	Sta	tist	ICS
Itoratio	ne		

dad. dad.da.da	
Iterations	42
Adjusted Observations	143
Deg. of Freedom for Error	127
R-Squared	0.932
Adjusted R-Squared	0.924
AIC	17.869
BIC	18.200
F-Statistic	116.7676299
Prob (F-Statistic)	0
Log-Likelihood	-1,464.52
Model Sum of Squares	90,787,777,758.72
Sum of Squared Errors	6,582,901,890.15
Mean Squared Error	51,833,873.15
Std. Error of Regression	7,199.57
Mean Abs. Dev. (MAD)	5,075.60
Mean Abs. % Err. (MAPE)	10.55%
Durbin-Watson Statistic	1.968
Durbin-H Statistic	NA
Ljung-Box Statistic	23.35
Prob (Ljung-Box)	0.499
Skewness	-0.433
Kurtosis	4.256
Jarque-Bera	13.859
Prob (Jarque-Bera)	0.001

October HDD65 * April customers

Xcel Energy North Dakota Large Interruptible 2022 Test-Year Sales Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value	Definition
MVICust_HDD65_Jan	5.663	1.438	3.939	0.01% Jan	uary HDD65 * January customers
MVICust_HDD65_Feb	1.678	0.248	6.768	0.00% Feb	oruary HDD65 * February customers
MVICust_HDD65_Mar	2.252	0.240	9.377	0.00% Mar	rch HDD65 * March customers
MVICust_HDD65_Apr	1.219	0.349	3.493	0.06% Apri	il HDD65 * April customers
MVICust_HDD65_Dec	1.800	0.257	7.009	0.00% Dec	cember HDD65 * December customers
MVICust_HDD65_Nov	2.210	0.483	4.574	0.00% Dec	cember HDD65 * November customers
EE_FGO	882.404	209.060	4.221	0.00% Octo	ober HDD65 * April customers
Mar11	-84788.676	24957.040	-3.397	0.09% Bina	ary variable March 2011
Feb14	-59521.875	25229.617	-2.359	1.97% Bina	ary variable February 2014
Rate_Shift_Jan2018	22560.115	5688.362	3.966	0.01% Bina	ary variable beginning January 2018
Billing_Days	-1000.885	892.348	-1.122	26.39% Billin	ng Days
Jan	-123975.859	56138.631	-2.208	2.88% Bina	ary variable January
AR(1)	0.161	0.086	1.875	6.28% Firs	st order autoregressive term

October HDD65 * April customers

Xcel Energy North Dakota Large Interruptible 2022 Test-Year Sales Forecast

Model Statistics	
Iterations	10
Adjusted Observations	155
Deg. of Freedom for Error	142
R-Squared	0.726
Adjusted R-Squared	0.703
AIC	20.257
BIC	20.512
F-Statistic	NA
Prob (F-Statistic)	NA
Log-Likelihood	-1,776.84
Model Sum of Squares	217,940,155,477.72
Sum of Squared Errors	82,209,647,170.98
Mean Squared Error	578,941,177.26
Std. Error of Regression	24,061.20
Mean Abs. Dev. (MAD)	16,545.68
Mean Abs. % Err. (MAPE)	17.28%
Durbin-Watson Statistic	2.034
Durbin-H Statistic	NA
Ljung-Box Statistic	20.80
Prob (Ljung-Box)	0.651
Skewness	-0.902
Kurtosis	7.913
Jarque-Bera	176.890
Prob (Jarque-Bera)	0.000

Xcel Energy North Dakota Residential 2022 Test-Year Customer Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value	Definition
NR_FGO	323.909	49.226	6.580	0.00%	Fargo Population (thousands)
Jan	-30661.590	12584.458	-2.436	1.61%	Binary variable January
Feb	-30709.597	12584.458	-2.440	1.59%	Binary variable February
Mar	-30763.574	12584.381	-2.445	1.57%	Binary variable March
Apr	-30824.441	12584.367	-2.449	1.55%	Binary variable April
May	-30866.878	12584.420	-2.453	1.54%	Binary variable May
Jun	-30930.803	12584.228	-2.458	1.52%	Binary variable June
Jul	-30970.202	12584.110	-2.461	1.51%	Binary variable July
Aug	-30959.298	12584.071	-2.460	1.51%	Binary variable August
Sep	-30925.507	12584.118	-2.458	1.52%	Binary variable September
Oct	-30811.086	12584.250	-2.448	1.56%	Binary variable October
Nov	-30719.257	12584.469	-2.441	1.59%	Binary variable November
Dec	-30641.277	12584.690	-2.435	1.61%	Binary variable December
AR(1)	0.980	0.011	87.914	0.00%	First order autoregressive term
MA(1)	0.217	0.085	2.539	1.22%	First order moving average term

