

July 16, 2021

Ms. Melanie Sandoval, Records Bureau Chief New Mexico Public Regulation Commission P.O. Box 1269 Santa Fe, NM 87504-1269

Re: Case No. 21-00169-UT In the Matter of Southwestern Public Service Company's 2021 Integrated Resource Plan

Dear Ms. Sandoval:

Pursuant to Section 9(A) of NMAC 17.7.3, Southwestern Public Service Company ("SPS") hereby files with the New Mexico Public Regulation Commission ("Commission"), its 2021 New Mexico Integrated Resource Plan ("IRP") for the period 2022 through 2041.

A copy of this filing is being provided electronically to the Commission's Utility Division Staff, interveners in SPS's most recent general rate case, and participants in SPS's most recent renewable energy, energy efficiency, and IRP proceedings.

SPS is also providing a copy of the filing on the Xcel Energy IRP website, https://www.xcelenergy.com/company/rates_and_regulations/resource_plans.

If you have any questions, please contact me at (806) 378-2115 or Linda Hudgins, Case Specialist II at (806) 378-2709.

Yours very truly,

/s/ Mario Contreras Mario Contreras, Manager Rate Cases

Enclosures

2021 Integrated Resource Plan

Filed in Compliance with 17.7.3 NMAC

Southwestern Public Service Company

July 16, 2021

Safe Harbor Statement

This document contains forward-looking statements. Such statements are subject to a variety of risks, uncertainties, and other factors, most of which are beyond Southwestern Public Service Company's, a New Mexico corporation ("SPS"), control and many of which could have a significant impact on SPS's operations, results of operations, and financial condition, and could cause actual results to differ materially from those anticipated. For further discussion of these and other important factors, please refer to reports filed with the Securities and Exchange Commission. The reports are available online at www.xcelenergy.com.

The information in this document is based on the best available information at the time of preparation. SPS undertakes no obligation to update any forward-looking statement or statements to reflect events or circumstances that occur after the date on which such statement is made or to reflect the occurrence of unanticipated events, except to the extent the events or circumstances constitute material changes in the Integrated Resource Plan ("IRP") that are required to be reported to the New Mexico Public Regulation Commission ("Commission") pursuant to 17.7.3.10 NMAC.

Table of Contents

Safe Harbor	Statement	ii
List of Table	s	v
List of Figur	es	vi
List of Appe	ndices	vii
Glossary of A	Acronyms and Defined Terms	viii
Executive Su	ımmary	1
Section 1.	INTRODUCTION	4
Section 2.	BACKGROUND	6
Section 3.	EXISTING SUPPLY-SIDE & DEMAND-SIDE RESOURCE	
	ned Resources	
	chased Power	
•	llifying Facilities	
	& Approved Energy Storage Resources	
	al SPS Owned Generation Approved but not In-Service	
	g Agreements	
	-Side Resources	
	Margin and Reserve Reliability Requirements	
	Transmission Capabilities mental Impacts of Existing Supply-Side Resources	
	ation of Critical Facilities Susceptible to Supply-Source or Other Failures a	
	y of Back-up Fuel Capabilities and Options	
Section 4.		
	Overview	
	mand Discussion	
	Energy Discussion	
	Vehiclesl Low Case Forecasts	
_	ing Methodologies	
	Sales Forecasts	
0.	mand Forecasts	
	g for Uncertainty	
	Adjustments	
	-Side Management	
	Response, Energy Efficiency, and Behind-the-Meter Generation	
	Accuracy	
	etric Model Parameters	
Section 5.	L&R TABLE	43
Section 6.	IDENTIFICATION OF RESOURCE OPTIONS	
6.01 - Resource	e Options Considered	52

	Resources	
6.03 - Proposa	als Received from the Tolk Analysis RFI	54
6.04 - Other S	upply-side Resource Technologies	56
	Rates and Tariffs	
Section 7.	DETERMINATION OF THE MOST COST-EFFECTIVE	
	RESOURCE PORTFOLIO AND ALTERNATIVE	
	PORTFOLIOS	61
7.01 - Resourc	e Planning Fundamentals	
	pass Production Cost Model	
	oment of Resources Portfolios	
	hing a Base Case Analysis in EnCompass	
	Case - Resource Need	
7.06 - Most Co	ost-Effective Resource Portfolio – Base Case	69
7.07 - Uncerta	inty in Modeling the Cost of New Resources	72
	tive Portfolios / Mitigating Ratepayer Risk	
	Operation of SPS's existing coal generation	
	Gas & Market Energy Price Forecast	
	orecast	
7.13 - Carbon	Price Sensitivity	85
	ion	
Section 8.	PUBLIC ADVISORY PROCESS AND TECHNICAL	
	CONFERENCES	90
Section 9.	ACTION PLAN	93
	tion Plan for 2022-2025	
	leport	

List of Tables

Table 3-1:	Location, Rated Capacity, Retirement Date, Cost Data, Heat Rate, and	
	Capacity Factor for all Generating Units - Calendar Year 2020	9
Table 3-2:	PPA Capacity and Expiration Dates1	
Table 3-3:	QF Wind	
Table 3-4:	New Mexico EE Achievements for Plan Years 2013-2020	
Table 3-5:	New Mexico Actual Savings Provided by the 2008-2020 EE Programs13	8
Table 3-6:	Filed and Forecasted New Mexico DSM Goals at the Customer Level for	
	the Planning Period	9
Table 3-7:	SPS's EE and LM Achievements - 2011 to 2020 in Texas20	
Table 3-8:	Emission and Water Consumption Rates	6
Table 5-1:	Summarized L&R Table	
Table 5-2:	Summary of SPS Base Case L&R	
Table 5-3:	Summary of SPS High Load Case L&R	6
Table 5-4:	Summary of SPS Low Load Case L&R	
Table 6-1:	Supply-Side Generating Resources Comparison	
Table 6-2:	Thermal Generic Resource Summary Cost and Performance - 202154	
Table 6-3:	Generic Renewable and BESS Resource Cost by Year54	
Table 6-4:	Accredited Capacity for New Resources5	
Table 7.1:	Low Natural Gas & Market Energy Forecast – Additional Resources	
	During the Planning Period	8
Table 7.2:	Low Natural Gas & Market Energy Forecast – Additional Resources	
	During the Planning Period	9
Table 7.3:	Low Load Forecast – Additional Resources During the Planning Period8	1
Table 7.4:	High Load Forecast – Additional Resources During the Planning Period82	2
Table 7.5:	\$200/kW Transmission Network Upgrade Costs – Additional Resources	
	During the Planning Period83	3
Table 7.6:	\$600/kW Transmission Network Upgrade Costs – Additional Resources	
	During the Planning Period84	4
Table 7.7:	\$8 Metric Ton Social Cost of Carbon – Additional Resources During the	
	Planning Period8	5
Table 7.8:	\$20 Metric Ton Social Cost of Carbon – Additional Resources During the	
	Planning Period80	6
Table 7.9:	\$40 Metric Ton Social Cost of Carbon – Additional Resources During the	
	Planning Period88	8
Table 8-1:	Public Advisory Process Timeline and Subject Areas	1

List of Figures

Figure 3F.1:	SPS Existing Generation Fleet (Owned and PPAs)	.12
Figure 3F.2:	ISO / RTO Map	
Figure 3F.3:	Percentage of MWh Generated in 2020 by Fuel Type	
Figure 4F.1:	Coincident Peak Demand Forecasts	
Figure 4F.2:	Energy Sales Forecasts	.30
Figure 4F.3:	Peak Demand History and Forecast, Retail and Wholesale	.32
Figure 4F.4:	Energy Sales History and Forecast, Retail and Wholesale	
Figure 4F.5:	Forecast Comparison with Actual Energy Sales	.41
Figure 4F.6:	Forecast Comparison with Actual Firm Load Obligation Peak	
Figure 7F.0:	EnCompass Transmission Constraints	
Figure 7F.1:	Most Cost-Effective Resource Portfolio – Additional Resources During	
	the Action Plan	
Figure 7F.2:	Most Cost-Effective Resource Portfolio –Additional Resources During	
	the Planning Period	.71
Figure 7F.3:	Most Cost-Effective Resource Portfolio – Planning Period All	
	Resources	.72
Figure 7F.4:	Low Natural Gas and Market Energy Forecast – Additional Resources	
_	During the Planning Period	.78
Figure 7F.5:	High Natural Gas and Market Energy Forecast – Additional Resources	
	During the Planning Period.	.79
Figure 7F.6:	Low Load Forecast – Additional Resources During the Planning Period	
Figure 7F.7:	High Load Forecast - Additional Resources During the Planning Period	82
Figure 7F.8:	\$200/kW Transmission Network Upgrades – Additional Resources	
_	During the Planning Period	.83
Figure 7F.9:	\$600/kW Transmission Network Upgrades – Additional Resources	
	During the Planning Period	.84
Figure 7F.10:	\$8 Metric Ton Social Cost of Carbon – Additional Resources During the	e
	Planning Period	.86
Figure 7F.11:	\$20 Metric Ton Social Cost of Carbon – Additional Resources During	
_	the Planning Period	.87
Figure 7F.12:	\$40 Metric Ton Social Cost of Carbon – Additional Resources During	
S	the Planning Period	.88

List of Appendices

Appendix A: Purchased Power Costs

Appendix B: Southwest Power Pool Integrated Transmission Plan – Near Term

Appendix C: SPS Notices to Construct

Appendix D: Electric Energy and Demand Forecast

Appendix E: Hourly Load Profiles

Appendix F: Econometric Model Parameters

Appendix G: Key Modeling Inputs

Appendix H: Tolk Analysis Previously Filed on June 30, 2021

Appendix I: Harrington Present Value Revenue Requirement Tables

Appendix J: Scenario Expansion Plan

Appendix K: Existing and Anticipated Environmental Laws and Regulations

Appendix L: Publication of Public Advisory Invitation

Appendix M: Public Advisory Presentations

Appendix N: Applicable Electric Utility IRP Rule Requirements and Where Addressed

in SPS's Filing

Appendix O: SPS Transmission Map

Glossary of Acronyms and Defined Terms

Acronym/Defined Term Meaning

2021 IRP Integrated Resource Plan, filed July 16, 2021

Action Plan IRP Implementation During the First Four

Years of the IRP

Action Plan Period 2021 IRP implementation from 2022-2025

ATB Annual Technology Baseline

BESS Battery Energy Storage System

CC Combined Cycle

CO₂ carbon dioxide

Commission New Mexico Public Regulation Commission

CTG Combustion Turbine Generator

DSM Demand-Side Management

EE Energy Efficiency

ELCC Effective Load Carrying Capability

EOY End of Year

EUEA Efficiency Use of Energy Act

FOM Fixed Operations and Maintenance

GCP Combined Real Gross County Product

GWh gigawatt-hour

HRSG Heat Recovery Steam Generator

ICO Interruptible Credit Option

IRP Integrated Resource Plan

Acronym/Defined Term Meaning

IRP Rule 17.7.3 NMAC

ISO independent system operator

ITC Investment Tax Credit

kW kilowatt

kWh kilowatt-hour

L&R Loads and Resources

LED Light Emitting Diode

LM Load Management

LOLE Loss of Load Expectation

LRE Load Responsible Entity

MMBtu Million British Thermal Unit

MW megawatt

MWh megawatt-hour

NAAQS National Ambient Air Quality Standards

NERC North American Electric Reliability

Corporation

NREL National Renewable Energy Laboratory

NYMEX New York Mercantile Exchange

OATT Open Access Transmission Tariff

O&M Operations and Maintenance

Planning Period 2022-2041 Planning Period

Acronym/Defined Term Meaning

Planning Reserve available capacity above the projected peak

demand

PPA Purchased Power Agreement

PRM Planning Reserve Margin

PTC Production Tax Credit

PV photovoltaic

QF Qualifying Facility

RFI Request for Information

RPS Renewable Portfolio Standard

RTO Regional Transmission Organization

SPS Southwestern Public Service Company, a

New Mexico corporation

Staff Utility Division Staff of the Commission

STG Steam Turbine Generator

TCEQ Texas Commission on Environmental

Quality

Tolk Analysis analysis evaluating the economically optimal

retirement date of the Tolk Units

TOU Time of Use

VOM Variable Operations and Maintenance

Xcel Energy Inc.

Executive Summary

SPS presents its 2021 Integrated Resource Plan ("2021 IRP") identifying the most costeffective portfolio of resources over the 20-year Planning Period (2022 – 2041). For more than a
decade, SPS has strived to serve its customers with a cleaner mix of generating resources and with
an energy grid that is more reliable and secure - all while keeping customer energy bills low. SPS
continues to deliver on this goal, successfully adding an additional 1,230 megawatts ("MW") of lowcost wind generation since the filing of the 2018 IRP. In addition, SPS is well positioned to comply
with New Mexico's Renewable Portfolio Standards ("RPS") and the State's carbon emission
reduction goals. In SPS's most recent RPS filing (New Mexico Case No. 21-00172-UT), SPS
proposed early compliance with the RPS's 2025 goal to supply no less than 40% of SPS's New
Mexico retail energy sales by renewable energy, and last year, SPS's carbon emissions were reduced
55% when compared with 2005 levels.

The highlighted changes below demonstrate that SPS's 2021 IRP continues to support the company's commitment to provide clean, reliable and affordable energy.

Future Operation of SPS's Coal Generating Units

SPS's existing coal generating units have, or are planned to, undergo substantial operational changes since SPS's filed its last IRP in 2018. Beginning 2021, the Tolk Generating Units located in Texas are economically dispatched during the high load summer months, and to conserve limited groundwater are shut down in the eight off-peak months (unless called upon in urgent need conditions). SPS's Tolk Analysis, which was filed in advance of this IRP, continues to support seasonal operation of the Tolk Units until a 2032 retirement date. Additionally, per an agreed order with the Texas Commission on Environmental Quality ("TCEQ"), SPS's other coal-fired plant, the

Harrington Generating Station located in Texas, is planned to be converted to operate exclusively on natural gas by the end of 2024. Both the Tolk and Harrington Generating Stations are scheduled to retire within the 20-year IRP planning period.

Aging Gas Steam Resources

Several of SPS-owned gas steam generating units are at the end of their useful life. During the 4-year Action Plan¹, over 650 MW of gas steam generation is scheduled to retire and within the Planning Period, SPS's entire 1.6 GW portfolio of gas steam generating units are scheduled to retire.

Economic Renewable Energy Resources

SPS's most cost-effective portfolio of resources and alternative portfolios support a continued transition to a more renewable-heavy portfolio of generating resources, especially as SPS's existing coal and aging gas steam resources are scheduled to retire. Despite scheduled retirements, during the Action Period, SPS has sufficient resources to meet its reliability and regulatory requirements, therefore is well positioned to acquire new economic energy resources only when they are most likely to economically benefit SPS's customers.

Emerging Technologies

The continued transition to a more renewable heavy portfolio of resources will also necessitate a need for firm peaking and load-following resources to provide reliability and energy while intermittent resources, such as wind and solar, are not available. Currently, natural gas combustion turbine generators ("CTG") are the most economical technology to provide critical system reliability needs. However, to meet New Mexico's 2045 carbon-free goal, natural gas CTGs may be required to use carbon-free hydrogen as a fuel source, or CTGs may ultimately be replaced by emerging

¹ IRP Implementation During the First Four Years of the IRP

technologies, such as battery energy storage systems ("BESS"). By preserving the capacity and energy benefits of the Tolk and Harrington Generating Stations under current planning, SPS's most cost-effective portfolio of resources does not include any new carbon-emitting resources until 2031, therefore, providing SPS time to re-evaluate emerging technologies in future IRPs.

Section 1. INTRODUCTION

SPS, a wholly-owned subsidiary of Xcel Energy Inc. ("Xcel Energy"), presents its 2021 integrated resource plan ("2021 IRP") in accordance with the Efficient Use of Energy Act (NMSA 1978, § 62-17-1, et seq., "EUEA") and 17.7.3 NMAC (the "IRP Rule"). SPS's 2021 IRP: (i) identifies the most reasonable, cost-effective resource portfolio to meet all applicable regulatory requirements and to supply the energy needs of New Mexico customers during the 2022-2041 Planning Period ("Planning Period"); and (ii) provides an Action Plan discussing 2021 IRP implementation from 2022-2025 ("Action Plan Period").

Per the uncontested comprehensive stipulation in SPS's New Mexico Base Rate Case No. 19-00170-UT, SPS's 2021 IRP includes an updated "Tolk Analysis" evaluating the economically optimal retirement date of the Tolk Units. The Tolk Analysis is included in its entirety in Appendix H and was filed with the Commission in advance of the IRP on June 30, 2021.

SPS's 2021 IRP was developed by considering studies, forecasts, regulatory predictions, and information exchanged through a series of technical conferences and a public advisory process, combined with historical data, existing and potential resource capabilities, and costs associated with alternative generation resource expansion plans. SPS's analysis considered applicable regulatory, and operational obligations and both short- and long-term least-cost impacts to customers, while balancing the ability to deliver the expected level of service to customers while meeting applicable regulatory and operational obligations. The goal of SPS's 2021 IRP was to develop a reliable, robust, cost-effective, and environmentally-focused generation expansion plan.

Many factors may impact this IRP and could potentially require updates to the Action Plan and will be the subject of future IRPs. These factors include: (i) changes to the operation of SPS's

existing coal-fired generating units; (ii) changes to, or the extension of, renewable tax credits; (iii) uncertainty in the cost and schedule of interconnecting new generation within SPS's footprint; and (iv) potential technological and economic advances in emerging technologies. Each of these factors are discussed in more detail in Section 7.

Most importantly, the resource plan is presented based on the best information available at this time and with recognition that SPS will have to be flexible in resource plan execution over the Action Plan and Planning Period as new information becomes available and in response to the inherent uncertainty of long-term forecasting and resource planning. SPS will continue to actively monitor developments in these areas. However, as presented, SPS's 2021 IRP provides a well-rounded resource portfolio that addresses customer cost impacts, environmental impacts, critical reliability needs in localized areas of SPS, operational issues, and complies with applicable regulatory requirements.

The remainder of the IRP is organized as follows: (i) Section 2 provides a background; (ii) Section 3 discusses existing supply- and demand-side resources, and reserve margin/reliability requirements, (iii) Section 4 provides SPS's current load forecast; (iv) Section 5 presents SPS's Loads and Resources ("L&R") table for the Planning Period; (v) Section 6 identifies the resource options; (vi) Section 7 presents a determination of the most cost-effective resource portfolio and alternative portfolios; (vii) Section 8 discusses the public advisory process; and (viii) Section 9 presents SPS's Action Plan.

Section 2. BACKGROUND

The objective of the IRP is to identify the most cost-effective portfolio of resources to supply the energy needs of customers while giving preference to resources that minimize environmental impacts and whose costs and service quality are equivalent (17.7.3.6 NMAC).

Specifically, the IRP Rule requires that affected utilities provide the following details (17.7.3.9(B) NMAC):

- (1) description of existing electric supply-side and demand-side resources;
- (2) current load forecasts;
- (3) load and resources tables;
- (4) identification of resource options;
- (5) description of the resource and fuel diversity;
- (6) identification of critical facilities susceptible to supply-source or other failures;
- (7) determination of the most cost-effective resource portfolio and alternative portfolios;
- (8) description of the public advisory process;
- (9) Action Plan; and
- (10) other information that the utility finds may aid the Commission in reviewing the utility's planning process.

Please refer to Appendix N for a table indicating where each of the rule requirements is met in this filing.

In addition, the uncontested comprehensive stipulation in New Mexico Case No. 19-00170-UT required SPS's 2021 IRP to include a robust analysis of Tolk abandonment and economical potential means of replacement by June 2021 (the "Tolk Analysis"). The Tolk Analysis is included in its entirety in Appendix H and was filed with the Commission in advance of the IRP on June 30, 2021.

SPS filed its initial New Mexico IRP on July 16, 2009 (Case No. 09-00285-UT), its second IRP on July 16, 2012 (Case No. 12-00298-UT), its third IRP on July 16, 2015 (Case No. 15-00217-UT), and its fourth IRP on July 16, 2018 (Case No. 18-00215-UT); all of SPS's IRPs were accepted by the Commission. SPS's 2021 IRP includes all required components of the IRP Rule.

Section 3. EXISTING SUPPLY-SIDE & DEMAND-SIDE RESOURCES

3.01 - SPS-Owned Resources

SPS owns supply-side thermal generation resources, located in both New Mexico and Texas, which serve its entire system. SPS's supply-side thermal resources had a 2020 summer generation capacity of 4,335 MW and were comprised of a mix of coal-fired, gas steam, and simple-cycle CTG units. As shown in Table 3-1 (next page), the Tolk and Harrington coal-fired generating units provided nearly half of the 2020 summer peak capacity; gas steam units totaled approximately 1.6 GW; and simple-cycle CTG units totaled over 600 MW.

SPS also owns and operates two wind generating facilities. The 478 MW Hale Wind generating facility (Hale County, Texas) was placed in-service in June 2019, and the 522 MW Sagamore Wind generating facility (Roosevelt County, New Mexico) was placed in-service in December 2020.

The names, fuel types, locations, rated capacities (MW), expected retirement dates, capital costs (gross plant balance), fixed and variable operation and maintenance costs ("FOM" and "VOM"), fuel costs, heat rates (Btu/kWh), and annual capacity factors for calendar year 2020 are provided in Table 3-1 (next page).

Table 3-1: Location, Rated Capacity, Retirement Date, Cost Data, Heat Rate, and Capacity Factor for all Generating Units - Calendar Year 2020

Southwestern Public Service Company Location, Rated Capacity, Retirement Date, Cost Data, Heat Rate, & Capacity Factor for all Owned Generating Units Calendar Year 2020

		Rated Capacity	Expected Retirement	Ca	apital \$ (Gross				Net Unit Heat Rate	Annual Capacity
Unit Name	Location	(MW)	Date		plant)	O&M \$		Fuel \$	(Btu/kWh)	Factor
Steam Production - Gas/Oil										
Jones Unit 1	Lubbock Co., TX	243	2031	S	54,714,121	9,504,622	\$	31,153,663	10,860	51%
Jones Unit 2	Lubbock Co., TX	243	2034	S	48,095,614				10,889	44%
Plant X Unit 1	Lamb Co., TX	39	2022	S	13,451,522	8,652,844	S	14,622,353	13,577	18%
Plant X Unit 2	Lamb Co., TX	90	2022	S	24,644,736				11,831	25%
Plant X Unit 3	Lamb Co., TX	0	2024	\$	18,947,804				0	0%
Plant X Unit 4	Lamb Co., TX	193	2027	S	41,695,050				10,902	40%
Steam Production - Gas										
Cunningham Unit 1	Lea Co., NM	68	2022	S	17,960,216	5,683,791	\$	11,537,882	11,640	43%
Cunningham Unit 2	Lea Co., NM	171	2025	S	41,996,765				10,539	31%
Maddox Unit 1	Lea Co., NM	112	2028	S	48,678,630	3,561,308	\$	7,318,514	11,201	51%
Nichols Unit 1	Potter Co., TX	108	2022	S	26,144,622	9,888,210	\$	22,649,935	11,709	27%
Nichols Unit 2	Potter Co., TX	111	2023	S	27,212,118				11,434	38%
Nichols Unit 3	Potter Co., TX	246	2030	S	48,467,985				11,208	30%
Steam Production - Coal										
Harrington Unit 1	Potter Co., TX	340	2036	S	168,499,280	23,260,669	S	56,125,073	11,442	35%
Harrington Unit 2	Potter Co., TX	340	2038	\$	185,120,344				11,063	36%
Harrington Unit 3	Potter Co., TX	341	2040	S	191,081,811				10,746	42%
Tolk Unit 1	Bailey Co., TX	531	2032	S	326,426,504	17,733,283	\$	36,010,273	11,399	20%
Tolk Unit 2	Bailey Co., TX	538	2032	S	361,728,360				11,094	20%
Turbine - Gas										
Cunningham Unit 3	Lea Co., NM	106	2040	S	47,076,368	556,537	S	10,299,704	11,816	34%
Cunningham Unit 4	Lea Co., NM	104	2040	S	43,994,537				12,354	30%
Maddox Unit 2	Lea Co., NM	61	2025	S	19,619,416	359,224	S	3,773,271	13,647	34%
Jones Unit 3	Lubbock Co., TX	166	2056	S	95,173,578	662,642	\$	11,117,912	10,606	22%
Jones Unit 4	Lubbock Co., TX	167	2058	S	83,646,977				10,500	22%
Turbine - Fuel Oil										
Quay	Hutchinson Co, TX	17/23	2034	S	26,418,131	191,823	\$	76,600	17,184	0.13%
Other Production - Wind										
Hale	Hale Co, TX	478	2044	S	680,220,686	11,999,743	\$	-	N/A	50%
Sagamore	Roosevelt Co, NM	522	2050	\$	800,917,397	201,016	S	2	N/A	N/A

Note (1) The O&M \$ are reported by plant Note (2) Fuel \$ is measured at the plant level

Note (3) SPS plans on converting the Harrington Units to operate on natural gas end of year 2024

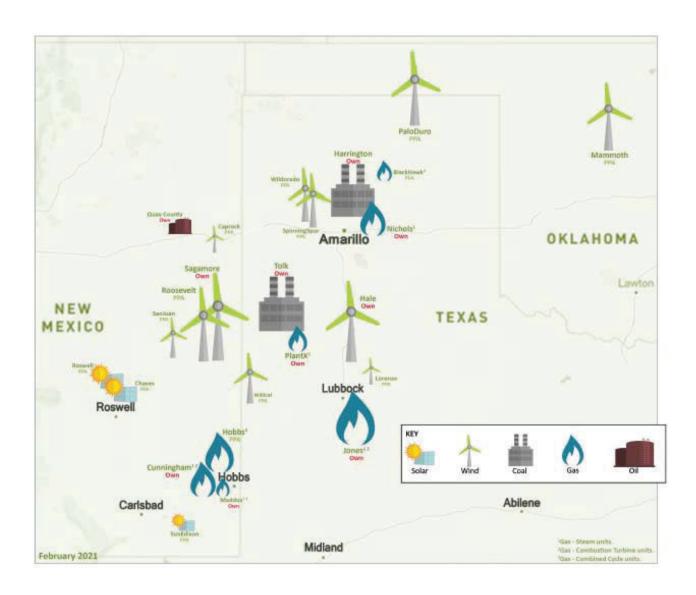
3.02 - SPS-Purchased Power

In addition to SPS's owned generation, SPS currently has long-term purchased power agreements ("PPA") totaling 2,444 MW of nameplate capacity and associated energy. SPS purchases the energy output from renewable intermittent generation consisting of 1,450 MW of wind and 192 MW_{AC} of solar. These resources serve SPS's entire system. Table 3-2 lists the nameplate capacity and expiration dates for each long-term PPA under which SPS currently purchases capacity and/or energy.

Table 3-2: PPA Capacity and Expiration Dates

Purchased Power Agreement	Nameplate Capacity (MW)	Commercial Operation Date	Expiration Date
Sid Richardson Carbon Ltd. Gas Facility	5	2001	2021 ²
Blackhawk Station Simple Cycle Combustion Turbines	223	1999	2024³
Lea Power Partners Combined Cycle	574	2008	2033
Subtotal	802		
Caprock Wind	80	2004	2024
San Juan (Padoma) Wind	120	2005	2025
Wildorado Wind	161	2007	2027
Spinning Spur Wind	161	2012	2027
Mammoth Wind	199	2014	2034
Palo Duro Wind	249	2014	2034
Roosevelt Wind	250	2015	2035
Lorenzo Wind (Bonita I)	80	2018	2048
Wildcat Wind (Bonita II)	150	2018	2048
Subtotal	1,450		
Sun Edison Solar	50	2011	2031
Chaves Solar	70	2016	2041
Roswell Solar	70	2016	2041
SoCore Clovis 1 LLC ⁴	1.98	2021	2041
Subtotal	192		
Total Firm (PPAs)	2,444		

Figure 3F.1 below provides a regional map of the SPS generation fleet (owned and PPAs). A regional map of SPS's transmission system is also provided in Appendix O.


² The PPA between SPS and Tokai Carbon CB Ltd. (Sid Richardson) is scheduled to terminate August 1, 2021, which is prior to the end of the Southwest Power Pool Summer Season (June 1 – September 31).

³ The PPA between SPS and Borger Energy Associates (Blackhawk Station) is scheduled to terminate on June 12, 2024, which is prior to the expected summer peak.

4 The SoCore Facility is utilized for SPS's Voluntary Renewable Energy Program in New Mexico, referred to

as Solar*Connect.

Figure 3F.1: SPS Existing Generation Fleet (Owned and PPAs)

3.03 – SPS Qualifying Facilities

In addition to SPS's owned and long-term PPAs, SPS also purchases energy from eight Qualifying Facilities ("QF"), with a total nameplate capacity of 111 MW, that are put to SPS under the Public Utility Regulatory Policy Act of 1978. Per SPS's New Mexico Rate No. 4 or the Texas Electric Tariff Sheet No. IV-117 (Rev. No. 4) a QF that chooses to sell energy to SPS under these Rates/Tariffs, must execute the standard Purchase Agreement. See Table 3-3 below for a list of SPS QF Wind facilities.

Table 3-3: **OF Wind**

QF Wind	Nameplate Capacity (MW)	Commercial Operation Date
Ralls Wind	10	07/20/2011
Cirrus Wind	61.2	12/12/2012
Pantex Wind	11.5	06/20/2014
Pleasant Hills Wind	19.8	06/04/2014
Aeolus Wind	3	04/05/2004
National Windmill	0.66	12/07/2005
West Texas A&M	3.51	11/11/2013
Mesalands Community College	1.5	07/08/2015

In addition, SPS historic cost (calendar year 2020) information regarding each of the long-term PPAs and QFs is provided in Appendix A.

3.04 - Existing & Approved Energy Storage Resources

Currently, SPS has no existing or approved energy storage resources.

3.05 - Additional SPS Owned Generation Approved but not In-Service

Currently, SPS has no new generating resources under construction or scheduled for the Planning Period.

3.06 - Wheeling Agreements

SPS does not purchase any capacity or energy under wheeling agreements with other utilities.

3.07 - Demand-Side Resources

The IRP Rule specifically requests that the utilities detail their existing demand-side management ("DSM") resources in their IRP filing and defines those resources as "energy efficiency and load management." Energy efficiency ("EE") is defined in the IRP Rule as "measures, including energy conservation measures, or programs that target consumer behavior, equipment or devices to result in a decrease in consumption of electricity without reducing the amount or quality of energy services." Load management ("LM") is defined as "measures or programs that target equipment or devices to decrease peak electricity demand or shift demand from peak to off-peak periods." SPS offers DSM resources in both New Mexico and Texas in accordance with state-specific rules and laws.⁷

New Mexico DSM

SPS must annually report its achieved levels for the previous calendar year and receive approval of its forward looking plans every three years to continue towards its statutory goals. SPS's 2019 EE Triennial Plan approving Plan Years 2020-2022 was approved in Case No. 19-00140-UT on February 19, 2020.⁸ SPS will continue its approved Triennial Plan through Plan Year 2021. In

⁵ Rule 17.7.3.7.D NMAC.

⁶ Rule `7.7.3.7.I NMAC.

⁷ DSM costs are directly assigned by jurisdiction.

⁸ In the Matter of Southwestern Public Service Company's Triennial Energy Efficiency Plan Application Requesting Approval of: (1) SPS's 2020-2022 Energy Efficiency Plan and Associated Programs; (2) A Financial Incentive for Plan Year 2020; (3) Recovery of the Costs Associated with a potential Energy Efficiency Study over a Two-Year Time Period; and (4) Continuation of SPS's Energy Efficiency Tariff Rider to Recover Its Annual Program Costs and Incentives, Case No. 19-00140-UT, Final Order Approving Certification of Stipulation (Feb 19, 2020).

accordance with the Final Order in Case No. 19-00140-UT, SPS refiled its Plan Year 2022 portfolio and proposed goals on July 15, 2021. Previous plans were approved for calendar years 2011 – 2019 in Case Nos. 11-00400-UT, 13-00286-UT, 15-00119-UT, 16-00110-UT, 17-00159-UT, 18-00139-UT, and 19-00140-UT, respectively. Table 3-4 below describes SPS's EE achievements under the EUEA.

Table 3-4: New Mexico EE Achievements for Plan Years 2013-2020

Year	Customer	Customer kWh
	kW ⁹ Saved	Saved
2013	8,056	37.674.221
2014	8,873	30,492,802
2015	10,716	35,225,196
2016	8,486	34,384,659
2017	8,476	33,191,039
2018	7,539	42,841,455
2019	9,415	39,420,766
2020	7,404	46,980,168

At the time of this IRP filing, SPS is offering the following approved DSM programs to its New Mexico customers (designated by "EE" for energy efficiency and "LM" for load management).

Residential Segment:

- Residential Energy Feedback (EE) This program is designed to quantify the effects of informational feedback on energy consumption in approximately 15,000 residential households, consistent with the Commission's Final Order in Case No. 09-00352-UT. This program provides educational materials and communication strategies to create a change in energy usage behavior. The purpose of the program is to measure when, how, and why customers change their behavior when provided with feedback on their energy using habits.
- Residential Cooling (EE) This program offers rebates for the purchase of high efficiency evaporative cooling, air conditioning, and heat pump units. Rebates for evaporative coolers are paid for purchase of new units with an efficiency greater than 85%, installed in new or existing construction, regardless of whether or not the customer is replacing an existing unit.

⁹ kilowatt

¹⁰ Case No. 09-00352-UT, In the Matter of Southwestern Public Service Company's Application for Approval of its 2010/2011 Energy Efficiency and Load Management Plan and Associated Programs, Requested Variances, and Cost Recovery Tariff Rider, Final Order Adopting Certification of Stipulation (Mar. 15, 2011).

Air conditioning and heat pump rebates are paid to registered contractors who perform a quality installation in new and existing homes.

- Home Energy Services (EE) Under this program, SPS provides incentives for the installation of a wide range of energy savings measures that reduce customer energy costs. The incentives are paid to energy efficiency service providers on the basis of deemed (*i.e.*, pre-determined) energy savings. The program, which also includes a Low-Income offering, includes attic insulation, air infiltration reduction, refrigerators (for low-income participants) and duct leakage repairs. The program is delivered via third-party providers interacting directly with customers to perform the home improvements. Additionally, Income-qualified customers, will receive an offer through mail informing them of their eligibility to receive a free Energy Savings Kit. A customer is qualified by being identified as receiving energy assistance through federal Low-Income Home Energy Assistance Program. If the customer chooses to receive a kit, they will send their response to the third-party implementer. Customers will receive a kit within six to eight weeks.
- Home Lighting (EE) This program provides incentives for customers to purchase energy efficient LEDs¹¹ through participating retailers. Participating retailers may include home improvement, mass merchandisers, and hardware store locations. Customers will be able to recycle used compact fluorescent lights at select retail partner locations.
- Heat Pump Water Heaters (EE) This program provides rebates for the purchase of highefficiency electric heat pump water heaters. Customers can purchase these units through local home improvement stores or heating, ventilating, and air conditioning contractors.
- School Education Kits (EE) The School Education Kits Program provides free kits to fifth grade classrooms in SPS's New Mexico service area. These kits include energy efficiency educational materials and products, including four LEDs, one low-flow showerhead, a kitchen and bathroom aerator, and an LED nightlight, which are distributed along with curriculum. This program provides value beyond the direct installation of measures included in the kits by creating awareness of energy efficiency with students, teachers, and parents.
- Smart Thermostats (EE) In SPS's 2019 Triennial, the Saver's Stat program was transitioned into an exclusively energy efficiency program utilizing the new ENERGY STAR connected Thermostat specification in Plan Year 2020. Eligible customers will be able to receive the \$50 rebate for an ENERGY STAR connected thermostat through the Xcel Energy storefront, paper applications and online applications that are available to both end use customers and trade allies.

¹¹ Light Emitting Diode

Business Segment:

- Business Comprehensive Program, which is made up of the following components:
 - Cooling Efficiency (EE) provides rebates for purchasing air conditioning equipment that exceeds standard efficiency equipment. This product also includes rebates for specific commercial refrigeration equipment;
 - Custom Efficiency (EE) offers rebates to reduce incremental project costs for customers who install energy efficient measures. Since energy applications and building systems can vary greatly by customer type, this program provides rebates for business projects or process changes that are not covered by SPS's prescriptive programs;
 - Large Customer Self-Direct (EE) provides the opportunity for qualifying large customers to either self-direct their own EE projects or opt-out of the EE tariff rider if they can prove they have completed all cost-effective conservation. Self-direct participants of this program are also eligible for the other Business Segment programs;
 - Lighting Efficiency (EE) offers rebates for customers to install more efficient lighting, or de-lamp, as needed;
 - o Motor & Drive Efficiency (EE) offers rebates to customers who install motors exceeding the National Electrical Manufacturers Association Premium Efficiency® motors standards and variable frequency drives in existing and new construction facilities; and
 - Building Tune-up (EE) is a study/implementation option designed to assist smaller business customers to improve the efficiency of existing building operations by identifying existing functional systems that can be "tuned up" to run as efficiently as possible through low- or no-cost improvements.

EE Goals from 2009-2020

Under the 2008 amendment of the EUEA, SPS was required to acquire cost-effective and achievable DSM to achieve no less than an 8% reduction in 2005 sales by 2020. SPS's 2005 New Mexico retail sales were 3,750,469 megawatt-hour ("MWh") therefore SPS needed to achieve savings of 300,037,520 kilowatt-hour ("kWh") or greater by 2020. SPS met this obligation in Plan Year 2018 by achieving savings of 302,366 kWh (8.06%).

Table 3-5 below shows SPS's savings achievements during the 2008 EUEA requirement, using the Portfolio Effective Useful Lifetime method (energy savings provided in gigawatt-hours ("GWh")).¹²

Table 3-5: New Mexico Actual Savings Provided by the 2008-2020 EE Programs

Year	Annual Net Customer Achievement (GWh) 13	Cumulative Net Customer Achievement (GWh)	Cumulative % of 2005 Retail Sales
2008	3.355	3.355	0.09%
2009	14.136	17.491	0.47%
2010	23.231	40.722	1.09%
2011	35.642	76.363	2.04%
2012	31.534	107.897	2.88%
2013	34.452	142.349	3.80%
2014	30.493	172.841	4.61%
2015	32.805	202.962	5.41%
2016	31.966	234.257	6.25%
2017	29.429	263.686	7.03%
2018	38.680	302.366	8.06%
2019	36.081	320.169	8.54%
2020	46.980	348.061	9.28%

EE Goals through 2041

Under the 2019 amendment of the EUEA, SPS is required to achieve no less than savings of 5% of 2020 total retail kWh sales to as a result of EE and LM programs implemented in years 2021 through 2025. The following goals were developed in accordance with the 2008 EUEA, which SPS was following at the time of SPS's most recent Triennial Plan Filing. Note that the EUEA neither

¹² This calculation method is consistent with the methodology proposed by the Commission's Utility Division Staff in Case No. 09-00352-UT (see Staff Compliance Affidavit Regarding Decretal Paragraph "L" of the Certification of Stipulation Adopted by the Commission in its March 11, 2010 Final Order in this Proceeding, Oct. 19, 2010).

¹³ Annual Net Customer Achievement (GWh) does not include the Energy Feedback Program's yearly savings achievement as the product only has a 1-year life.

requires nor establishes annual goals. Thus, the goals in Table 3-6 below are preliminary and subject to change in SPS's upcoming re-filing of PY 2022, Triennial Filing covering PY 2023-2025, and future Triennial Filings covering years 2025-2041.

Table 3-6: Filed and Forecasted New Mexico DSM Goals at the Customer Level for the Planning Period

Year	Demand Savings (MW)	Energy Savings (GWh)
2021	5.42	40.134
2022	8.81	56.492
2023-2041	8.81	56.492

In SPS's recent EE Potential Plan filing, filed one day before this IRP filing, SPS proposed a revised EUEA goal for 2025 based on an adjustment to SPS's 2020 total kWh retail sales used to determine the goal. The adjustment excludes kWh sales to certain customers for which there is no corresponding recovery of costs to fund EE programs due to the application of the EUEA's \$75,000 per customer EE program cost-recovery cap. Based on the adjusted 2020 kWh retail sales, SPS proposed a revised EUEA energy savings goal for 2025 of 269,769 MWh to be achieved over the period of 2021 through 2025. SPS's proposed revised goal has not yet been approved by the Commission.

Texas DSM Requirements

SPS offers DSM programs in its Texas service territory pursuant to the Public Utility Regulatory Act and 16 Tex. Admin. Code § 25.181. These programs include standard offer and market-transformation programs for commercial and industrial, LM, residential, and low-income

customers limited to customers receiving service at 69 kilovolts or less and all government customers.

Table 3-7 below shows SPS's historic demand savings (in MW) and energy savings (in GWh) in its

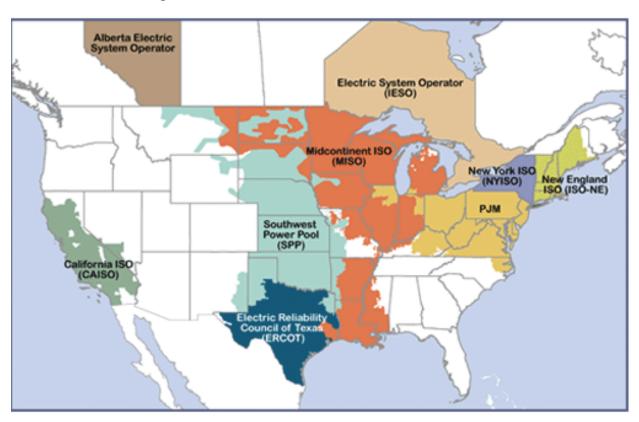
Texas service territory.

