

MEMORANDUM Summary of AMI Customer Benefits Research

Market Research & Policy, Product Strategy & Development January 2015

INTRODUCTION

Advanced Metering Infrastructure (AMI) deployments offer many **direct benefits** to utilities by increasing electric distribution efficiency, reducing operating costs (such as remote meter reading, remote disconnect / reconnect), facilitating peak load reductions through behavior change programs or rates, and improving revenue capture through smart meter accuracy and theft detection. These direct benefits eventually flow to customers in the form of lower rates.

In addition to these direct benefits, AMI also offers many **indirect benefits** that impact both the customer and to the larger society / community. These indirect benefits are felt by the customer in terms of: greater reliability; increased product offerings and customer choice; enhanced levels of service and communication; opportunities for customers to feel more engaged with their energy use; and potential for savings on their electric bills. These indirect benefits can also impact the greater society and environment through decreases in carbon emissions in direct relation to electricity usage reductions from distribution efficiencies, adoption of dynamic pricing or energy management services, and enabling Plug-In Electric Vehicles (PEV) or renewable generation integration.

Figure 1 below illustrates how direct and indirect benefits have a dynamic relationship that is integrated and reinforcing. This memorandum focuses on the indirect benefits of AMI deployment and the valuable opportunities this deployment would provide for Xcel Energy to strengthen our relationships with our customers given thoughtful and deliberate communication and product development strategies.

Figure 1. AMI Deployment Benefits

CUSTOMER BENEFITS

Indirect customer benefits fall into four categories: product choice, economic, reliability, and enhanced customer experience and service. Studies have shown that these benefits are important drivers in customer satisfaction and improving utility brand trust.

The Benefit of Product Choice

AMI serves as a dynamic platform that enables many products and services including dynamic pricing (DR, TOU, CPP, and DLC), energy management systems (smart thermostats and EMS), grid ready appliances, renewable energy integration, enabling PEVs and battery storage, energy disaggregation, and prepayment. National studies from JD Power¹ and Market Strategies International² have shown that utility customers are more satisfied or more engaged when they have more choices. Figure 1 shows 2015 PSCo data from the Customer Engagement Index. Customers who use more products (and enjoy the benefit of more choices) tend to have higher levels of engagement or satisfaction.

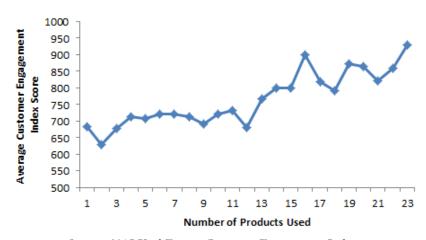


Figure 2. PSCo Products Drive Engagement

Source: 2015 Xcel Energy Customer Engagement Index

According to an October 2015 article in Fortnightly, "Commonwealth Edison in Chicago reported a rise in customer satisfaction as a result of it's high-touch approach to engaging and educating its customers on smart meters as it rolls them out..." Other utilities, such as Baltimore Gas & Electric, Pepco, and Sacramento Municipal Utility District have had similar customer engagement success stories according to the Smart Grid Collaborative's 2016 Customer Engagement Success Stories Case Studies. Figure 3 shows how national J.D. Power data affirms this hypothesis with customer satisfaction scores that are significantly higher (37 point increase) for those with smart meters.

¹ "2016 Utility Products and Services Study," JD Power McGraw Hill Financial, 2016.

² "2015 Customer Engagement Index Study," Market Strategies International, 2015.

³ Durand, Patty, "Customer Connection," Fortnightly, October 2015.

http://mag.fortnightly.com/iphone/article.php?id=2291463&font=searchResults3

http://smartgridcc.org/sgcc-smart-grid-customer-engagement-case-studies/

National J.D. Power Satisfaction Scores - Those Reporting to Have **Smart Meters** 720 713 710 **Customer Satisfaction Index** 700 690 Yes 676 680 ■ No 670 660 650 Yes Νo

Figure 3. Improved National J.D. Power Satisfaction Scores
For Those with Smart Meters

Economic Benefits

Economic benefits are driven by savings achieved through participation in the enhanced and expanded AMI enabled service offerings describes above such as dynamic rate, demand response, or prepayment programs. It is estimated that customers save \$13.68 to \$23.92 per year from dynamic pricing programs and \$7.82 to \$19.56 from prepayment programs.⁵ Figure 4 shows how customers who believe that Xcel Energy helps them save energy have higher satisfaction scores.