Xcel Energy North Dakota Residential 2022 Test-Year Customer Forecast

28
155
140
1.000
1.000
7.949
8.243
NA
NA
-820.98
2,475,303,071.42
361,785.06
2,584.18
50.83
35.68
0.08%
1.900
NA
28.258
0.249
0.862
6.828
113.824

Xcel Energy North Dakota Residential 2022 Test-Year Customer Forecast

Variable	Coefficient	StdErr	T-Stat	P-Value	Definition
NR_FGO	40.248	13.676	2.943	0.38%	Fargo Population (thousands)
Jan	60.418	6.577	9.186	0.00%	Binary variable January
Feb	56.222	6.767	8.308	0.00%	Binary variable February
Mar	51.650	6.539	7.898	0.00%	Binary variable March
Apr	33.195	5.835	5.689	0.00%	Binary variable April
May	16.215	4.454	3.641	0.04%	Binary variable May
Nov	24.948	4.455	5.600	0.00%	Binary variable November
Dec	52.309	5.836	8.962	0.00%	Binary variable December
SummerBin	-22.750	3.365	-6.762	0.00%	Binary variable July, August, September
AR(1)	0.998	0.007	142.314	0.00%	First order autoregressive term
SAR(1)	0.296	0.082	3.620	0.04%	First order seasonal autoregressive term

Xcel Energy North Dakota Residential 2022 Test-Year Customer Forecast

Model Statistics	
Iterations	23
Adjusted Observations	143
Deg. of Freedom for Error	132
R-Squared	1.000
Adjusted R-Squared	1.000
AIC	5.067
BIC	5.295
F-Statistic	NA
Prob (F-Statistic)	NA
Log-Likelihood	-554.19
Model Sum of Squares	74,135,844.98
Sum of Squared Errors	19,456.40
Mean Squared Error	147.40
Std. Error of Regression	12.14
Mean Abs. Dev. (MAD)	9.10
Mean Abs. % Err. (MAPE)	0.12%
Durbin-Watson Statistic	2.069
Durbin-H Statistic	NA
Ljung-Box Statistic	21.91
Prob (Ljung-Box)	0.5844
Skewness	0.372
Kurtosis	3.406
Jarque-Bera	4.278

0.118

Prob (Jarque-Bera)

1	STATE OF NORTH DAKOTA
2	BEFORE THE
3	PUBLIC SERVICE COMMISSION
4 5	
5	
6	In the Matter of the Application of
7	Northern States Power Company for Authority)
8	To Increase Rates for Natural Gas Service) Case No. PU-21
9	In North Dakota)
10	
11	
12	
13	AFFIDAVIT OF
14	Jannell E. Marks
15	
16	
17	I, the undersigned, being duly sworn, depose and say that the foregoing is the
18	Direct Testimony of the undersigned, and that such Direct Testimony and the
19	exhibits or schedules sponsored by me to the best of my knowledge, information
20	and belief, are true, correct, accurate and complete, and I hereby adopt said testimony
21	as if given by me in formal hearing, under oath.
22	
23	Januell E. Marks
24	Japan 9 Mary
25	Januell E. Marks
26	
27	
28	
29	Subscribed and sworn to before me, this <u>1811</u> day of August, 2021.
30	Subscribed and sworn to before me, this <u>19</u> day of August, 2021.
31	Λ —
32	1 Jan 10 Harris
33	Note on Dublic
34	Notary Public My Commission Expires: 3/19/2025
35	My Commission Expires: 3/14/ 20 25
36	·

DANENE GARCIA
NOTARY PUBLIC
STATE OF COLORADO
NOTARY ID 20214011137
MY COMMISSION EXPIRES 03/19/2025