Table 3-7: SPS's EE and LM Achievements - 2011 to 2020 in Texas

Year	Customer	Customer
	Demand	Energy Savings
	Savings (MW)	(GWh)
2011	3.88	13.821
2012	5.30	9.077
2013	5.10	7.950
2014	5.02	11.900
2015	8.17	14.537
2016	8.19	14.451
2017	7.80	16.871
2018	9.57	18.908
2019	9.57	23.328
2020	11.672	25.663

In addition, SPS offers residential Saver's Switch and Interruptible Credit Option ("ICO")

LM programs (the savings are not included in the table above).


3.08 - Reserve Margin and Reserve Reliability Requirements

Southwest Power Pool Integrated Market

SPS is a member of the Southwest Power Pool. Southwest Power Pool is one of nine independent system operators ("ISO") and Regional Transmission Organizations ("RTO") in North America. Southwest Power Pool's Integrated Marketplace is the mechanism through which it facilitates the sale and purchase of electricity to ensure cost-effective electric reliability throughout a 14-state region in the Eastern Interconnect. As a Balancing Authority, Southwest Power Pool balances electric supply and demand, ensuring there is adequate generation to meet the demand.

Southwest Power Pool is responsible for generation unit commitment and dispatch across the Southwest Power Pool footprint. Additionally, Southwest Power Pool administers the day-ahead and real-time balancing market, including incorporation of a price-based operating reserve market (i.e., regulation up/down and spin/supplemental reserves). Instead of each load serving entity (e.g., SPS) committing and dispatching its own generation resources to meet its own load requirements, reliability unit commitment and economic dispatch are performed by the Southwest Power Pool. Current expectations and future requirements regarding market operations, locational generation dispatch, congestion, and losses will impact future transmission and generation planning/siting activities.

Figure 3F.2: ISO / RTO Map

Planning and Operating Reserves

Each system must preserve an adequate supply of firm electric generation that will meet the maximum demand of its customers (i.e., the "peak" demand) and provide for unforeseen events (e.g., transmission line outages, generating unit outages, and potential increased in actual load, etc.). To accomplish these objectives, electric utilities acquire (through direct ownership or PPAs) and operate more generation capacity than is needed to meet peak demand. The available capacity above the projected peak demand is typically referred to as the "reserve margin" (i.e., "Planning Reserves"). Generally, there are two basic types of reserves: (i) Planning Reserves, which are the amount of installed capacity required above annual firm peak demand, and (ii) Operating Reserves, which are the amount of generation capacity required in real-time, either with units carrying regulation and/or spinning reserves; or units offline but in warm standby and capable of providing additional electric supply in order to meet real-time changes in load/demand and any unforeseen contingencies (e.g., transmission outage, generator forced outage, gas supply disruptions, etc.).

Southwest Power Pool Capacity Reserve Requirements

The Planning Reserve Margin ("PRM") for capacity is set in Section 4 of the Southwest Power Pool Planning Criteria. Southwest Power Pool currently requires each Load Responsible Entity ("LRE") to have a reserve margin of at least 12% of its peak demand forecast (the planning reserve requirement is a minimum requirement, not a maximum or a target). Determination of the PRM is described in Attachment AA¹⁵ of the Southwest Power Pool Open Access Transmission Tariff ("OATT") and is supported by a probabilistic Loss of Load Expectation ("LOLE") Study, which analyzes the ability of the Transmission Provider to reliably serve the Southwest Power Pool

¹⁴ https://spp.org/Documents/58638/spp%20planning%20criteria%20v2.4.pdf

¹⁵ https://spp.org/Documents/58597/Attachment%20AA%20Tariff.pdf

Balancing Authority Area's forecasted peak demand. The LOLE Study is performed biennially, and Southwest Power Pool studies the PRM such that the LOLE for the applicable planning year does not exceed one day in ten years, or 0.1 day per year.

3.09 - Existing Transmission Capabilities

SPS, as a member of Southwest Power Pool, participates in several technical groups and committees. SPS is also a member of the North American Transmission Forum, a group that promotes sharing of technical solutions among members.

An analysis of the SPS transmission system is contained in the Southwest Power Pool 2020 Integrated Transmission Planning Assessment Report, which is provided as Appendix B. This report discusses the performance of the SPS network and recommends new projects to improve the network performance.

A list of current transmission projects SPS is constructing based on notifications to construct is provided as Appendix C. This list also includes service for one generator interconnection project.

Transmission Import Rights

Southwest Power Pool has a total of 1,885 MW of transmission flow capability minus the single largest contingency and other factors (i.e., imports from Palo Duro and Mammoth Wind) to deliver resources to the SPS zone from the rest of the Southwest Power Pool transmission system. SPS's reservation of this capability on a firm basis is more fully described below.

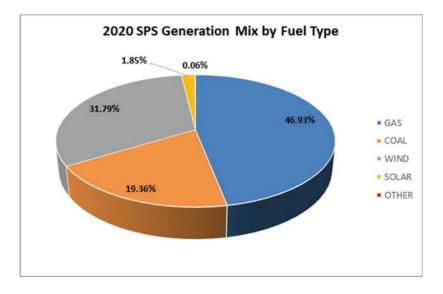
249 MW Palo Duro Wind

SPS has firm transmission service for this wind farm beginning January 1, 2018 and continuing for the term of the PPA through December 31, 2034.

199 MW Mammoth Plains Wind

SPS has firm transmission service for this wind farm beginning November 16, 2018 and continuing for the term of the PPA through December 31, 2034.

96 MW Import from Elk City 2 Wind


As agent for the City of Lubbock, Texas, SPS holds the firm network transmission rights to import up to 96 MW from the Elk City 2 Wind Farm, located in Oklahoma. This resource represents part of the replacement power required to serve the City of Lubbock upon termination of its full requirements contracts with SPS. The term of this service began June 1, 2019 and continues for 13 years. Any capacity associated with this reservation is held by the City of Lubbock.

3.10 - Environmental Impacts of Existing Supply-Side Resources

Percentage of MWh Generated

The percentages of MWh generated by each fuel type used by SPS for Calendar Year 2020 are provided in Figure 3F.3 below.

Figure 3F.3: Percentage of MWh Generated in 2020 by Fuel Type

SPS Emissions Information

The emission rates for SPS-owned generation resources are shown in Table 3-8 below. All emission rates are expressed in pounds per kWh.

Water Consumption Rates

Average water consumption rates, by plant, and expressed in gallons per kWh (H₂O Consumption) are also shown in Table 3-8 below.

Table 3-8: Emission and Water Consumption Rates

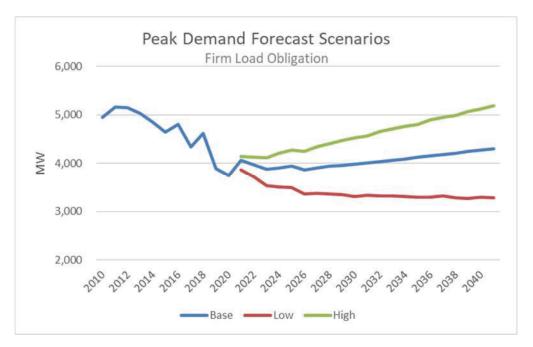
2020 SPS Emission Rates of Criteria Pollutants plus Mercury and Carbon Dioxide Expressed in Pounds per Kilowatt-Hour (Ib/KWh) and Water Consumption Expressed in Gallons per KWh	of Criteria	Pollutants plu	s Mercury and	Carbon Dioxid Gal	xide Expressed in Pou Gallons per KWh	inds per Kilow.	att-Hour (lb/KN	Wh) and Wate	er Consumpti	ion Expressed in
Plant	Unit	\$02	×ON	Md	005	유	03	Pb	NOC	H2O Consumption (Plant Average)
Cunningham	1	7.212E-06	1.879E-03	8.625E-05	1.3736E+00	3.115E-09	8.092E-06	5.841E-09	6.242E-05	0.433
Cunningham	2	6.356E-06	1.729E-03	7.935E-05	1.2582E+00	2.621E-09	1.059E-04	5.242E-09	5.743E-05	
Cunningham	3	6.438E-06	6.591E-04	5.348E-05	1.2980E+00	2.894E-09	5.460E-05	0.000E+00	2.293E-05	
Cunningham	4	6.987E-06	6.553E-04	5.577E-05	1.3906E+00	3.011E-09	9.360E-05	0.000E+00	2.457E-05	
Harrington	1	4.912E-03	1.699E-03	5.283E-04	2.1800E+00	1.081E-08	1.126E-03	6.160E-08	3.913E-05	0.698
Harrington	2	4.768E-03	1.412E-03	1.244E-04	2.1354E+00	8.097E-09	1.156E-03	2.089E-08	3.770E-05	
Harrington	3	4.984E-03	1.489E-03	1.453E-04	2.2797E+00	7.923E-09	1.124E-03	2.181E-08	3.663E-05	
sauor	1	6.408E-06	1.490E-03	8.071E-05	1.2696E+00	2.782E-09	2.549E-04	5.286E-09	5.841E-05	0.326
sauor	2	6.538E-06	1.138E-03	8.219E-05	1.2932E+00	2.869E-09	2.595E-04	5.314E-09	5.947E-05	
sauor	3	6.263E-06	3.059E-04	2.714E-05	1.2409E+00	2.681E-09	1.012E-04	0.000E+00	2.089E-06	
Jones	4	6.203E-06	3.052E-04	3.721E-05	1.2285E+00	2.656E-09	1.143E-04	0.000E+00	3.101E-06	
Maddox	1	6.538E-06	1.975E-03	8.118E-05	1.2928E+00	2.799E-09	7.613E-06	4.398E-09	5.875E-05	0.656
Maddox	2	1.052E-05	3.767E-03	9.007E-05	1.5964E+00	3.620E-09	2.047E-05	6.723E-09	2.866E-05	
Maddox	3	1.791E-05	7.648E-03	1.567E-04	2.7871E+00	0.000E+00	5.448E-04	0.000E+00	5.075E-05	
Nichols	1	6.783E-06	1.109E-03	8.171E-05	1.3047E+00	2.833E-09	2.580E-04	5.261E-09	5.913E-05	0.701
Nichols	2	1.123E-05	1.360E-03	8.595E-05	1.3718E+00	2.708E-09	2.714E-04	5.417E-09	6.220E-05	
Nichols	3	1.146E-05	1.887E-03	8.538E-05	1.3632E+00	2.989E-09	2.696E-04	5.663E-09	6.179E-05	
Plant X	1	8.394E-06	7.923E-03	1.039E-04	1.6505E+00	3.412E-09	1.148E-03	6.824E-09	7.520E-05	0.738
Plant X	2	7.058E-06	8.819E-04	8.747E-05	1.3941E+00	3.087E-09	2.761E-04	5.659E-09	6.326E-05	
Plant X	3	0.000E+00	0.000E+00	0.000E+00	0.0000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
Plant X	4	6.597E-06	1.638E-03	8.225E-05	1.3095E+00	2.851E-09	2.597E-04	5.402E-09	5.951E-05	
Quay County	1	3.202E-05	1.608E-02	2.516E-04	2.7712E+00	0.000E+00	2.382E-04	4.058E-07	8.389E-04	0.000
Tolk	1	4.884E-03	1.737E-03	7.675E-05	2.2389E+00	8.898E-09	2.514E-03	1.297E-08	3.933E-05	0.650
Tolk	2	5.158E-03	2.165E-03	1.203E-04	2.5482E+00	8.112E-09	2.440E-03	1.882E-08	3.833E-05	

3.11 - Identification of Critical Facilities Susceptible to Supply-Source or Other Failures and Summary of Back-up Fuel Capabilities and Options

SPS takes system reliability very seriously and devotes significant resources to protecting the electric grid from multiple types of risks. The SPS transmission system is planned and designed for single contingency or N-1 standards, and therefore has the ability to sustain overall grid reliability in the face of various types of generator and transmission contingencies. In addition, SPS is compliant with the applicable NERC¹⁶ reliability standards which require that assets critical to operation of the bulk electric system be identified and special protections for those facilities implemented. For safety and reliability, any lists or descriptions of these critical assets are considered highly confidential and not available to the public domain. Furthermore, SPS's owned generation units have redundant fuel supplies, mitigating the risk of supply-source failures. Additionally, purchases from the Southwest Power Pool market would typically address any deficiencies in SPS resources.

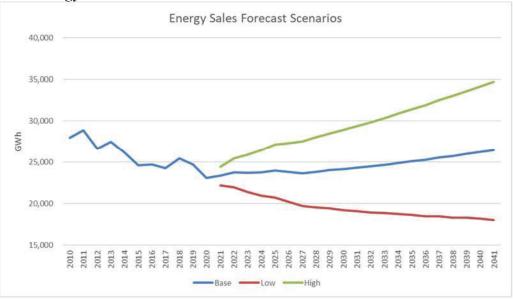
¹⁶ North American Electric Reliability Corporation

Section 4. CURRENT LOAD FORECAST


4.01 - Forecast Overview

Projections of future energy sales and coincident peak demand are fundamental inputs into SPS's resource need assessment. As required by the IRP Rule, SPS has prepared base, high, and low case scenario forecasts (17.7.3.9(D)(2) NMAC).

SPS projects its base or median electric firm obligation load (firm retail and firm wholesale requirements customers) to increase at a compounded annual growth rate of 0.4% or an average of 12 MW per year through the Planning Period (2022-2041). Growth in retail demand is expected to more than offset the impact of losing wholesale customers through the forecast period. SPS's base or median energy sales are forecasted to increase at a compounded annual growth rate of 0.6% or an average growth rate of 154 GWh during the same period. The load growth over the Planning Period contrasts to the historical annual average load decline of -2.7% over the last 10 years (ending 2020). The historical annual average energy decline over the ten years ending 2020 is -1.9%. Load and energy decreases were driven primarily by the decline of wholesale load due to expiration of the New Mexico Cooperatives' wholesale contracts and contractual changes within existing wholesale contracts. In addition, the decline in oil prices that started in the third quarter of 2015 paused the oil and gas expansion in southeastern New Mexico and the SPS region has seen a decline in potash mining in the last decade. Finally, 2020 sales and demands were negatively impacted by the business shutdowns and economic slowdown as a result of the COVID-19 pandemic.


The SPS low forecast scenario of coincident peak demand decreases at a compounded annual growth rate of -0.6% through the Planning Period, and the high forecast scenario of coincident peak demand increases at a compounded annual growth rate of 1.2% per year. Figure 4F.1 below contains a graphical representation of the low and high forecast scenarios of coincident peak demand.

SPS's annual energy sales low forecast scenario decreases at a compounded annual growth rate of -1.0% through 2041, and the annual energy sales high forecast scenario increases at a compounded annual growth rate of 1.6% per year. Figure 4F.2 below contains a graphical representation of the low and high scenario forecasts of annual energy sales.

Figure 4F.2: Energy Sales Forecasts

Figures 4F.1 and 4F.2 (above) show the base, high, and low forecasts for firm coincident peak demand and annual energy sales graphically. Appendix D (Tables D-10 and D-11) provides the data supporting the charts. Appendix D (Table D-11) also shows the SPS forecast for its total annual energy sales with eleven years of history starting in 2010, and it shows annual growth and compounded growth to/from 2020. The bold line across the table delineates historical from projected information.

The base peak demand forecast assumes economic growth based on projections from IHS Markit¹⁷ and normal summer peak weather conditions. SPS estimates a 70% probability that the actual peak demands and energy sales will fall between the high and the low forecast scenarios.

4.02 - Peak Demand Discussion

Firm peak demand in the SPS service territory has declined over the last 10 years (through 2020). SPS's firm peak demand decreased by -1,203 MW or -24.3%, from 2010 to 2020. Load

¹⁷ As discussed below, IHS Markit is a trusted data source for forecasting professionals that SPS uses for economic and demographic data and forecasts.

growth was dampened as a result of decreased demand from wholesale customers due to changes in contracted load. In the 10-year period ending 2020, the population in the SPS service territory grew by an annual average rate of 0.1% per year. Combined Real Gross County Product ("GCP") for the counties in the SPS service territory averaged gains of 2.0% from 2010 through 2020. During this same period, SPS gained about 17,900 residential customers, for total growth of 6.0%.

The peak demand forecast compounded annual growth rate for the Planning Period through 2041 is 0.4%. This is stronger growth than seen over the past ten years, which averaged annual declines of 2.7%. Retail peak demand for the Planning Period increases at a compounded annual growth rate of 0.8%, compared to the ten-year period ending 2020 compounded annual growth rate of 0.4%. Retail peak demand growth is driven by population and economic growth in the service territory, continued expansion of the oil and gas industry in southeastern New Mexico, and adoption of electric vehicles. Wholesale peak demand for the Planning Period gradually decreases as contracts expire and is zero starting in 2026. SPS assumes that expiring wholesale contracts will not be renewed after their known expiration dates.

SPS service territory GCP is expected to average 2.3% through 2041. Population growth is similar to the recent past, with annual gains averaging 0.3% through the Planning Period. SPS projects residential customer growth will average annual increases of 0.5% per year through 2041.

Table D-4 in Appendix D (Electric Energy and Demand Forecast) shows the SPS coincident peak demand by retail and wholesale customer categories. Figure 4F.3 shows the SPS coincident peak demand by retail and wholesale customers graphically.

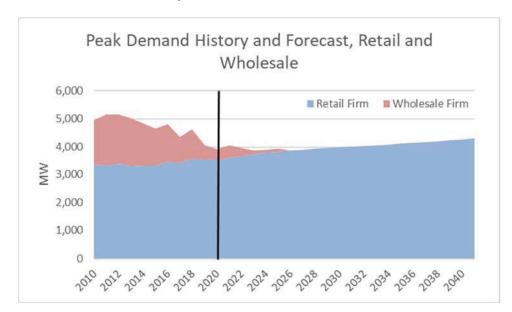


Figure 4F.3: Peak Demand History and Forecast, Retail and Wholesale

4.03 - Annual Energy Discussion

SPS is anticipating energy sales in the base case forecast to average 0.6% growth annually over the Planning Period. The declines in wholesale energy sales corresponding to the termination or reduction of sales to specific wholesale customers will offset growth in the retail sector.

During the past ten years SPS has experienced declines in energy sales, much of that also impacted by the declining wholesale sales. Energy sales decreased by 4,853 GWh, or -17.3%, from 2010 to 2020. The energy sales forecast's compounded annual growth rate for the Planning Period through 2041 is 0.6%. The growth in retail energy sales is expected to more than offset the declines in wholesale. Retail energy sales for the Planning Period increase at a compounded annual growth rate of 1.0%, similar to the 10-year period ending 2020 compounded annual growth rate of 1.0%. Retail energy sales will benefit from strong growth in the New Mexico commercial and industrial sector, which is heavily dependent on the oil and natural gas industries, and the adoption of electric

vehicles. Base case wholesale energy sales are forecasted to decline steadily before reaching zero in 2027. Figure 4F.4 shows SPS's energy sales by retail and wholesale customer class graphically.

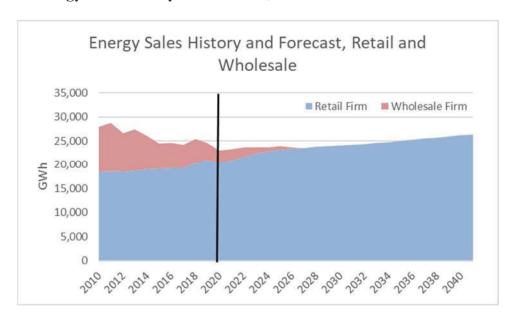


Figure 4F.4: Energy Sales History and Forecast, Retail and Wholesale

4.04 - Electric Vehicles

SPS has developed a projection of electric vehicle adoption in its service territory. SPS expects to have 307,700 electric vehicles in its service territory by 2041. These vehicles are expected to contribute 1,972 GWh to annual energy sales and 241 MW to coincident summer peak demand.

4.05 - High and Low Case Forecasts

Development and use of different energy sales and demand forecasts for planning future resources is an important aspect of the planning process. Alternative high and low forecast scenarios to the base case were developed for the 2021 IRP. The high and low forecast scenarios are based on a Monte Carlo simulation for energy sales and peak demand forecasts with probabilistic inputs for the economic, energy, and weather drivers of the forecast models and for model error. The high forecast scenario is the forecast level from the Monte Carlo simulation that represents a plus one

standard deviation confidence band from the base case forecast. The low forecast scenario is the forecast level from the Monte Carlo simulation that represents a minus one standard deviation confidence band from the base case forecast. There is a 70% probability that actual energy sales and coincident peak demand will fall within the high and low forecast scenarios.

Appendix D (Table D-10 and Table D-11) provides a summary of the base, high, and low peak demand and energy sales forecasts.

Typical Historic Day Load Patterns

Please refer to Appendix E for the typical day load patterns on a system-wide basis for each customer class provided for: peak day, average day, and representative off-peak days for each calendar month.

4.06 - Forecasting Methodologies

The following discussion describes the methods used to forecast energy sales and coincident peak demand for each of its various customer classes in SPS.

SPS forecasts retail energy sales and customers by class for each jurisdiction. Retail coincident peak demand is forecasted in aggregate at the total SPS level. The wholesale energy sales and coincident peak demand forecasts are developed at the individual customer level of detail. SPS models its forecasts at a monthly frequency and uses monthly historical data to develop the customers, energy sales, and coincident peak demand forecasts. Annual energy sales are an aggregation of the monthly energy sales estimates. Energy sales are forecasted at the delivery point and peak demand is forecasted at the generating source. The annual coincident peak demand occurs in July throughout the Planning Period 2022-2041.

IHS Markit, a trusted data source for forecasting professionals, provides economic and demographic data and forecasts. SPS assumes normal weather for the forecast period. Normal weather is based on a 30-year rolling average of historical weather data for the energy sales and retail coincident peak forecasts.

4.07 - Energy Sales Forecasts

SPS's retail customer counts, retail energy sales, and full requirement wholesale energy sales forecasts are developed using econometric models and trend models. An econometric model is a widely accepted modeling approach involving linear regression analysis. Linear regression analysis is a statistical technique that attempts to understand the movement of the dependent variable, for example, energy sales, as a function of movements in a set of independent variables, such as economic and demographic concepts, customers, price, trend, and weather, through the quantification of a single equation. Other variables used in the econometric models may include autoregressive correction terms and binary variables. Binary variables are used in models to account for non-weather-related seasonal factors and unusual billing activity. The autoregressive correction term is used to aid in eliminating bias found in time-series models. After developing and testing the econometric models to identify the relationship between the dependent and independent variables, forecasts of the independent variables are used to predict future energy sales and customer counts.

SPS's econometric models are evaluated through examining the model statistics output and tests results. Each variable coefficient in the models is checked for the correct theoretical signs and statistical significance. The coefficient of determination (R-squared) test statistic is a measure to verify the quality of the model's fit to the historical data. The models are also tested for correlation of errors from one period to the next. The absence of correlation between the residual errors is an

important indicator that the model is performing adequately. Graphical inspection of a model's error term helps identify if a model suffers from auto-correlation (i.e., error terms are not random and are correlated between periods) or heteroscedasticity (i.e., inconstant variance of errors over the sample period). A model with auto-correlation may indicate model misspecification.

The output from the econometric models for the retail energy sales is adjusted to reflect the expected incremental impact of DSM programs. The model output is also adjusted for electric vehicle impacts. SPS developed a base, low, and high scenario of estimated sales due to electric vehicles. The forecast assumes the base sales scenario. The model output may also be adjusted with information from SPS's Managed Account Sales group regarding SPS's largest commercial and industrial customers. The Managed Account Sales group provides information about known events that can impact energy sales that would not be captured in the historical data. Such events might include a scheduled increase or decrease in load for a specific customer due to a plant expansion, or a reduction in load stemming from a plant shutdown. The final adjusted output from the econometric models becomes part of the base case energy sales forecast.

Energy sales forecasts for SPS's partial requirement wholesale customers are developed based on historical consumption patterns or econometric models as described above, subject to contractual agreement with the customer.

4.08 - Peak Demand Forecasts

SPS develops an econometric model, as described above, to forecast the monthly retail coincident peak demand. Total retail coincident peak demand is forecasted in aggregate at the source for the total SPS company level. The exogenous variables in the retail coincident peak demand model include weather, binary and trend variables, and retail energy sales. Retail energy sales are not

adjusted for DSM savings, electric vehicle increases, or load increases or decreases as identified by the Managed Account Sales group prior to being used in the model. Instead, such adjustments are made to the output from the retail peak demand model.

The full requirements wholesale coincident peak demand is developed on an individual customer basis. SPS uses a load factor methodology to calculate the coincident peak demand associated with the energy sales for each full requirement wholesale customer. For each customer, SPS calculates a monthly load factor based on historical energy sales and coincident peak demand data as recorded at the delivery point. Monthly load factors are calculated as:

Load Factor = Energy Sales/(Peak Demand * Hours Per Month)

The monthly load factors are then applied to each full requirement wholesale customer's respective energy sales forecast to derive the monthly peak demand forecasts.

Peak Demand = Energy Sales/(Load Factor * Hours Per Month)

The peak demand forecasts are then adjusted for line losses to derive the peak demand forecast at the source.

The partial requirement wholesale customer coincident peak demand forecasts are determined by individual customer contractual agreement.

4.09 - Modeling for Uncertainty

SPS has developed high and low forecast scenarios to the base case forecast. These alternative forecasts are derived from Monte Carlo simulations of energy sales and coincident peak demand.

Monte Carlo simulation is a modeling technique that ascribes probabilistic characteristics to selected inputs and the output of a model. The Monte Carlo simulations are based on econometric models used to forecast energy sales and coincident peak demand. In particular, energy sales and

coincident peak demand are modeled at the combined retail and full requirement wholesale sales level of aggregation.

In these models, probability distributions are defined for exogenous variables with inherent uncertainty associated with their forecast values. Probability distributions are a realistic way of describing uncertainty in variables. An example of a variable with inherent uncertainty is the maximum peak day temperature in the coincident peak demand model. While SPS assumes the value will be 99.6 degrees Fahrenheit for each July during the forecast period, it is unlikely that each year the actual peak day maximum temperature will be 99.6 degrees Fahrenheit. The probability distributions contain the possible values for variables with inherent uncertainty over the forecast period, based on characteristics of the data set for each variable. The weather, economic and energy variables, and the model error are assumed to have inherent uncertainty in the models used to develop the high and low energy sales and coincident peak demand forecast scenarios.

For each simulation run of these forecasting models, the values for the exogenous variables with inherent uncertainty are randomly selected from respective probability distribution. By using probability distributions, variables can have different probabilities of different outcomes occurring. Monte Carlo simulation calculates the model results over and over, each time using a different set of random values from the probability functions. The output from the Monte Carlo simulation models is then calibrated so that the 50% probability forecast is equal to the respective energy sales and coincident peak demand base case forecast.

4.10 - Weather Adjustments

SPS incorporates several different weather variables in its forecasting models. For the energy sales models, SPS may include monthly heating degree days, cooling degree days, and precipitation.

The heating degree days and the cooling degree days are calculated on a base of 65 degrees Fahrenheit for each day and then totaled by month.

Heating Degree Days = Max (65 - Average Daily Temperature, 0)

Cooling Degree Days = Max (Average Daily Temperature - 65, 0)

The coincident peak demand models include a maximum peak day temperature variable and a rolling two-week summation of the days prior to the monthly peak day with a maximum daily temperature of 95 degrees Fahrenheit or greater variable.

Weather during the forecast period is assumed to be normal. Normal weather is defined as a rolling 30-year average for heating degree days, cooling degree days, precipitation, maximum temperature, minimum temperature, average temperature, and days with maximum temperature 95 degrees Fahrenheit or greater. The energy sales and coincident peak demand forecasts do not have any other weather normalization adjustments.

For historical periods, SPS weather normalizes historical energy sales and coincident peak demand data for variance analysis purposes. This weather normalization process involves subtracting weather-impacted energy sales or peak demand from actual sales or peak demand. Weather-impacted sales or peak demand is calculated by multiplying the forecast model weather variable coefficients by the variance of actual weather from normal weather.

Weather-Impacted Energy Sales =

Weather Coefficient * (Actual Weather-Normal Weather)

Weather Impacted Peak Demand =

Weather Coefficient * (Actual Weather-Normal Weather)

SPS 2021 Integrated Resource Plan

39

4.11 - Demand-Side Management

SPS promotes DSM programs that help its customers reduce energy sales and peak demand through energy efficiency and education. Xcel Energy's DSM Regulatory Strategy and Planning group develops the projections of future and embedded DSM program savings.

SPS adjusts its retail energy sales and coincident peak demand forecasts with projected incremental DSM program savings. The incremental DSM program savings are calculated by subtracting embedded DSM savings from future DSM savings.

Incremental DSM Savings = Future DSM Savings – Embedded DSM Savings

SPS does not directly adjust its forecast models or model output for naturally occurring DSM savings that could be attributed to actions other than those of SPS. However, theoretically, the historical energy sales and coincident peak demand data used in SPS's forecast modeling process does have embedded in it any naturally occurring DSM savings. Therefore, the forecast models and model output do account indirectly, through the historical data, for naturally occurring DSM savings. Naturally occurring DSM energy and peak demand savings do not impact SPS's sponsored DSM resources.

4.12 - Demand Response, Energy Efficiency, and Behind-the-Meter Generation

The historical energy sales data used in SPS's forecast modeling process is net of behind-themeter generation and demand response energy sales. Therefore, the forecast models and model output indirectly account, through the historical data, for behind-the-meter and demand response energy sales. The historical peak demand data used in the forecasting process has not been adjusted to account for behind-the-meter generation and demand response.

4.13 - Forecast Accuracy

SPS reviews its demand and energy forecasts for accuracy annually. Appendix D (Table D-12 through Table D-17) provides a comparison of the actual energy sales and firm load obligation demand forecasts to the forecasted sales and firm load obligation demands, as required by the IRP Rule. Firm load obligation equals actual load less available interruptible load. See Figures 4F.5 and 4F.6 (next page).

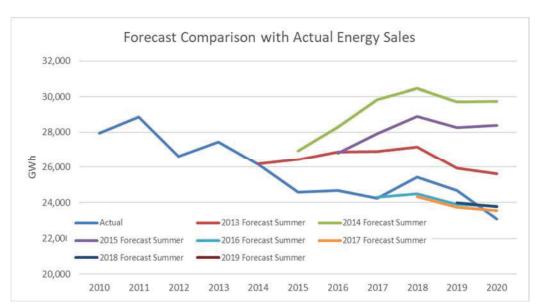
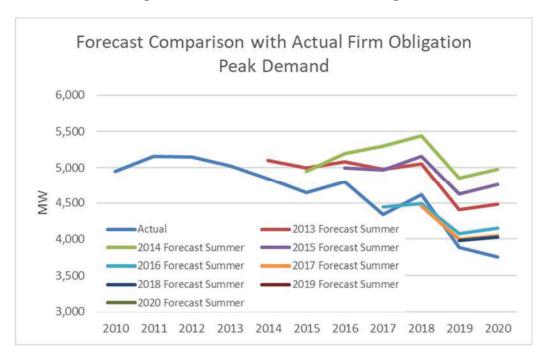



Figure 4F.5: Forecast Comparison with Actual Energy Sales

Figure 4F.6: Forecast Comparison with Actual Firm Load Obligation Peak

4.14 - Econometric Model Parameters

Please refer to Appendix F, which provides the parameters associated with SPS's econometric forecasting model.

Section 5. L&R TABLE

The IRP Rule requires that utilities provide an L&R table of existing loads and resources at the time of its IRP filing, specifically including: (1) utility-owned generation; (2) energy storage resources; (3) existing and future contracted-for purchased power including, where applicable, QF purchases, (4) purchases through net metering programs, as appropriate, (5) demand-side resources, as appropriate, and (6) any other resources relied upon by the utility.

Resource planners use a range of approaches to help identify the amounts, timing, and types of generation resources that should be added to meet increasing customer demand for electric power. One basic and straightforward tool is the L&R table. The function of an L&R table is to provide a comparison between the amount of electric generating supply and the peak load of a system. In years when load plus the planning reserve margin exceeds generation supply, additional generation is needed. Table 5-1 provides a summarized L&R table for the SPS electric system assuming the base load forecast described in Section 4.

Table 5-1: Summarized L&R Table

		2022	2023	2024	2025
		(MW)	(MW)	(MW)	(MW)
(a)	Owned Generation Capacity	4,333	4,270	4,159	4,159
(b)	Purchased Power Capacity	1,208	1,254	1,030	1,020
(c)	Total Generation Capacity	5,541	5,524	5,189	5,179
(d)	Firm Load Obligation	3,969	3,874	3,899	3,937
(e)	Capacity Margin (12%)	476	465	468	472
(f)	Total Firm Load + Reserves	4,445	4,339	4,367	4,409
(g)	Resources Position Long / (Short)	1096	1184	823	770

The Summarized L&R table above provides foresight into the amounts and timing of future generation resource needs. As shown in the summarized L&R table, SPS has sufficient supply-side resources to meet its planning reserve margin requirements during the Action Plan and, therefore, does not require any new generating resources. However, as described in Section 7, SPS may consider procuring additional resources if they are expected to provide other benefits, such as economical energy savings.

Table 5-2: Summary of SPS Base Case L&R

SPS Loads & Resource Balance Summer 2022 - 2031 - Base Case Forecast Based on March 2021 Load Forecast

SPS Load and Resources	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
EXISTING RESOURCES										
Owned - Thermal Resources	4,333	4,070	3,959	3,959	3,714	3,714	3,523	3,411	3,411	3,165
Owned - Renewable Resources	0	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	797	797	574	574	574	574	574	574	574	574
Purchased Power - Renewable Resources	410	456	456	446	438	418	375	375	375	375
TOTAL ACCREDITED CAPACITY (MW)	5,541	5,524	5,189	5,179	4,926	4,906	4,672	4,560	4,560	4,314
LOAD										
Retail	3,696	3,778	3,827	3,865	3,895	3,933	3,962	3,988	4,009	4,034
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	301	125	100	100	0	0	0	0	0	0
DSM / Interruptibles	(29)	(28)	(28)	(28)	(28)	(28)	(28)	(28)	(27)	(27)
FIRM LOAD OBLIGATION	3,969	3,874	3,899	3,937	3,867	3,905	3,934	3,961	3,982	4,007
RESERVES										
Planning Reserve Margin @ 12%	476	465	468	472	464	469	472	475	478	481
TOTAL PLANNING RESERVE MARGIN	476	465	468	472	464	469	472	475	478	481
CAPACITY REQUIREMENT	4,445	4,339	4,366	4,409	4,331	4,374	4,407	4,436	4,460	4,488
RESOURCE POSITION (MW): LONG/(SHORT)	1,096	1,184	823	770	595	532	266	124	101	(174)

SPS Loads & Resource Balance Summer 2032 - 2041 - Base Case Forecast Based on March 2021 Load Forecast

SPS Load and Resources	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
EXISTING RESOURCES										
Owned - Thermal Resources	2,922	1,853	1,853	1,593	1,593	1,253	1,253	898	898	336
Owned - Renewable Resources	200	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	574	574	0	0	0	0	0	0	0	0
Purchased Power - Renewable Resources	343	343	343	129	88	88	88	88	88	88
TOTAL ACCREDITED CAPACITY (MW)	4,039	2,970	2,396	1,922	1,881	1,541	1,541	1,186	1,186	624
LOAD										
Retail	4,060	4,088	4,111	4,149	4,181	4,211	4,235	4,269	4,305	4,331
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	0	0	0	0	0	0	0	0	0	0
DSM / Interruptibles	(27)	(27)	(26)	(27)	(28)	(28)	(28)	(29)	(29)	(29)
FIRM LOAD OBLIGATION	4,033	4,061	4,085	4,122	4,153	4,183	4,207	4,241	4,275	4,302
RESERVES										
Planning Reserve Margin @ 12%	484	487	490	495	498	502	505	509	513	516
TOTAL PLANNING RESERVE MARGIN	484	487	490	495	498	502	505	509	513	516
CAPACITY REQUIREMENT	4,517	4,549	4,575	4,616	4,651	4,685	4,712	4,749	4,788	4,819
RESOURCE POSITION (MW): LONG/(SHORT)	(478)	(1,578)	(2,179)	(2,694)	(2,770)	(3,144)	(3,171)	(3,563)	(3,602)	(4,194)

Table 5-3: Summary of SPS High Load Case L&R

SPS Loads & Resource Balance Summer 2022 - 2031 - High Load Case Forecast Based on March 2021 Load Forecast

SPS Load and Resources	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
EXISTING RESOURCES										
Owned - Thermal Resources	4,333	4,070	3,959	3,959	3,714	3,714	3,523	3,411	3,411	3,165
Owned - Renewable Resources	0	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	797	797	574	574	574	574	574	574	574	574
Purchased Power - Renewable Resources	410	456	456	446	438	418	375	375	375	375
TOTAL ACCREDITED CAPACITY (MW)	5,541	5,524	5,189	5,179	4,926	4,906	4,672	4,560	4,560	4,314
LOAD										
Retail	3,860	4,018	4,135	4,197	4,268	4,361	4,431	4,492	4,549	4,593
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	301	125	100	100	0	0	0	0	0	0
DSM / Interruptibles	(29)	(28)	(28)	(28)	(28)	(28)	(28)	(28)	(27)	(27)
FIRM LOAD OBLIGATION	4,133	4,115	4,207	4,269	4,240	4,333	4,403	4,464	4,522	4,565
RESERVES										
Planning Reserve Margin @ 12%	496	494	505	512	509	520	528	536	543	548
TOTAL PLANNING RESERVE MARGIN	496	494	505	512	509	520	528	536	543	548
CAPACITY REQUIREMENT	4,629	4,608	4,712	4,781	4,748	4,853	4,932	5,000	5,064	5,113
RESOURCE POSITION (MW): LONG/(SHORT)	912	915	477	398	178	53	(259)	(440)	(504)	(799)

SPS Loads & Resource Balance Summer 2032 - 2041 - High Load Case Forecast Based on March 2021 Load Forecast

SPS Load and Resources	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
EXISTING RESOURCES										
Owned - Thermal Resources	2,922	1,853	1,853	1,593	1,593	1,253	1,253	898	898	336
Owned - Renewable Resources	200	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	574	574	0	0	0	0	0	0	0	0
Purchased Power - Renewable Resources	343	343	343	129	88	88	88	88	88	88
TOTAL ACCREDITED CAPACITY (MW)	4,039	2,970	2,396	1,922	1,881	1,541	1,541	1,186	1,186	624
LOAD										
Retail	4,679	4,732	4,793	4,826	4,918	4,980	5,015	5,095	5,154	5,211
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	0	0	0	0	0	0	0	0	0	0
DSM / Interruptibles	(27)	(27)	(26)	(27)	(28)	(28)	(28)	(29)	(29)	(29)
FIRM LOAD OBLIGATION	4,652	4,706	4,767	4,799	4,890	4,952	4,987	5,066	5,125	5,182
RESERVES										
Planning Reserve Margin @ 12%	558	565	572	576	587	594	598	608	615	622
TOTAL PLANNING RESERVE MARGIN	558	565	572	576	587	594	598	608	615	622
CAPACITY REQUIREMENT	5,210	5,270	5,339	5,375	5,477	5,547	5,585	5,674	5,740	5,804
RESOURCE POSITION (MW): LONG/(SHORT)					(3,595)					

Table 5-4: Summary of SPS Low Load Case L&R

SPS Loads & Resource Balance Summer 2022 - 2031 - Low Load Case Forecast

Based on March 2021 Load Forecast

SPS Load and Resources	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
EXISTING RESOURCES										
Owned - Thermal Resources	4,333	4,070	3,959	3,959	3,714	3,714	3,523	3,411	3,411	3,165
Owned - Renewable Resources	0	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	797	797	574	574	574	574	574	574	574	574
Purchased Power - Renewable Resources	410	456	456	446	438	418	375	375	375	375
TOTAL ACCREDITED CAPACITY (MW)	5,541	5,524	5,189	5,179	4,926	4,906	4,672	4,560	4,560	4,314
LOAD										
Retail	3,437	3,431	3,436	3,413	3,391	3,404	3,391	3,371	3,335	3,359
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	301	125	100	100	0	0	0	0	0	0
DSM / Interruptibles	(29)	(28)	(28)	(28)	(28)	(28)	(28)	(28)	(27)	(27)
FIRM LOAD OBLIGATION	3,709	3,528	3,507	3,484	3,363	3,376	3,363	3,343	3,308	3,332
RESERVES										
Planning Reserve Margin @ 12%	445	423	421	418	404	405	404	401	397	400
TOTAL PLANNING RESERVE MARGIN	445	423	421	418	404	405	404	401	397	400
CAPACITY REQUIREMENT	4,154	3,951	3,928	3,902	3,767	3,781	3,767	3,745	3,705	3,732
RESOURCE POSITION (MW): LONG/(SHORT)	1,386	1,572	1,261	1,277	1,159	1,125	906	816	855	582

SPS Loads & Resource Balance Summer 2032 - 2041 - Low Load Case Forecast Based on March 2021 Load Forecast

SPS Load and Resources	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
EXISTING RESOURCES										
Owned - Thermal Resources	2,922	1,853	1,853	1,593	1,593	1,253	1,253	898	898	336
Owned - Renewable Resources	200	200	200	200	200	200	200	200	200	200
Purchased Power - Thermal Resources	574	574	0	0	0	0	0	0	0	0
Purchased Power - Renewable Resources	343	343	343	129	88	88	88	88	88	88
TOTAL ACCREDITED CAPACITY (MW)	4,039	2,970	2,396	1,922	1,881	1,541	1,541	1,186	1,186	624
LOAD										
Retail	3,339	3,349	3,333	3,322	3,326	3,352	3,306	3,299	3,314	3,311
Firm Wholesale	0	0	0	0	0	0	0	0	0	0
Firm PR Load	0	0	0	0	0	0	0	0	0	0
DSM / Interruptibles	(27)	(27)	(26)	(27)	(28)	(28)	(28)	(29)	(29)	(29)
FIRM LOAD OBLIGATION	3,312	3,322	3,307	3,295	3,298	3,324	3,278	3,270	3,285	3,283
RESERVES										
Planning Reserve Margin @ 12%	397	399	397	395	396	399	393	392	394	394
TOTAL PLANNING RESERVE MARGIN	397	399	397	395	396	399	393	392	394	394
CAPACITY REQUIREMENT	3,710	3,721	3,704	3,690	3,694	3,722	3,672	3,663	3,680	3,677
RESOURCE POSITION (MW): LONG/(SHORT)	330	(751)	(1,307)	(1,767)	(1,812)	(2,181)	(2,130)	(2,476)	(2,493)	(3,052)

Section 6. IDENTIFICATION OF RESOURCE OPTIONS

The basic types of resources that are available for matching electricity supply and demand are discussed below. These resources play different roles in meeting an electric utility's demand and energy requirements. Supply-side resources provide generation capacity to serve load, whereas demand-side resources act to reduce the level of customer demand for electric power so fewer supply side-resources are required. Supply-side resources generally fall into three categories: traditional (or thermal), renewable, and energy storage. Traditional supply-side resources are typically fossil fuelbased generation resources with physical fuel supplies that can be dispatched as the demand (or need) for power changes (increases or decreases) throughout the day. Renewable resources, on the other hand, are intermittent supply-side "as available" generation resources, effectively the energy produced is a function of the timing and force created by the wind blowing or the solar radiation intensity and conversion of photons of light to electrical voltage (e.g., photovoltaic "PV"). Renewable resources are typically must-take resources, which at times can create operational issues related to their integration into the electrical power grid. Energy storage is typically achieved through BESS, which are electrochemical devices that store energy for use when needed. Battery chemistries vary in technical characteristics; however, lithium-ion chemistries are currently the most widely utilized in the U.S. The most common thermal, renewable, and BESS technologies are described in more detail below

Examples of Thermal Supply-Side Resources

CTG (Combustion Turbine Generator) – Combustion Turbine Generators are typically referred to as simple-cycles because they operate on a single thermodynamic cycle known as the Brayton Cycle. CTGs can operate on several fuel sources but are typically fired with

natural gas which turns a turbine coupled with an electric generator to generate electricity. Recent CTG technological advancements have enabled operation, for both new and retrofitted CTGs, to utilize carbon-free hydrogen as an alternative fuel source. CTGs are available in a wide range of sizes (4 MW to over 400 MW) and are typically inexpensive to build but are relatively inefficient sources of generation. As such, they are often considered "peaking" units, which are utilized during times of high electric demand. CTGs also provide extremely fast start capabilities and ramp rates, providing the capability to follow demand and intermittent renewable generation, such as wind and solar.