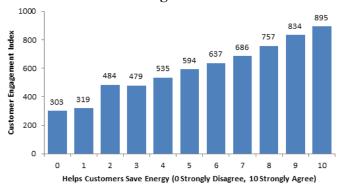


Figure 4. Customer Perception of Xcel "Helping Customers to Save Energy"

Leads to Higher Satisfaction

Furthermore, studies have shown that personalized reports from AMI enabled products / services often improve utility DSM program awareness, drive further participation, and ultimately lead to more energy savings measures or behavior changes.⁶

⁵ Smart Grid Consumer Collaborative, "Smart Grid Economic and Environmental Benefits: A Review and Synthesis of Research on Smart Grid Benefits and Costs." October 9, 2013.

⁶ Navigant Consulting and The National Association of Regulatory Utility Commissioners, "Value of Customer Data Access: Market Trends, Challenges, and Opportunities." April 2015.

Reliability Benefits

Many of the direct benefits related to grid reliability that are provided to utilities also benefit customers. These can be attributed to AMI enablement of the following:

- Volt/VAr Control (IVVC) which helps to effectively manage voltage and reduce required capacity during peak demand periods
- Improved outage management in providing better detection, faster response time, and reduced restoration
- Fault location and isolation which helps repair crews find and fix faults faster and isolate impacts

An evaluation of Xcel Energy's SmartGridCity revealed that "Customer Minutes Out" was reduced by over 28,000 minutes annually per feeder that had distribution automations systems installed. Furthermore, power quality complaints were found to have dropped to zero annually after deployment from over 30 complaints on average.⁷

Enhanced Customer Experience and Service

AMI leverages wireless technology to not only help streamline operations but also improve customer experience. Several examples of how AMI can enhance customer service are below:

- Detailed energy usage data helps customers better understand their energy usage
- Remote meter reading removes the need for onsite manual meter reading and reduces the frequency of customer complaints or perception of "invasion."
- Prepayment or "pay as you go" programs can drive reductions in customer call volumes associated with billing and collection.⁸
- Outages can be more effectively managed through better detection and faster response and restoration times
- AMI deployment can provide a unique opportunity for utilities to interact with each customer and strengthen relationships. This could include engaging with key municipal stakeholders and providing town hall meetings, as well as training AMI installers to view AMI installment as a secondary priority to having a positive interaction with the customer.
- **Detailed customer data** can be leveraged to improve traditional DSM program measurement and verification activity and provide real-time evaluation results. These results can help inform continued program improvement.

SOCIETAL BENEFITS

Indirect societal benefits impact the greater common good and fall into three categories: economic, environmental, and reliability.

Economic Benefits

Access to customer data enables the introduction of new services and products that were previously not feasible. This leads to demands for new types of jobs (e.g., communications engineers, software developers, and customer service professionals) and is also beneficial for suppliers in a competitive market where historical granular data allows for more competitive, lower cost/more targeted offers.

⁷ Xcel Energy, *SmartGridCity*TM *Demonstration Project Evaluation Summary* (report to the Colorado Public Utilities Commission), December 14, 2011, 85.

⁸ Ameren, "Advanced Metering Infrastructure (AMI) Cost / Benefit Analysis." June 2012.

Environmental Benefits

Most all AMI benefits described throughout this memorandum lead to some reduction in electricity usage or peak load reduction. These reductions can be directly correlated (and quantified by some studies)⁹ with decreases in carbon dioxide emissions. Below are some examples of how AMI drives emissions reductions:

- Benefits that can reduce overall energy usage:
 - o IVVC
 - o Prepayment
 - o Energy management (smart thermostats, EMS)
- Benefits that reduce demand
 - o Dynamic pricing (TOU, CPP, DLC, and DR)
 - o Energy management (smart thermostats, EMS)
 - o Grid-ready appliances
- Remote meter reading and disconnect/reconnect capabilities reduces carbon emissions from vehicle fleets
- Benefits that promote increased reliance on clean energy and reduces carbon emissions
 - o Enablement of PEVs
 - o Enablement of battery storage
 - o Renewable energy integration capabilities

SUMMARY OF RESEARCH:

Benefit	Utility	Customer	Societal	Sources
Integrated	Helps to more	Improves power	Offers carbon	(1) Xcel Energy,
Volt/VAr	effectively manage	quality. 1 Benefit	emissions reduction	2011.
Control	voltage and can	estimates range from	benefits in direct	(2) Smart Grid
(IVVC)	reduce required	\$11.24 to \$32.01 per	relation to electricity	Consumer
	capacity during peak	customer per year. 2	usage reductions.	Collaborative,
	demand periods,		Estimated to be a 372	2013.
	reducing overall		lb/customer reduction	
	usage		per year. 2	
Remote Meter	Reductions in labor,	Removes any	Reduces carbon	(1) Ameren, 2011.
Reading	vehicle, and IT	customer perception	emissions from	(2) Navigant, 2015
	expenses (60%	of invasion. ³ Benefit	vehicles.	(3) Smart Grid
	reduction), 1 errors,	estimates range from		Consumer
	customer	\$13.68 to \$23.92 per		Collaborative,
	complaints, 2 as well	customer per year. 4		2013.
	as traffic and safety			
	issues.			
Dynamic	Potential reductions	Allows customers the	Offers carbon	(1) Smart Grid
Pricing: TOU,	in demand during	opportunity to	emissions reduction	Consumer
CPP, DLC,	peak periods.	reduce bills by	benefits in direct	Collaborative,
and DR		shifting usage.	relation to electricity	2013.
programs		Benefit estimates	usage reductions.	
		range from \$13.68 to	Estimated to be a 110	
		\$23.92 per customer	lb/customer reduction	
		per year. 1	per year. 1	

⁹ Smart Grid Consumer Collaborative, "Smart Grid Economic and Environmental Benefits: A Review and Synthesis of Research on Smart Grid Benefits and Costs." October 9, 2013.

Benefit	Utility	Customer	Societal	Sources
Prepayment	Prepayment drives reductions in billing, collection (and associated call volume), ¹ and interest expenses. ²	Provides "pay as you go" choice which studies show drive energy reductions. ² Benefit estimates range from \$7.82 to \$19.56 per customer per year. ²	Offers carbon emissions reduction benefits in direct relation to electricity usage reductions. Estimated to be a 76 lb/customer reduction per year. ²	(1) Ameren, 2011. (2) Smart Grid Consumer Collaborative, 2013.
Remote Disconnect and Re-connect	Remote dis/re- connect drives reductions in admin costs. It's estimated that 20% of customer/year require this service. ¹	Reduces time required for various customer services transactions ²		(1) IEE, 2011. (2) Navigant, 2015.
Revenue Assurance	Reduction in losses from metering errors, theft (estimated at 1% of utility revenue), ^{1,3} and line losses.	Benefit estimate of \$3.00 per customer per year. ²		(1) Ameren, 2011. (2) Smart Grid Consumer Collaborative, 2013. (3) Navigant, 2015.
Customer Energy Management/ Building Automation/ Programmable Thermostat/ Load dissaggregation	Automated DR can be accomplished using EMS or a programmable thermostat and reduce peak demand. ¹	Provides real-time & historical data to customers and the opportunity to shift usage. Energy reduction can range from 5-15%. Adoption rates are estimated to be 20% for res by 2030.	Offers carbon emissions reduction benefits in direct relation to electricity usage reductions.	(1) EPRI, 2011.
Grid-Ready Appliances	Manufactured with DR capabilities built in. Penetration expected to reach 40% by 2030. 1	Allows customer opportunity to save on bills through on demand reduction.		(1) EPRI, 2011.
Outage Management	Allows for better detection, faster response time, reduced restoration time and cost (reducing unnecessary investigations). 4.5% outage duration reduction Outage restoration spend reduction of 10%. ²	Benefit estimate of \$1.18 per customer per year. ¹		(1) Smart Grid Consumer Collaborative, 2013. (2) Ameren, 2011.