• CC (Combined Cycle) – Combined Cycle ("CC") facilities utilize single or multiple CTGs in conjunction with Heat Recovery Steam Generators ("HRSG") and a Steam Turbine Generator ("STG") to generate electricity. These facilities are known as CCs because they combine the Brayton Cycle, mentioned above in the CTG section, with the Rankine Cycle, the HRSG, and STG's thermodynamic cycle. The waste heat from the CTG's exhaust gas is ducted through a HRSG which generates steam to turn a steam turbine coupled with an electric generator which produces additional electric power along with the CTGs. CCs can operate in multiple configurations, i.e., 1-on-1, 2-on-1, or 3-on-1, with the first number being the number of CTGs and HRSGs and the second number being the steam turbine, which is appropriately sized to efficiently utilize the total CTG waste heat. For example, a 2-on-1 CC consists of two CTGs and HRSGs and one STG. CCs can also operate on various fuel sources, including hydrogen, since the base motive drivers are the CTGs mention in the CTG section above. CC units come in a variety of sizes near 100 MW to over 1,600 MW depending on the specific configuration of the facility. CC units have higher installed costs than CTG units, but better efficiency and

operating costs, thus CCs offer more expensive capacity but lower cost energy when compared to simple cycle CTGs.

Examples of Renewable Supply-Side Resources

- Solar Solar generation resources convert the sun's energy (photons of light) into electricity. Solar generation has several forms, such as PV, concentrating PV, or concentrating solar power. Solar generation is intermittent, like other renewable energy resources. In SPS's service territory, solar generation capacity factors typically range from 30% 35%. Solar generation is only available during the daytime and its output is coincident with the time of the day (i.e., as the sun rises and falls, so does the solar generation output). Maximum solar output occurs prior to the time when electric demand reaches its highest level. Therefore, less than the full nameplate generating capability of solar generation is counted toward meeting electric system peak demands.
- Wind Wind generation typically consists of large, three-bladed turbines mounted atop towers over 250 feet tall arranged over several thousand acres of land. Wind generation consist of a multiple Wind Turbine Generators with aggregated capacities up to hundreds of MW. Because the wind drives the turbines, the generation from a wind turbine is considered intermittent and can be difficult to predict. Wind generation units in New Mexico and Texas typically have an annual capacity factor in the 45-55% range, depending on the specific location within these regions. As maximum wind generation output is variable and often noncoincidental to peak system loads, wind generation has a low capacity value when compared to other generating resource (including solar generation).

Examples of Energy Storage Supply-Side Resources

Energy Storage – Lithium ion battery storage has become increasingly popular due to declining costs. These battery storage devices typically range in size from 10 to over 250 MW and vary in duration from 2 – 8 hours. For short duration requirements, battery storage can bring about frequency control and stability, and, for longer duration requirements, they can bring about energy management or reserves.

DSM Resources

• DSM resources act to reduce the demand for electric power and include a variety of measures such as EE, energy conservation, LM, and demand response. There are two basic types of demand-side resources: peak shavers and energy savers. Peak shavers are used to reduce a customer's demand and energy requirements during periods of high demand. Examples of peak shaver DSM options include ICO and the Saver's Switch programs. Energy savers are used to reduce energy over all periods of the year. An example of an energy saver would be replacement of incandescent light bulbs with more energy efficient LED bulbs to reduce energy consumption throughout the year.

Transmission Upgrades

• Investments in transmission can be used as an alternative for investments in new generating facilities or demand-side resources, where transmission upgrades are used to access existing generation within other transmission-constrained areas.

Supply-Side Resource Comparison

Each of the different supply-side generation technologies described above have distinctly different technical characteristics as well as capital and operating cost characteristics. These characteristics dictate how various technologies are dispatched or used to serve load requirements of the system. A high-level comparison of the supply-side generating resources is shown below in Table 6.1.

 Table 6-1:
 Supply-Side Generating Resources Comparison

Costs	Gas CT	Gas CC	Wind	Solar	BESS
Installed Cost	Low	Mid	High	Mid/High	High
Operating Costs	High	Mid	Low	Low	Low
Expected Capacity Factor %	0-25%	25-80%	45-55%	30%	N/A
CO ₂ ¹⁸ per MWh	Medium	Low	None	None	N/A

<u>6.01 - Resource Options Considered</u>

SPS's 2021 IRP considers each of the five resource options described above; i.e., CTG, CC, Solar, Wind, and BESS. Depending on the year the resource option was available for selection in the EnCompass production cost model, SPS used one of two different approaches when determining the cost and technical characteristics of new generating resources. First, as shown in Table 6-2, for the thermal resources available for selection in 2026 and beyond, SPS used general generic characteristics such as asset life, capital costs, fixed and variable operating and maintenance costs, fuel type (when applicable), heat rates (when applicable), and CO₂ emissions. These general generic characteristics are carried through each year of the planning period and costs are escalated where stated. Annual

¹⁸ Carbon Dioxide

capacity factors are not an input for thermal generic resources, rather they are calculated by the EnCompass production cost model. The EnCompass output files will be provided under Protective Order. Availability factor can vary year-on-year and are also available in the EnCompass output files. Second, for resources available for selection between the years 2023 and 2025, inclusive, SPS used information contained in proposals received from the Tolk Analysis Request for Information ("RFI").

6.02 - Generic Resources

Generic characteristics are developed "in-house" utilizing SPS's experience with these technologies and leveraging market relationships to validate any characteristic assumptions. When determining the future cost of renewable resources, SPS also leveraged data from National Renewable Energy Laboratory's ("NREL") 2020 Annual Technology Baseline ("ATB"). These resource characteristics were then included in the EnCompass production cost model to represent how these various technologies would integrate with the existing SPS electric system to serve future customer load projections. The cost of SPS's generic thermal resources, which are summarized below in Table 6-2, were estimated in current dollars and then escalated at 2% per year thereafter. SPS used NREL ATB cost data as a baseline for estimating annual costs for wind, solar and BESS resources. Annual cost estimates for wind, solar and BESS incorporated applicable renewable tax credits for the year the project was expected to be in-serviced and, where applicable, continued declining costs in real dollars. The annual cost estimates for wind, solar, and a 4-hour BESS resource are shown below in Table 6-3. Additional cost and performance information related to the generic thermal resource types is presented in Appendix G.

Table 6-2: Thermal Generic Resource Summary Cost and Performance - 2021¹⁹

Technology	Asset Life (yrs)	Capacity (MW)	Capacity Cost \$/kw	Fixed O&M ²⁰ \$000/yr	On- Going Capital \$000/yr	VOM \$/MWh	Heat Rate MMBTu/MWh	CO ₂ Emissions Lbs/MMBTu
2x1 CC	40	771	\$773	\$5,400	\$5,150	\$1.22	6,608	117
CTG	40	201	\$495	\$1,120	\$1,313	\$0.00	10,009	117

Table 6-3: Generic Renewable and BESS Resource Cost by Year

	Lev	elized Costs	by In-Se	ervice Year (LCOE)	
EOY ²¹		Wind MWh)		Solar /MWh)		attery xW-mo)
2026	\$	39.20	\$	30.68	\$	12.80
2027	\$	38.96	\$	29.14	\$	12.57
2028	\$	38.70	\$	27.56	\$	12.33
2029	\$	38.41	\$	25.94	\$	12.09
2030	\$	38.78	\$	26.08	\$	12.17
2031	\$	39.16	\$	26.21	\$	12.26
2032	\$	39.53	\$	26.35	\$	12.34
2033	\$	39.91	\$	26.48	\$	12.42
2034	\$	40.28	\$	26.61	\$	12.50
2035	\$	40.65	\$	26.74	\$	12.58
2036	\$	41.03	\$	26.87	\$	12.58
2037	\$	41.40	\$	27.00	\$	12.57
2038	\$	41.76	\$	27.12	\$	12.55
2039	\$	42.13	\$	27.24	\$	12.51
2040	\$	42.49	\$	27.36	\$	12.47
2041	\$	42.86	\$	27.47	\$	12.41

6.03 - Proposals Received from the Tolk Analysis RFI

As part of the Tolk Analysis, SPS was required to issue an RFI. The proposals received from the RFI generally included indicative commercial operation dates through the end of year 2025.

¹⁹ Table 6-2 reflects 2021 costs escalating at 2% per year.

²⁰ Operations and Maintenance

²¹ End of Year

Therefore, rather than use generic characteristics through 2025, SPS utilized the proposals received from the RFI for resources that were available for selection in the EnCompass production cost model between 2023 – 2025. For the purposes of determining the most cost-effective portfolio of resources, SPS utilized the commercial operational dates provided from perspective bidders. However, as described in more detail in Section 7.07, it is doubtful that many of the proposals can still meet the commercial operation dates they submitted in the RFI.

As a result of the RFI, SPS received information from 18 different bidders, with most bidders submitting multiple proposals and/or pricing structures. The majority of proposals submitted were for new wind generation, solar generation, or solar generation plus battery energy storage.

Wind Generation

SPS received wind proposals ranging from a little over 100 MW up to 1,000 MW. The median pricing of wind proposals received from the RFI was \$23.05/MWh, assuming 60% production tax credits ("PTC") eligibility. However, as discussed in detail in the Tolk Analysis, most proposals did not include the full cost of the necessary transmission network upgrades required to interconnect the new generation.

Solar Generation

SPS received solar proposals ranging from less than 50 MW to just over 1,000 MW. The median pricing of solar proposals received from the RFI was \$27.52/MWh. SPS received solar proposals that included 30%, 26%, and 10% investment tax credits ("ITC"). Again, most proposals did not include the full cost of the necessary transmission network upgrades to interconnect the new generation.

Battery Energy Storage Systems

SPS did not receive any standalone BESS resources. Instead, SPS received several proposals for solar generation coupled with BESS as this allowed the BESS to qualify for the same ITC as the solar generation. To qualify for the solar ITC, SPS assumed the BESS must be charged by the coupled solar generation for the first 5 years of operation. The incremental cost of a 4-hour BESS was approximately \$6/kW-month to \$8/kW-month inclusive of qualifying ITCs.

6.04 - Other Supply-side Resource Technologies

SPS received other supply-side resource technology proposals from the RFI. These technologies included gravitational energy storage, compressed air storage, and a 1-on-1 CC with hydrogen production and storage. Gravitational and compressed air storage provide the potential for longer duration energy storage than current lithium-ion BESS. In the absence of carbon-free fuels, longer duration energy storage is critical to achieving New Mexico's carbon free energy aspirations. However, neither gravitational or compressed air storage is currently well-established, and the proposals received are in the early developmental stage; as such, it is highly doubtful that either proposal could achieve commercial operation within the Action Plan and therefore were not considered for SPS's most cost-effective portfolio of resources. Currently, the cost of hydrogen production and storage is cost prohibitive when compared to other energy resources, such as wind, solar or even traditional gas-fired CCs. However, as demonstrated in Section 7, as SPS transitions to a more renewable-heavy portfolio of generating resources, SPS will need firm and dispatchable resources. Hydrogen-capable resources are one possibility to fulfill this critical need in the future.

Accredited Capacity - Planning Reserve Margin

Each of the supply-side resource technologies described above has the ability to contribute capacity to SPS's planning reserve margin requirements. Thermal resources, such as CTGs and CCs, can be dispatched when needed and provide 100% of their rated capacity towards SPS's planning reserve margin. Intermittent resources, such as wind generation and solar generation contribute less than their full nameplate generating capacity toward meeting SPS's planning reserve margin requirement due to their variability. The current accredited capacity SPS assumed for each resource type is shown below in Table 6-6. The Southwest Power Pool determines the methodology that is used to determine the amount of renewable capacity that can be applied to SPS's planning reserve requirement. Beginning summer of 2023, Southwest Power Pool will replace the current renewable accreditation methodology with the Effective Load Carrying Capability ("ELCC") methodology. The Southwest Power Pool will also apply the ELCC methodology to energy storage resources in the future. The ELCC methodology will result in decreasing accreditation of renewable resources and energy storage resources as the penetration of those resources increase across the Southwest Power Pool Balancing Authority Area. As SPS is unable to determine the future penetration of renewable resources and energy resources across the Southwest Power Pool Balancing Authority Area, when determining the most cost-effective portfolio of resources, SPS did not incorporate diminishing accredited capacity for generic solar, wind, and BESS resources.

Table 6-4: Accredited Capacity for New Resources

Summer Accredited Cap Generic Resourc					
Generic Solar	58.00%				
Generic Wind 19.90%					
Generic CTG	100.00%				
Generic CC	100.00%				
Generic BESS	100.00%				

Lead Time for New Resources

Development and subsequent construction of new generation facilities can take several years to complete, depending on the public and regulatory environment for which the resource is planned. SPS's recent experience has shown the regulatory approval process for new resources can exceed 12 months — excluding a competitive procurement process that can add a further six to nine months. Development of resources can take anywhere from 1 year to multiple years depending on the resource, such as renewable energy, where thousands of acres of land are required to be secured for development. Finally, engineering, procurement, construction, startup, and commissioning of new facilities can take anywhere from two to three years. Although most of the processes are scheduled to occur strategically in parallel, that is, concurrently, especially development and other "at-risk" engineering and planning, the best case execution of these tasks from start to finish would result in a resource coming online within approximately two to four years from start to finish. These public and regulatory details must be strategically accounted for when planning and executing the installation of new resources, including the lead times for critical equipment manufacturing and delivery to sites. Other factors such as current lead times for interconnection agreements detailed in Section 7.07 also

add an additional level of schedule uncertainty and risk that must be considered in the overall schedule.

6.05 - Existing Rates and Tariffs

SPS's current mix of seasonal rate design, service curtailment programs, and EE programs provide a fair balance between the interest in meeting, delaying, or avoiding the need for new capacity, balanced with cost containment and minimizing adverse rate impacts resulting from significant changes in rate structures.²²

General Service Rates

All general service rates have some form of seasonality in the kWh consumption charge or the kW demand charge. Summer rates are higher than winter (non-summer) rates, which requires the customer to pay more for electricity used in higher demand, peak periods in the summer compared to the same levels of usage in winter billing months. A higher bill can serve to discourage excessive usage in summer months and, where possible for the customer, serve as an incentive to shift usage to lower demand winter billing periods; thus, mitigating the need for new resources over time.

TOU Rates

Time of Use ("TOU") rates are available as an option for all general service customers, except Large General Service – Transmission. TOU rates provide a lower rate compared to general service rates for off-peak demand or energy consumption, with a higher charge based upon avoided capacity cost during peak hours. Peak hours are 12 noon through 6 p.m., Mondays through Fridays, during the summer billing months of June through September. Lower rates during off-peak hours, and all

SPS 2021 Integrated Resource Plan

SPS's current rates were set in Case No. 19-00170-UT. The rates are subject to revision in Case No. 20-00238-UT.

hours for eight off-peak months, can encourage customers to take electric service during periods in which capacity is not strained. Higher rates during peak hours can encourage customers to minimize or avoid taking electric service when capacity can potentially be strained, minimizing the requirement to expand capacity and related costs, as a result of requirements during peak hours.

Section 7. DETERMINATION OF THE MOST COST-EFFECTIVE RESOURCE PORTFOLIO AND ALTERNATIVE PORTFOLIOS

7.01 - Resource Planning Fundamentals

In its simplest form, electric resource planning is the process of taking forecasts of customer electric demand and energy use and determining the appropriate diversification of generation sources, including but not limited to, thermal generation, renewable resources, energy storage, DSM and LM, that should be developed to meet customer requirements in a cost-effective and reliable fashion. Engineering, permitting, and constructing electric generating facilities takes a significant amount of time and therefore the resource planning process must be completed with adequate lead-time to allow the development of new resources that are needed to meet customer energy requirements.

Computer Models

After developing forecasts of customer demand, L&R tables, and load duration curves of the system, computer modeling of the electric system is often the next step in the planning process. Computer models allow the resource planner to examine how different resource technologies will integrate with the existing fleet to meet the system needs under a range of assumptions from key inputs such as fuel costs. A utility expansion-planning model is specifically designed to construct combinations or portfolios of resources that would meet the capacity and energy needs of the system. The model simulates operation of each of these combinations of resources together with existing generation resources, while keeping track of all associated fixed and variable costs of the entire system. The resources available for selection in the model are described in more detail in Section 6.

The computer model is needed because it can keep track of the thousands of calculations on costs, emissions, operational data, and various other metrics for each of the possible resource portfolios.

While this model is a powerful tool that can be used to generate and evaluate thousands of possible resource portfolios, the sheer complexity of resource evaluations of this magnitude would quickly overwhelm the model's data storage and computational capabilities unless steps are taken to limit the size of the optimization problem presented to the model at any one time. The number of resource combinations that can be generated each year grows exponentially depending on the number of resources made available to the model.

7.02 - EnCompass Production Cost Model

SPS recently transitioned to the EnCompass production cost model in its resource planning process. EnCompass is a production costing model that uses an algorithm to determine the most cost-effective resource portfolio for a utility system from a prescribed set of resource technologies under given sets of constraints and assumptions. The EnCompass model includes: 1) a modern "solve anything" algorithm; 2) hourly operation detail that can accurately capture ramp rates, start-up, etc.; and 3) enhanced storage logic and ancillary services. EnCompass is also able to perform utility capital accounting (revenue requirements).

In addition to the usual input variables needed for a production costing model, EnCompass incorporates a wide variety of resources expansion planning parameters to develop a coordinated, integrated plan that best suits the utility system being analyzed. For example, EnCompass incorporates resource expansion planning parameters such as: alternative generation technologies

available to meet future needs; renewable energy resources; unit capacity sizes; heat rates; LM; conservation programs; reliability limits; and environmental compliance options.

Costs Included in EnCompass

The EnCompass model includes the critical generation costs SPS incurs to provide electric service to its customers. The following lists summarize the costs that are typically included in the EnCompass model.

- 1. Fuel costs for all electric power supply resources (owned and purchased) and market energy costs (which are forecasted based on gas prices;
- 2. Purchased energy costs for all electric power supply resources;
- 3. Capacity costs of purchased power;
- 4. VOM costs of purchased power;
- 5. Capital costs for new electric generation facilities added to meet future load;
- 6. Energy costs for new wind and solar generation facilities added to meet future energy need;
- 7. Electric transmission interconnection and network upgrade cost for new generation;
- 8. FOM costs for existing and new generation facilities;
- 9. VOM costs for existing and new generation facilities; and
- 10. Remaining book value of SPS-owned generating units.

7.03 - Development of Resources Portfolios

The following factors were considered in, or affected, the development of the most costeffective portfolio of resources and alternative portfolios.

System reliability and planning reserve margin requirements

Maintaining system reliability and planning reserve margin requirements is a critical modeling constraint when developing resource portfolios. The EnCompass model was constrained to maintain at a minimum Southwest Power Pool's 12% planning reserve margin on a monthly basis. Failure to meet the planning reserve margin resulted in the EnCompass model adding new capacity

resources. The EnCompass model evaluated the ability of the resource portfolio to meet electric demand on an hourly basis. However, rather than program a hard constraint, SPS assigned an extremely high emergency energy cost (\$/MWh) in hours where SPS's resources and market energy purchases could not meet hourly demand. This high cost ensured EnCompass would add additional resources if SPS could not regularly meet hourly demand, but also prevented the model from adding new resources whenever the emergency energy need was extremely small.

Renewable Energy Portfolio Requirements

As demonstrated in New Mexico Case No. 21-00172-UT, SPS is projecting continued compliance with the RPS throughout the Action Plan. During the Planning Period, New Mexico's RPS requirement is scheduled to increase to 80% of NM retail sales. Modeling long-term compliance with the RPS is challenging for multi-jurisdiction utilities, such as SPS, that must plan resources on a total system basis, not a jurisdictional basis. New Mexico retail sales represent approximately 35% -40% of SPS's total system sales. Therefore, without knowing exactly how RPS compliant resources will be allocated between jurisdictions, it is challenging to determine exactly the quantity of renewable resources required to meet 80% New Mexico retail sales. Therefore, SPS did not constrain the resource portfolios to meet the NM RPS; however, SPS did retrospectively evaluate the resource portfolios to ensure compliance through the planning period is achievable. SPS's most cost-effective portfolio of resources includes renewable resources generating approximately 82% of the total system wide sales in 2040.

Load Management and Energy Efficiency Programs

SPS's base, low and high energy and demand forecasts are net of projected load management and energy efficiency programs. Therefore, load management and energy efficiency programs were directly incorporated into the load forecasts SPS used when developing the resource portfolios.

Existing and anticipated environmental laws and regulations, and, if determined by the commission, the standardized cost of carbon emissions.

In developing the most cost-effective portfolio of resources and alternative portfolios, SPS evaluated compliance with all existing environmental law and regulations. SPS did not evaluate the effect of anticipated or possible future environmental regulations (that is neither the subject of a proposed or final rulemaking) because they are speculative and may never be adopted, or they may be adopted in some different form than the proposal. The one exception being the standardized cost of carbon emissions that is included in the analyses, which is described in more detail in Section 7.13.

A summary of the current status and remaining unknowns about each environmental regulation, along with the potential impacts on SPS's generation resources is included in Appendix K.

Fuel Diversity

It is difficult to directly quantify the value of fuel diversity when determining resource portfolios; therefore, SPS did not directly assign a quantitative fuel diversity benefit as a direct input or factor. However, SPS recognizes the importance of the reliability and economic benefits of fuel diversity. Outside of the EnCompass analysis, SPS considers the benefits of fuel diversity in its resource planning decisions. For example, fuel diversity is an additional benefit of maintaining the Tolk Units through 2032.

Susceptibility to fuel interdependencies

EnCompass provides hourly operation detail that can accurately capture ramp rates, start-up times, minimum up and minimum down times, and other factors. Therefore, EnCompass determines how different technologies (and fuel types) interact with one another when calculating the most cost-effective portfolio of resources and alternative portfolios.

Transmission Constraints

SPS included two major transmission constraints in the EnCompass model. First, as described in Section 3.09, Southwest Power Pool has a total of 1,885 MW of transmission flow capability minus the single largest contingency and other factors (i.e., imports from Palo Duro and Mammoth Wind) to deliver resources to the SPS zone from the rest of the Southwest Power Pool transmission system. Second, SPS's analysis included a 1,645 MW North to South constraint. New Generation was not subjected to the North to South constraint.

In addition to the transmission constraints, SPS included generator point of injection constraints between Harrington and Tolk and the SPS system. In the event resources are selected at Tolk and/or Harrington and SPS exercised its rights to use replacement or surplus interconnection capacity, these constraints ensured neither facility could exceed its current maximum capability. For example, in the event a new wind generator was co-located at Tolk, the total output of the existing Tolk Generators and the new wind facility could still not exceed 1,067 MW.

SPS -SPS - North Harrington (NIC) 1,019MW (HARRINGTON) SPS - New Gen 1,645MW (Generic Additions) 1,885MW 1,885MW Market SPS - WPPA SPS - Tolk SPS - South **Purchases** (PaloDuro + (CUN, JON, MAD) Mammoth) (SPS_SPS) 1,067MW Variable Variable

Figure 7F.0: EnCompass Transmission Constraints

7.04 - Establishing a Base Case Analysis in EnCompass

When establishing the most cost-effective portfolio of resources in EnCompass, SPS first determined the critical inputs and assumptions to be used for its base case analysis. The base case analysis incorporates the following critical inputs and assumptions:

- Base natural gas and market energy forecast (see section 7.10)
- Base load forecast (see Section 7.11)
- Mid-point transmission network upgrade costs (see section 7.12)
- \$0 social cost of carbon (see section 7.13)

SPS's base case analysis assumed specific dates for the retirement of SPS generation consistent with Table 3-1 (see Section 3, above). SPS also considered alternative retirement dates for the Tolk Units and the Harrington Units, which are presented in the alternative portfolios section below.

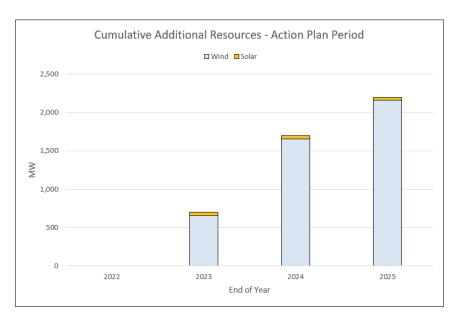
7.05 - Based Case - Resource Need

Action Plan Period

As shown in Table 5-2, SPS has enough supply-side resources to meet its planning reserve margin requirement until the Summer of 2031. Also, as demonstrated in SPS's New Mexico 2021 RPS filing, Case No. 21-00172-UT, SPS anticipates continued RPS compliance beyond the Action Plan Period. Therefore, SPS does not need any additional resources to reliably serve its customers or meet regulatory requirements during the Action Plan. However, even without a defined resource need, SPS may still pursue additional resources if such resources are reasonably expected to provide other benefits, such as economic energy savings. When deciding whether to acquire economic energy resources, SPS must consider the likelihood that the economic resources will provide the energy savings anticipated.

Planning Period

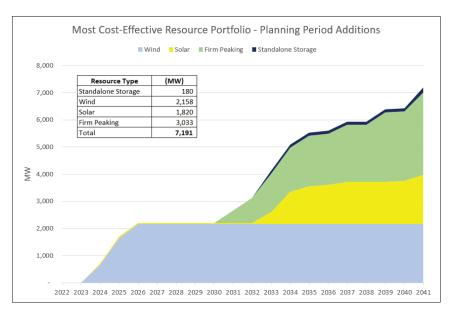
Over the next 10-years, several of SPS's older gas steam units are scheduled to retire, creating a 174 MW capacity need by the Summer of 2031. SPS's capacity need then increases significantly over the remainder of the 20-year Planning Period as existing generating units retire and PPAs expire. For example, during the planning period, SPS's two largest plants, Tolk and Harrington, are scheduled to retire as is the remainder of the gas steam generating units and the Lea Power combined cycle PPA is also scheduled to expire. By the end of the Planning Period, SPS's capacity need is expected to grow to 4,194 MW.


7.06 - Most Cost-Effective Resource Portfolio - Base Case

Action Plan Period

As described above, over the course of the 4-year Action Plan Period, SPS does not require any new resources for reliability needs or regulatory requirements. However, SPS may pursue additional economic energy resources. As shown below in figure 7F.1, SPS's most cost-effective resource portfolio includes an additional 2,158 MW of economic wind generation and 40 MW of economic solar generation added during the Action Plan Period.

Although the most cost-effective resource portfolio includes additional economic energy resources, SPS must consider risks and uncertainties when procuring economic energy resources. Risks and uncertainties are discussed in detail in the Tolk Analysis and summarized below in Section 7.07.


Figure 7F.1: Most Cost-Effective Resource Portfolio – Additional Resources During the Action Plan

Planning Period

As discussed above in Section 7.05, SPS's capacity need is expected to grow from 174 MW in 2031 to 4,194 MW in 2041. While renewable generation, particularly solar, can meet some of this capacity need, SPS will also need firm and dispatchable resources to serve load when intermittent renewable resources are unavailable. Based on SPS's growing capacity need, as shown in Figure 7F.2, it is not surprising that SPS's most cost-effective resource portfolio includes 1,780 MW of new solar generation, 180 MW of BESS, and approximately 3,000 MW of new CTGs over the Planning Period – in addition to the resources added during the Action Plan. Environmental mandates, such as New Mexico's RPS, or technological and/or economic improvements of emerging technologies may drive the need for the CTGs to switch to carbon-free hydrogen as a fuel source, or ultimately replace the combustion turbines with other technologies, such as long-duration energy storage or other technologies that are not currently commercially viable. SPS's most cost-effective portfolio of resources does not require any new CTGs until 2031, providing SPS time to re-evaluate alternative carbon-free fuel sources, or technological alternatives to CTGs, as the next generation of carbon-free SPS believes the development of carbon-free fuel sources and/or the technologies mature. advancement of technologies not currently commercially viable will be essential in achieving the 2045 carbon free goal specified in the Energy Transition Act.

Figure 7F.2: Most Cost-Effective Resource Portfolio –Additional Resources During the Planning Period

SPS's most cost-effective resource portfolio will experience an unprecedented transition over the next two decades. As shown below in Figure 7F.3, SPS's entire coal-fired generation will either be retired or converted to operate on natural gas before the end of 2032 and all units that burn coal today will be retired before the end of the Planning Period. SPS's entire gas-steam generating fleet is also scheduled to retire before the end of the Planning Period, as is the Lea Power combined cycle. In its place, SPS's 2041 most-cost effective resource portfolio is projected to include 3.4 GW of wind generation, nearly 2 GW of solar generation, 180 MW of BESS and 3.4 GW of firm peaking generation. Again, while current modeling inputs and assumptions show CTGs providing firm peaking and load-following generation, this will likely change as the cost of emerging technologies continue to trend down.

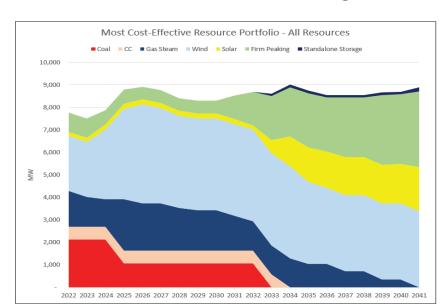


Figure 7F.3: Most Cost-Effective Resource Portfolio – Planning Period All Resources

7.07 - Uncertainty in Modeling the Cost of New Resources

While there is inherent uncertainty in modeling the cost of generating resources up to 20-years in advance, SPS's 2021 IRP has been prepared during a period of heightened uncertainty that impacts the cost of resources in the near and long term. Uncertainties, such as the possible extension of renewable tax credits and the high cost of transmission network upgrades can, and most likely will fundamentally change SPS's most cost-effective resource portfolios over the 4-year Action Plan and 20-year Planning Period. These uncertainties are discussed in detail in the Tolk Analysis and summarized below.

Extension of Federal Tax Credits

For the purposes of determining the most cost-effective portfolio of resources, SPS assumed wind production tax credits and solar investment tax credits would expire or step-down based on the currently approved schedule. However, at the federal level, several bills that could extend or revise renewable tax credits are currently being considered. If passed, the extension of renewable tax credits

would likely fundamentally change SPS's most cost-effective resource portfolio. For example, as demonstrated above in figure 7F.2, the currently scheduled EOY 2025 expiration of wind production tax credits have a significant impact on the timing of future wind acquisitions. SPS's most cost-effective portfolio of resources includes 2,158 MW of new PTC qualifying wind generation before the end EOY 2025 and then no additional wind generation after the PTCs expire. An extension of PTCs will (1) potentially defer the acquisition of wind generation during the Action Period and (2) likely add additional wind resources not currently seen in the Planning Period. Additional wind generation during the Planning Period may mitigate the need for some, but not all, firm peaking generation in the future.

Transmission Network Upgrade Costs and Schedule Uncertainty

The acquisition of new generating resources within SPS's service territory is subject to Southwest Power Pool's severely backlogged transmission interconnection study process – with new requests taking several years to be completed. Furthermore, when the results of the transmission network upgrade studies are identified, they often result in proposed generators being assigned cost-prohibitive transmission network upgrades, for example the DISIS 2017-01 2nd Phase Study assigned \$934/kW to new generators in SPS's service territory. In comparison, the cost to construct a new solar facility excluding transmission network upgrades is estimated to be approximately \$1,000/kW - \$1,200/kW. Currently, it is challenging to anticipate and evaluate the cost of network upgrades in the near- and long-term future. Furthermore, it is uncertain whether projects will actually proceed once transmission network upgrade costs are known. For example, the DISIS 2017-01 study initially contained nearly 3,800 MW of new renewable generation in SPS's service territory. After Southwest Power Pool required each proposed project to submit a 20% deposit only a single 200 MW wind

generating facility remained. As discussed in more detail in Section 6 and in the Tolk Analysis, in the base case analysis, SPS assumed generators requiring a new generator interconnection agreement would be assigned \$400/kW for transmission network upgrades (less than half of the amount assigned in the 2017-01 DISIS). As described later in this section, SPS also conducted sensitivity analyses for the cost of transmission network upgrades. SPS did not assign additional transmission network upgrade costs to RFI proposals that either (1) already possessed an executed generator interconnect agreement, or (2) build-transfer proposals that interconnected at the site of existing SPS generators. SPS assumed the latter would provide the opportunity for SPS to exercise its rights for replacement or surplus interconnection rules to avoid the need for a new generator interconnection agreement. SPS assigned the same additional transmission network upgrade costs to all future generic CC, wind, and solar resources. SPS did not assign additional transmission network upgrade costs for generic CTGs or BESS resources, on the assumption the resources would be located at the site of existing generation.

In addition, as described in Section 6, SPS modeled the commercial operation dates of the proposals submitted in the RFI. These proposals included projects that have subsequently withdrawn from the 2017-01 DISIS and proposals that have not yet entered Southwest Power Pool's study process.

Emerging and Future Technologies

Technological and economic improvements of 'emerging technologies', such as solar and battery energy storage, will continue to redefine SPS's resource portfolio over the 20-year Planning Period. In addition, the next generation of technologies such as hydrogen capable generation or long-duration energy storage will become increasing important as SPS and New Mexico work together

towards decarbonizing the power sector. For the purposes of determining the most-effective portfolio of resources, SPS used the pricing for the resource options described in Section 6 in developing the base case analysis.

7.08 - Alternative Portfolios / Mitigating Ratepayer Risk

To mitigate ratepayer risk, SPS evaluated alternative portfolios (sensitivities) assuming changes to critical modeling inputs, such as: the future operation and retirement dates of SPS's existing coal generation, natural gas price forecast, market energy price forecast, and load forecast. In addition, due to the uncertainty in transmission network upgrade cost described above, SPS also conducted sensitivity analyses for transmission network upgrade costs. Each of the sensitivity analyses are described in more detail in the Tolk Analysis. Finally, as described in Section 7.13, SPS also evaluated three different carbon price sensitivity analyses. In addition to the sensitivity analyses described throughout the remainder of this section, SPS also evaluated multi-factor sensitivity analyses, such as low load and low natural gas price forecasts. The results of these analyses are provided in Appendix J.

7.09 - Future Operation of SPS's existing coal generation

SPS's two largest plants, Tolk Station and Harrington Station, both face unique operational challenges. The coal-fired Tolk Units, rely upon water from the Ogallala Aquifer for generation and cooling, and the aquifer is in irreversible decline. The limited availability of economic water necessitates either: (1) the conservation of water through reduced / seasonal operations or (2) the early retirement of both units. SPS's other coal plant, Harrington Station, is subject to an agreed order with the TCEQ to cease burning coal at the end of 2024, at which point all three units will be converted to operate on natural gas.

Tolk Operation and Retirement Analysis

Per the uncontested comprehensive stipulation in New Mexico Case No. 19-00170-UT, SPS's 2021 IRP includes an updated "Tolk Analysis" evaluating the optimal retirement date of the Tolk Units. The Tolk Analysis continues to support seasonal / summer operations of the Tolk Units and a 2032 retirement date for both units. The Tolk Analysis is included in its entirety in Appendix H and was previously filed with the NMPRC in June 2021.

Harrington Operation and Retirement Analysis

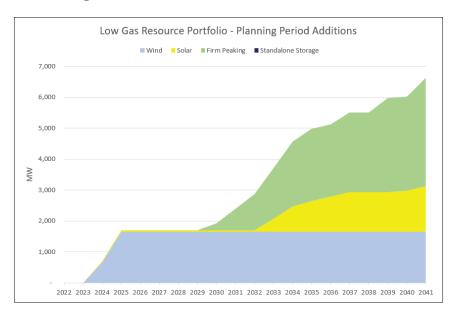
In New Mexico base rate Case No. 20-00238-UT, SPS presented its analysis supporting the October 2020 agreed order with the TCEQ to cease burning coal at the end of 2024. SPS intends to file a Certificate of Public Convenience and Necessity in New Mexico soon after the filing of this IRP supporting the decision to the convert the units to operate on natural gas. A summary of this analysis is presented in Appendix I.

7.10 - Natural Gas & Market Energy Price Forecast

The price of natural gas is an important variable. SPS uses a combination of market prices and fundamental price forecasts, based on multiple highly respected, industry leading sources, to calculate monthly delivered gas prices. As the foundation of the gas price forecast, Henry Hub natural gas prices are developed using a blend of market information (New York Mercantile Exchange ("NYMEX") futures prices) and long-term fundamentally based forecasts from Wood Mackenzie, IHS Energy, and S&P Global. The forecast is fully market-based for the current year plus two additional years and then transitions into blending the four sources to develop a composite forecast. The Henry Hub forecast is adjusted for regional basis differentials and specific delivery costs for each generating unit to develop final model inputs.

SPS conducted low and high natural gas price forecast sensitivity analyses. For the low and high price cases, the base gas forecast for Henry Hub was adjusted down by 50% of the growth (escalation) in the base gas case to represent the low gas case, and adjusted up by 150% of the growth in the base gas to represent the high gas case. SPS's market price forecast is dependent on the gas price forecast used. As such, the market price forecast was adjusted with the low and high gas sensitivity analyses.

SPS's base, low and high natural gas and market energy forecast for the years 2022 – 2041 are shown in Appendix G (oil and coal price forecasts are also included in Appendix G).


Low Forecast

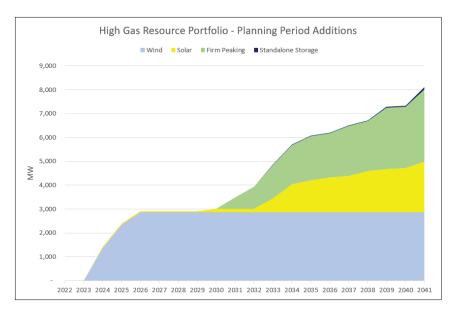
The low natural gas and market energy price sensitivity analysis resulted in the acquisition of similar resources during the Planning Period – notably, wind, solar and CTGs. However, as shown in Table 7.1 and Figure 7F.4 below, when compared to the base case analysis, the low natural gas and market energy price sensitivity acquired two additional CTGs at the expense of 500 MW less wind and 350 MW less solar generation. The low natural gas and market energy price sensitivity did not add any standalone BESS projects during the Planning Period.

Table 7.1: Low Natural Gas & Market Energy Forecast – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	-	(180)
Solar + Storage	-	-	-
Wind	2,158	1,658	(500)
Solar	1,820	1,470	(350)
Firm Peaking	3,033	3,500	467
CC	-	-	-
Total	7,191	6,628	(563)

Figure 7F.4: Low Natural Gas and Market Energy Forecast – Additional Resources During the Planning Period

High Forecast


Again, the high natural gas and market energy price sensitivity analysis resulted in the acquisition of similar resources during the Planning Period – notably, wind, solar, and CTGs. However, as shown in Table 7.2 and Figure 7F.5 below, when compared to the base case analysis, the high natural gas and market energy price sensitivity acquired an additional 700 MW of wind and

310 MW of additional solar. The high natural gas and market energy price sensitivity acquired 100 MW of BESS -80 MW less than the base case analysis.

Table 7.2: Low Natural Gas & Market Energy Forecast – Additional Resources During the Planning Period

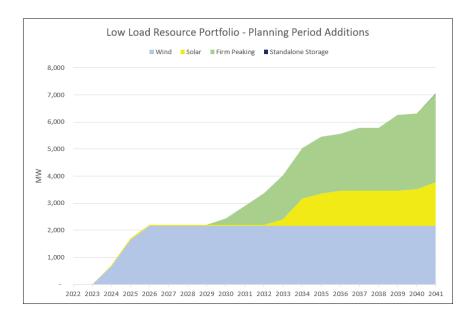
	Base Case	Alternative Portfolio	Change
Standalone Storage	180	100	(80)
Solar + Storage	-	-	-
Wind	2,158	2,858	700
Solar	1,820	2,130	310
Firm Peaking	3,033	3,033	-
CC	-	-	-
Total	7,191	8,121	930

Figure 7F.5: High Natural Gas and Market Energy Forecast – Additional Resources During the Planning Period

7.11 - Load Forecast

Demand and energy forecasts are another important variable. As such, SPS conducted low and high load forecast sensitivity analyses using the methodology described in section 4. However, it is worth noting, the methodology described in Section 4 for calculating the 'base' load case forecast is largely used for financial planning purposes. Despite continued growth in oil and gas developments in the New Mexico portion of the Permian basin and due to the volatility of the industry, the financial load forecast incorporates only a modest amount of projected oil and gas load growth. The 'high' load case forecast represents a more accurate projection of SPS's capacity position if oil and gas load continue to increase. For the purposes of resource planning, the high load forecast is predominately used to ensure SPS has enough resources to reliably serve customers.

SPS's base, low, and high load forecast for the years 2022 – 2041 are shown in Appendix G.

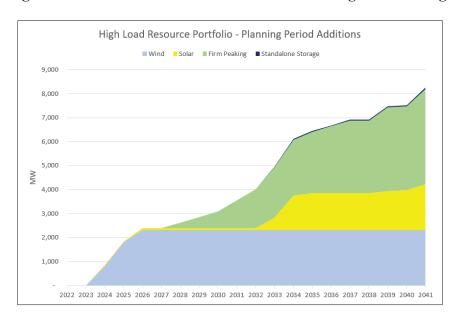

Low Load Forecast

As shown below in Table 7.3 and Figure 7F.6, during the Planning Period, the low load forecast resource portfolio added the new wind generating resources as the base case. The low load forecast resource portfolio added an additional CTG during the planning period at the expense of 170 MW less BESS and 210 MW less solar generation.

Table 7.3: Low Load Forecast – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	10	(170)
Solar + Storage	-	-	-
Wind	2,158	2,158	-
Solar	1,820	1,610	(210)
Firm Peaking	3,033	3,266	233
CC	-	-	-
Total	7,191	7,044	(147)

Figure 7F.6: Low Load Forecast – Additional Resources During the Planning Period


High Load Forecast

As shown below in Table 7.4 and Figure 7F.7, during the Planning Period, the high load forecast resource portfolio added an additional 150 MW of wind, 100 MW of solar and 4 additional CTGs. The high load forecast resource portfolio added 170 MW less BESS than the base case.

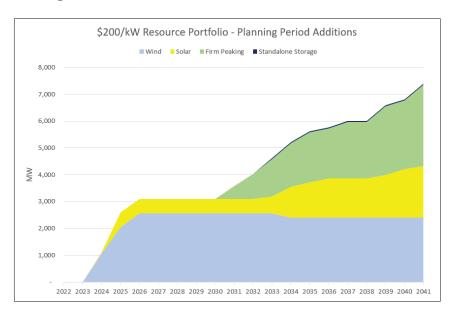
Table 7.4: High Load Forecast – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	60	(120)
Solar + Storage	-	-	-
Wind	2,158	2,308	150
Solar	1,820	1,920	100
Firm Peaking	3,033	3,966	933
CC	-	-	-
Total	7,191	8,254	1,063

Figure 7F.7: High Load Forecast – Additional Resources During the Planning Period

7.12 - Transmission Network Upgrades

As described in Section 7.07, due to the current high uncertainty in transmission network upgrade costs, SPS evaluated alternative portfolios using two alternative transmission network upgrade costs: \$200/kW and \$400/kW.

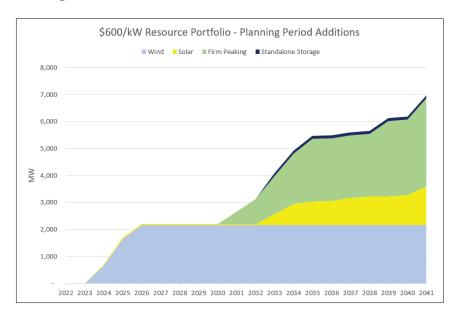

\$200/kW Transmission Network Upgrades Costs

As shown below in Table 7.5 and Figure 7F.8, during the Planning Period, the \$200/kW resource portfolio added an additional 251 MW of wind and 90 MW of additional solar. The \$200/kW resource portfolio added the same amount of CTGs as the base case and 130 MW less BESS than the base case.

Table 7.5: \$200/kW Transmission Network Upgrade Costs – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	50	(130)
Solar + Storage	-	-	-
Wind	2,158	2,409	251
Solar	1,820	1,910	90
Firm Peaking	3,033	3,033	-
CC	-	-	-
Total	7,191	7,402	211

Figure 7F.8: \$200/kW Transmission Network Upgrades – Additional Resources During the Planning Period


\$600/kW Transmission Network Upgrade Costs

As shown below in Table 7.6 and Figure 7F.9, during the Planning Period, the \$600/kW resource portfolio added an additional CTG. The \$600/kW resource portfolio added the same amount of wind generation as the base case and 380 MW less solar 70 MW less BESS than the base case.

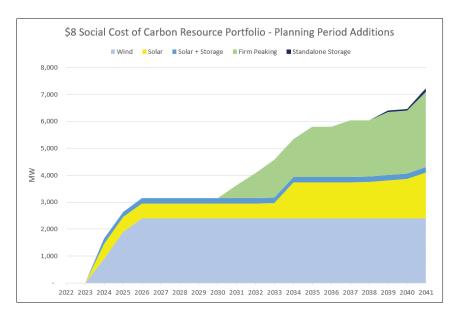
Table 7.6: \$600/kW Transmission Network Upgrade Costs – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	110	(70)
Solar + Storage	-	-	1
Wind	2,158	2,158	1
Solar	1,820	1,440	(380)
Firm Peaking	3,033	3,266	233
CC	-	-	-
Total	7,191	6,974	(217)

Figure 7F.9: \$600/kW Transmission Network Upgrades – Additional Resources During the Planning Period

7.13 - Carbon Price Sensitivity

In addition to the alternative portfolios described in the Tolk Analysis, SPS also conducted a carbon price sensitivity analysis. Emissions of CO₂ were modeled at \$8, \$20, and \$40 per metric ton base year of 2011, escalated at 2.5%/year consistent with the final order in NMPRC Case No. 06-00448-UT (Order Approving Recommended Decision and Adopting Standardized Carbon Emission Costs for Integrated Resource Plans).

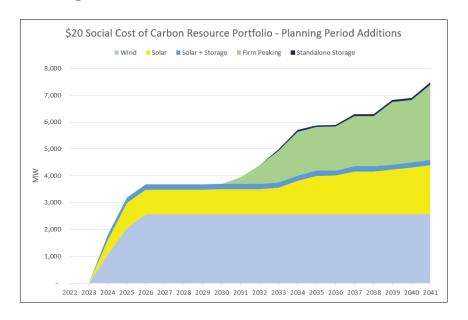

\$8 per metric ton

As shown below in Table 7.7 and Figure 7F.10, during the Planning Period, the \$8 per metric ton social cost of carbon resource portfolio added an additional 250 MW of wind and 200 MW of additional solar + BESS. The \$8 per metric ton social cost of carbon resource portfolio added one less CTG, 60 MW less standalone BESS, and 120 MW less solar as the base case.

Table 7.7: \$8 Metric Ton Social Cost of Carbon – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	120	(60)
Solar + Storage	-	200	200
Wind	2,158	2,408	250
Solar	1,820	1,700	(120)
Firm Peaking	3,033	2,800	(233)
CC	-	-	-
Total	7,191	7,228	37

Figure 7F.10: \$8 Metric Ton Social Cost of Carbon – Additional Resources During the Planning Period

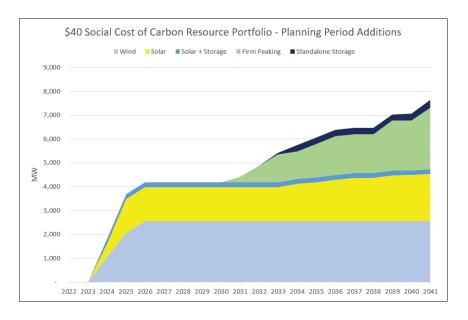

\$20 per metric ton

As shown below in Table 7.8 and Figure 7F.11, during the Planning Period, the \$20 per metric ton social cost of carbon resource portfolio added an additional 400 MW of wind, 15 MW of additional solar, and 200 MW of additional solar + BESS. The \$8 per metric ton social cost of carbon resource portfolio added one less CTG and 90 MW less standalone BESS.

Table 7.8: \$20 Metric Ton Social Cost of Carbon – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	90	(90)
Solar + Storage	-	200	200
Wind	2,158	2,558	400
Solar	1,820	1,835	1 5
Firm Peaking	3,033	2,800	(233)
CC	-	-	-
Total	7,191	7,483	292

Figure 7F.11: \$20 Metric Ton Social Cost of Carbon – Additional Resources During the
Planning Period


\$40 per metric ton

As shown below in Table 7.8 and Figure 7F.11, during the Planning Period, the \$20 per metric ton social cost of carbon resource portfolio added an additional 400 MW of wind, 165 MW of additional solar, 150 MW of additional BES, and 200 MW of additional solar + BESS. The \$40 per metric ton social cost of carbon resource portfolio added two less CTGs.

Table 7.9: \$40 Metric Ton Social Cost of Carbon – Additional Resources During the Planning Period

	Base Case	Alternative Portfolio	Change
Standalone Storage	180	330	150
Solar + Storage	-	200	200
Wind	2,158	2,558	400
Solar	1,820	1,985	165
Firm Peaking	3,033	2,566	(467)
CC	-	-	-
Total	7,191	7,639	448

Figure 7F.12: \$40 Metric Ton Social Cost of Carbon – Additional Resources During the Planning Period

7.14 - Conclusion

The most cost-effective portfolio of resources and each of the alternative portfolios evaluated include a similar portfolio of resources at the end of the Planning Period. First, each portfolio adds a significant amount of new wind generation during the action plan period to take advantage of the currently scheduled-to-expire PTCs. After the PTCs are scheduled to expire, little-to-no additional

wind is added in each of the portfolios. The possible extension of PTCs will fundamentally change the timing and extent of future wind acquisitions.

Looking further ahead, each portfolio comprises of additional solar generation, CTG's and to a lesser extent, BESS, to meet SPS's growing capacity need. As SPS transitions to a more renewable heavy portfolio mix and existing thermal resources retire, SPS's need for firm and dispatchable energy will increase. Currently, this need is fulfilled with CTGs, however, as emerging technologies continue to mature, these CTGs may be replaced with long duration battery energy storage or other technologies that are not currently commercially viable.

Section 8. PUBLIC ADVISORY PROCESS AND TECHNICAL CONFERENCES

Pursuant to the IRP Rule (17.7.3.9.H NMAC), SPS was required to begin planning for the 2021 IRP filing a minimum of one year prior to the filing date; therefore, consistent with the IRP Rule, invitations and notices for the initial meeting, held on May 21, 2020, were sent and published a minimum of 30 days prior to the first meeting. To ensure broad public input, SPS invited the Utility Division Staff of the Commission ("Staff"), as well as the interveners in its most recent general rate case, renewable energy, EE, and IRP proceedings. The invited parties cover multiple interest areas (e.g., residential, environmental, industrial, and consumer advocacy) to ensure varied opinions and perspectives.

On April 8, 2020, SPS published notice of the first Public Advisory meeting in the Carlsbad Current-Argus, Eastern New Mexico News, Hobbs News-Sun, Quay County Sun, and Roswell Daily Record newspapers. These newspapers cover the general circulation of every county in New Mexico that SPS serves. SPS also provided notice with a one-time bill insert to all New Mexico retail customers during the mid-March through mid-April 2020 billing period. Copies of the invitation, public notice, and bill insert are included in Appendix L.

Pursuant to the uncontested comprehensive stipulation in Case No. 19-00170-UT (SPS's 2019 New Mexico Rate Case), SPS was required to host a series of Technical Conferences. SPS actively sought feedback from interested parties throughout the Tolk Analysis by hosting a series of 'Technical Conferences' specific to the Tolk Analysis in addition to and in parallel with SPS's 2021 IRP Public Advisory Process.

Before each Public Advisory meeting and technical conference, SPS provided adequate notice and an agenda of topics to be discussed. SPS experienced medium to high public participation at

Public Advisory meetings and technical conferences. Commonly, attendance included members from Staff, numerous renewable energy developers, several environmental agency representatives, and other energy industry representatives (i.e., oil and gas producers, electric cooperatives, consulting companies, renewable energy service providers). SPS either responded to or followed-up on multiple questions from participants throughout the Public Advisory Process and technical conferences.

Public Advisory meetings and Technical Conferences were held over an approximate12-month time frame. Due to the COVID 19 pandemic, all Public Advisory meetings and Technical Conferences were conducted via video and telephone conferences. A complete list of each Technical Conference and all contents presented at each of the Technical Conferences can be found in Appendix H. In addition, a complete timeline of the Public Advisory meetings and summary of subject matters that were discussed at each of these meetings is presented in Table 8-1. A complete record showing the content presented at each of these meetings is included in Appendix M.

Table 8-1: Public Advisory Process Timeline and Subject Areas

Meeting Date	Topics Discussed
May 21, 2020	Xcel Energy and SPS System Overview
	Resource Planning Overview
	Factors Impacting Resource Planning Since 2018 NM IRP
	Factors That Will Likely Influence Resource Planning Over the Action Plan Period
	SPS's New Renewable Wind Facilities
August 20, 2020	Emerging Environmental Impacts for SPS Harrington NAAQS ²³ Compliance
January 12, 2021	Introduction to the New Mexico Integrated Resource Plan NM Energy Efficiency and Load Management Programs

²³ National Ambient Air Quality Standards

Sales and Load Forecasting

March 23, 2021 Coal Supply

Tolk Station Water Supply

Gas & Power Market Price Forecasting

May 13, 2021 Energy Storage

Generator Interconnection Agreement Issues

Section 9. ACTION PLAN

9.01 - SPS Action Plan for 2022-2025

SPS has adequate generating capacity to meet its planning reserve margin over the Action Plan 2022-2025. Furthermore, as demonstrated in SPS's most recent RPS filing (Case No. 21-00172-UT), SPS anticipates continued RPS compliance throughout the Action Plan. Therefore, SPS does not need to procure additional resources to reliably serve its customers or meet regulatory requirements under 17.9.572 NMAC during the Action Plan. However, even without a defined resource need, SPS may still pursue additional resources if they are expected to provide additional benefits, such as economic energy savings. Results from SPS's recent RFI indicate the acquisition of additional wind resources within the Action Plan may provide economic energy savings; however, these savings are highly dependent on the expiration of PTCs and uncertain transmission network upgrade costs. Furthermore, SPS has subsequently learned that several proposals received in the RFI are no longer viable projects. As such, SPS is not proposing any new resources in the Action Plan, instead SPS is proposing to continue to evaluate and monitor the feasibility of new economic energy resources.

After evaluating the proposals submitted in the RFI, it is clear the transmission network upgrade costs currently being assigned to new generation are cost prohibitive. And, SPS has several gas steam generators retiring during the Action Plan. Thus, SPS is currently evaluating the use of generator replacement or surplus interconnection rules as a way of avoiding high transmission network upgrade costs.

Finally, during the Action Plan, SPS intends to cease coal operations at Harrington and convert the units to operate on natural gas at the end of 2024.

9.02 - Status Report

SPS's 2018 IRP was indicative that SPS had adequate generating capacity over the Action Plan period 2019-2022, and, therefore SPS did not need to procure additional resources to reliably serve its customers or meet regulatory requirements. However, in keeping with SPS's 2018 IRP Action Plan, SPS received approval from the Commission of the 522 MW Sagamore Wind Facility, the 478 MW Hale Wind Facility, and the 230 MW Bonita Wind PPA Facilities which were all inserviced within the 2019 IRP's Action Plan and were acquired because they provided low-cost renewable energy benefits to customers.

Historically low natural gas prices delayed the retirement of Plant X Unit 1, Plant X Unit 2 and Cunningham Unit 1. Each of these units is now scheduled to retire the end of 2022.

	Jan-20	Feb-20	<u>Mar-20</u>	<u>Apr-20</u>	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Grand Total
Capacity Costs Borger (Blackhawk) Lea Power Partners (Hobbs) Tokai Carbon CB (Sid Rich)	981,187 3,807,427 4,408	981,187 3,809,398 12,819	981,187 3,722,083 12,550	981,187 3,724,392 5,277	981,187 3,699,694 4,772	993,355 3,978,275 8,247	1,000,399 4,189,441 10,908	977,878 4,208,762 11,587	943,437 4,254,790 5,413	977,020 4,258,902 4,070	977,020 4,265,141 2,557	977,020 4,277,583 9,031	11,752,067 48,195,887 91,640
Total Capacity Costs	4,793,023	4,803,404	4,715,820	4,710,856	4,685,653	4,979,877	5,200,748	5,198,227	5,203,640	5,239,992	5,244,718	5,263,635	60,039,594
Non-Renewable Energy Costs Short Term Economy Purchases	<u>Jan-20</u>	Feb-20	<u>Mar-20</u>	<u>Apr-20</u>	<u>May-20</u>	<u>Jun-20</u>	<u>Jul-20</u>	Aug-20	Sep-20	Oct-20	Nov-20	Dec-20	Grand Total
Blackhawk Orion Engineered Carbons Tokai Carbon CB (Sid Rich)	1,798,706 135,424 7,631	1,534,539 120,844 8,497	1,562,053 123,136 (29)	806,563 19,567 3,212	1,684,991 40,295 8,795	1,527,472 19,394 17,132	1,520,705	1,726,964 71,800 7,893	2,117,458 53,131 12,284	1,993,199 65,017 5,111	2,619,748 68,232 8,597	2,674,941 71,595 33,788	21,567,339 788,434 135,925
Long Term Purchases Lea Power Partners - LT Tolling Lea Power Partners - VO&M	2,808,737 829,716	1,480,934 544,434	1,322,672 610,735	1,631,836	4,089,598 818,013	4,008,574 816,715	4,551,181 981,944	4,628,217 991,179	4,673,405 927,763	3,550,441 895,538	3,293,571 667,985	5,590,231 767,203	41,629,397 9,628,851
Renewable Energy Costs Caprock Wind Chaves Solar Lorenzo Wind Mammoth Wind Mesalands Mesalands Palo Duro Wind Roosevelt Wind Roswell Solar San Juan Mesa Wind Spinning Spur Wind Sun Edison Solar All Texico Wind Wildorado Wind Wildorado Wind Wildorado Wind	921,524 431,786 614,284 1,387,502 1,944,340 2,136,720 428,844 1,212,108 2,461,932 174,902 1,419 1,182,309 1,182,309 2,17,580	810,531 443,956 600,101 1,369,838 1,234 2,089,545 443,153 1,201,638 2,764,203 175,319 4,072 1,926,627 1,097,042 1,097,042	1,023,476 523,663 586,456 1,502,192 2,477,049 2,246,166 524,561 1,335,378 3,342,110 201,529 6,158 2,251,187 1,141,318	870,914 699,508 622,177 1,699,992 2,42,067 2,130,156 701,196 1,155,443 3,624,717 325,359 6,251 2,246,421 1,144,747	575,258 807,473 597,174 1,344,358 5,436 2,383,685 2,094,369 808,892 1,162,790 3,519,049 3,519,04	919,456 799,155 711,507 1,926,469 2,737,302 2,516,192 783,352 1,529,158 4,258,860 333,579 2,877,43 183,743	634,357 737,527 472,175 1,079,566 1,851,644 1,497,976 723,341 817,267 2,921,163 297,559 1,676,621 1,676,769 915,518	488,892 688,904 500,528 1,156,979 2,217,165 1,670,014 673,203 918,388 3,275,792 265,263 265,263 265,263 1231) 2,179,774 960,403	635,604 620,628 394,799 1,062,685 2,103,793 1,684,387 594,219 998,598 2,897,224 242,392 (216) 1,908,552 803,951 1,00,273	840,034 591,748 632,902 1,465,774 2,095,290 585,592 1,288,951 2,904,764 2,904,764 2,904,764 2,064,731 1,778,700 53,606	956,690 488,430 652,722 1,699,563 2,497,910 1,799,367 468,280 1,408,178 1,919,662 189,084 1,219,354 45,421	774,697 441,722 641,422 1,513,941 2,016,180 2,100,910 404,469 1,289,677 2,593,501 170,165 1,776,605 84,793	9,451,433 7,274,499 7,026,247 17,208,857 11,012 27,221,995 24,041,080 7,139,102 14,317,574 36,482,977 2,965,734 26,028 24,821,506 13,321,158 1,612,760
Total Purchased Power Costs	20,120,916	18,889,998	20,951,905	20,989,242	23,768,851	27,311,399	20,825,396	22,547,065	21,831,133	22,900,355	22,342,517	24,193,130	266,671,909

Southwestern Public Service Company 2020 Purchased Power Costs (Dollars)

REVISION HISTORY

DATE OR VERSION NUMBER	AUTHOR	CHANGE DESCRIPTION	COMMENTS
9/11/2020 v0.1	SPP Staff	Initial Draft Report-Partial	Posted for stakeholder review
9/29/2020 v0.2	SPP Staff	Final Draft Report	Posted for ESWG/TWG approval
10/6/2020 v0.3	SPP Staff	Final Draft Report	Updated with stakeholder feedback and approved by ESWG/TWG
10/6/2020 v0.4	SPP Staff	Final Draft Report	Posted for MOPC
10/6/2020 v0.4	SPP Staff	Final Draft Report - Updated	Updated with stakeholder feedback given during the October 6, 2020 ESWG/TWG working group; posted for MOPC
10/13/2020 v0.4	SPP Staff	Final Draft Report	Approved by MOPC
10/15/2020 v0.5	SPP Staff	Final Draft Report – Updated	Redlined version: Updated table 6.15 to correct 40-year and net benefit calculations; tables 8.10-8.13 to correct some benefit numbers; changed NTC to NTC-C where appropriate based on MOPC participant feedback; and added footnotes to tables 8.12, 8.13, 8.16 and 8.17 to clarify state level numbers; adding "- APC benefit only" to figures 0.2 and 6.10 and table 6.15.
10/19/2020 v0.5	SPP Staff	Final Draft Report	Posted for SPP Board of Directors
10/27/2020 v1.0	SPP Staff	Final Report	Approved by SPP Board of Directors

2020 ITP Assessment

CONTENTS

Re	evisi	on Histo	ory	i
Fi	gure	S		V
Ta	bles	S		viii
Ex	cecut	tive Sun	nmary	1
1	In	troducti	on	8
	1.1	The ITP	Assessment	8
	1.2	Report	Structure	8
	1.3	Stakeho	older Collaboration	9
		1.3.1	Planning Summits	10
2	Mo	odel Dev	velopment	11
	2.1	Base Re	eliability Models	11
		2.1.1	Generation and Load	11
		2.1.2	Topology	11
		2.1.3	Short-Circuit Model	11
	2.2	Market	Economic Model	11
		2.2.1	Model Assumptions and Data	11
		2.2.2	Resource Plan	17
		2.2.3	Constraint Assessment	34
	2.3	Market	Powerflow Model	35
3	Be	enchmar	king	36
	3.1	Powerf	low Model	36
	3.2	Market	Economic Model	40
		3.2.1	Generator Operations	40
		3.2.2	System Locational Marginal Price (LMP)	44
		3.2.3	Adjusted Production Cost (APC)	45
		3.2.4	Interchange	47
4	Nε	eds Ass	essment	48
	4.1	Econon	nic Needs	48
		4.1.1	Target Area	54
		4.1.2	SPS-New Mexico Ties Interface	56
	4.2	Reliabil	ity Needs	58
		4.2.1	Base Reliability Assessment	58
		4.2.2	Market Powerflow Assessment	59
		4.2.3	Non-Converged Contingencies	61
		4.2.4	Short-Circuit Assessment	61
	4.3	Public F	Policy Needs	62
	4.4	Persiste	ent Operational Needs	63
		4.4.1	Economic Operational Needs	63
		4.4.2	Reliability Operational Needs	65
	4.5	Need O	verlap	65
	4.6	Additio	nal Assessments	66
		4.6.1	GridLiance High Plains	67
5	So	lution D	evelopment and Evaluation	
	5.1	Reliabil	ity Project Screening	68

	5.2	Econon	nic Project Screening	69
	5.3	Short-C	Circuit Project Screening	70
	5.4	Public I	Policy Project Screening	70
	5.5	Persiste	ent Operational Project Screening	70
6	Po	rtfolio l	Development	71
			o Development Process	
	6.2	Project	Selection and Grouping	71
		6.2.1	Study Estimates	
		6.2.2	Reliability Grouping	
		6.2.3	Short-Circuit Grouping	74
		6.2.4	Economic Grouping	
		6.2.5	MISO RDT Target Area	
		6.2.6	SPS-New Mexico Ties Interface	80
	6.3	Optimi	zation	81
	6.4	Portfol	o Consolidation	82
		6.4.1	Consolidation Scenario Two	83
		6.4.2	Consolidation Scenario Three	
	6.5	Final Co	onsolidated Portfolio	
	6.6	Staging		92
		6.6.1	Economic Projects	
		6.6.2	Policy Projects	
		6.6.3	Reliability Projects	
		6.6.4	Short-Circuit Projects	
7	Pr	oject Re	ecommendations	
			ity Projects	
		7.1.1	Watford 230/115 kV Transformers	
		7.1.2	Amarillo North-South 230 kV Corridor Terminal Equipment and Line Clearances	
		7.1.3	Hereford-Curry 115 kV Corridor Rebuilds	
		7.1.4	Jones-Lubbock South 230 kV Terminal Equipment	98
		7.1.5	Lubbock South-Wolfforth 230 kV Terminal Equipment and Line Clearances	99
		7.1.6	Carlisle-Murphy 115 kV Rebuild	100
		7.1.7	Eddy County-North Loving 345 kV Line	101
		7.1.8	Roswell Interchange 115/69 kV Transformer #1 Replacement	102
		7.1.9	Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV Rebuild	103
		7.1.10	South Shreveport-Wallace Lake 138 kV Rebuild	104
			Grady 138 kV Capacitor Bank	
		7.1.12	Nixa-Nixa Espy 69 kV Terminal Equipment	106
		7.1.13	Meadowlark-Tower 33 115 kV Rebuild	107
		7.1.14	Sub 3458-Sub 3456 345 kV Terminal Equipment	108
			Circleville-Goff-Kelly 115 kV Rebuild	
		7.1.16	Richmond 115 kV Substation and Richmond-Aberdeen 115 kV	110
			Bismarck 115 kV Reactors	
			Moorehead 230 kV Reactor	
	7.2	Short-C	ircuit Projects	
		7.2.1	Short-Circuit Project Portfolio	
	7.3	Econon	nic Projects	
		7.3.1	Butler-Tioga 138 kV	
		7.3.2	Anadarko-Gracemont 138 kV Rebuild as Double-Circuit	
		7.3.3	Russett-South Brown 138 kV Rebuild	116

		7.3.4	GRDA 345/161 kV Transformers	117
		7.3.5	Columbus East 230/115 kV Transformer	118
		7.3.6	Franks-South Crocker-Lebanon 161 kV	119
		7.3.7	Chisholm-Woodward/Border Tap 345 kV	120
		7.3.8	Dover Switch-Okeene and Aspen-Mooreland-Pic 138 kV	121
		7.3.9	Minco-Pleasant Valley-Draper 345 kV	122
		7.3.10	Split Rock 345/115 kV Transformers	123
		7.3.11	Oahe-Sully Buttes-Whitlock 230 kV	124
		7.3.12	Maljamar 115 kV Capacitor Bank	125
		7.3.13	Russell 115 kV Capacitor Bank	126
		7.3.14	Agate 115 kV Reactor	127
		7.3.15	Devil's Lake 115 kV Reactor	128
	7.4	Policy F	Projects	128
8	In	formatio	onal Portfolio Analysis	129
	8.1	Benefit	S	129
		8.1.1	Methodology	129
		8.1.2	APC Savings	129
		8.1.3	Reduction of Emission Rates and Values	131
		8.1.4	Savings Due to Lower Ancillary Service Needs and Production CostS	132
		8.1.5	Avoided or Delayed Reliability Projects	132
		8.1.6	Capacity Cost Savings Due to Reduced On-Peak Transmission Losses	132
		8.1.7	Assumed Benefit of Mandated Reliability Projects	
		8.1.8	Benefit from Meeting Public Policy Goals	
		8.1.9	Mitigation of Transmission Outage Costs	
		8.1.10	Increased Wheeling Through and Out Revenues	
			Marginal Energy Losses Benefit	
			Summary	
	8.2	Rate Im	pacts	143
	8.3	Sensitiv	rity Analysis	146
		8.3.1	Peak Demand Sensitivity	147
		8.3.2	Natural Gas Sensitivity	
		8.3.3	Wind Capacity Sensitivity	
		8.3.4	Solar Capacity Sensitivity	
		8.3.5	Energy Storage Sensitivity	
		8.3.6	Unit Retirements Sensitvity	
	8.4	_	Stability Assessment	
		8.4.1	Methodology	
		8.4.2	Summary	
		8.4.3	Conclusion	
	8.5	Final Re	eliability Assessment	
		8.5.1	Methodology	
		8.5.2	Summary	
		8.5.3	Conclusion	
9			mmendations	
1(U Gl	ossary		163

FIGURES

Figure 0.1: 40-Year APC Benefit and Cost Ranges	3
Figure 0.2: Portfolio Breakeven and Payback – APC benefit only	
Figure 0.3: 2020 ITP Thermal and Voltage Reliability Projects	
Figure 0.4: 2020 ITP Short Circuit Reliability Projects	
Figure 0.5: 2020 ITP Portfolio-Economic	
Figure 2.1: Coincident Peak Load	
Figure 2.2: 2020 ITP Annual Energy	
Figure 2.3: Capacity by Fuel Type (MW)	
Figure 2.4: Energy by Fuel Type (TWh)	
Figure 2.5: Conventional Generation Retirements	
Figure 2.6: ABB Fuel Annual Average Fuel Price Forecast	17
Figure 2.7: SPP Renewable Generation Assignments to meet Mandates and Goals	
Figure 2.8: SPP Nameplate Capacity Additions by Technology (GW)	20
Figure 2.9: Accredited Capacity Additions by Technology	
Figure 2.10: 2025 Future 2 Distributed Solar Siting Plan	22
Figure 2.11: 2030 Future 2 Distributed Solar Siting Plan	22
Figure 2.12: 2025 Future 1 Utility-Scale Solar Siting Plan	23
Figure 2.13: 2030 Future 1 Utility-Scale Solar Siting Plan	24
Figure 2.14: 2025 Future 2 Utility-Scale Solar Siting Plan	24
Figure 2.15: 2030 Future 2 Utility-Scale Solar Siting Plan	25
Figure 2.16: 2025 Future 1 Wind Siting Plan	26
Figure 2.17: 2030 Future 1 Wind Siting Plan	26
Figure 2.18: 2025 Future 2 Wind Siting Plan	27
Figure 2.19: 2030 Future 2 Wind Siting Plan	27
Figure 2.20: 2025 Future 1 Conventional Siting Plan	
Figure 2.21: 2030 Future 1 Conventional Siting Plan	29
Figure 2.22: 2025 Future 2 Conventional Siting Plan	29
Figure 2.23: 2030 Future 2 Conventional Siting Plan	30
Figure 2.24: 2025 Future 1 Energy Storage Siting Plan	
Figure 2.25: 2030 Future 1 Energy Storage Siting Plan	
Figure 2.26: 2025 Future 2 Energy Storage Siting Plan	
Figure 2.27: 2030 Future 2 Energy Storage Siting Plan	
Figure 2.28: Capacity Additions by Unit Type-Future 1	
Figure 2.29: Capacity Additions by Unit Type-Future 2	
Figure 2.30: Constraint Assessment Process	
Figure 3.1: Summer Peak Year-Two Load Totals Comparison	
Figure 3.2: Winter Peak Year-Two Load Totals Comparison	
Figure 3.3: Summer Peak Years two, five and 10 Generation Dispatch Comparison	
Figure 3.4: Winter Peak Years two, five and 10 Generation Dispatch Comparison	
Figure 3.5: 2020 ITP Summer and Winter Year 10 Retirement	
Figure 3.6: 2020 Summer Actual versus Planning Model Peak Load Totals	
Figure 3.7: 2020 Winter Actual versus Planning Model Peak Load Totals	
Figure 3.8: 2020 Actual versus Planning Model Generation Dispatch Comparison	
Figure 3.9: Historical Outages v. PROMOD Simulated Outages	42

2020 ITP Assessment

Figure 3.10: 2020 ITP Future 1 2022 Operating and Spinning Reserves	43
Figure 3.11: Wind Energy Output Comparison	43
Figure 3.12: Solar Energy Output Comparison	44
Figure 3.13: System LMP Comparison	44
Figure 3.14: Regional APC Comparison	46
Figure 3.15: SPP Zonal APC Comparison	46
Figure 3.16: Interchange data comparison	47
Figure 4.1: Future 1 Economic Needs	48
Figure 4.2: Future 2 Economic Needs	52
Figure 4.3: 2020 CSP Flowgates	55
Figure 4.4: 2020 SPS New Mexico Ties Flowgates	57
Figure 4.5: Unique Base Reliability Needs	58
Figure 4.6: Unique Base Reliability Voltage Needs	59
Figure 4.7: Base Reliability Needs	59
Figure 4.8: 2020 Market Powerflow Voltage Needs by Season	60
Figure 4.9: Future 1 Reliability Needs	60
Figure 4.10: Future 2 Reliability Needs	61
Figure 4.11: Short-Circuit Needs	
Figure 4.12: Base Reliability and Economic Need Overlap	66
Figure 5.1: Reliability Screening Process	
Figure 6.1: Portfolio Development Process	
Figure 6.2: Reliability Project Grouping	73
Figure 6.3: Short-Circuit Project Grouping	
Figure 6.4: Final Project Groupings-Future 1-Highest Net	
Figure 6.5: Final Groupings-Future 2-Highest Net APC	
Figure 6.6: Final Groupings-Benefits and Costs Comparison	
Figure 6.7: Potential SPP-MISO CSP Solutions	
Figure 6.8: Economic Portfolio APC Benefits and Costs	
Figure 6.9: Final Consolidated Portfolio APC Benefits and Costs	
Figure 6.10: Portfolio Breakeven and Payback – APC benefit only	
Figure 7.1: Watford 230/115 kV Transformers	
Figure 7.2: Amarillo North-South 230 kV Corridor Terminal Equipment	
Figure 7.3: Hereford-Curry 115 kV Corridor Rebuild	97
Figure 7.4: Jones-Lubbock South 230 kV Terminal Equipment	
Figure 7.5: Lubbock South-Wolfforth 230 kV Terminal Equipment and Line Clearances	
Figure 7.6: Carlisle-Murphy 115 kV	
Figure 7.7: Eddy County-North Loving 345 kV	
Figure 7.8: Roswell Interchange 115/69 kV Transformer #1	
Figure 7.9: Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV	
Figure 7.10: South Shreveport-Wallace Lake 138 kV	
Figure 7.11: Grady 138 kV Capacitor Bank	
Figure 7.12: Nixa-Nixa Espy 69 kV Terminal Equipment	
Figure 7.13: Meadowlark-Tower 33 115 kV	
Figure 7.14: S3458-S3456 Terminal Equipment	
Figure 7.15: Circleville-Goff-Kelly 115 kV	
Figure 7.16: Richmond 115 kV Substation and Richmond-Aberdeen 115 kV	
Figure 7.17: Bismarck 115 kV Reactors	
Figure 7.18: Moorehead 230 kV Reactor	112

Figure 7.19: Short-Circuit Project portfolio	113
Figure 7.20: Butler-Tioga 138 kV	114
Figure 7.21: Anadarko-Gracemont 138 kV Rebuild as Double-Circuit	115
Figure 7.22: Russett-South Brown 138 kV Rebuild	116
Figure 7.23: GRDA 345/161 kV Transformers	117
Figure 7.24: Columbus East 230/115 kV Transformer	118
Figure 7.25: Franks-South Crocker-Lebanon 161 kV	
Figure 7.26: Chisholm-Woodward/Border Tap 345 kV	
Figure 7.27: Dover Switch-Okeene and Aspen-Mooreland-Pic 138 kV	121
Figure 7.28: Minco-Pleasant Valley-Draper 345 kV	122
Figure 7.29: Split Rock 345/115 kV Transformers	123
Figure 7.30: Oahe-Sully Buttes-Whitlock 230 kV	124
Figure 7.31: Maljamar 115 kV Capacitor Bank	
Figure 7.32: Russell 115 kV Capacitor Bank	
Figure 7.33: Agate 138 kV Reactor	127
Figure 7.34: Devil's Lake 115 kV Reactor	
Figure 8.1: Regional APC Savings for the 40-Year Study Period	
Figure 8.2: Increased Wheeling Revenue Benefits by Zone (40-year NPV)	137
Figure 8.3: 40-Year APC Benefit and Cost Ranges	
Figure 8.4: 40-Year Benefit Comparison (Peak Demand Sensitivity)	148
Figure 8.5: 40-Year Benefit Comparison (Natural Gas Sensitivity)	
Figure 8.6: 40-Year Benefit Comparison (Wind Capacity Sensitivity)	151
Figure 8.7: 40-Year Benefit Comparison (Solar Capacity Sensitivity)	
Figure 8.8: 40-Year Benefit Comparison (Energy Storage Sensitivity)	153
Figure 8.9: 40-Year Benefit Comparison (Unit Retirements Sensitivity)	154

2020 ITP Assessment vii

TABLES

Table 0.1: 2020 ITP Consolidated Portfolio	5
Table 2.1 Future Drivers	
Table 2.2: Total Nameplate Generation Additions by Future and Study Year	
Table 2.3: Total Accredited Generation Additions by Future and Study Year	
Table 2.4: Generator Outlet Facilities *Sited amount for all futures/years unless otherwise noted	
Table 2.5: Reliability Hour Details	
Table 3.1: Generation Capacity Factor Comparison	
Table 3.2: Average Energy Cost Comparison	
Table 4.1: Future 1 Economic Needs	
Table 4.2: Future 2 Economic Needs	
Table 4.3: MISO North CSP Interface Target Area Flowgates	
Table 4.4: SPSNMTIES Interface Area Flowgates	57
Table 4.5: Reliability Needs Resulting from Non-Converged Contingencies	
Table 4.6: Economic Operational Needs	
Table 4.7: Economic Operational Needs	
Table 4.8: Economic Operational Needs	
Table 4.9: Overlapping Reliability and Economic Needs	
Table 4.10: Overlapping Informational Operational and Economic Needs	
Table 4.11: Upgrades identified in GridLiance local planning assessment in 2019	67
Table 6.1: Reliability Project Grouping	
Table 6.2: Short-Circuit Project Grouping	
Table 6.3: Economic Project Grouping	76
Table 6.4: Final Economic Project Grouping	77
Table 6.5: Final Groupings-Benefit Cost, Net Benefits, and B/C Ratios	79
Table 6.6: Potential APC Savings Benefit and Project Cost (\$2025 Dollars)	81
Table 6.7: Consolidated Portfolio Scoring Consolidation Scenario One	82
Table 6.8: Consolidation Scenario Two Scoring	83
Table 6.9: Consolidation Scenario Two Scoring	83
Table 6.10: GRDA 345/161 kV transformer Consolidation Scoring	
Table 6.11: Columbus East 230/115 kV transformer Consolidation Scoring	85
Table 6.12: Lebanon-Franks-Crocker 161 kV terminal equipment Consolidation Scoring	85
Table 6.13: Lebanon-Franks-Crocker 161 kV terminal equipment Consolidation Scoring	86
Table 6.14: Final Consolidated Portfolio	
Table 6.15: Consolidated Portfolio – APC benefit only	89
Table 6.16: Change in flowgate congestion scores	
Table 6.17: Project Staging Results-Economic	
Table 6.18: Project Staging Results-Reliability	
Table 7.1: Short-Circuit Projects	
Table 8.1: Benefit Metrics	
Table 8.2: APC Savings by Zone	
Table 8.3: Other SPP APC Benefit	
Table 8.4: On-Peak Loss Reduction and Associated Capacity Cost Savings	
Table 8.5: Mandated Reliability Benefits	
Table 8.6: Transmission Outage Cost Mitigation Benefits by Zone	136

Table 8.7: Estimated Wheeling Revenues from Incremental Long-Term TSRs Sold (2010-2014)	136
Table 8.8: Historical Ratio of TSRs Sold against Increase in Export ATCATC	137
Table 8.9: Energy Losses Benefit by Zone	138
Table 8.10: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal	139
Table 8.11: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal	140
Table 8.12: Estimated 40-year NPV of Benefit Metrics and Costs-State	
Table 8.13: Estimated 40-year NPV of Benefit Metrics and Costs-State	142
Table 8.14: Future 1 2030 Retail Residential Rate Impacts by Zone (2020\$)	143
Table 8.15: Future 2 2030 Retail Residential Rate Impacts by Zone (2020\$)	144
Table 8.16: Future 1 2030 Retail Residential Rate Impacts by State (2020\$)	145
Table 8.17: Future 2 2030 Retail Residential Rate Impacts by State (2020\$)	146
Table 8.18: Peak Demand Sensitivity	148
Table 8.19: Natural Gas Sensitivity	
Table 8.20: Wind Capacity Sensitivity	
Table 8.21: Solar Capacity Sensitivity	
Table 8.22: Energy Storage Sensitivity	152
Table 8.23: Unit Retirements Sensitivity	154
Table 8.24: Generation Zones	
Table 8.25: Transfers by Model	
Table 8.26: Post-Contingency Voltage Stability Transfer Limit Summary	157
Table 8.27: Voltage Stability Results Summary	158
Table 8.28: Additional Identified Reliability Rebuilds	
Table 9.1: NTC Recommendations	
Table 10.1: Glossary	165

2020 ITP Assessment ix

EXECUTIVE SUMMARY

2020 SPP Integrated Transmission Plan

COLLABORATION 55

8 groups; 100+ meetings

27-month schedule

2,200+ solutions reviewed

560+ inquiries processed

16¢ - 30¢ Residential bill savings

4.0 - 5.2 to 1 Benefit-to-cost ratio

PROJECTS A

BENEFITS 🗸

54 projects

92 miles 345 kV

141 miles transmission rebuild

\$532 million E&C costs

Solve 163 system needs Help levelize market prices Improve congestion hedging Access to low-cost energy

The 2020 Integrated Transmission Plan (ITP) looks ahead 10 years to ensure the SPP region can deliver energy reliably and economically, facilitate public policy objectives, seek solutions with neighboring regions and maximize benefits to end-use customers. Over 27 months, SPP and its member organizations worked together to forecast and analyze the regional transmission system's economic, reliability, operational and public policy needs.