Benefit	Utility	Customer	Societal	Sources
Fault Location	Helps repair crews	Benefit estimate of		(1) Xcel Energy,
and Isolation	find and fix faults	\$40.14 per customer		2011.
	more quickly and	per year. 2		(2) Smart Grid
	isolate impacts.			Consumer
	Total reliability			Collaborative,
	improvement of 22.3			2013.
	min/customer/year ¹			
Renewable	TOU and energy	Better integration	Increased renewable	
Generation	management systems	benefits further	adoption reduces use	
Integration	may help w/	adoption/reliability	of fossil fuels and	
	intermittency	of customer-side	carbon emissions.	
	challenges. Makes	renewables. Allows		
	DERMS possible to	for Net Metering.		
	manage customer- sited generation.			
	Allows for Net			
	Metering and			
	obviates the need for			
	a separate meter.			
Enabling	By incentivizing	Allow customers	Increased PEV	(1) Ameren, 2011.
PEVs	customers to shift	realize cost saving by	adoption reduces use	(2) EPRI, 2011.
	charging to the	charging at non-peak	of fossil fuels and	,
	night, utilities can	times at a lower rate.	carbon emissions.	
	reduce G, T&D	Potential for reverse		
	capacity. 1	flow capability. 2		
Safety &	Allow for rapid		Increases safety and	(1) Ameren, 2011.
Emergency	collaboration with		emergency response	
Response	fire departments and		for all.	
	other agencies to			
	respond to			
	emergencies. 1			
Electric		Ability to sustain		(1) EPRI, 2011.
Energy		outages. ¹ Includes		(2) Navigant,
Storage		battery systems sited		2013.
		at end use facilities,		
		on the distribution and transmission		
		systems and EV		
		batteries. ²		
Increased	Increased DSM	Personalized reports	Increased adoption of	(1) Navigant,
DSM Program	adoption benefits	etc. often improve	EE lead to reduction	(1) Navigant, 2015.
Performance	the utility in meeting	program awareness	in energy/emissions.	2013.
	EE targets and	and participation.	511515] / 511116516116.	
	incentives	and participation.		
New Market			Promotes intro of new	(1) Navigant,
Activities			services and products	2015.
			that were previously	(2) Ameren, 2011.
			not feasible which	
			leads to new jobs and	
			industries. 1,2	

Benefit	Utility	Customer	Societal	Sources
Customer	A better			(1) Navigant,
Segmentation/	understanding of			2015.
Targeted	customer			
Marketing	profiles/preferences			
	drives cost			
	effectiveness and			
	enables			
	segmentation ¹			
EM&V	Ability to track DSM	Better evaluation		(1) Navigant,
	program results	leads to better		2015.
	using non-meter	program		
	customer data (3rd	design/management,		
	party home devices)	thereby benefiting		
	which can reduce	the customer.		
	evaluation costs ¹			
Wide Area	Allows monitoring	Avoidance of		(1) Navigant,
Monitoring	of the bulk power	economic damages		2015.
(WAM)	system reducing	that major outages		
, ,	frequency of high-	can be valued in the		
	duration, widespread	hundreds of millions		
	outages from	of dollars or more. 1		
	instabilities in the			
	bulk power grid. 1			

REFERENCES

Navigant Consulting, "Smart Grid Regional Business Case for the Pacific Northwest," Prepared for Bonneville Power Administration. December 17, 2013.

Navigant Consulting and The National Association of Regulatory Utility Commissioners, "Value of Customer Data Access: Market Trends, Challenges, and Opportunities." April 2015.

The Edison Foundation, Electric Efficiency, "The Costs and Benefits of Smart Meters for Residential Customers," July 2011.

Smart Grid Consumer Collaborative, "Smart Grid Economic and Environmental Benefits: A Review and Synthesis of Research on Smart Grid Benefits and Costs." October 9, 2013.

EPRI, 'Estimating the Costs and Benefits of the Smart Grid: A Preliminary Estimate of the Investment Requirements and the Resultant Benefits of the Fully Functioning Smart Grid.' March, 2011.

Ameren, "Advanced Metering Infrastructure (AMI) Cost / Benefit Analysis." June 2012.

Xcel Energy, *SmartGridCity*TM *Demonstration Project Evaluation Summary* (report to the Colorado Public Utilities Commission), December 14, 2011, 85.