SPP evaluated more than 2,200 solutions. The analysis resulted in the recommendation to approve 54 transmission projects, including 91.8 miles of new extra-high-voltage (EHV) transmission and 140.91 miles of rebuilt high-voltage infrastructure.

¹ This mileage number assumes the partial rebuild and new mileage of the Butler-Tioga 138 kV new line. This line is expected to follow the existing Butler-Altoona 138 kV right-of-way and break away towards Tioga at a point that that would minimize transmission costs for the project.

This portfolio contains reliability and economic projects that will mitigate 163 system issues. Reliability projects allow the region to meet compliance requirements and keep the lights on through loading relief, voltage support and system protection.

There are several primary drivers of the economic projects. Many of the projects enable delivery of low-cost renewable resources and reduce price separation in the SPP marketplace caused by congestion. Continued rapid renewable expansion has caused increasing pricing disparity between the western and eastern portions of the SPP system. These disparities have created higher average costs for eastern load centers because of congestion and lack of access to less expensive generation. Price differences have only been marginally delayed by new interconnections seeking opportunity in the east. The recommended economic projects will reduce separation between generator and load locational marginal prices across the region and create reliable transfer capability that will allow the system to realize benefits from low-cost generation.

Previous ITP assessments have been conservative in forecasting the amount of renewable generation expected to interconnect to the grid. When the studies were completed, installed amounts had nearly surpassed 10-year forecasts. Overly conservative forecasts can lead to delayed transmission investment, contributing to persistent congestion. For example, the 2020 consolidated portfolio is expected to address eight congested flowgates identified over the last four quarterly SPP corporate metric updates. For the 2020 ITP assessment, SPP expanded on the 2019 assessment's analysis to better forecast renewables development, which will allow the region to proactively build the infrastructure needed to alleviate congestion and provide access to less expensive energy.

The SPP region has areas of increased load growth due to oil and gas exploration in North Dakota and New Mexico. Some of these areas could experience voltage collapse. Additional transmission capacity is needed to serve this new load. SPP developed projects to address this load growth; some are recommended for construction while others need continued analysis.

Three distinct scenarios were considered to account for variations in system conditions over 10 years. These scenarios consider requirements to support firm deliverability of capacity for reliability (base reliability) while exploring rapidly evolving technology that may influence the transmission system and energy industry (Future 1/Future 2). The scenarios included varied wind projections, utility-scale and distributed solar, energy storage resources, generation retirements and electric vehicles.

The final project portfolio was tested against a wide range of sensitivities, including natural gas prices, generator retirements, renewables development, battery storage and demand. The analysis determined that adjusted production cost savings across all sensitivities had a benefit-to-cost ratio greater than 1.0. When considering all eight benefit metrics, including adjusted production cost savings, the consolidated portfolio is expected to provide a 40-year benefit-to-cost ratio ranging from 4.0 for Future 1 to 5.2 for Future 2. The net impact to ratepayers is a savings of \$0.16 to \$0.30 on the average retail residential monthly bill. See Section 8.3 Sensitivity Analysis for more information.

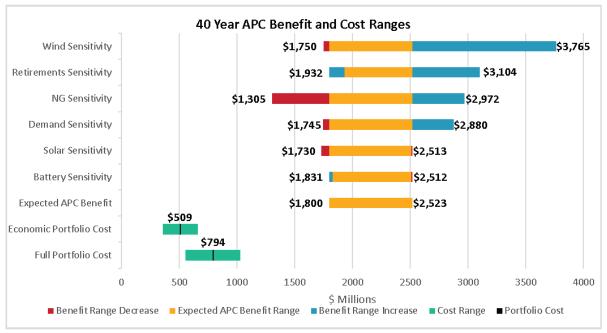


Figure 0.1: 40-Year APC Benefit and Cost Ranges

SPP assumes a 40-year lifespan for new transmission investments. Within 20 years, the SPP region is expected to receive more benefits from the projects than their total investment costs. The projects will begin providing net savings to ratepayers within the first year of being in-service.

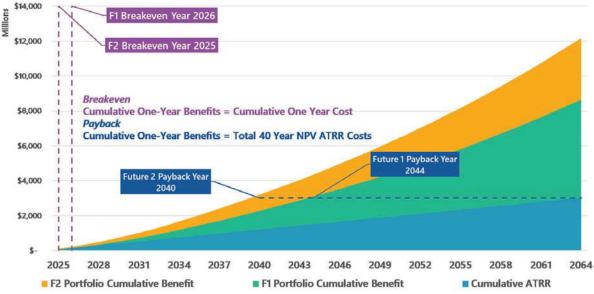


Figure 0.2: Portfolio Breakeven and Payback – APC benefit only

The 2020 ITP Assessment includes the following projects:

Project	Area	Туре	Project Cost (2020\$)	Miles	NTC/ NTC-C
Watford 230/115 kV transformer circuit 1 terminal	BEPC	R	\$3,562,780	-	NTC
equipment, circuit 2 replacement					
Anadarko-Gracemont 138 kV rebuild as double- circuit	WFEC/ OKGE	E	\$8,297,502	14.4	NTC Modification
Russett-South Brown 138 kV rebuild	WFEC/ SWPA	E	\$10,067,432	18.62	NTC
Butler-Tioga 138 kV new line; wreck-out Butler- Altoona 138 kV	WERE	E	\$135,720,424	91.2	NTC-C
GRDA 1 345/161 kV circuit 1 and circuit 2 terminal equipment	GRDA	Е	\$1,410,000	-	NTC
Columbus East 230/115 kV transformer replacement	NPPD	Е	\$4,600,000	-	No
Franks-South Crocker-Lebanon 161 kV terminal equipment	AECI	Е	\$5,721,430	-	No
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	AEPW/ OKGE	Е	\$31,686,685	0.84	NTC-C
Dover Switch-Okeene 138 kV and Aspen-Mooreland- Pic 138 kV terminal equipment	WFEC	Е	\$1,617,500	-	NTC
Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in	OKGE/ WFEC	Е	\$113,620,907	48	NTC-C
Split Rock 345/115 kV Circuit 10 and 11 terminal equipment	NSPP	Е	\$4,577,336	-	No
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment	EREC/ WAPA /BEPC	E	\$1,528,7222	-	No
Circleville-Goff 115 kV circuit 1 rebuild	WERE	R	\$12,114,772	14.56	NTC
Goff-Kelly 115 kV rebuild	WERE	R	\$7,108,395	10.11	NTC
South Shreveport-Wallace Lake 138 kV rebuild	AEPW	R	\$23,622,577	11.18	NTC-C
Grady 138 kV capacitor bank	AEPW	R	\$688,781	-	NTC
Richmond 115 kV substation, Richmond 115/69 kV transformer, Richmond-Aberdeen 115 kV line	EREC/ NWE	R	\$11,394,000	14.4	NTC
Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV rebuild	OKGE	R	\$5,362,799	5.9	NTC
Bushland-Deaf Smith 230 kV terminal equipment	SPS	R	\$923,938	-	NTC
Newhart-Potter County 230 kV terminal equipment	SPS	R	\$731,282	-	NTC
Carlisle-Murphy 115 kV rebuild	SPS	R	\$4,746,175	4.0	NTC

² The cost estimate was adjusted late in the study process to be \$3,748,722 due to a gap in the Study Estimate requests sent to stakeholders. This updated cost estimate is only considered in Table 9.1 and the NTC recommendations of this executive summary. See additional information in section 7.3.11.

Project	Area	Туре	Project Cost (2020\$)	Miles	NTC/ NTC-C
Roswell 115/69 kV replace transformer #1	SPS	R	\$2,777,743	-	NTC
S3456-S3458 345 kV terminal equipment	OPPD	R	\$678,865	-	No
Meadowlark-Tower 33 115 kV rebuild	WERE	R	\$1,342,588	0.93	NTC
Jones-Lubbock South 230 kV terminal equipment circuit 1	SPS	R	\$666,728	-	No
Jones-Lubbock South 230 kV terminal equipment circuit 2	SPS	R	\$397,668	-	No
Deaf Smith-Plant X 230 kV terminal equipment	SPS	R	\$2,100,196	-	NTC
Newhart-Plant X 230 kV terminal equipment	SPS	R	\$2,024,293	-	NTC
Lubbock South-Wolfforth 230 kV terminal equipment and clearance increase	SPS	R	\$872,391	-	NTC
Allen-Lubbock South 115 kV rebuild	SPS	R	\$6,817,226	6.0	NTC
Allen-Quaker 115 kV rebuild	SPS	R	\$4,732,267	3.6	NTC
Russell 115 kV capacitor bank	SEPC	R	\$2,841,951	-	NTC
Eddy County-North Loving 345 kV new line	SPS	R	\$64,422,600	42.96	No
Maljamar 115 kV capacitor bank	SPS	R	\$685,440	-	No
Devil's Lake 115 kV reactor	WAPA	R	\$1,190,000	-	NTC
Bismarck 115 kV reactors	WAPA	R	\$2,380,700	-	NTC
Moorehead 230 kV reactor	MRES	R	\$1,515,440	-	NTC
Agate 115 kV reactor	WAPA	R	\$571,200	-	NTC
Replace four breakers at Anadarko 138 kV	WFEC	R	\$850,000	-	NTC
Replace three breakers at Northeast 161 kV	KCPL	R	\$887,479	-	NTC
Replace one breaker at Stilwell 161 kV	KCPL	R	\$566,485	-	NTC
Replace one breaker at Leeds 161 kV	KCPL	R	\$566,485	-	NTC
Replace one breaker at Shawnee Mission 161 kV	KCPL	R	\$566,485	-	NTC
Replace one breaker at Southtown 161 kV	KCPL	R	\$566,485	-	NTC
Replace two breakers at Lake Road 161 kV	KCPL	R	\$1,132,970	-	NTC
Replace two breakers at Craig 161 kV	KCPL	R	\$1,132,970	-	NTC
Nixa-Nixa Espy 69 kV terminal equipment	GLHP	R	\$91,147	-	No
Deaf Smith #6-Hereford 115 kV rebuild	SPS	R	\$6,660,556	2.33	NTC
Deaf Smith #6-Friona 115 kV rebuild	SPS	R	\$12,626,190	18.9	NTC
Cargill-Friona 115 kV rebuild	SPS	R	\$817,466	1.15	NTC
Cargill-Deaf Smith #24 115 kV rebuild	SPS	R	\$5,501,901	7.74	NTC
Deaf Smith #24-Parmer 115 kV rebuild	SPS	R	\$824,574	1.16	NTC
Deaf Smith #20-Parmer 115 kV rebuild	SPS	R	\$5,402,384	7.6	NTC
Curry-Deaf Smith #20 115 kV rebuild	SPS	R	\$9,048,993	12.73	No
		Total	\$532,363,304 ³		

Table 0.1: 2020 ITP Consolidated Portfolio

³ These costs represent engineering and construction cost provided during the study by SPP stakeholders or its third-party cost estimator.

This map depicts the 2020 ITP Assessment thermal/voltage reliability projects:

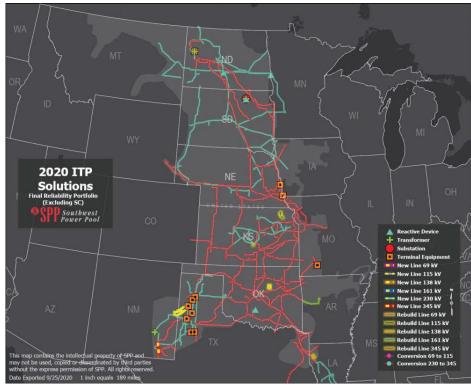


Figure 0.3: 2020 ITP Thermal and Voltage Reliability Projects

This map depicts the 2020 ITP Assessment short circuit reliability projects:

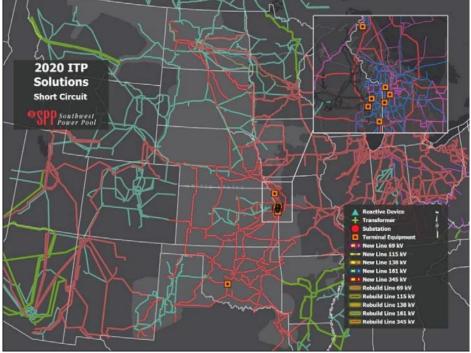


Figure 0.4: 2020 ITP Short Circuit Reliability Projects

This map depicts the 2020 ITP Assessment economic projects:

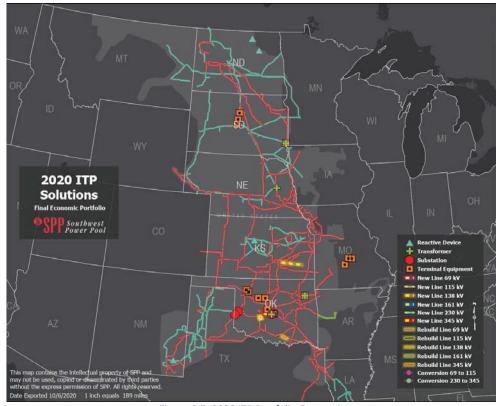


Figure 0.5: 2020 ITP Portfolio-Economic

SPP staff makes Notification to Construct (NTC) recommendations for projects included in the consolidated portfolio based on results from the staging process and SPP Business Practice 7060. If financial expenditure is required within four years from board approval, the project is recommended for an NTC or NTC-C (Notification to Construct with Conditions).

1 INTRODUCTION

1.1 THE ITP ASSESSMENT

The SPP Integrated Transmission Planning (ITP) process promotes transmission investment to meet nearand long-term reliability, economic, public policy and operational transmission needs. The ITP process

coordinates solutions with ongoing compliance, local planning, interregional planning and tariff service processes. The goal is to develop a 10-year regional transmission plan that provides reliable and economic energy delivery and achieves public policy objectives, while maximizing benefits to the end-use customers.

The 2020 ITP assessment is guided by requirements defined in Attachment 0 to the SPP Open Access Transmission Tariff (Tariff), the ITP Manual, and the 2020 ITP Scope. Previous improvements to the ITP process were designed by the Transmission Planning Improvement Task Force and implemented beginning in the 2019 ITP.

The ITP process is open and transparent, allowing for stakeholder input throughout the assessment. Study results are coordinated with other entities, including those embedded within the SPP footprint and neighboring first-tier entities.

The objectives of the ITP are to:

- Resolve reliability criteria violations.
- Improve access to markets.
- Improve interconnections with SPP neighbors.
- Meet expected load-growth demands.
- Facilitate or respond to expected facility retirements.
- Synergize with the Generator Interconnection (GI), Aggregate Transmission Service Studies (ATSS), and Attachment AQ processes.
- Address persistent operational issues as defined in the scope.
- Facilitate continuity in the overall transmission expansion plan.
- Facilitate a cost-effective, responsive, and flexible transmission network.

1.2 REPORT STRUCTURE

This report describes the ITP assessment of the SPP transmission system for a 10-year horizon, focusing on years 2022, 2025 and 2030. These years were evaluated with a baseline reliability scenario and two future market scenarios (futures). The Model Development and Benchmarking sections summarize modeling inputs and address the concepts behind this study's approach, key procedural steps in analysis development, and overarching study assumptions. The Needs Assessment through Project

Recommendations sections address specific results, describe projects that merit consideration, and contain portfolio recommendations, benefits and costs.

Within this study, any reference to the SPP footprint refers to the Balancing Authority Area, as defined in the Tariff, whose transmission facilities are under the functional control of the SPP regional transmission organization (RTO), unless otherwise noted.

The study was guided by the <u>2020 ITP Scope</u> and SPP ITP Manual.⁴ All reports and documents referenced in this report are available on the SPP website.⁵

SPP staff and its stakeholders frequently exchange proprietary information in the course of any study, and such information is used extensively for ITP assessments. This report does not contain confidential marketing data, pricing information, marketing strategies, or other data considered not acceptable for release into the public domain. This report does disclose planning and operational matters, including the outcome of certain contingencies, operating transfer capabilities, and plans for new facilities that are considered non-sensitive data.

1.3 STAKEHOLDER COLLABORATION

Stakeholders developed the 2020 ITP assessment assumptions and procedures in meetings throughout 2018, 2019, and 2020. Members, liaison members, industry specialists and consultants discussed the assumptions and facilitated a thorough evaluation.

The following SPP organizational groups were involved:

- Transmission Working Group (TWG)
- Economic Studies Working Group (ESWG)
- Model Development Working Group (MDWG)
- Cost Allocation Working Group (CAWG)
- Project Cost Working Group (PCWG)
- Markets and Operations Policy Committee (MOPC)
- Strategic Planning Committee (SPC)
- Regional State Committee (RSC)
- Board of Directors (Board)

SPP staff served as facilitators for these groups and worked closely with each working group's chairperson to ensure all views were heard and considered consistent with the SPP value proposition.

These working groups tendered policy-level considerations to the appropriate organizational groups, including the MOPC and SPC. Stakeholder feedback was instrumental in the refinement of the 2020 ITP.

⁴ https://www.spp.org/Documents/60911/itp%20manual%20version%202.7.docx; the ITP assessment follows the current ITP Manual and versions may differ throughout the study process. The version that was current at the time of the study was used.

⁵ https://spp.org/

1.3.1 PLANNING SUMMITS

In addition to the standard working group meetings and in accordance with Attachment O of the Tariff, SPP held multiple transmission planning summits to elicit further input and provide stakeholders with additional opportunities to participate in the process of discussing and addressing planning topics.⁶

⁶ 2020 Engineering Planning Summit was held on Wednesday, July 8, 2020 (https://www.spp.org/Documents/62539/Engineering%20Planning%20Summit%20Agenda%20&%20Background%20Materials%2020200708.zip)

2 MODEL DEVELOPMENT

2.1 BASE RELIABILITY MODELS

2.1.1 GENERATION AND LOAD

Generation and load data in the 2020 ITP base reliability models was incorporated based on specifications documented in the ITP Manual. For items not specified in the ITP Manual, SPP followed the SPP Model Development Working Group (MDWG) Procedure Manual. Renewable dispatch amounts are based on historical averages for resources with long-term firm transmission service for the summer and winter seasons. For the light load models, all wind resources with long-term firm transmission service were dispatched to the lesser of the full long-term firm transmission service amount or nameplate amount, with remaining generation coming from conventional resources. In these base reliability models, all entities are required to meet their non-coincident peak demand with firm resources.

The Powerflow Model benchmarking section details the generation dispatch and load in the base reliability models.

2.1.2 TOPOLOGY

Topology data in the 2020 ITP base reliability models was incorporated in accordance with the ITP Manual. For items not specified in the ITP Manual, SPP followed the MDWG Model Development Procedure Manual. The topology for areas external to SPP was consistent with the 2018 Eastern Interconnection Reliability Assessment Group Multi-regional Modeling Working Group (MMWG) model series.

2.1.3 SHORT-CIRCUIT MODEL

A short-circuit model representative of the year-two, summer peak, was developed for short-circuit analysis. This short-circuit model has all modeled generation and transmission equipment in service to simulate the maximum available fault current, excluding exceptions such as normally open lines or retired generation. This model was analyzed in consideration of the North American Electric Reliability Corporation (NERC) TPL-001 standard.

2.2 MARKET ECONOMIC MODEL

2.2.1 MODEL ASSUMPTIONS AND DATA

2.2.1.1 Futures Development

Stakeholders determined that the best option was to carry forward the 2019 ITP reference case and emerging technologies framework, while allowing adjustments to specific drivers. SPP staff provided stakeholders with a survey to identify the policy drivers which required adjustments for the 2020 ITP. The drivers considered for adjustment were:

⁷ Model Development Working Group (MDWG) Procedure Manual; the MDWG Procedure Manual may differ throughout the study process. The version that was current at the time of the study was used.

- Wind and solar capacity additions
- Energy growth rates
- Natural gas prices
- Age-based retirement assumptions
- Energy storage⁸
- Carbon adder

2.2.1.1.1 Future 1: Reference Case

The reference case future will reflect the continuation of current industry trends and environmental regulations. For years five and 10, coal generators over the age of 56 will be retired, while gas fired and oil generators over the age of 50 years will be retired subject to review from generator owners. Exceptions will be allowed based on stakeholder review. Long-term industry forecasts will be used for natural gas and coal prices. Solar and wind additions will exceed current renewable portfolio standards due to economics, public appeal, and the anticipation of potential policy changes, as reflected in historical renewable installations. Battery energy storage resources will also be included relative to the approved solar amounts.

2.2.1.1.2 Future 2: Emerging Technologies

The emerging technologies future will be driven primarily by the assumption that electrical vehicles, distributed generation, demand response, and energy efficiency will impact energy growth rates. Coal generators over the age of 56 will be retired, while gas-fired and oil generators over the age of 50 will be retired. Exceptions will be allowed for repowering (life extension) or emissions upgrades if approved by the ESWG. As in the reference case future, current environmental regulations will be assumed and natural gas and coal prices will use long-term industry forecasts. This future assumes higher solar, wind, and energy storage resource additions than the reference case due to advances in technology that decrease capital costs and increase energy conversion efficiency.

Table 2.1 summarizes the drivers and how they were considered in each future.

		Drivers		
Key Assumptions	Year 2	Reference Case Year 5 Year 10	Emerging Technologies Year 5 Year 10	
Peak Demand Growth Rates	As submitted in load forecast	As submitted in load forecast	As submitted in load forecast	
Energy Demand Growth Rates	As submitted in load forecast	As submitted in load forecast	Increase due to electric vehicle growth	
Natural Gas Prices	Current industry forecast	Current industry forecast	Current industry forecast	
Coal Prices	Current industry forecast	Current industry forecast	Current industry forecast	

⁸ Energy storage is specific to batteries.

Key Assumptions	Year 2		Reference Case Emerging Technol Year 5 Year 10 Year 5 Year		echnologies Year 10								
Emissions Prices	Current industry forecast	Current industry forecast		Current industry forecast									
Fossil Fuel Retirements	Current forecast	Coal age-base Gas/Oil age-ba subject to genera review	ased 50+, ator owner	Coal age-based 56+, Gas/Oil age-based 50+, subject to repowering or emissions upgrades									
Environmental Regulations	Current regulations	Current regulations		Current regulations									
Demand Response ⁹	As submitted in load forecast	As submitted in load forecast		As submitt fore									
Distributed Generation (Solar)	As submitted in load forecast	As submitted in load forecast		+300MW	+500MW								
Energy Efficiency	As submitted in load forecast	As submitted in load forecast										As submitted in load forecast	
Storage	Storage None 20% of projected solar		35% of projected solar										
	Total Ren	ewable Capacity											
Solar (GW)	Existing + RARs	4 7		5	9								
Wind (GW)	Existing + RARs	26	26 28		33								

Table 2.1 Future Drivers

2.2.1.2 Load and Energy Forecasts

The 2020 ITP load review focused on load data through 2030. The load data was derived from the base reliability model set, and stakeholders were asked to identify/update the following parameters:

- Assignment of loads to companies
- Forecasted system peak load (MW)
- Loss factors
- Load factors
- Load demand group assignments
- Monthly peak and energy allocations
- Station service loads
- Resource planning peak loads and load factors

The ESWG- and TWG-approved load review was used to update the load information in the market economic models. Figure 2.1 shows the total coincident peak load for all study years. Figure 2.2 shows the monthly energy per future for all study years (2022, 2025, and 2030).

⁹ As defined in the MDWG Model Development Procedure Manual: <u>Model Development Working Group (MDWG)</u>
<u>Procedure Manual</u>

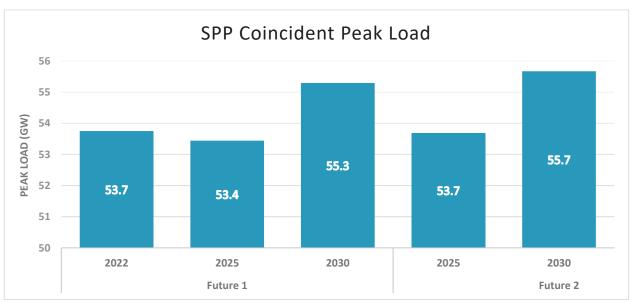


Figure 2.1: Coincident Peak Load

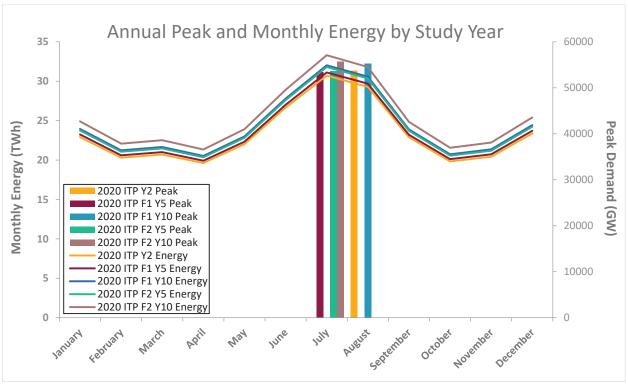


Figure 2.2: 2020 ITP Annual Energy

2.2.1.3 Renewable Policy Review

Renewable policy requirements enacted by state laws, public power initiatives and courts are the only public policy initiatives considered in this ITP via the renewable policy review. These requirements are defined as percentages and outlined in the ITP manual. The 2020 ITP renewable policy review focused on renewable requirements through 2030.

2.2.1.4 Generation Resources

Existing generation data originated from the ABB Simulation Ready Data Fall 2017 Reference Case and was supplemented with SPP stakeholder information provided through the SPP Model on Demand tool and the generation review.

Figure 2.3 and Figure 2.4 detail the annual nameplate capacity and energy by unit/fuel type, respectively for 2022, 2025 and 2030 for Future 1, and 2025 and 2030 for Future 2.

In addition to resources accepted in the base reliability models, stakeholders were given the chance to request additional generation resources in the ITP models through the Resource Addition Request (RAR) process. As a result of the RAR process, 1.5 GW of wind generation was added to the market economic models, all of which was included in the year-two model.

Generator operating characteristics, such as operating and maintenance (0&M) costs, heat rates, and energy limits were also provided for stakeholders to review.

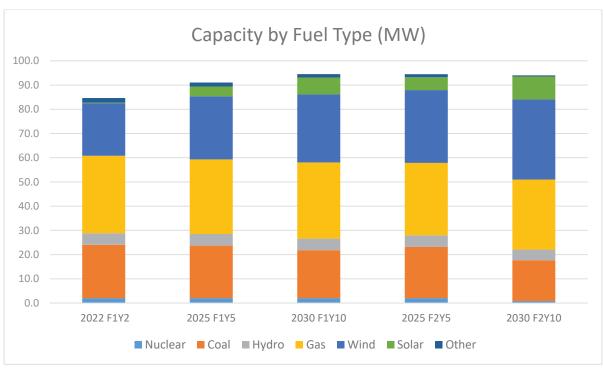


Figure 2.3: Capacity by Fuel Type (MW)

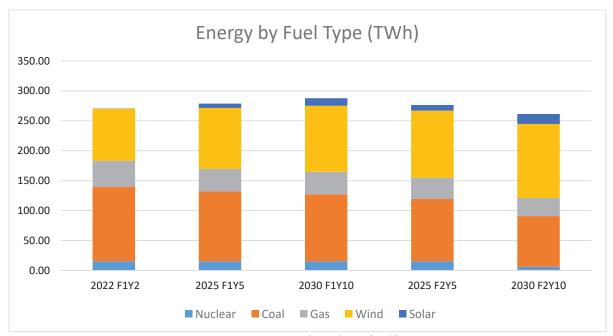


Figure 2.4: Energy by Fuel Type (TWh)

Figure 2.5 identifies the amount of retired conventional generation compared to retirements identified in the base reliability models. The figure reflects the final set of retirements based on the approved futures assumptions.

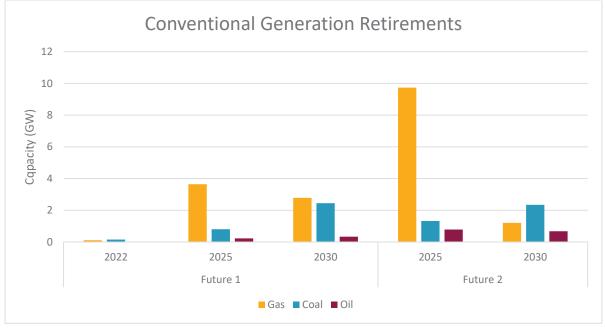


Figure 2.5: Conventional Generation Retirements

2.2.1.5 Fuel Prices

The ABB Simulation Ready Data Fall 2017 Reference Case and ABB fundamental forecast (for long-term natural gas price projections) were utilized for the fuel price forecasts. Figure 2.6 shows the annual average

natural gas and coal prices for the study horizon. Between 2021 and 2030, these prices increase from \$3.17 to \$5.21 (~5.1 percent compound average escalation) and \$2.30 to \$2.87 (~2.5 compound average escalation) for natural gas and coal, respectively.

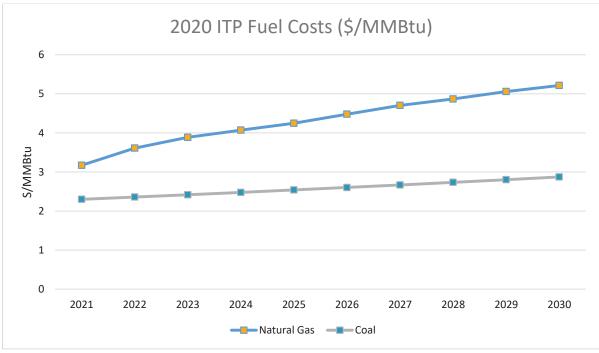


Figure 2.6: ABB Fuel Annual Average Fuel Price Forecast

2.2.2 RESOURCE PLAN

In order to evaluate transmission for a 10-year horizon, a key component begins with identifying the resource outlook for each future. The SPP generation portfolio will not be the same in 10 years, due to the changing load forecasts, resource retirements and fast-changing mix of resource additions. SPP staff developed resource expansion plans to meet renewable portfolio standards, resource reserve margin requirements, and future specific renewable and emerging technology projections.

2.2.2.1 Renewable Resource Expansion Plan

Each utility was analyzed to determine if the assumed renewable mandates and goals identified by the renewable policy review could be met with existing generation and initial resource projections for 2025 and 2030. If a utility was projected to be unable to meet requirements, additional resources were assigned to the utilities from the total projected renewable amounts to meet renewable portfolio standards. For states with a standard that could be met by either wind or solar generation, a ratio of 80 percent wind additions to 20 percent solar additions was utilized. This split was representative of the active GI queue requests for wind and solar resources.

The incremental renewables assigned to meet renewable mandates and goals in the SPP footprint by 2030 were 289.4 MW in Future 1 and 289.9 MW in Future 2.

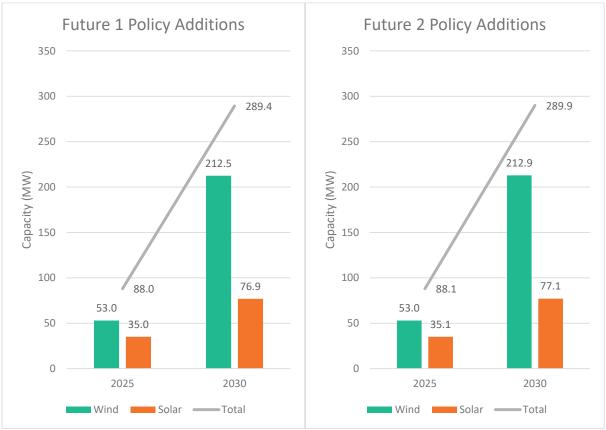


Figure 2.7: SPP Renewable Generation Assignments to meet Mandates and Goals

After ensuring renewable portfolio standards were met by assigning renewables, SPP staff accredited the remaining projected renewable capacity to each pricing zone.

Projected solar additions were assigned based on the load-ratio share for each pricing zone. Projected wind additions were accredited to deficient zones to maximize the available accreditation of renewables for each zone, up to the 12 percent zonal renewable cap defined in the study scope. Resources were accredited in the following order:

- Existing generation
- Policy wind and solar additions
- Projected solar additions
- Projected storage additions
- Projected wind additions
- Conventional additions

2.2.2.2 Conventional Resource Expansion Plan

The renewable resource expansion plan for each future was utilized as an input to the corresponding conventional resource expansion plan to ensure appropriate resource adequacy within the SPP footprint. ABB Strategist® software was used to develop the conventional resource expansion plan for each future, assessing a 20-year horizon.

Utilities that did not meet the 12 percent planning reserve margin requirement set by SPP Planning Criteria¹⁰ also received capacity from the conventional resource plan. Projected reserve margins were calculated for each pricing zone using existing generation, projected renewable generation, fleet power purchase agreements, and load projections through 2040. Each zone that was not yet meeting its minimum reserve requirement was assigned conventional resources in 2025 and 2030 of both futures.

Nameplate conventional generation capacity assigned to pricing zones were counted toward each zone's capacity margin requirement. Existing wind and solar capacity, being intermittent resources, were included at a percentage of nameplate capacity, in accordance with the calculations in SPP Planning Criteria 7.1.5.3. SPP stakeholders were surveyed for feedback on accreditation percentages for existing renewable capacity.

In the analysis of future conventional capacity needs, available resource options were combined cycle (CC) units, fast-start combustion turbine (CT) units, and reciprocating engines. Generic resource prototypes from the U.S. Energy Information Administration's (EIA) Annual Energy Outlook 2018¹¹ were utilized. These resource prototypes define operating parameters of specific generation technologies to determine the optimal generation mix to add to the region.

CTs were the only technology selected in Futures 1 and 2 to meet capacity requirements. ESWG approved replacing three CTs with one CC located in the Southwestern Public Service Company (SPS) area for each future.

While both futures represent normal load growth, more resource additions are needed in Future 2 due primarily to the additional unit retirements.

Table 2.2 shows the total nameplate generation additions by future and study year to meet futures definitions and resource adequacy requirements. Figure 2.8 shows the nameplate generation additions by future, study year, and capacity type for the SPP region.

	Future 1	Future 2
2025	10.5 GW	23.0 GW
2030	11.6 GW	33.1 GW

Table 2.2: Total Nameplate Generation Additions by Future and Study Year

¹⁰ SPP Planning Criteria

¹¹ EIA Annual Energy Outlook 2018 Report

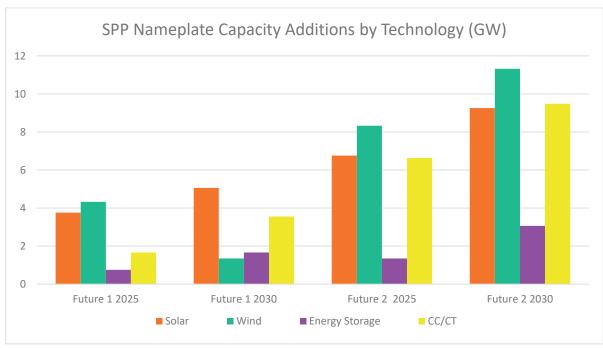


Figure 2.8: SPP Nameplate Capacity Additions by Technology (GW)

Table 2.3 shows the total accredited generation additions by future and study year. Figure 2.9 shows accredited generation additions by future, study year, and technology for the SPP region.

	Future 1	Future 2
2025	5.9 GW	12.7 GW
2030	10.2 GW	16.5 GW

Table 2.3: Total Accredited Generation Additions by Future and Study Year

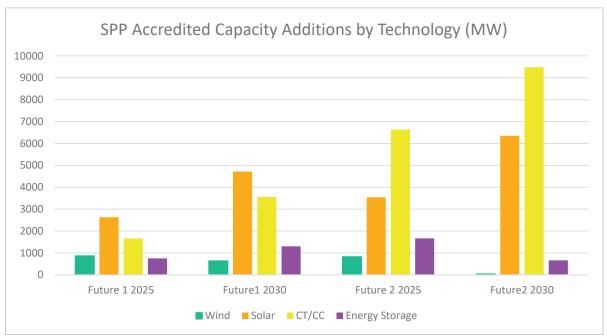


Figure 2.9: Accredited Capacity Additions by Technology

2.2.2.3 Siting Plan

SPP sited projected renewable and conventional resources according to various site attributes for each technology in accordance with the ITP Resource Siting Manual. 12

Distributed solar generation, an assumption in Future 2 only, was allocated to the top 10 percent of load buses for each load area on a pro rata basis utilizing load review data. SPP stakeholder feedback was considered in the selection of sites for this technology. Figure 2.10 and Figure 2.11 show the selected sites and allocation of distributed solar capacity across the SPP footprint in megawatts.

¹² Documented in the <u>ITP Resource Siting Manual</u>

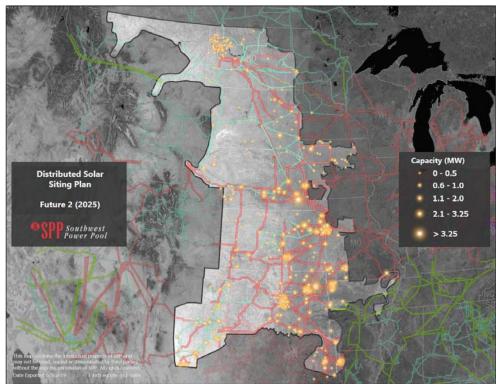


Figure 2.10: 2025 Future 2 Distributed Solar Siting Plan

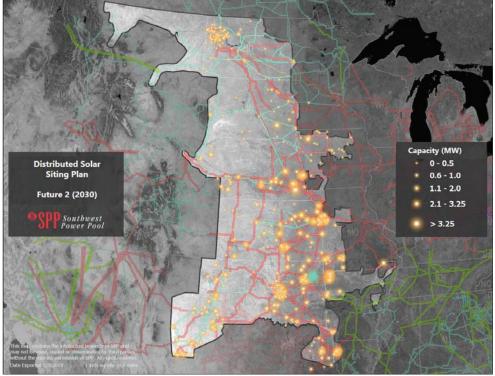


Figure 2.11: 2030 Future 2 Distributed Solar Siting Plan

Utility-scale solar was sited according to:

- Ownership by zone or by state
- Data Source (given preference in the following order)
 - o SPP and Integrated System (IS) GI queue requests
 - Stakeholder submitted sites
 - o Previous ITP sites
 - o Other National Renewable Energy Laboratory (NREL) conceptual sites
- Capacity factor
- Generator transfer capability of the potential sites

Following the implementation of this ranking criteria, stakeholders could request exceptions to the results, which were reviewed for potential inclusion in the siting plan. Figure 2.12 through Figure 2.15 show the selected sited and allocation of utility solar capacity across the SPP footprint in megawatts.

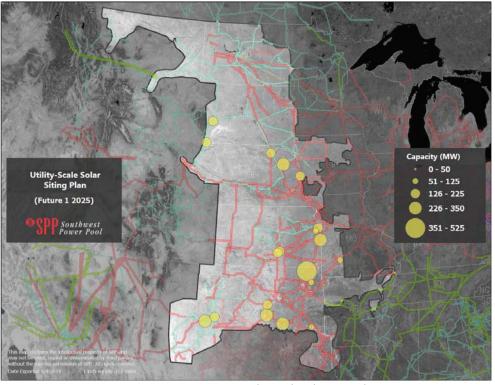


Figure 2.12: 2025 Future 1 Utility-Scale Solar Siting Plan

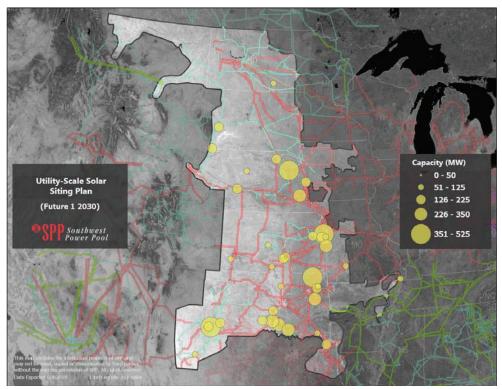


Figure 2.13: 2030 Future 1 Utility-Scale Solar Siting Plan

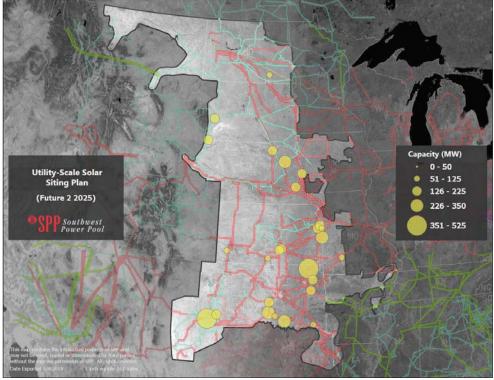


Figure 2.14: 2025 Future 2 Utility-Scale Solar Siting Plan

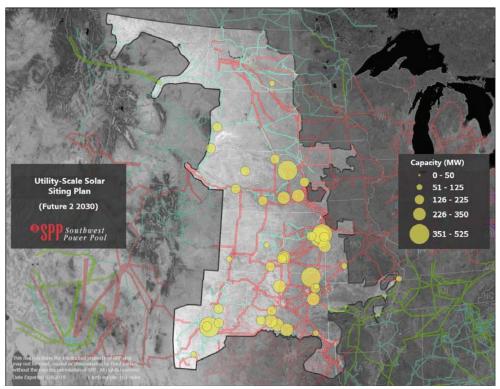


Figure 2.15: 2030 Future 2 Utility-Scale Solar Siting Plan

Wind sites were selected from GI queue requests that required the lowest total interconnection cost¹³ per megawatt of capacity requested, taking into consideration the following:

- Potentially directly-assigned upgrade needed
- Unknown third-party system impacts
- Required generator outlet facilities (GOF)
- Generator Interconnection Agreement (GIA) suspension status

GI queue requests that did not have costs assigned were also considered with respect to their generator outlet capability, scope of related GOFs needed, and relation to recurring issues within the GI grouping.

Following implementation of this ranking criteria, stakeholders could request exceptions to these results, which were reviewed for potential inclusion in the siting plan. Figure 2.16 through Figure 2.19 show the selected siting and allocation of wind capacity across the SPP footprint in megawatts.

¹³ The total interconnection costs includes the total costs assigned for all interconnection related upgrades and network upgrade.

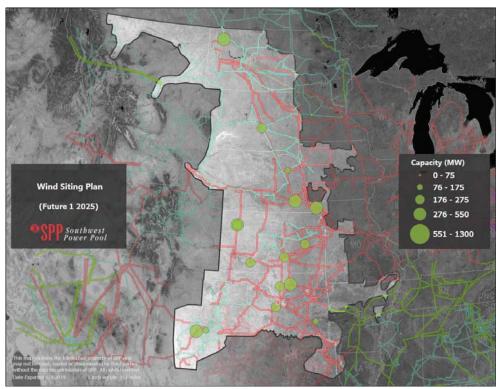


Figure 2.16: 2025 Future 1 Wind Siting Plan

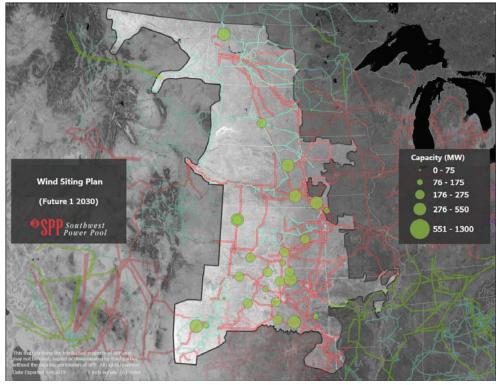


Figure 2.17: 2030 Future 1 Wind Siting Plan

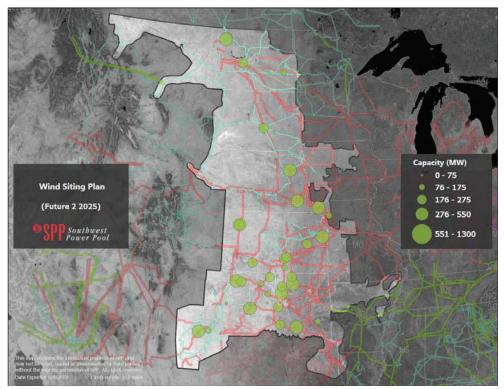


Figure 2.18: 2025 Future 2 Wind Siting Plan

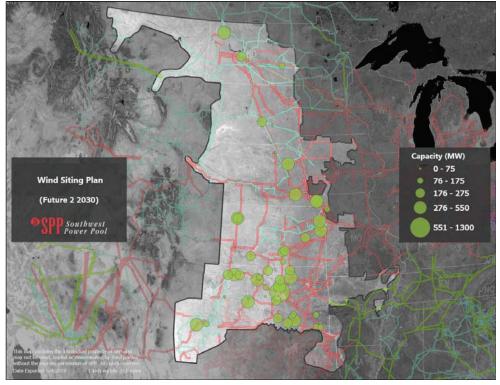


Figure 2.19: 2030 Future 2 Wind Siting Plan

Conventional generation was sited according to the zone of majority ownership, stakeholder preferences, generator outlet capability, scope of GOFs needed, and preference for existing and assumed retirement sites over previous ITP sites. Total conventional capacity at a given site (including existing) was limited to 1,500 MW. Following implementation of this ranking criteria, stakeholders could request exceptions to these results, which were reviewed for potential inclusion in the siting plan. Figure 2.20 through Figure 2.23 show the selected sites for conventional generation across the SPP footprint.

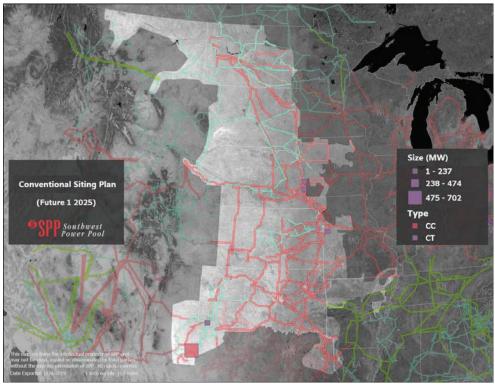


Figure 2.20: 2025 Future 1 Conventional Siting Plan

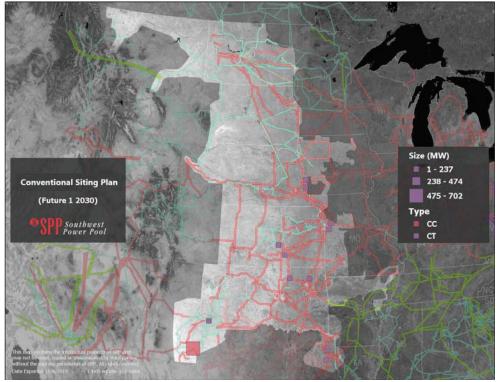


Figure 2.21: 2030 Future 1 Conventional Siting Plan

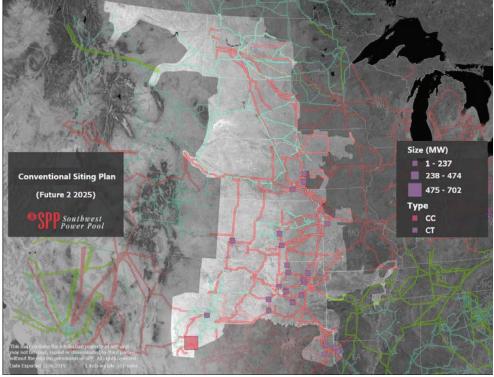


Figure 2.22: 2025 Future 2 Conventional Siting Plan

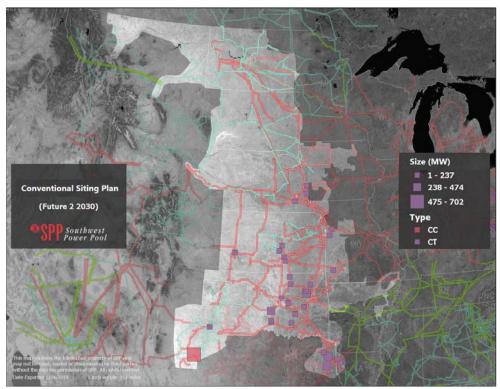


Figure 2.23: 2030 Future 2 Conventional Siting Plan

Battery sites were based on battery storage GI queue requests, the assumption that battery storage will largely be co-located with wind and solar, and transfer capability at available sites with consideration of the solar and wind siting plans. The siting of resources related to battery requests in the GI queue was limited to two-thirds of projected capacity due to the infancy of the technology in the industry. Two-thirds of projected battery capacity was associated with solar sites; one-third was associated with wind sites. For sites associated with battery requests, sited battery amounts were capped at the queue request amounts or siting availability. For sites not associated with existing battery GI requests, battery amounts were placed at wind and solar sites in increments of 20 megawatts and capped at siting availability. Following implementation of this ranking criteria, stakeholders could request exceptions to these results, which were reviewed for potential inclusion in the siting plan. Figure 2.24 through Figure 2.27 show the selected sites for battery generation across the SPP footprint.

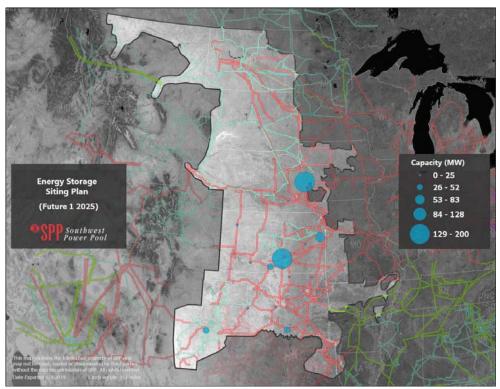


Figure 2.24: 2025 Future 1 Energy Storage Siting Plan

Figure 2.25: 2030 Future 1 Energy Storage Siting Plan

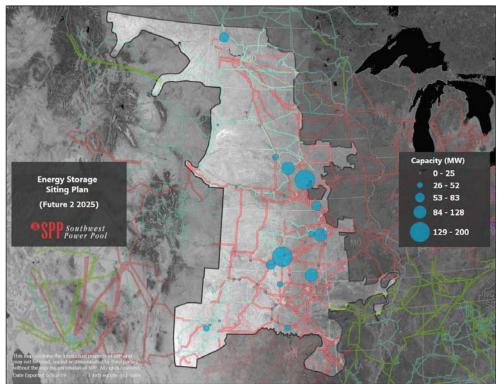


Figure 2.26: 2025 Future 2 Energy Storage Siting Plan

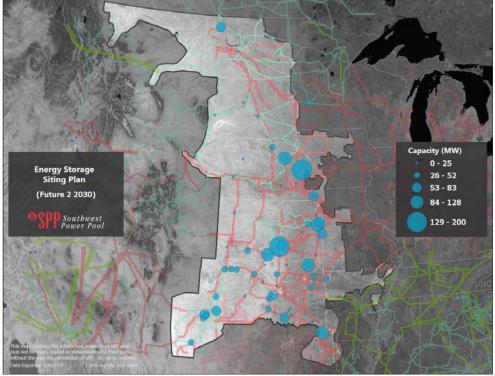


Figure 2.27: 2030 Future 2 Energy Storage Siting Plan

2.2.2.4 Generator Outlet Facilities (GOF)

To incorporate the siting plan into the market models, generator outlet facilities (GOFs) were necessary. GOFs are required such that overloads on the system were not identified due to the sited generation. The GOF selection process was intended as a proxy for the GI process. For sites with upgrades identified in a GI study, the associated upgrades were evaluated and potentially recommended as a GOF. In other instances, the site-specific results of the transfer analysis were assessed to determine if a site was capable of reliably allowing a resource to dispatch to the SPP system (siting availability). The results of the GOF analysis determined the upgrades shown in Table 2.4.

GOF Description	Site	MW Sited	GOF Source
Cleo Corner-Cleo Tap 138 kV terminal upgrades	Badger 345 kV Mooreland-Knob Hill 138 kV Hitchland 345 kV	376 MW (F1,Y10 & F2,Y5) 624 MW (F2, Y10)	GI Queue
Arbuckle 138 kV circuit 2 new tap	Blue River 138 kV Arbuckle-Blue River 138 kV	323 MW (F2, Y10)	GI Queue
Dover-Hennessey 138 kV terminal upgrades	Dover Switchyard 138 kV	288 MW (F2, Y5&Y10)	GI Queue
Tolk 345/230 kV second transformer Tolk-Crossroads-Eddy County 345 kV terminal upgrades	Crossroads 345 kV	522 MW	Siting Availability
Neset 345/230 kV replace transformer Neset-Tande 230 kV rebuild	Tande 345 kV	300 MW (F1, Y5&Y10), 374 MW (F2, Y5&Y10)	Siting Availability
Greenwood-Lee's Summit 161 kV rebuild Pleasant Hill-Lake Winnabago 161 kV terminal upgrades	Greenwood 161 kV	237 MW	Siting Availability
Hobbs-Andrews 230 kV voltage conversion Andrews-Roadrunner 345 kV new line	Sidewinder 345 kV	702 MW	Siting Availability

Table 2.4: Generator Outlet Facilities *Sited amount for all futures/years unless otherwise noted

2.2.2.5 External Regions

When developing renewable resource plans, SPP did not directly consider renewable policy requirements for external regions. However, the Midcontinent Independent System Operator (MISO) and Tennessee Valley Authority (TVA) renewable resource expansion and siting plans were based on the 2019 MISO Transmission Expansion Planning (MTEP19) continued fleet change (CFC) and accelerated fleet change (AFC) futures. Associated Electric Cooperative Inc. (AECI) renewable resource expansion plans were based on the SPP resource plan assumptions and feedback from the ESWG and AECI.

Conventional resource plans were incorporated for external regions included in the market simulations. Each region was surveyed for load and generation and assessed to determine the capacity shortfall. The MISO and TVA resource expansion and siting plans were based on the MTEP19 CFC and AFC futures, while AECI resource expansion and siting plans were based on the SPP resource plan assumptions and feedback from the ESWG and AECI. Figure 2.28 and Figure 2.29 show the cumulative capacity additions in 2030 by unit type of these external regions for Futures 1 and 2.

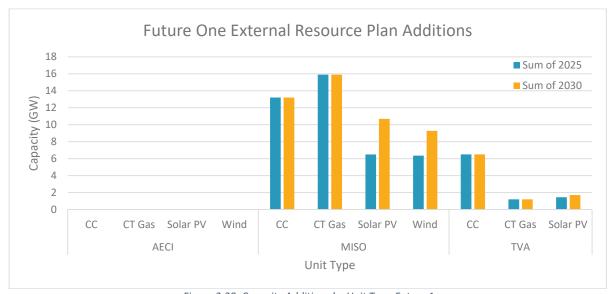


Figure 2.28: Capacity Additions by Unit Type-Future 1

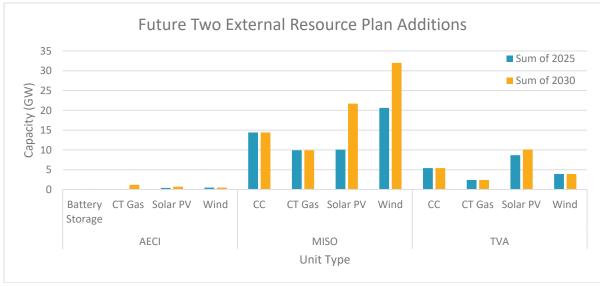


Figure 2.29: Capacity Additions by Unit Type-Future 2

2.2.3 CONSTRAINT ASSESSMENT

SPP considers transmission constraints when reliably managing the flow of energy across physical bottlenecks on the transmission system in the least-costly manner. Developing these study-specific constraints plays a critical part in determining transmission needs, as the constraint assessment identifies future bottlenecks and fine-tunes the market economic models.

SPP conducted an assessment to develop the list of transmission constraints used in the security-constrained unit commitment (SCUC) and security-constrained economic dispatch (SCED) analysis for all futures and study years. The TWG reviewed and approved elements identified in this assessment as limiting the incremental transfer of power throughout the transmission system, both under system intact and contingency situations. SPP staff defined the initial list of constraints leveraging the SPP permanent flowgate list, 14 which consists of NERC-defined flowgates that are impactful to modeled regions and recent temporary flowgates identified by SPP in real-time.

MTEP19 constraints were used to help evaluate and validate constraints identified within MISO and other neighboring areas. Constraints identified in neighboring areas were considered for inclusion as a part of the ITP study constraint list.

Figure 2.30: Constraint Assessment Process

2.3 MARKET POWERFLOW MODEL

The economic dispatch from each market economic model was used to develop market powerflow model snapshots representing stressed conditions on the SPP transmission system. Table 2.5 shows the peak and off-peak reliability hours as defined in the ITP Manual from each future and year of the market economic model simulations chosen for the market powerflow models.

	Off-Peak Hour	Wind Penetration ¹⁵	Peak Hour	SPP Load (MW)
Future 1 2022	April 3 at 4:00 AM	92.3%	August 27 at 6:00 PM	51,639
Future 1 2025	April 5 at 1:00 AM	103.2%	July 23 at 6:00 PM	52,534
Future 1 2030	April 1 at 1:00 AM	110.7%	July 24 at 6:00 PM	53,216
Future 2 2025	April 5 at 1:00 AM	113.9%	July 23 at 6:00 PM	52,433
Future 2 2030	April 1at 2:00 AM	133.5%	July 24 at 6:00 PM	53,210

Table 2.5: Reliability Hour Details

¹⁴ Posted on SPP OASIS

¹⁵ Wind Penetration = Potential Delivered Energy / Load

3 BENCHMARKING

3.1 POWERFLOW MODEL

SPP staff performed two benchmarks related to the 2020 ITP base reliability powerflow models. The first benchmark was a load and generation value comparison between the 2019 ITP and 2020 ITP base reliability powerflow models. The second benchmark was a load and generation value comparison between the 2020 ITP base reliability powerflow models and real-time operational data. Model comparisons were conducted to verify the accuracy of the powerflow model data, including:

- Comparison of the summer and winter peak base reliability model load totals (2019 ITP versus 2020 ITP), as shown in Figure 3.1 and Figure 3.2.
- Comparison of the summer and winter peak base reliability model generation dispatch totals for years two, five and 10 (2019 ITP versus 2020 ITP), as shown in Figure 3.3 and Figure 3.4.
- Additionally, the year-10 summer and winter peak generator retirements in the 2020 ITP base reliability powerflow models are shown in Figure 3.5.

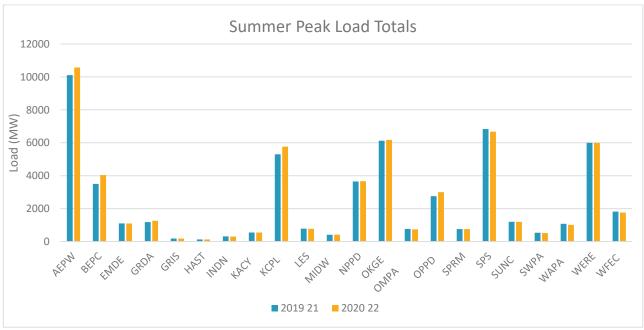


Figure 3.1: Summer Peak Year-Two Load Totals Comparison

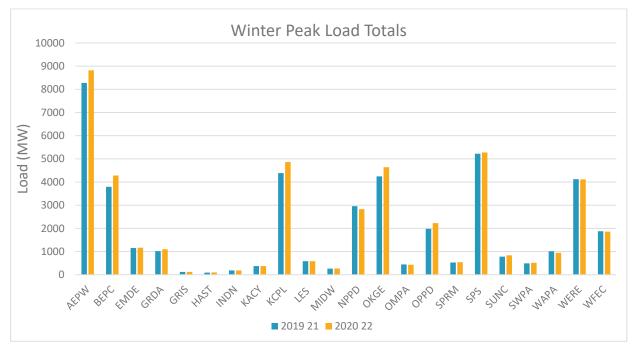


Figure 3.2: Winter Peak Year-Two Load Totals Comparison

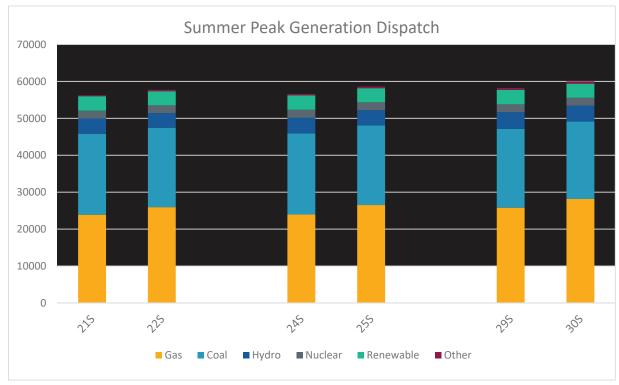


Figure 3.3: Summer Peak Years two, five and 10 Generation Dispatch Comparison

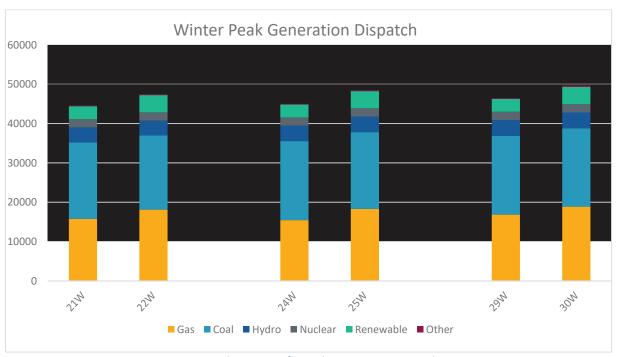


Figure 3.4: Winter Peak Years two, five and 10 Generation Dispatch Comparison

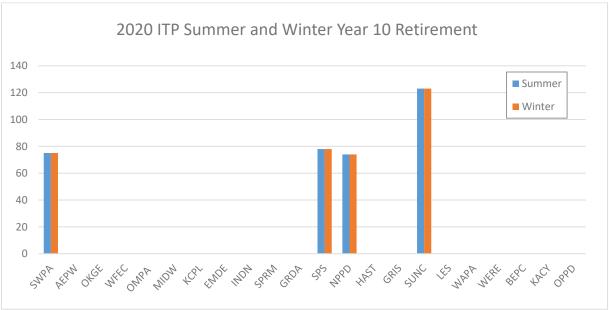


Figure 3.5: 2020 ITP Summer and Winter Year 10 Retirement

Operational model benchmarking for this assessment compared the 2020 summer and winter peak base reliability powerflow models against the real-time operational data for the 2019-2020 winter and 2020 summer timeframe. Model comparisons were conducted to verify the accuracy of the powerflow model data, including:

• Comparison of the 2020 summer and winter load totals (base reliability model versus real-time operational data), as shown in Figure 3.6 and Figure 3.7

• Comparison of the 2020 summer and winter generation dispatch totals (base reliability model vs real-time operational data), as shown in Figure 3.8

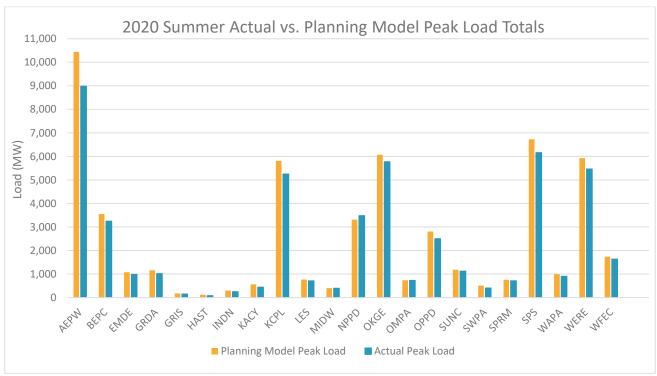


Figure 3.6: 2020 Summer Actual versus Planning Model Peak Load Totals

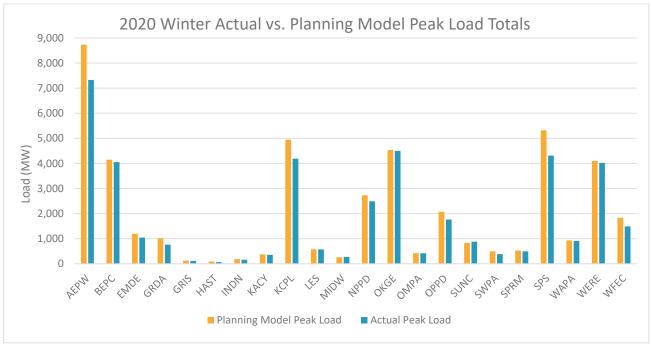


Figure 3.7: 2020 Winter Actual versus Planning Model Peak Load Totals

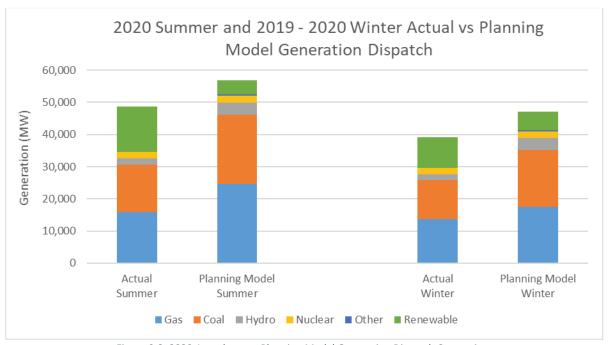


Figure 3.8: 2020 Actual versus Planning Model Generation Dispatch Comparison

3.2 MARKET ECONOMIC MODEL

Benchmarking for this study was performed on the year-two Future 1 market economic model. For the benchmarking process to provide the most value, it was important to compare the current study model against previous ITP modeling outputs and historical SPP real-time data. Numerous benchmarks were conducted to ensure the accuracy of the market economic modeling data, including:

- Comparing generation capacity factors with EIA data comparing simulated maintenance outages to SPP real-time data, and ensuring operating and spinning reserve capacities meet SPP Criteria
- Comparing generation capacity factors, generating unit average cost, renewable generation profiles, system locational marginal prices (LMP), adjusted production cost (APC), and interchange between the 2020 ITP and the 2019 ITP.

3.2.1 GENERATOR OPERATIONS

3.2.1.1 Capacity Factor by Unit Type

Comparing capacity factors is a method for measuring the similarity in planning simulations and historical operations. This benchmark provides a quality control check of differences in modeled outages and assumptions regarding renewable, intermittent resources.

When compared with capacity factors reported to the EIA for 2018 and resulting from the 2020 ITP study, the capacity factors for conventional generation units fell near the expected values. The difference in capacity factors between the datasets were attributed to differences in fuel and load forecasts as well as changes in the generation mix.

	Average Capacity Factor			
	2019 ITP 2020 ITI			
Unit Type	2018 EIA	Future 1 2021	Future 1 2022	
Nuclear	93%	93%	90%	
Combined Cycle	57%	41%	42%	
CT Gas	12%	3%	4%	
Coal	54%	61%	67%	
ST Gas	14%	3%	4%	
Wind	37%	46%	46%	
Solar	26%	23%	24%	

Table 3.1: Generation Capacity Factor Comparison

3.2.1.2 Average Energy Cost

Examining the average cost per MWh by unit type gives insight into what units will be dispatched first (without considering transmission constraints). Overall, the average costs per MWh were lower in the 2020 ITP than in the 2019 ITP due to the fuel and load forecasts and the difference in generation mix.

	Average Energy Cost (\$/MWh)		
	2019 ITP 2020 ITP		
Unit Type	Future 1 2021	Future 1 2022	
Nuclear	\$15	\$16	
Combined Cycle	\$31	\$31	
CT Gas	\$44	\$43	
Coal	\$24	\$24	
ST Gas	\$41	\$42	

Table 3.2: Average Energy Cost Comparison

3.2.1.3 Generator Maintenance Outages

Generator maintenance outages in the simulations were compared to SPP real-time data. These outages have a direct impact on flowgate congestion, system flows and the economics of serving load.

The operations data includes certain outage types that cannot be replicated in these planning models. The difference in magnitude between the real-time data and the market economic simulated outages is due to the additional operational outages beyond those required by annual maintenance or driven by forced (unplanned) conditions. Although the market economic model simulation outages do not have as high a magnitude as the historical outages provided by SPP operations, the outage rates in the 2020 ITP are very similar to previous ITP assessments. The curves from the historical data and the market economic model simulations complemented each other very well in shape.

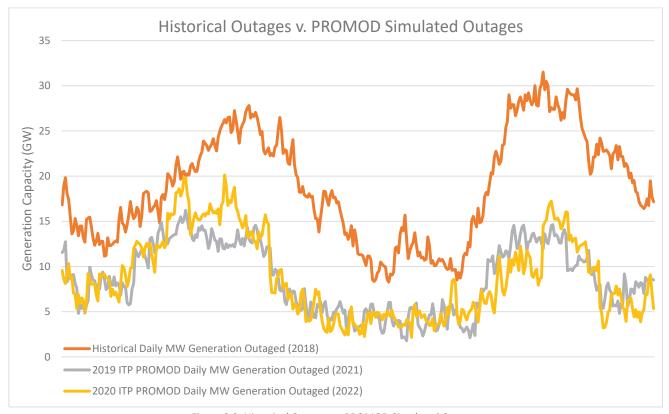


Figure 3.9: Historical Outages v. PROMOD Simulated Outages

3.2.1.4 Operating and Spinning Reserve Adequacy

Operating reserve is an important reliability requirement that is modeled to account for capacity that might be needed in the event of unplanned unit outages. According to SPP Criteria, operating reserves should meet a capacity requirement equal to the sum of the capacity of largest unit in SPP and half of the capacity of the next largest unit in SPP. At least half of this requirement must be fulfilled by spinning reserve.

The operating reserve capacity requirement was modeled at 1,675 MW and spinning reserve capacity requirement was modeled at 823 MW. The reserve requirements were met in the market economic models.

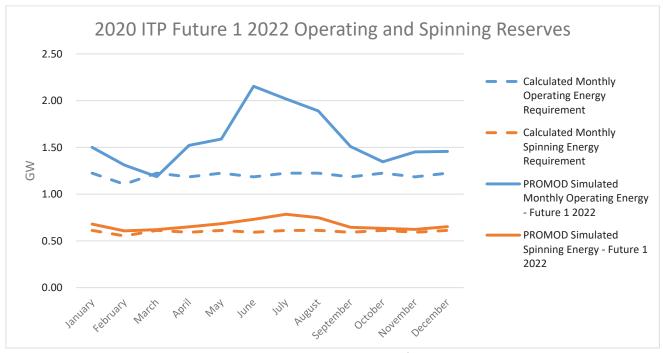


Figure 3.10: 2020 ITP Future 1 2022 Operating and Spinning Reserves

3.2.1.5 Renewable Generation

Wind and solar energy output is higher in the 2020 ITP than in the 2019 ITP because of additions identified during the generation review milestone. Wind output is noticeably greater due to the amount of installed capacity and approved RARs in 2020 ITP.

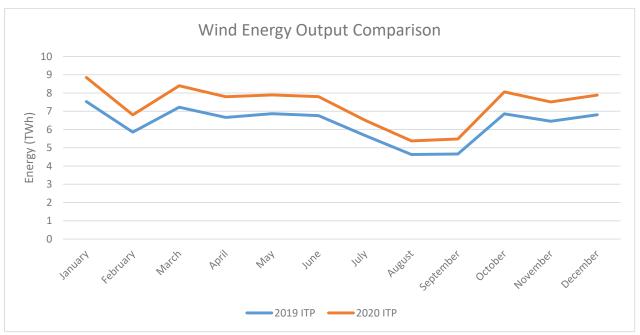


Figure 3.11: Wind Energy Output Comparison

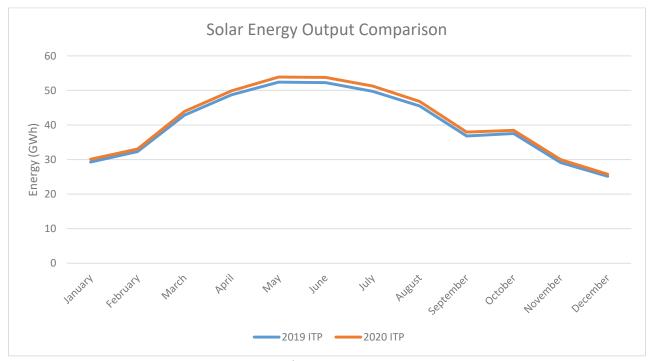


Figure 3.12: Solar Energy Output Comparison

3.2.2 SYSTEM LOCATIONAL MARGINAL PRICE (LMP)

Simulated LMPs were benchmarked against simulated LMPs from the 2019 ITP. This data was compared on an average monthly value-by-area basis. Figure 3.13 portrays the results of the benchmarking model for the SPP system. The decrease in LMPs in the 2020 ITP is due to a slight decrease in natural gas price fuel forecasts and additional renewable energy.

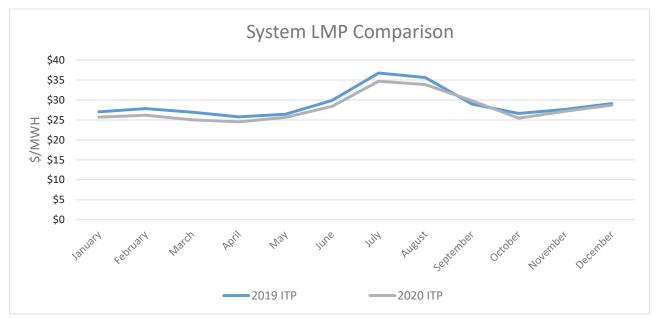


Figure 3.13: System LMP Comparison

3.2.3 ADJUSTED PRODUCTION COST (APC)

Examining the APC provides insight to which entities generally purchase generation to serve their load and which entities generally sell their excess generation. APC results for SPP zones were overall slightly lower in the 2020 ITP than in the 2019 ITP due to the change in fuel and renewable forecasts.

The APC on a zonal level both increases and decreases depending on the characteristics of the zone, including level of renewable increase, retirements and zonal load forecast changes. See Figure 3.14 and Figure 3.15 for a summary of regional and zonal APC results.

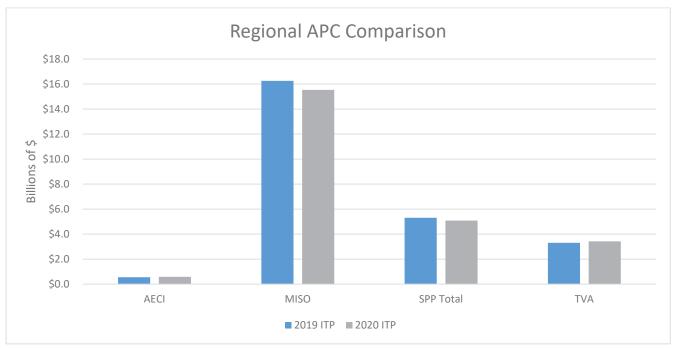


Figure 3.14: Regional APC Comparison

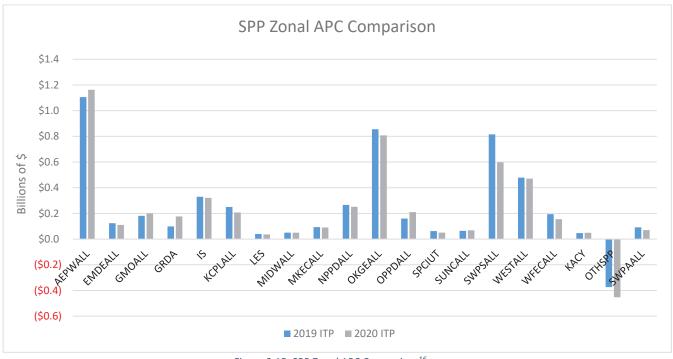


Figure 3.15: SPP Zonal APC Comparison¹⁶

2020 ITP Assessment Report

46

¹⁶ Any reference to the Integrated System (IS) legacy system is currently being assessed and is equivalent to the UMZ.

3.2.4 INTERCHANGE

The 2020 ITP model interchange was validated against the 2019 ITP and current SPP operations data. The 2020 ITP model is similar in shape and magnitude while overall exports are higher in the 2020 ITP than in the 2019 ITP.

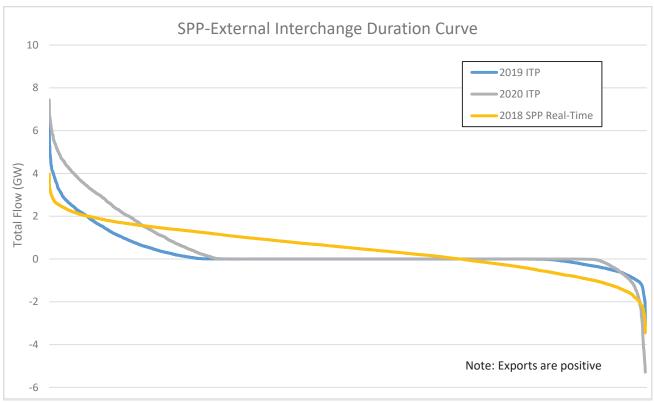


Figure 3.16: Interchange data comparison

4 NEEDS ASSESSMENT

SPP and its member organizations worked together to forecast and analyze the regional transmission system's economic, reliability, operational and public policy needs.

4.1 ECONOMIC NEEDS

SPP determines economic needs based on the congestion score associated with a constraint (monitored element/contingent element pair). The congestion score is calculated by multiplying the number of hours a constraint is congested in the model by the average shadow price of that constraint. Constraints with a calculated congestion score greater than 50k are considered an economic need. Additional constraints were identified that did not meet the 50k score, because they were related to the SPP-MISO Coordinated System Plan (CSP). The economic needs identified per future are shown in Figure 4.1 and Figure 4.2, and Table 4.1 and Table 4.2.

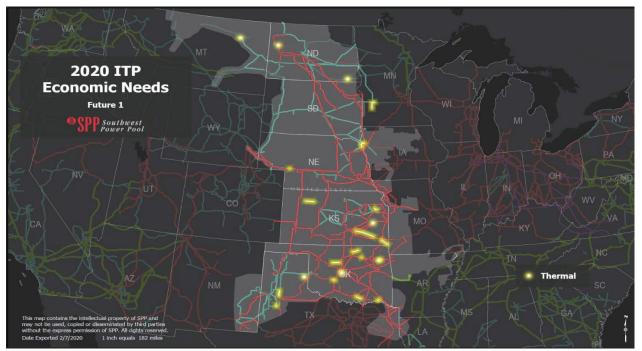


Figure 4.1: Future 1 Economic Needs

Constraint	2022 Congestion Score	2025 Congestion Score	2030 Congestion Score
Butler-Altoona 138 kV for the loss of Caney River-Neosho 345 kV	471,640	742,822	1,104,558
Dover-Okeene 138 kV for the loss of Watonga Switch-Okeene 138 kV	249,849	273,418	878,571
Watford 230/115 kV transformer circuit 1 for the loss of Watford 230/115 kV circuit 2	129,827	160,785	368,343
SPSNMTIES	258,996	139,555	499,965
Neosho-Riverton 161 kV for the loss of Blackberry-Jasper 345 kV	2,112	2,362	204,967
Russett-South Brown 138 kV for the loss of Caney Creek- Little City 138 kV	-	73	198,136
Hugo-Valliant 138 kV for the loss of Valliant-Hugo 345 kV	24,557	50,251	188,163
Shamrock 115/69 kV transformer for the loss of Sweetwater-Chisholm 230 kV	44,005	93,937	179,494
Tecumseh Hill-Stull 115 kV for the loss of Lawrence Hill- Swissvale 230 kV	-	770	161,808
Ogallala (NPPD)-Ogallala (Tri-State)115 kV for the loss of Ogallala-Grant 115 kV	48,838	73,245	113,456
Kress-Hale 115 kV for the loss of Swisher-Tuco 230 kV	78,368	79,027	100,584
Hoxie-Beach 115 kV for the loss of Mingo-Setab 345 kV	-	49,405	98,913
Webb City Tap-Osage 138 kV for the loss of Sooner- Cleveland 345 kV	279,083	190,546	98,374
Fort Peck 230/115 kV transformer for the loss of Fort Peck- Dawson County 230 kV	75,115	81,231	95,612
Franks-South Crocker 161 kV for the loss of Huben-Franks 345 kV	15,925	5,743	89,487
Cimarron 345/138 kV transformer circuit 1 for the loss of Cimarron 345/138 kV transformer circuit 2	12,499	47,521	86,676
Kerr-Maid 161 kV circuit 2 for the loss of Kerr-Maid 161 kV circuit 1	64,087	67,792	74,697
Southwestern Station-Anadarko 138 kV for the loss of Anadarko-Gracemont 138 kV	417	17,625	57,225
Scottsbluff-Victory Hill 115 kV for the loss of Stegall-Stegall 230 kV	20,544	29,628	50,647

Constraint	2022 Congestion Score	2025 Congestion Score	2030 Congestion Score
GRDA 161/115 kV transformer circuit 2 for the loss of GRDA 345/161 kV transformer	10,033	19,668	50,109
Columbus East 230/115 kV transformer for the loss of Columbus East-Shell Creek 345 kV	2,288	34,138	49,182
Oahe-Sully Buttes 115 kV for the loss of Fort Thompson- Leland Olds 345 kV	-	35,036	48,119
Granite Falls-Marshall Tap 115 kV for the loss of Lyon Co. 345/115 kV transformer	24,845	29,070	47,526
Czech Hall-Cimarron 138 kV for the loss of Cimarron- Draper 345 kV	482	8,752	37,737
Sioux City-Twin Church 230 kV for the loss of Raun-Hoskins 345 kV	991	43,452	33,843
Kelly 161/115 kV for the loss of Kelly-Tecumseh Hill 161 kV	14,818	11,047	33,503
Skyline-Quail Creek 138 kV for the loss of Northwest- Arcadia	-	-	33,144
Warrensburg-Warrensburg Air Force Base 161 kV for the loss of Overton-Sibley 345 kV	9,803	9,806	29,644
MISO RDT	3,419	11,044	22,016
Cleveland AECI-Cleveland GRDA 138 kV for the loss of Cleveland-Tulsa North 345 kV	221,537	588,917	15,434
Webster-Wright 161 kV for the loss of Ledyard-Colby 345 kV	818	3,635	11,789
Kelly 161/115 kV for the loss of Tecumseh Hill 161/115 kV transformer	39	24	6,927
Fulton-Patmos 115 kV for the loss of Sarepta-Longwood 345 kV	10	383	5,752
Webster-Wright 161 kV for the loss of Grimes-Beaver Creek 345 kV	383	3,575	4,340
Raun-Tekamah 161 kV for the loss of Raun-S3451 345 kV	324	4,622	2,733
Split Rock 345/115 kV transformer circuit 10 for the loss of Split Rock 345/115 kV transformer circuit 11	81	620	2,712
Raun-S3451 115 kV for the loss of Grimes-Beaver Creek 345 kV	-	1,616	2,112
Fulton-Patmos 115 kV for the loss of Grimes-Crockett 345 kV	-	-	549

Constraint	2022 Congestion Score	2025 Congestion Score	2030 Congestion Score
Webster 161/115 kV transformer for the loss of Grimes- Beaver Creek 345 kV	-	26	324
Wolf Creek 345/69 kV transformer for the loss of Waverly- La Cygne 345 kV	71,873	125,031	-
Maryville (AECI)-Maryville 161 kV for the loss of Maryville- Nodway 161 kV	-	-	-
Fairbilt-Winn County 161 kV (Base Case)	-	-	-
Maryville (AECI)-Maryville 161 kV for the loss of Maryville- Creston 161 kV	-	-	-
Neosho-Riverton 161 kV for the loss of Blackberry- Blackberry North 345 kV	67,781	55,853	-
Blue River-Parkland 138 kV for the loss of Arbuckle- Arbuckle Blue River Tap 138 kV	-	-	-
Jameston-Valley 115 kV for the loss of Hankson-Wahpeton 230 kV	-	-	-
Maryville (AECI)-Maryville 161 kV for the loss of Gentry- Fairport 161 kV	-	-	-
Fairbilt-Winn County 161 kV for the loss of Huntley-Fairbilt 161 kV	-	-	-

Table 4.1: Future 1 Economic Needs

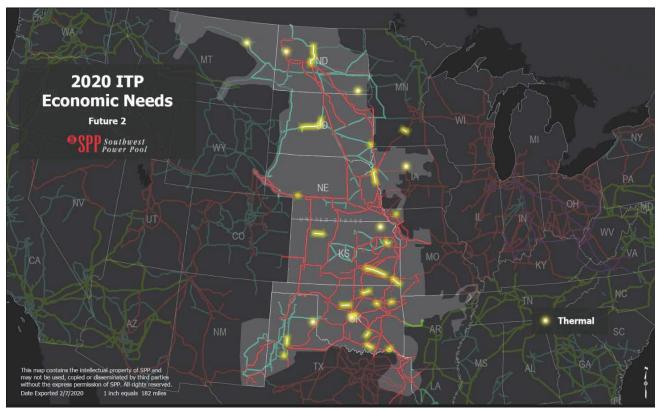


Figure 4.2: Future 2 Economic Needs

Constraint	2025 Congestion Score	2030 Congestion Score
Butler-Altoona 138 kV for the loss of Caney River-Neosho 345 kV	1,037,096	985,274
Russett-South Brown 138 kV for the loss of Caney Creek-Little City 138 kV	224,826	522,446
Watford 230/115 kV transformer circuit 1 for the loss of Watford 230/115 kV circuit 2	188,501	356,741
SPSNMTIES	288,984	342,683
Dover-Okeene 138 kV for the loss of Watonga Switch-Okeene 138 kV	161,396	330,812
Neosho-Riverton 161 kV for the loss of Blackberry-Jasper 345 kV	5,406	294,608
Hugo-Valliant 138 kV for the loss of Valliant-Hugo 345 kV	134,545	274,983
Maryville (AECI)-Maryville 161 kV for the loss of Gentry-Fairport 161 kV	50,470	264,789
Fairbilt-Winn County 161 kV for the loss of Huntley-Fairbilt 161 kV	132,080	248,553
Webb City Tap-Osage 138 kV for the loss of Sooner-Cleveland 345 kV	292,945	165,336
Shamrock 115/69 kV transformer for the loss of Sweetwater-Chisholm 230 kV	101,372	163,207
Raun-Tekamah 161 kV for the loss of Raun-S3451 345 kV	54,763	159,429

Constraint	2025 Congestion Score	2030 Congestion Score
Kress-Hale 115 kV for the loss of Swisher-Tuco 230 kV	69,276	146,036
Cimarron 345/138 kV transformer circuit 1 for the loss of Cimarron 345/138 kV transformer circuit 2	44,947	127,108
Oahe-Sully Buttes 115 kV for the loss of Fort Thompson-Leland Olds 345 kV	47,974	122,616
Kerr-Maid 161 kV circuit 2 for the loss of Kerr-Maid 161 kV circuit 1	71,445	115,865
Split Rock 345/115 kV transformer circuit 10 for the loss of Split Rock 345/115 kV transformer circuit 11	21,941	104,407
Fort Peck 230/115 kV transformer for the loss of Fort Peck-Dawson County 230 kV	89,072	100,302
Czech Hall-Cimarron 138 kV for the loss of Cimarron-Draper 345 kV	20,066	91,094
Webster 161/115 kV transformer for the loss of Grimes-Beaver Creek 345 kV	64,431	87,329
Skyline-Quail Creek 138 kV for the loss of Northwest-Arcadia	181	86,046
Fairbilt-Winn County 161 kV (Base Case)	-	84,745
Tecumseh Hill-Stull 115 kV for the loss of Lawrence Hill-Swissvale 230 kV	8,535	80,935
Ogallala (NPPD)-Ogallala(Tri-State) 115 kV for the loss of Ogallala-Grant 115 kV	66,234	80,857
Hoxie-Beach 115 kV for the loss of Mingo-Setab 345 kV	35,723	76,020
Kelly 161/115 kV for the loss of Kelly-Tecumseh Hill 161 kV	39,759	73,301
Columbus East 230/115 kV transformer for the loss of Columbus East-Shell Creek 345 kV	41,254	71,847
MISO RDT	24,878	59,271
Blue River-Parkland 138 kV for the loss of Arbuckle-Arbuckle Blue River Tap 138 kV	-	58,860
Jameston-Valley 115 kV for the loss of Hankson-Wahpeton 230 kV	33,770	54,312
Maryville (AECI)-Maryville 161 kV for the loss of Maryville-Creston 161 kV	77,169	41,543
Franks-South Crocker 161 kV for the loss of Huben-Franks 345 kV	9,668	36,399
Scottsbluff-Victory Hill 115 kV for the loss of Stegall-Stegall 230 kV	17,080	34,387
Kelly 161/115 kV for the loss of Tecumseh Hill 161/115 kV transformer	227	25,582
Warrensburg-Warrensburg Air Force Base 161 kV for the loss of Overton- Sibley 345 kV	23,062	24,216
Webster-Wright 161 kV for the loss of Grimes-Beaver Creek 345 kV	13,979	20,086

Constraint	2025 Congestion Score	2030 Congestion Score
GRDA 161/115 kV transformer circuit 2 for the loss of GRDA 345/161 kV transformer	4,379	19,759
Southwestern Station-Anadarko 138 kV for the loss of Anadarko-Gracemont 138 kV	7,316	18,179
Granite Falls-Marshall Tap 115 kV for the loss of Lyon Co 345/115 kV transformer	17,005	17,400
Fulton-Patmos 115 kV for the loss of Sarepta-Longwood 345 kV	818	15,641
Cleveland AECI-Cleveland GRDA 138 kV for the loss of Cleveland-Tulsa North 345 kV	675,138	14,257
Sioux City-Twin Church 230 kV for the loss of Raun-Hoskins 345 kV	39,084	8,143
Webster-Wright 161 kV for the loss of Ledyard-Colby 345 kV	3,040	6,567
Fulton-Patmos 115 kV for the loss of Grimes-Crockett 345 kV	29	3,015
Raun-S3451 115 kV for the loss of Grimes-Beaver Creek 345 kV	6,005	2,192
Wolf Creek 345/69 kV transformer for the loss of Waverly-La Cygne 345 kV	162,158	-
Maryville (AECI)-Maryville 161 kV for the loss of Maryville-Nodway 161 kV	146,469	-
Neosho-Riverton 161 kV for the loss of Blackberry-Blackberry North 345 kV	73,449	-

Table 4.2: Future 2 Economic Needs

4.1.1 TARGET AREA

As part of the economic needs assessment, one target area was identified for the assessment to focus analysis efforts of SPP staff and stakeholders. After posting of the needs assessment, the need for additional analysis in another area of the system was identified by SPP staff. Drivers for these areas included:

- Unresolved transmission limits identified in previous ITP assessments
- Operational evaluation(s)
- Historical and projected congested flowgates in area
- Steady-state reliability violations
- Parallel and in-series relationships between flowgates/transmission corridors
- Impacted heavily by critical EHV contingencies
- Transient stability concerns for existing generators

4.1.1.1 MISO Regional Directional Transfer Target Area

The MISO Regional Directional Transfer (RDT) Target Area for the 2020 ITP aided SPP in regionally coordinated efforts to identify and evaluate potential transmission upgrades needed to mitigate impacts to the SPP transmission system due to transfers between the MISO Midwest and MISO South regions. SPP has historically seen congestion in the SPP footprint related to north-to-south flows within MISO. The flowgates that were identified as having the potential to meet these goals are shown in Figure 4.3 and listed in Table

4.3. SPP transmission facilities impacted by the exchange of power between MISO regions were evaluated as a target area with the potential for additional analysis in the 2020 ITP.

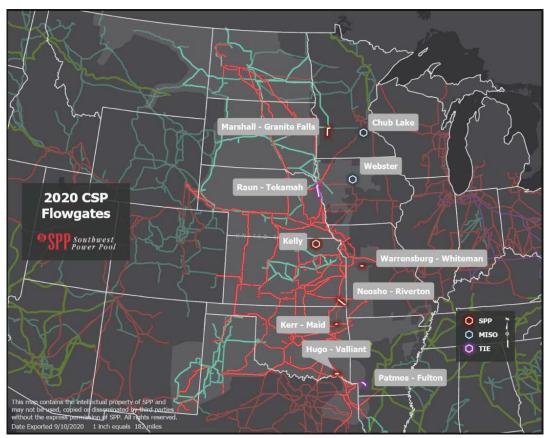


Figure 4.3: 2020 CSP Flowgates

CSP Target Flowgates
Raun-Tekamah 161 kV
Patmos-Fulton 115 kV
Chub Lake 345/115 kV transformer
Webster 345/115 kV transformer
Hugo-Valliant 138 kV
Kelly 161/115 kV transformer
Kerr-Maid 161 kV #2
Marshall-Granite Falls 115 kV
Neosho-Riverton 161 kV
Warrensburg-Whiteman AFB 161 kV

Table 4.3: MISO North CSP Interface Target Area Flowgates

4.1.2 SPS-NEW MEXICO TIES INTERFACE

The increased power flows into eastern New Mexico in SPS due to growing load and projected retirements has resulted in an increase in contingencies causing thermal and low voltage criteria and voltage collapse conditions in the initial and final base reliability and market power flow needs assessments. The SPS New Mexico Interface was added to the Market Economic Model post-constraint assessment to limit economic transfers and address voltage collapse observed in the development of the market economic model. This resulted in the SPSNMTIES interface being identified as a top congested economic need limiting economic transfer of energy into the area.

The interface limits imports into southeastern New Mexico in SPP market operations via the Crossroads-Eddy 345 kV, Yoakum-Hobbs 345 kV, San Juan-Chaves 230 kV, and Ink Basin-Hobbs 230 kV. The intent of the interface is maintain transmission system voltage stability in southeastern New Mexico under system intact and N-1 conditions. For the purposes of the assessment, the interface was limited (into southeastern New Mexico) to 765 MW for summer and winter seasons to proxy the power transfer limits that maintain pre- and post-contingent voltage limits on the transmission system in southeastern New Mexico and surrounding transmission system for both system intact and loss of critical generation and 230 kV and 345 kV lines. SPS has three interfaces in the area to proxy non-thermal system limits and limit power transfer limits listed in Table 4.4 The interface congestion was identified as being related to:

- Base reliability powerflow models low voltage and voltage collapse needs in year-10 summer peak
- Market powerflow models Future 1 low voltage needs and voltage collapse needs in year-10 summer peak
- Market powerflow models Future 2 low voltage needs and voltage collapse needs in year-five summer peak

Supplemental information was posted with the needs assessment explaining the SPSNMTIES interface and outlined solution evaluation and additional analysis needed to aid stakeholders with their solution submittals. The New Mexico Ties Interface Guidelines and Study Scope included a rigorous AC Power transfer thermal and voltage analysis and results with 0.02 per unit voltage safety margin applied to low voltage monitoring criteria. The study analysis and deliverables were required to support new SPSNMTIES interface ratings for economic solution evaluation.

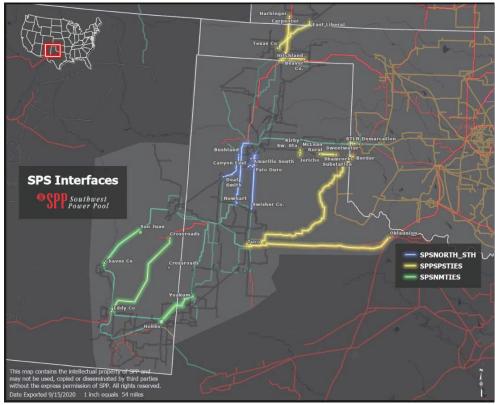


Figure 4.4: 2020 SPS New Mexico Ties Flowgates

	Flowgate Interface	Lin	nitation
Name	Definition	MW Flow	Directionality
	San Juan Tap-Chaves County 230 kV		
SPSNMTIES	Crossroads-Eddy County 345 kV	765	North-to-South
SPSINIVITIES	Ink Basin-Hobbs 230 kV	703	North-to-South
	Yoakum-Hobbs 345 kV		
	Border-Tuco 345 kV		
	Beaver County-Hitchland circuit 1&2 345 kV	1345	Fast-to-West
	Carpenter-Hitchland 345 kV		
SPPSPSTIES	Jericho-Kirby 115 kV		
SPESESTIES	E-Liberman-Texas Panhandle 115 kV	1545	Edst-to-vvest
	Oklaunion-Tuco 345 kV		
	Sham-McLean 115 kV		
	Sweetwater-Wheeler 230 kV		
	Amarillo South-Swisher 230 kV		
SPSNORTH_STH	Bushland-Deaf Smith 230 kV		
	Newhart-Potter County 230 kV	1645	North-to-South
	Randall-Canyon E Tap 115 kV		
	Randall-Palo Duro 115 kV		

Table 4.4: SPSNMTIES Interface Area Flowgates

4.2 RELIABILITY NEEDS

4.2.1 BASE RELIABILITY ASSESSMENT

Contingency analysis for the base reliability models consisted of analyzing P0, P1 and P2.1 planning events from Table 1 in the NERC TPL-001-4 standard, as well as remaining events that do not allow for non-consequential load loss or the interruption of firm transmission service.

During the needs assessment, potential violations were solved or marked invalid through methods such as reactive device setting adjustments, model updates, and identification of invalid contingencies, non-load-serving buses and facilities not under SPP's functional control. Figure 4.5 and Figure 4.6 summarize the number of remaining thermal and voltage needs¹⁷ that were unable to be mitigated during the screening process.

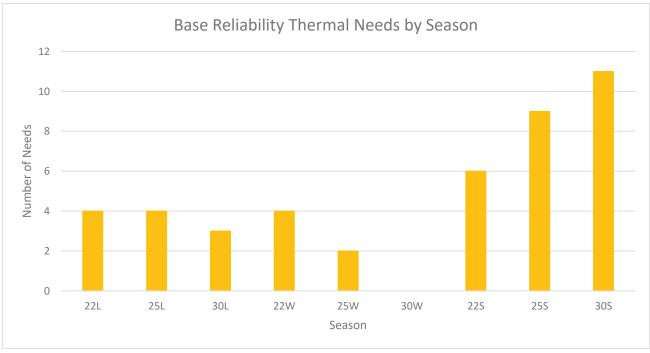


Figure 4.5: Unique Base Reliability Needs

¹⁷ Figures summarize unique monitored elements.

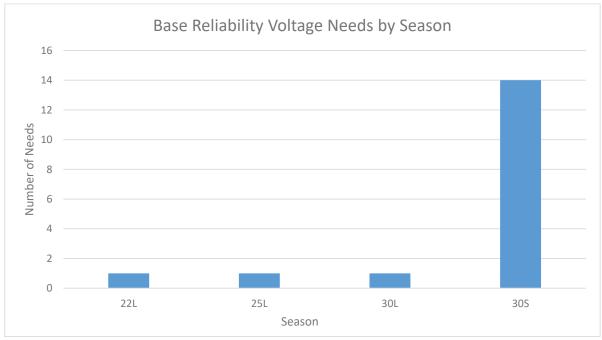


Figure 4.6: Unique Base Reliability Voltage Needs

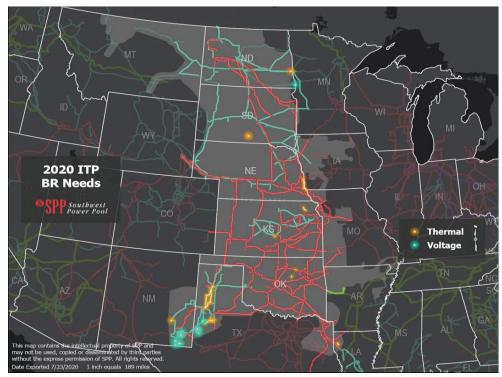


Figure 4.7: Base Reliability Needs

4.2.2 MARKET POWERFLOW ASSESSMENT

Contingency analysis for the market powerflow models was performed in accordance with the ITP Manual.

60

Southwest Power Pool, Inc.

Figure 4.8 summarizes the number of remaining voltage needs 18 that were unable to be mitigated during the screening process. There were no thermal market powerflow model needs that were considered during the 2020 ITP.

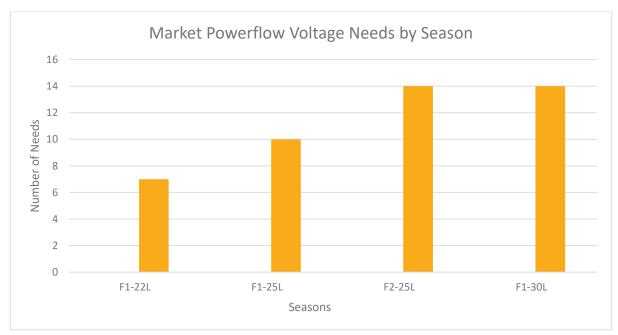


Figure 4.8: 2020 Market Powerflow Voltage Needs by Season

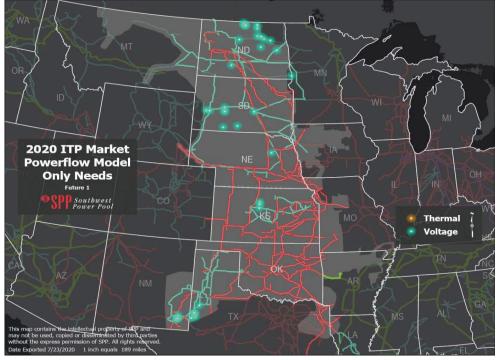


Figure 4.9: Future 1 Reliability Needs

 $^{^{18}}$ The figure summarizes the unique monitored elements per season.

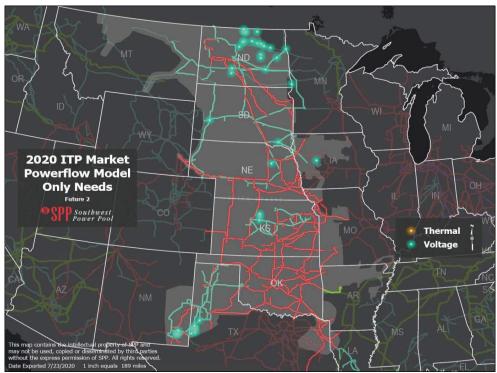


Figure 4.10: Future 2 Reliability Needs

4.2.3 NON-CONVERGED CONTINGENCIES

SPP used engineering judgment to resolve non-converged cases from the contingency analysis. Some non-converged cases could not be solved due to the contingency taken. Relative violations were identified as voltage collapse reliability needs in the applicable model and are listed in Table 4.5.

Model	Monitored Element	Contingent Element	Reliability Need
Base Reliability 2030 Summer Peak	Phantom 115 kV	Hobbs-Kiowa 345 kV	Voltage
Base Reliability 2030 Summer Peak	Phantom 115 kV	P53:345:SPS:EDDY-AT-FNC+	Voltage
Base Reliability 2030 Summer Peak	Phantom 115 kV	P42:345:SPS:KIOWA:J20#### _SLG	Voltage
Future 2 2025 Summer Peak	Gaines 345 kV	Gaines Generator	Voltage
Future 1 2030 Summer Peak	Gaines 345 kV	Gaines Generator	Voltage
Future 2 2030 Summer Peak	Gaines 345 kV	Gaines Generator	Voltage

Table 4.5: Reliability Needs Resulting from Non-Converged Contingencies

4.2.4 SHORT-CIRCUIT ASSESSMENT

SPP provided the total bus fault current study results for single-line-to-ground (SLG) and three-phase faults to the Transmission Planners (TPs) for review.

The TPs were required to evaluate the results and indicate if any fault-interrupting equipment would have its duty ratings exceeded by the maximum available fault current. For equipment that would have its duty ratings exceeded, the TP provided the applicable duty rating of the equipment and the violation was identified as a short-circuit need.

The TPs can perform their own short-circuit analysis to meet the requirements of TPL-001. However, any corrective action plans that result in the recommended issuance of a NTC are based on the SPP short-circuit analysis.

The two TPs identifying short-circuit needs were Evergy and Western Farmers Electric Cooperative (WFEC). The needs are depicted in Figure 4.11.

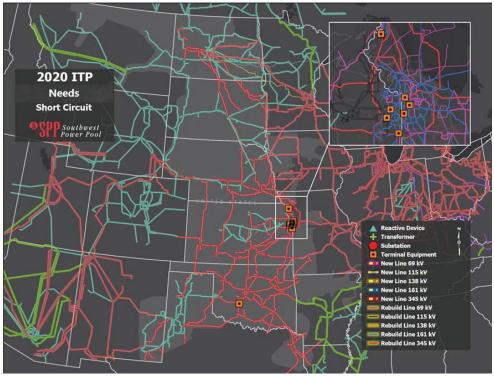


Figure 4.11: Short-Circuit Needs

4.3 PUBLIC POLICY NEEDS

Policy needs were analyzed based on the curtailment of renewable energy such that an energy-based renewable portfolio standard is not able to be met. Each zone with an energy mandate or goal was analyzed on a utility-by-state level for renewable curtailments to determine if they met their mandate or goal. Policy needs are the result of an inability to dispatch renewable generation due to congestion, and any utility-by-state not meeting its renewable mandate or goal.

All utilities met their overall renewable mandates and goals, thus no policy needs were identified.

4.4 PERSISTENT OPERATIONAL NEEDS

4.4.1 ECONOMIC OPERATIONAL NEEDS

The economic operational needs identified for the 2020 ITP assessment in Table 4.6 through Table 4.8 were posted for informational purposes only.

Constraint	Monitored Element	Contingent Element	Congestion Cost
TMP421_24095	XF Cimarron 345/138 kV	XF Cimarron 345/138 kV	\$52,090,959
FRAMIDCANCED	LN Midwest-Franklin 138 kV	LN Cedar Lane-Canadian 138 kV	\$42,896,115
CHAWATCHAPAT TMP269_23661	LN Charlie Creek-Watford 230 kV	LN Charlie Creek-Patent Gate 345 kV	\$24,968,600
SMOSUMMULCIR	LN Smoky Hills-Summit 230 kV	LN Great Bend-Circle 230 kV	\$21,897,392
SCOVICSTESTG TMP127_23359	LN Scottsbluff-Victory Hill 115 kV	XF Stegall 345/230 kV	\$18,063,559
TMP159_24149	LN Russett-South Brown 138 kV	LN Little City-Brown Tap 138 kV	\$11,522,032

Table 4.6: Economic Operational Needs

The constraints in Table 4.7 had associated future upgrades which are expected to reduce some or all congestion associated with the constraint.

Constraint	Monitored Element	Contingent Element	Congestion Cost	Notes
TMP142_25323 TMP39_23235	LN Waverly-La Cygne 345 kV	LN Caney River-Neosho 345 kV	\$80,306,731	2019 ITP approved Wolf Creek- Blackberry 345 kV
TMP270_23432	Cleveland 138 kV GRDA- AECI Bus Tie	LN Cleveland-Tulsa North 345 kV	\$53,229,005	ITP approved Sooner-Wekiwa 345 kV

			Congestion	
Constraint	Monitored Element	Contingent Element	Cost	Notes
GGS	LN Gentleman-Red Willow 345 kV LN Gentleman- Sweetwater 345 kV circuit 1 LN Gentleman- Sweetwater 345 kV circuit 2 LN Gentleman-North Platte 230 kV circuit 1 LN Gentleman-North Platte 230 kV circuit 2 LN Gentleman-North Platte 230 kV circuit 3	System Intact	\$34,002,078	NTC for Gentleman- Cherry CoHolt 345 kV (2012 ITP10)
TMP109_22593	LN Stonewall-Tupelo 138 kV	LN Seminole-Pittsburg 345 kV	\$31,746,284	NTC for Tupelo 138 kV terminal upgrades (July 2021, 2017 ITP10)
NEORIVNEOBLC	LN Neosho-Riverton 161 kV	LN Neosho-Blackberry 345 kV	\$18,063,262	Neosho-Riverton 161kV rebuild (October 2023, ATSS SPP-2019- AG1-AFS-2)
TMP226_24352	LN Mathewson- Northwest 345 kV	LN Mathewson- Cimarron 345 kV	\$14,806,741	2019 ITP approved terminal upgrades
TEMP89_22229	LN Anadarko-Gracemont 138 kV	LN Washita- Southwestern 138 kV	\$14,786,648	2019 ITP approved Anadarko- Gracemont 138 kV circuit 1 Rebuild
WICXF2WICXF1	XF Wichita 345/138 kV circuit 2	XF Wichita 345/138 kV circuit 1	\$13,212,822	2014 ITP Near- Term, Viola- Sumner County 138 kV
TEMP72_22893	LN Wolf Creek-Waverly 345 kV	XF Wolf Creek 345/69 kV	\$11,353,483	2019 ITP approved Wolf Creek- Blackberry 345 kV

Table 4.7: Economic Operational Needs

The constraints in Table 4.8 had associated upgrades in place which have reduced or eliminated loading of the associated constraint.

Constraint	Monitored Element	Contingent Element	Congestion Cost	Notes
SUNAMOTOLYOA	LN Sundown- Amoco 230 kV	LN Tolk-Yoakum 230 kV	\$28,915,221	Terminal equipment upgrades (2016 ITPNT), has not loaded since ratings update on 12/19/19
VINHAYPOSKNO	LN Vine Tap-North Hays 115 kV	LN Postrock-Knoll 230 kV	\$15,194,807	Parallel Postrock-Knoll 230 kV (2017 ITP10), has not loaded since completion of project Q4 2018
TMP151_23193	LN Oakland North- Atlas Junction 161 kV	LN Asbury-Purcell 161 kV	\$13,426,140	Upgrade (Non-Public)

Table 4.8: Economic Operational Needs

4.4.2 RELIABILITY OPERATIONAL NEEDS

There were no reliability operational needs identified during the 2020 ITP assessment.

4.5 NEED OVERLAP

Relationships identified among the various need types aid in development of the most valuable regional solutions. SPP staff identified relationships among the economic needs to both the base reliability needs and informational economic operational needs.

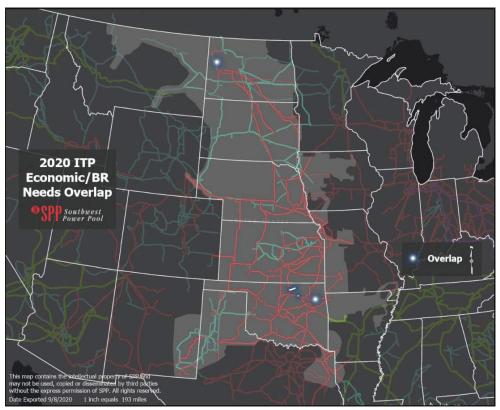


Figure 4.12: Base Reliability and Economic Need Overlap

Overlapping Reliability and Economic Needs

Cleveland AECI-Cleveland GRDA 138 kV for the loss of Cleveland-Tulsa North 345 kV Watford 230/115 kV transformer 1 for the loss of Watford 230/115 kV transformer 2 Webb City Tap-Osage 138 kV for the loss of Sooner-Cleveland 345 kV GRDA 345/161 kV transformer 1 for the loss of GRDA 345/161 kV transformer 2

Table 4.9: Overlapping Reliability and Economic Needs

Overlapping Informational Operational and Economic Needs

Cimarron 345/138 kV transformer 1 for the loss of Cimarron 345/138 kV transformer 2

Scotts Bluff-Victory Hill 115 kV for the loss of Stegall 345/230 kV transformer

Russett-South Brown 138 kV for the loss of Little City-Brown Tap 138 kV

Neosho-Riverton 161 kV for the loss of Blackberry-Neosho 345 kV

Cleveland AECI-Cleveland GRDA 138 kV for the loss of Cleveland-Tulsa North 345 kV

Table 4.10: Overlapping Informational Operational and Economic Needs

4.6 ADDITIONAL ASSESSMENTS

Additional assessments were performed to satisfy SPP tariff requirements involving parts of the transmission system that were not included in the approved model sets.

4.6.1 GRIDLIANCE HIGH PLAINS

GridLiance High Plains (GLHP) performed its local planning process assessment in 2019 and identified two new transmission upgrades required to meet local planning process needs. To satisfy its own NERC and tariff requirements, GLHP requested SPP to exercise the requirements under FAC-002 and Attachment O, Section II.1(e), of the tariff to perform a no-harm analysis on the proposed upgrades and coordinate the upgrades with the potential solutions of the 2020 ITP assessment.

An analysis was performed to satisfy these obligations by determining the impact of including the proposed local planning process upgrades in the 2020 ITP base reliability and market powerflow model sets. After performing the no-harm study on the projects, two overload violations were identified as resultant of one the GLHP local planning projects. GridLiance then identified discrepancies between SPP's models and their internal models which had higher MVA capacity on the violated lines. The project in question was resubmitted with additional rating corrections and no further violations were discovered. Therefore, no new transmission needs or violations were identified on the existing system due to the proposed local planning process upgrades.

Upgrades	Cost Est. (millions)	Location	Proposed ISD
Goodwell-Red Devil 115 kV line, Red Devil substation	16	Oklahoma	2023
expansion, and Goodwell-Y-Road115 kV terminal equipment		Panhandle	2023
Winfield Tie 69 kV new substation,14.4 MVAR capacitor	8	Southern	2022
bank		Kansas	

Table 4.11: Upgrades identified in GridLiance local planning assessment in 2019

5 SOLUTION DEVELOPMENT AND EVALUATION

Solutions were evaluated in each applicable scenario and modeled to determine their effectiveness in mitigating the needs identified in the needs assessment. The project solutions assessed included the Federal Energy Regulatory Commission (FERC) Order 1000 and Order 890 solutions submitted by stakeholders, SPP staff, projects submitted in previous planning studies, and model adjustments/corrections. MISO staff also provided a subset of solutions identified in the MTEP20 for evaluation in SPP models. SPP staff analyzed 1,577 Detailed Project Proposals (DPP) solutions received from stakeholders and approximately 626 SPP staff solutions (including those provided by MISO as well as additional solutions developed during portfolio development). SPP staff members developed a standardized conceptual cost template to calculate a conceptual cost estimate for each project to utilize during screening.

5.1 RELIABILITY PROJECT SCREENING

Solutions were tested in each powerflow model to determine their ability to mitigate reliability criteria violations in the study horizon. To be considered effective, a solution must have been able to address the needs such that the identified facilities were within acceptable limits defined in the SPP Criteria and members' more stringent local planning criteria. Figure 5.1 illustrates the reliability project screening process.

Reliability metrics developed by SPP staff and stakeholders and approved by the TWG were calculated for each project and used as a tool to aid in developing a portfolio of projects to address all reliability needs. The first metric is cost per loading relief (CLR) score, which relates the amount of thermal loading relief a solution provides to its engineering and construction (E&C) cost. The second metric is cost per voltage relief (CVR) score, which relates the amount of voltage support a solution provides to its E&C cost.

Figure 5.1: Reliability Screening Process

5.2 ECONOMIC PROJECT SCREENING

All solutions were evaluated for their economic performance to determine their effectiveness in mitigating transmission congestion in the study horizon. A one-year benefit-to-cost (B/C) ratio and a 40-year net present value (NPV) B/C ratio were calculated for each project based on its projected APC savings in each future and study year.

The annual change in APC for all SPP pricing zones is considered the one-year benefit to the SPP region for each study year. The one-year benefit is divided by the one-year cost of the project to develop a B/C ratio for each project. The one-year cost, or projected annual transmission revenue requirement (ATRR), is calculated using a historical SPP average net plant carrying charge (NPCC) multiplied by the project conceptual cost. The NPCC used for this assessment was 16.38 percent. The 40-year project cost is calculated using this NPCC, an eight percent discount rate and a 2.5 percent inflation rate.

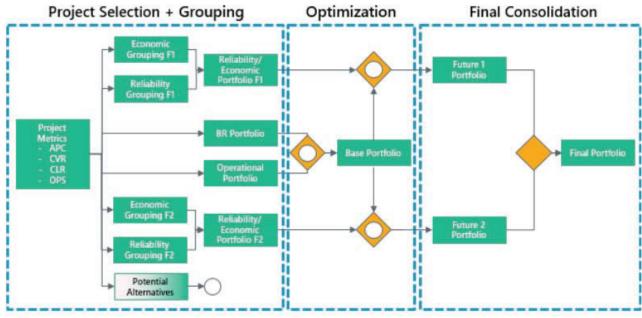
The correlation of congestion in different areas of the system was identified and accounted for during the economic screening process. Where appropriate, this included adding new flowgates to screening simulations to ensure potential congestion created by projects would be captured, as well as pairing certain projects to ensure correlated congestion would be resolved by a more comprehensive solution set. These adjustments ensure the projected benefits of projects are not over- or under-stated.

5.3 SHORT-CIRCUIT PROJECT SCREENING

Solutions submitted to address overdutied breakers were reviewed to ensure the updated breaker ratings submitted were greater than the maximum available fault current identified in the short-circuit needs assessment.

5.4 PUBLIC POLICY PROJECT SCREENING

No public policy needs were identified in the 2020 ITP; therefore, no projects were analyzed during the public policy project screening.


5.5 PERSISTENT OPERATIONAL PROJECT SCREENING

In October 2019, the MOPC approved a waiver of the requirement to evaluate solutions against the economic operational needs associated with flowgates in the 2020 ITP assessment due to identified software limitations. Due to this approved waiver, no projects were analyzed during persistent operational project screening.

6 PORTFOLIO DEVELOPMENT

6.1 PORTFOLIO DEVELOPMENT PROCESS

Figure 6.1 shows a high-level overview of the portfolio development process. The process starts with the utilization of project metric results in project grouping and continues through the development of a consolidated portfolio that comprehensively addresses the system's needs.

Optimization with consideration of potential alternatives

Individual project review including assessment of unmet needs, while ensuring must-fix needs are addressed

Figure 6.1: Portfolio Development Process

6.2 PROJECT SELECTION AND GROUPING

Once all solutions were screened, draft groupings were developed in parallel to address the different need types across the system. SPP used Study Estimates and stakeholder feedback from regularly-scheduled working group meetings, the July 2020 SPP transmission planning summit, and SPP's Request Management System.

6.2.1 STUDY ESTIMATES

Solutions that performed well using the screening assessments described in section 5, Solution Development and Evaluation were sent out for the development of Study Estimates (final project cost within ±30 percent). In cases where the cost estimate was not received before the July 2020 SPP transmission planning summit, conceptual cost estimates were utilized. Individual project upgrades with

the potential to be deemed competitive were sent to a third-party cost estimator. Remaining project upgrades were sent to the incumbent transmission owner(s). Once the study estimates were received, that cost was used for the remainder of the portfolio development process.

6.2.2 RELIABILITY GROUPING

A programmatic method was used to compare the metric results for the extensive number of solutions to be evaluated. Using this solution selection software, a subset of solutions was generated by considering the metrics described in section 5.1. During this process, SPP staff applied engineering judgment to develop a draft list of selected and high-performing alternate solutions. This analysis was performed for each of the base reliability, Future 1, and Future 2 reliability needs.

The list of reliability solutions was continually refined through stakeholder feedback. Figure 6.2 below shows the final reliability grouping selected to address the valid list of reliability needs in the 2020 ITP.

Project	Area	Cost	Scenario ¹⁹
Grady 138 kV capacitor bank	AEPW	\$688,781	22S / BR
South Shreveport-Wallace Lake 138 kV rebuild	AEPW	\$23,622,577	25S / BR
Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV rebuild	OKGE	\$5,362,799	25S / BR
S3456-S3458 345 kV terminal equipment	OPPD	\$678,865	30S / BR
Allen-Lubbock South 115 kV rebuild	SPS	\$6,817,226	22S / BR
Allen-Quaker 115 kV rebuild	SPS	\$4,732,267	22S / BR
Bushland-Deaf Smith 230 kV terminal equipment	SPS	\$923,938	22L / BR
Carlisle-Murphy 115 kV rebuild	SPS	\$4,746,175	22S / BR
Deaf Smith-Plant X 230 kV terminal equipment	SPS	\$2,100,196	22L / BR
Deaf Smith #6-Friona 115 kV rebuild	SPS	\$12,626,190	22L / BR
Deaf Smith #6-Hereford 115 kV rebuild	SPS	\$6,660,556	22L / BR
Eddy County-North Loving 345 kV new line	SPS	\$64,422,600	30S / BR
Jones-Lubbock South 230 kV terminal equipment circuit 1	SPS	\$666,728	30S / BR
Jones-Lubbock South 230 kV terminal equipment circuit 2	SPS	\$397,668	30S / BR
Lubbock South-Wolfforth 230 kV terminal equipment and clearance increase	SPS	\$872,391	22S / BR
Maljamar 115 kV capacitor bank	SPS	\$685,440	30S / F1
Newhart-Plant X 230 kV terminal equipment	SPS	\$2,024,293	22L / BR
Newhart-Potter County 230 kV terminal equipment	SPS	\$731,282	22L / BR
Replace Roswell 115/69 kV transformer #1	SPS	\$2,777,743	22S / BR

¹⁹ This is the earliest season.

Project	Area	Cost	Scenario ¹⁹
Russell 115 kV capacitor bank	SUNC	\$2,841,951	22S / F1,F2
Nixa-Nixa Espy 69 kV terminal equipment	SWPA	\$91,147	25S / BR
Agate 115 kV reactor	WAPA	\$571,200	22L / F1,F2
Bismarck 115 kV reactors	WAPA	\$2,380,700	22L / BR,F2
Devil's Lake 115 kV reactor	WAPA	\$1,190,000	22L / F1,F2
Moorehead 230 kV reactor	WAPA	\$1,515,440	22S / F1,F2
Richmond 115 kV substation, Richmond 115/69 kV transformer, Richmond-Aberdeen 115 kV line	WAPA	\$11,394,000	22L / BR
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	WAPA	\$3,562,780	22L / BR
Circleville-Goff 115 kV circuit 1 rebuild	WERE	\$12,114,772	25S / BR
Goff-Kelly 115 kV rebuild	WERE	\$7,108,395	25S / BR
Meadowlark-Tower 33 115 kV rebuild	WERE	\$1,342,588	30S / BR

Table 6.1: Reliability Project Grouping

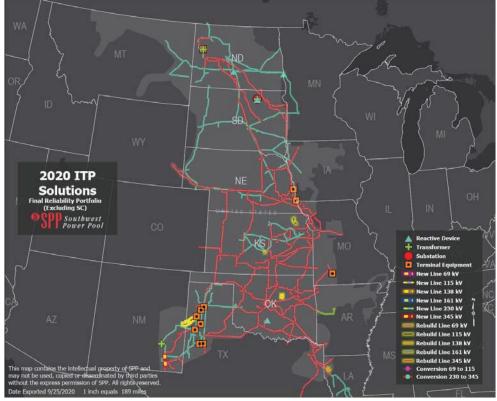


Figure 6.2: Reliability Project Grouping

6.2.3 SHORT-CIRCUIT GROUPING

The solutions submitted to address overdutied breakers identified in the short-circuit needs assessment were grouped together as a set of solutions to address the short-circuit needs. No testing was required for these solutions because the submitted breaker upgrades only need to be rated higher than the maximum fault current identified in the needs assessment. Table 6.2 summarizes the final short-circuit grouping, while Figure 6.3 shows the approximate location of identified projects within the SPP footprint.

Reliability Project	Area	Cost	Scenario
Replace three breakers at Northeast 161 kV	KCPL	\$887,479	22S / BR
Replace one breaker at Stilwell 161 kV	KCPL	\$566,485	22S / BR
Replace one breaker at Leeds 161 kV	KCPL	\$566,485	22S / BR
Replace one breaker at Shawnee Mission 161 kV	KCPL	\$566,485	22S / BR
Replace one breaker at Southtown 161 kV	KCPL	\$566,485	22S / BR
Replace two breakers at Lake Road 161 kV	KCPL	\$1,132,970	22S / BR
Replace two breakers at Craig 161 kV	KCPL	\$1,132,970	22S / BR
Replace four breakers at Anadarko 138 kV	WFEC	\$850,000	22S / BR

Table 6.2: Short-Circuit Project Grouping

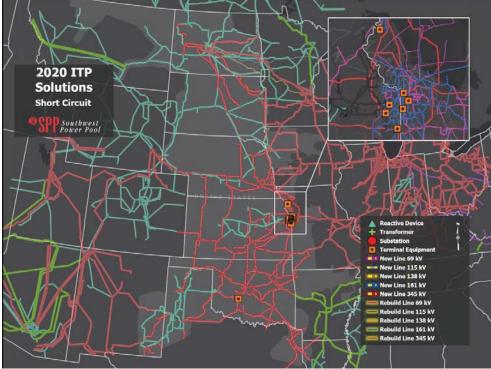


Figure 6.3: Short-Circuit Project Grouping

6.2.4 ECONOMIC GROUPING

All projects with a one-year B/C ratio of at least 0.5 or a 40-year NPV B/C ratio of at least 1.0 during the project screening phase were further evaluated while developing project groupings. Projects were evaluated and grouped based on one-year project cost, one-year APC benefit, 40-year project cost, 40-year NPV B/C ratio, and congestion relief for the economic needs.

Three economic project groupings were developed for each future, resulting in six total groupings:

- 1. Cost-Effective (CE): Projects with the lowest cost per congestion cost relief for a single economic need
- 2. Highest Net APC Benefit (HN): Projects with the highest APC benefit minus project cost, with consideration of overlap if multiple projects mitigate congestion on the same economic needs
- 3. Multi-variable (MV): Projects selected using data from the two other groupings; including the flexibility to use additional considerations

The following factors were considered when developing and analyzing project groupings per future:

- One-year project cost, APC benefit, and B/C ratio
- 40-year NPV cost, APC benefit, and the B/C ratio
- Congestion relief a project provides for the economic needs of that future and year
- Project overlap, or when two or more projects that relieve the same congestion are in a single portfolio
- Potential for a project to mitigate multiple economic needs
- Any potential routing or environmental concerns with projects
- Any long-term concerns about the viability of projects
- Seams and non-seams project overlap
- Relief of downstream and/or upstream issues, tested by event file modification
- Potential for a project to mitigate reliability, operational or public policy needs, which covers current market congestion
- Potential for a project to address non-thermal issues
- Need for new infrastructure versus leveraging existing infrastructure
- Larger-scale solutions that provide more robustness and additional qualitative benefits

Table 6.3 identifies a comprehensive list of economic projects included in the four initial groupings. Some projects appeared in multiple groupings.

	F	1	F	2
Project Description	CE	HN	CE	HN
Fort Peck 230/115 kV transformer replacement	X	Χ	Χ	Χ
Watford 230/115 kV transformer circuit 1 terminal equipment and circuit 2 replacement	Х	Х	Х	Х
Lyon 345/115 kV transformer replacement	X	Χ	Χ	Χ
Blue River-Parklane 138 kV terminal equipment	_	_	Χ	Χ
Russett-South Brown 138 kV rebuild	Х	Χ	Χ	Χ
Kelly 161/115 kV terminal equipment	X	Х	Χ	Χ
Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV	X	Χ	Χ	Χ

	F	1	F2	
Project Description	CE	HN	CE	HN
Airport 115/69 kV substation and transformer, Airport-Sioux City 115 kV new line	-	-	Х	Х
Anadarko-Southwest Station 138 kV terminal equipment	Х	Х	-	-
GRDA 1 345/161 kV circuit 1 and circuit 2 terminal equipment	Х	Х	-	-
Ogallala-Ogallala 115 kV terminal equipment	Χ	Х	Χ	Х
Hugo-Valliant 138 kV terminal equipment	Х	Х	Χ	Х
Atwood-Colby 115 kV terminal equipment, Hoxie-Beach-Redline 115 kV terminal equipment	X	X	-	-
Columbus East 230/115 kV transformer replacement	X	X	Χ	X
Sioux City-Twin Church 230 kV terminal equipment	Χ	Χ	-	-
Franks-South Crocker-Lebanon 161 kV terminal equipment	Χ	Χ	Χ	Χ
Pleasant Valley 345/138 kV station, Pleasant Valley-Minco 345 kV new line	_	Χ	-	Χ
Cimarron South 345/138 kV station, Cimarron South-Minco 345 kV new line, Quail Creek-Skyline 138 kV rebuild, re-terminate nearby 345 and 138 kV lines into new station	X	-	X	-
Oahe-Sully Buttes-Whitlock-Glenham 230 kV terminal equipment	Χ	Χ	Χ	Χ
Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal upgrades	Χ	X	Χ	Χ
Victory Hill-Scottsbluff 115 kV and Alliance-Snake Creek 115 kV rebuild	Χ	-	-	-
Second Stegall 345/230 kV transformer, Stegall-Stegall 230 kV new line, Alliance- Snake Creek 115 kV rebuild	_	Х	-	_
Tecumseh Hill-Stull-Mockingbird 115 kV rebuild	Χ	Х	Χ	Χ

Table 6.3: Economic Project Grouping

6.2.4.1 Project Subtraction Evaluation

Draft groupings were developed using project screening results, which tests projects by incrementally adding changes to the base market economic models. When assessing a group of economic solutions, it is necessary to re-evaluate project performance within the grouping to ensure the projected APC benefit of each project in the grouping remains supportive of the required B/C ratio thresholds. "Subtraction evaluation" is used to identify when multiple projects can provide congestion relief to a constraint or projects that are dependent on each other to relieve overall system congestion. New sets of "base cases" were created by adding the solutions included in each grouping along with relevant model adjustments, corrections, and market powerflow model projects required to meet the future's needs. All economic projects were then removed from the models individually to determine each project's APC impact compared to the new base case. Projects that did not meet a 1.0 B/C ratio from the subtraction evaluation were removed from the grouping. This subtraction evaluation was repeated for each grouping until all remaining projects maintained a minimum B/C ratio of 1.0 over 40 years.

6.2.4.2 Final Economic Groupings

The selected grouping for each future was the grouping that provided the highest net benefit to the SPP region when comparing APC savings to the cost of the projects. The cost-effective grouping was selected for Future 1, while the highest net grouping was selected for Future 2. Table 6.4 shows the final list of projects included in each grouping.

		F1	F	2
Description	CE	HN	CE	HN
Arbuckle-Blue River 138 kV terminal equipment	-	-	Χ	-
Fort Peck 230/115 kV transformer replacement	-	Х	-	-
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	Х	Χ	Χ	Χ
Blue River-Parklane 138 kV terminal equipment	-	-	Х	-
Anadarko-Gracemont 138 kV rebuild as double-circuit	Х	Χ	Χ	-
Russett-South Brown 138 kV rebuild	Х	Х	Х	Χ
Kelly 161/115 kV terminal equipment	-	-	Χ	-
Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV	Х	Х	Х	Х
GRDA 1 345/161 kV circuit 1 & circuit 2 terminal equipment	Х	Χ	Χ	-
Hugo-Valliant 138 kV terminal equipment	-	-	Х	-
Columbus East 230/115 kV transformer replacement	-	Χ	Χ	-
Split Rock 345/115 kV circuit 10 and 11 terminal equipment	-	-	Х	Х
Franks-South Crocker-Lebanon 161 kV terminal equipment	Х	Χ	-	-
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	Х	Х	-	Х
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment	-	-	-	Χ
Oahe-Sully Buttes-Whitlock-Glenham-Campbell 230 kV terminal equipment	-	Х	Х	-
Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal upgrades	Х	Χ	Χ	Х
Cimarron 345/138 kV circuit 3 Transformer, Cimarron-Czech Hall 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment	X	-	Х	-
Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in	-	X	-	X
Anadarko-Gracemont 138 kV rebuild; Anadarko-Southwest Station 138 kV terminal equipment	-	-	-	Х

Table 6.4: Final Economic Project Grouping

Figure 6.4 and Figure 6.5 show the approximate location of identified projects within the SPP footprint.

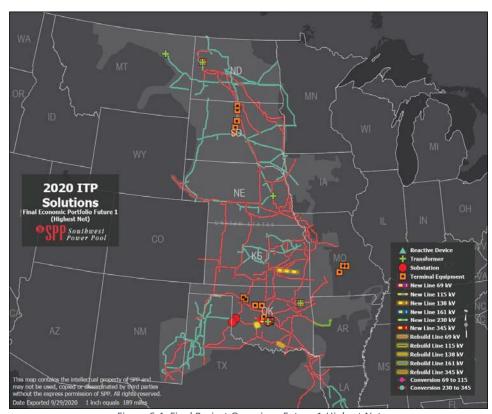


Figure 6.4: Final Project Groupings-Future 1-Highest Net

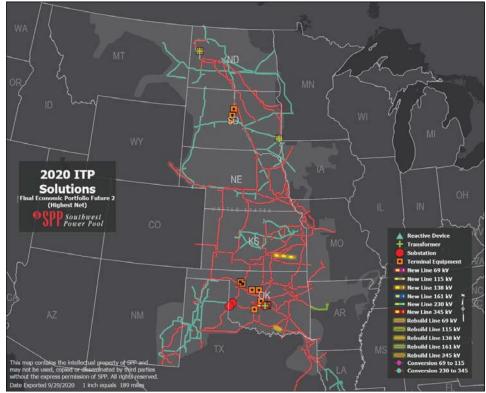


Figure 6.5: Final Groupings-Future 2-Highest Net APC

Table 6.5 shows a summary of benefits, costs, net APC benefit, and B/C ratios. Based on the net APC benefits detailed below, the grouping with the highest net APC benefit in each future was selected as the future's final portfolio.

Grouping	Y5 Benefit (\$M)	Y10 Benefit (\$M)	40-Year Benefit (\$M)	40-Year NPV Cost (\$M)	40-Year Net Benefit (\$M)	Y5 B/C	Y10 B/C	40-Year B/C	Selected Portfolio
F1 CE	\$55.7	\$82.6	\$1,528	\$352.3	\$1,176	1.50	2.22	4.34	
F1 HN	\$63.4	\$97.8	\$1,821	\$514.7	\$1,306	1.17	1.80	3.54	X
F2 CE	\$60.7	\$106.2	\$2,012	\$316.1	\$1,696	1.82	3.19	6.36	
F2 HN	\$83.5	\$131.8	\$2,462	\$474.3	\$1,987	1.67	2.64	5.19	Х

Table 6.5: Final Groupings-Benefit Cost, Net Benefits, and B/C Ratios

Figure 6.6 shows a 40-year B/C comparison of all the final groupings.²⁰

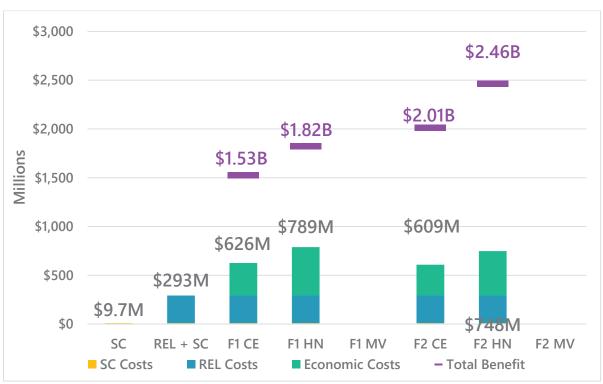


Figure 6.6: Final Groupings-Benefits and Costs Comparison

6.2.5 MISO RDT TARGET AREA

In order to mitigate impacts to the SPP transmission system due to transfers between the MISO Midwest and MISO South regions, a number of projects were considered. The flowgate that showed the greatest potential benefit to both MISO and SPP was the Raun-Tekamah 161 kV. Three of the foremost projects

²⁰ The 40-year costs represented in this figure are based upon the final net plant carrying charge.

during the analysis period were a new Raun-Council Bluffs 345 kV line, a new Raun-S3452 345 kV line, and a new Raun-S3451 345 kV line. These projects would create a strong corridor to alleviate constraints on the Raun-Tekamah flowgate. Figure 6.7 shows the approximate locations of identified projects.

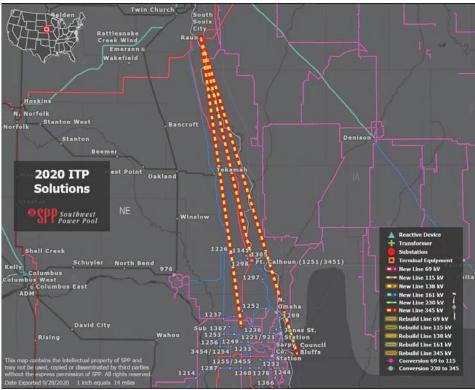


Figure 6.7: Potential SPP-MISO CSP Solutions

For a summary of SPP project cost, MISO and SPP benefits, and interregional cost sharing, see the information presented at the September 25, 2020 MISO-SPP IPSAC net conference.²¹

Due to differing methodologies between MISO and SPP when calculating benefits and project costs, the two RTOs decided not to pursue any projects in this area as part of the 2020 ITP. SPP is further investigating the differences in cost estimation, but did not have the time remaining in the schedule to address these differences in the 2020 ITP. These projects will continue to be investigated in future studies.

6.2.6 SPS-NEW MEXICO TIES INTERFACE

It was understood by SPP staff and communicated to stakeholders that the SPSNMTIES Interface would require a comprehensive solution to increase import capability into eastern New Mexico and sufficiently address system low voltage and voltage stability limits to support increased transfers of economic energy. Additional portfolio development considerations should also be given to the significant 702 MW combined

²¹ CSP results for Raun-Council Bluffs and Raun-S3451 were presented at 09/25/2020 MISO-SPP IPSAC Net Conference (https://www.spp.org/Documents/63046/SPP-MISO%20IPSAC%20Meeting%20Materials%2020200925.zip)

cycle conventional resource plan unit and associated generator outlet facility²² assumed in the eastern New Mexico area.

The transmission solutions screened included numerous combinations of existing reactive setting and configuration adjustments, new static and dynamic reactive devices, and additional HV and EHV facilities extending beyond the Eastern New Mexico area. Reliability project screening on AC power transfer models, results from the New Mexico Ties Interface Guidelines, and the study scope were used to identify top ranked solutions needing further review. Preliminary ranking results produced high-cost projects ranging from greater than \$100 million to greater than \$700 million to address system criteria violations for seven incremental transfer levels tested and resulting new interface ratings. Before further review of these preliminary results and additional solution evaluation, a relaxation run was performed on the SPSNMTIES interface by removing the constraint to determine potential APC Savings benefit and potential minimum project cost that would result in a 40-year NPV B/C ratio of at least 1.0.

	Y5 Benefit (\$M)			40-Year B/C	Project Cost (\$M)	
F1	\$57.6	\$82.7	\$1,317	1.00	\$749.0	
F2	\$188.0	\$120.9	\$1,481	1.00	\$842.7	

Table 6.6: Potential APC Savings Benefit and Project Cost (\$2025 Dollars)

The potential APC savings indicated that the high cost projects identified in the preliminary ranking results may prove to be economically justified and support further solution evaluation efforts. However, given ITP schedule, resource constraints and the complex nature of the solution evaluation needed by SPP staff and stakeholders to address the interface congestion, it was determined to delay any action on the congested interface to future ITP cycles and focus efforts on resolving the base reliability and market powerflow model reliability needs in eastern New Mexico.

Ultimately, no firm project selection was made for the economic issues.

6.3 OPTIMIZATION

The projects included in the reliability groupings were selected based on their ability to be cost-effective, maintain reliability, and meet the system's compliance needs. The economic projects were selected for their ability to provide ratepayer benefits from lower-cost energy by mitigating system congestion and improving markets for both buyers and sellers. The project groupings discussed previously were developed based on criteria specific to their need and model type. Reliability groupings specific to each future were evaluated to determine their impact on each economic grouping. Once those comprehensive future specific portfolios were developed, the impact of the base reliability portfolio was assessed.

²² The generator outlet facility identified for the 702 MW combined cycle conventional resource plan unit sited at the Sidewinder site can be found in Table 2.4. Both resource plan unit and generator outlet facility have load serving and economic energy delivery qualities and would be part of a comprehensive solution unless a transmission only solution proved overwhelmingly cost-beneficial without the combined cycle conventional resource plan unit assumed in the Eastern New Mexico Area.

One project, the upgrades of both Watford 230/115 kV transformers, was identified in both the reliability and economic portfolios. Additional economic project subtraction analysis performed to determine the impact of the base reliability portfolio identified the removal of the Fort Peck 230/115 kV transformer replacement from the Future 1 portfolio. No impact to the reliability portfolio was identified.

6.4 PORTFOLIO CONSOLIDATION

Stakeholders determined the two futures assessed in the 2020 ITP would be treated equally to determine the consolidated portfolio. When determining whether projects should move forward into the consolidated portfolio, three scenarios could occur:

- 1. The same project was identified in each future,
- 2. Two projects were competing against each other, or
- 3. A single project was identified in only one future.

If the same project was identified in both futures, that project would move forward into the consolidated portfolio. For the remaining scenarios, an independent method was necessary to assess each project and determine which, or if, those projects should move forward in the process.

To evaluate these scenarios, SPP and its stakeholders developed a comprehensive scoring rubric considering both quantitative and qualitative metrics. Quantitative metrics included APC and the percentage of congestion relieved. Qualitative metrics included giving credit to projects able to address operational congestion or non-thermal issues. Table 6.7 details the scoring rubric as well as some of the minimum criteria projects had to meet to receive points. SPP staff and stakeholders agreed that although this scoring methodology is a good way to measure a project's effectiveness, it should not be the only input to project selection. Stakeholders and SPP staff agreed a project narrative might be necessary when a preferred project is recommended against the results of the consolidation process.

All short-circuit and reliability projects were included in the consolidated portfolio; therefore, consolidation considerations in this assessment applied to economic projects only. A detailed description of the consolidation methodology and scoring rubric can be found in the 2020 ITP Scope.

No.	Consideration	Possible Points	Project Score
MO.		FUIIICS	
1	40-year (1-year) APC B/C ratio in selected future		1.0 (0.9)
	40-year (1-year) APC B/C ratio in opposite future	50	0.8 (0.7)
	40-year (1-year) APC net benefit in selected future (\$M)	30	N/A
	40-year (1-year) APC net benefit in opposite future (\$M)		N/A
2	Congestion relieved in selected future (by need(s), all years)	10	N/A
	Congestion relieved in opposite future (by need(s), all years)	10	N/A
3	Operational congestion costs or reconfiguration (\$M/year or	10	> 0
3	hours/year)	10	>0
4	New EHV	7.5	Y/N
5	Mitigate non-thermal issues	7.5	Y/N
6	Long-term viability (e.g., 2013 ITP20) or improved Auction Revenue	5	V/N
U	Right (ARR) feasibility	3	Y/N
	Total Points Possible:	100	

Table 6.7: Consolidated Portfolio Scoring Consolidation Scenario One

Six economic projects were included in both the Future 1 and Future 2 final portfolios; they were also included in the consolidated portfolio. These projects are:

- Russett-South Brown 138 kV rebuild
- Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV
- Franks-South Crocker-Lebanon 161 kV terminal equipment
- Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line
- Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal equipment
- Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in

6.4.1 CONSOLIDATION SCENARIO TWO

Consolidation scenario two occurred when a different project was identified to solve the same or similar economic needs in each future. When this scenario occurred, it was clear a project was needed to address congestion in the models, but the consolidation methodology would be used to identify the better project. For this scenario, the scoring rubric identified in Table 6.7 was used to score the projects and determine which project should move forward into the consolidated portfolio.

In the 2020 ITP, two instances of scenario two occurred. These instances and their scoring are detailed in Table 6.9. Winning projects based on the consolidation scoring are shown in bold.

Project	Driving Future	APC Benefit	Congestion Relieved	Operational Congestion	New EHV	Non- Thermal	Long- term Viability	Total
Oahe-Sully Buttes- Whitlock-Glenham- Campbell 230 kV terminal equipment	1	0	20	0	0	0	0	20
Oahe-Sully Buttes- Whitlock 230 kV terminal equipment	2	50	20	0	0	0	0	70

Table 6.8: Consolidation Scenario Two Scoring

Project	Driving Future	APC Benefit	Congestion Relieved	Operational Congestion	New EHV	Non Thermal	Long- term Viability	Total
Anadarko-Gracemont 138 kV rebuild as double-circuit	1	46.2	20	10	0	0	0	76.2
Anadarko- Gracemont rebuild, Anadarko- Southwest Station terminal equipment 138 kV	2	50	17.9	10	0	0	0	77.9

Table 6.9: Consolidation Scenario Two Scoring

Although the Gracemont-Anadarko rebuild and Southwest Station-Anadarko terminal equipment scored higher, SPP staff recommended moving forward with the Gracemont-Anadarko double-circuit instead of

the rebuild recommended by the scoring. The single circuit rebuild of Anadarko-Gracemont did not fully resolve the congestion in the area (hence the 17.9 vs. 20 score for that consideration), and SPP staff concluded that congestion in the area will continue to increase. The double circuit resolves the congestion fully, while also provides an additional path from the 345 kV hub at Gracemont. For these reasons, SPP staff recommended the double circuit instead.

6.4.2 CONSOLIDATION SCENARIO THREE

Consolidation scenario three occurred when a project was identified in only one of the two final future portfolios. When this situation occurred, the question remained whether a project driven by a single future should ultimately be recommended. For this scenario, the scoring rubric was used as a way to identify if a project should be included in the consolidated portfolio by achieving a minimum score of 70 points. Projects that did not meet the minimum scoring threshold but were recommended to be included have additional qualitative information justifying their inclusion.

GRDA 345/161 kV Transformer

The GRDA 345/161 kV transformer replacement originated from the Future 1 portfolio. The project performed well when compared to expected congestion in both futures, as well as resolved current operational needs. Therefore, the transformer replacement was added to the final portfolio.

No.	Consideration	Possible Points	Project Score		
1	APC net benefit and B/C ratio in selected future	Γ0	Γ0		
ı	APC net benefit and B/C ratio in opposite future	50	50		
2	Congestion relieved in selected future (by need(s), all years)	10	19.9		
	Congestion relieved in opposite future (by need(s), all years)	10			
3	Operational congestion costs or reconfiguration (\$M/yr or hrs/yr)	10	10		
4	New EHV	7.5	0		
5	Mitigate non-thermal issues	7.5	0		
6	Long-term viability (e.g., 2013 ITP20) or improved ARR feasibility	5	0		
	Total Score (minimum 70	threshold)	79.9		

Table 6.10: GRDA 345/161 kV transformer Consolidation Scoring

Columbus East 230/115 kV transformer

The Columbus East transformer replacement also originated from the Future 1 portfolio. This project did well in both futures while also addressing current operational congestion, ultimately resulting in inclusion in the final portfolio.

No.	Consideration	Possible Points	Project Score
1	APC net benefit and B/C ratio in selected future	Ε0	Γ0
	APC net benefit and B/C ratio in opposite future	50	50

No.	Consideration	Possible Points	Project Score			
2	Congestion relieved in selected future (by need(s), all years)	10	20			
2	Congestion relieved in opposite future (by need(s), all years)	10	20			
3	Operational congestion costs or reconfiguration (\$M/yr or hrs/yr)	10	9			
4	New EHV	7.5	0			
5	Mitigate non-thermal issues	7.5	0			
6	Long-term viability (e.g., 2013 ITP20) or improved ARR feasibility		0			
	Total Score (minimum 70 threshold)					

Table 6.11: Columbus East 230/115 kV transformer Consolidation Scoring

<u>Lebanon-Franks-Crocker 161 kV terminal equipment</u>

The Lebanon-Franks-Crocker 161 kV terminal equipment upgrade also originated from the Future 1 portfolio. This project did well in both futures, but did not address any current operational needs. It also did not qualify for additional points via considerations 4 through 6. However, it did reach the minimum threshold of 70 points, resulting in final portfolio inclusion.

No.	Consideration	Possible Points	Project Score			
1	APC net benefit and B/C ratio in selected future	Γ0	Γ0			
1	APC net benefit and B/C ratio in opposite future	50	50			
2	Congestion relieved in selected future (by need(s), all years)	10	20			
	Congestion relieved in opposite future (by need(s), all years)	10				
3	Operational congestion costs or reconfiguration (\$M/yr or hrs/yr)	10	0			
4	New EHV	7.5	0			
5	Mitigate non-thermal issues	7.5	0			
6	Long-term viability (e.g., 2013 ITP20) or improved ARR feasibility	5	0			
	Total Score (minimum 70	threshold)	70			

Table 6.12: Lebanon-Franks-Crocker 161 kV terminal equipment Consolidation Scoring

Split Rock 345/115 kV Transformer

The Split Rock 345/115 kV transformer originated from the Future 2 portfolio. This project did well in both futures. However, it did not qualify for any points from considerations 3 through 6 and did not reach the 70 point threshold. It did not resolve any operational congestion within the two-year span (6/1/2018-6/1/2020) considered for consolidation. However, the Split Rock transformer began experiencing congestion after that time period. Due to this fact, SPP staff chose to include that congestion in consideration 3.

No.	Consideration	Possible Points	Project Score
1	APC net benefit and B/C ratio in selected future	50	50

No.	Consideration	Possible Points	Project Score		
	APC net benefit and B/C ratio in opposite future				
2	Congestion relieved in selected future (by need(s), all years)	10	19.9		
2	Congestion relieved in opposite future (by need(s), all years)	10	19.9		
3	Operational congestion costs or reconfiguration (\$M/yr or hrs/yr)		0.1		
4	New EHV		0		
5	Mitigate non-thermal issues	7.5	0		
6	Long-term viability (e.g., 2013 ITP20) or improved ARR feasibility	5	0		
	Total Score (minimum 70 threshold)				

Table 6.13: Lebanon-Franks-Crocker 161 kV terminal equipment Consolidation Scoring

6.5 FINAL CONSOLIDATED PORTFOLIO

The consolidated portfolio includes the reliability projects addressing both steady state and short-circuit needs, as well as the consolidated set of economic projects that met the consolidation criteria. The consolidated portfolio totals \$500.2M and is projected to create \$1B to \$2B in APC savings under Future 1 or Future 2 assumptions, respectively. **Error! Reference source not found.** lists the projects included in the final consolidated portfolio along with their classifications and costs. Benefit data reported in this section includes only APC savings.

Project	Classification	Project Cost (2020\$)
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	Reliability	\$3,562,780
Circleville-Goff 115 kV circuit 1 rebuild	Reliability	\$12,114,772
Goff-Kelly 115 kV rebuild	Reliability	\$7,108,395
South Shreveport-Wallace Lake 138 kV rebuild	Reliability	\$23,622,577
Grady 138 kV capacitor bank	Reliability	\$688,781
Deaf Smith #6-Hereford 115 kV rebuild	Reliability	\$6,660,556
Deaf Smith #6-Friona 115 kV rebuild	Reliability	\$12,626,190
Richmond 115 kV substation, Richmond 115/69 kV transformer, Richmond-Aberdeen 115 kV line	Reliability	\$11,394,000
Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV rebuild	Reliability	\$5,362,799
Bushland-Deaf Smith 230 kV terminal equipment	Reliability	\$923,938
Newhart-Potter County 230 kV terminal equipment	Reliability	\$731,282
Carlisle-Murphy 115 kV rebuild	Reliability	\$4,746,175
Replace Roswell 115/69 kV transformer	Reliability	\$2,777,743
S3456-S3458 345 kV terminal equipment	Reliability	\$678,865
Meadowlark-Tower 33 115 kV rebuild	Reliability	\$1,342,588
Jones-Lubbock South 230 kV terminal equipment circuit 1	Reliability	\$666,728
Jones-Lubbock South 230 kV terminal equipment circuit 2	Reliability	\$397,668

Project	Classification	Project Cost (2020\$)
Deaf Smith-Plant X 230 kV terminal equipment	Reliability	\$2,100,196
Newhart-Plant X 230 kV terminal equipment	Reliability	\$2,024,293
Lubbock South-Wolfforth 230 kV terminal equipment and clearance increase	Reliability	\$872,391
Allen-Lubbock South 115 kV rebuild	Reliability	\$6,817,226
Allen-Quaker 115 kV rebuild	Reliability	\$4,732,267
Eddy County-North Loving 345 kV new line	Reliability	\$64,422,600
Bismarck 115 kV reactors	Reliability	\$2,380,700
Moorehead 230 kV reactor	Reliability	\$1,515,440
Russell 115 kV capacitor bank	Reliability	\$2,841,951
Maljamar 115 kV capacitor bank	Reliability	\$685,440
Devil's Lake 115 kV reactor	Reliability	\$1,190,000
Agate 115 kV reactor	Reliability	\$571,200
Replace four breakers at Anadarko 138 kV	Short Circuit	\$850,000
Replace three breakers at Northeast 161 kV	Short Circuit	\$887,479
Replace one breaker at Stilwell 161 kV	Short Circuit	\$566,485
Replace one breaker at Leeds 161 kV	Short Circuit	\$566,485
Replace one breaker at Shawnee Mission 161 kV	Short Circuit	\$566,485
Replace one breaker at Southtown 161 kV	Short Circuit	\$566,485
Replace two breakers at Lake Road 161 kV	Short Circuit	\$1,132,970
Replace two breakers at Craig 161 kV	Short Circuit	\$1,132,970
Anadarko-Gracemont 138 kV rebuild as double-circuit	Economic	\$8,297,502
Russett-South Brown 138 kV rebuild	Economic	\$10,067,432
Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV	Economic	\$135,720,424
GRDA 1 345/161 kV circuit 1 and circuit 2 terminal equipment	Economic	\$1,410,000
Columbus East 230/115 kV transformer replacement	Economic	\$4,600,000
Franks-South Crocker-Lebanon 161 kV terminal equipment	Economic	\$5,721,430
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	Economic	\$31,686,685
Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal equipment	Economic	\$1,617,500
Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in	Economic	\$113,620,907
Split Rock 345/115 kV circuit 10 & 11 terminal equipment	Economic	\$4,577,336
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment	Economic	\$1,528,722 ²³

Table 6.14: Final Consolidated Portfolio

 $^{^{23}}$ Estimated cost does not include the entire cost for this project.

Table 6.15 shows the Future 1 and Future 2 40-year B/C ratio and net benefit of the economic projects in 2020\$ included in the consolidated portfolio using the same process described in the Section 6.2.4.1 for project subtraction evaluation.

			1					1			
	Project Cost	F1 Y5	Y10	year	F1 40-year	F1 40-year	F2 Y5	710 Y10	rz 40- year	F2 40-year	F2 40-year
Project	(E&C)	B/C	B/C	B/C	Benefit	Net Benefit	B/C	B/C	B/C	Benefit	Net Benefit
Anadarko-Gracemont 138 kV rebuild as Ckt	\$8,297,502	2.88	4.28	8.35	\$107,624,325	\$94,731,224	5.35	3.09	4.56	\$58,831,889	\$45,938,788
Russett-South Brown 138 kV rebuild	\$10,067,432	0.00	1.50	3.38	\$52,833,714	\$37,190,402	7.56	12.23	24.16	\$377,875,070	\$362,231,757
Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV	\$135,720,424	0.75	1.00	1.91	\$403,001,375	\$192,111,748	1.06	1.37	2.62	\$552,029,756	\$341,140,129
GRDA 1 345/161 kV Ckt 1 and Ckt 2 terminal equipment	\$1,410,000	13.98	20.09	38.98	\$85,412,599	\$83,221,666	7.15	5.38	8.90	\$19,506,220	\$17,315,287
Columbus East 230/115 kV transformer replacement	\$4,600,000	0.20	0.50	1.05	\$7,486,072	\$338,347	2.02	3.27	6.46	\$46,175,084	\$39,027,359
Franks-South Crocker- Lebanon 161 kV terminal equipment	\$5,721,430	(0.31)	2.04	4.74	\$42,160,359	\$33,270,096	0.01	06:0	2.02	\$17,981,132	698'060'6\$
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	\$31,686,685	1.32	1.63	3.07	\$151,237,189	\$102,000,729	2.16	1.99	3.52	\$173,144,070	\$123,907,610
Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal equipment	\$1,617,500	51.34	82.75	163.37	\$410,605,871	\$408,092,513	13.52	21.06	41.36	\$103,963,767	\$101,450,410
Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment, and Pleasant Valley cut-in	\$113,620,907	0.81	1.33	2.62	\$462,634,382	\$286,084,161	1.28	2.72	5.56	\$980,999,837	\$804,449,617
Split Rock 345/115 kV Ckt 10 and 11 terminal equipment	\$4,577,336	60:0	(0.06)	(0.16)	(\$1,171,751)	(\$8,284,260)	1.72	8.83	19.12	\$136,025,615	\$128,913,106
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment	\$1,528,722 ²⁴	2.01	2.19	4.04	\$9,593,533	\$8,166,644	5.09	2.71	5.17	\$12,275,136	\$11,200,631

Table 6.15: Consolidated Portfolio – APC benefit only

 $^{^{24}}$ Estimated cost does not include the entire cost for this project.

Table 6.16 below shows the change in flowgate congestion scores due to the consolidated portfolio for the economic needs targeted by the portfolio.

	Base Congestion Score (k\$/MWh)				Consolidated Portfolio Congestion Score (k\$/MWh)					
	Future 1 Future 2			Fu	Future 1 Future 2					
Constraint	2022	2025	2030	2025	2030	2022	2025	2030	2025	2030
Russett-South Brown 138 kV FLO Caney Creek-Little City 138 kV	0	0	196	277	497	0	0	0	0	0
GRDA 345/161 kV circuit 1 FLO GRDA 345/161 kV circuit 2	11	39	49	16	19	0	0	0	0	0
Southwestern Station-Anadarko 138 kV FLO Gracemont-Anadarko 138 kV	0	0	1	0	1	0	0	0	0	0
Dover Switch-Okeene 138 kV FLO Watonga-Okeene 138 kV	238	503	885	213	334	0	0	0	0	0
Oahe-Sully Buttes 230 kV FLO Fort Thompson-Leland Olds 345 kV	0	33	48	45	118	0	0	0	0	0
Butler-Altoona 138 kV FLO Caney River- Neosho 345 kV	770	1,187	1,688	1,574	1,722	0	0	0	0	0
Columbus East 230/115 kV FLO Columbus East-Shell Creek 345 kV	2	41	50	51	79	0	0	0	0	0
Watford 230/115 kV circuit 1 FLO Watford 230/115 kV circuit 2	130	157	366	184	354	0	0	0	0	0
Shamrock 115/69 kV FLO Sweetwater- Chisholm 230 kV	5	7	20	9	24	0	1	3	2	5
Skyline-Quail Creek 138 kV FLO Northwest-Arcadia 345 kV	0	5	28	12	82	0	0	6	0	59
Czech Hall-Cimarron 138 kV FLO Cimarron-Draper 345 kV	1	10	30	41	88	0	0	0	0	0
Cimarron 345/138 kV circuit 1 FLO Cimarron 345/138 kV circuit 2	11	33	85	36	125	0	3	11	3	29
Franks-Crocker 161 kV FLO Huben- Franks 345 kV	18	5	99	8	41	0	0	0	0	0
Split Rock 345/115 kV circuit 10 FLO Split Rock 345/115 kV circuit 11	0	1	3	22	103	0	0	0	0	1

Table 6.16: Change in flowgate congestion scores

Figure 6.8 shows the B/C ratio of the economic portfolio of projects 25 included in the consolidated portfolio. Figure 6.9 shows B/C ratio of the entire consolidated portfolio. As expected, the overall B/C ratio is reduced with the inclusion of the reliability projects, but the consolidated portfolio is still expected to produce benefits well over the cost of the projects.

²⁵ Includes projects driven by market powerflow models not already identified in the base reliability portfolio.

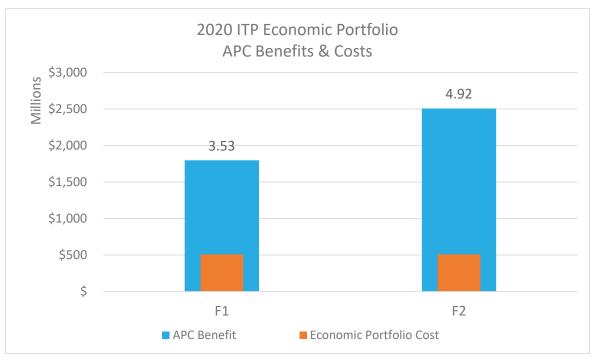


Figure 6.8: Economic Portfolio APC Benefits and Costs

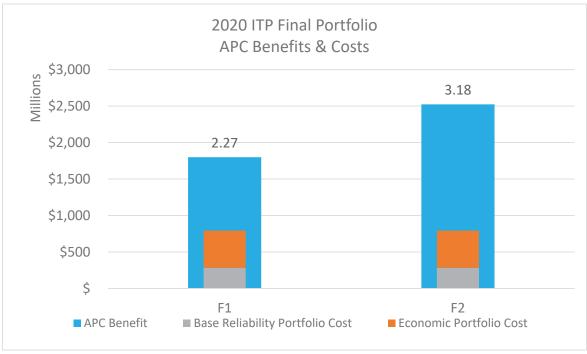


Figure 6.9: Final Consolidated Portfolio APC Benefits and Costs

Figure 6.10 below shows the break-even and payback dates of the consolidated portfolio. The break-even year is reflective of the first year that the one-year APC benefits are expected to outweigh the portfolio ATRR. The payback year is reflective of the year that the cumulative APC benefits are expected to exceed the 40-

year NPV costs of the portfolio. The consolidated portfolio is expected to breakeven within the first year of being placed in service and expected to pay back total investment within the first 20 years.

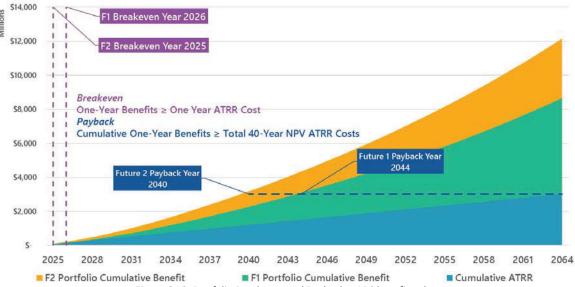


Figure 6.10: Portfolio Breakeven and Payback – APC benefit only

6.6 STAGING

Staging is the process by which the need date and projected in-service date for each project is determined. The staging methodology can be found in the ITP Manual.

6.6.1 ECONOMIC PROJECTS

The results of staging for the economic projects are shown in Table 6.17 below.

Economic Project	Need Date	Projected In-Service Date	Model
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	1/1/2022	11/17/2022	F1/F2
Anadarko-Gracemont 138 kV rebuild as double-circuit	1/1/2023	11/17/2023	F1
Russett-South Brown 138 kV rebuild	1/1/2022	5/17/2023	F1/F2
Butler-Tioga 138 kV new line; wreck-out Butler-Altoona 138 kV	1/1/2024	1/1/2024	F1/F2
GRDA 1 345/161 kV circuit 1 and circuit 2 terminal equipment	1/1/2022	5/17/2022	F1
Columbus East 230/115 kV transformer replacement	1/1/2039	1/1/2039	F1
Franks-South Crocker-Lebanon 161 kV terminal equipment	1/1/2028	1/1/2028	F1

Economic Project	Need Date	Projected In-Service Date	Model
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	1/1/2022	11/17/2024	F1/F2
Dover Switch-Okeene 138 kV and Aspen-Mooreland-Pic 138 kV terminal equipment	1/1/2022	5/17/2022	F1/F2
Pleasant Valley 345/138 kV Station, Minco-Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in	1/1/2025	1/1/2025	F1/F2
Split Rock 345/115 kV circuit 10 & 11 terminal equipment	1/1/2025	1/1/2025	F2
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment ²⁶	1/1/2022	5/17/2022	F2

Table 6.17: Project Staging Results-Economic

6.6.2 POLICY PROJECTS

There were no policy-driven projects in the 2020 ITP.

6.6.3 RELIABILITY PROJECTS

The results of staging for the reliability projects are shown in Table 6.18 below. The Watford transformer upgrade will have a need date of January 1, 2022 because the economic staging need date is earlier than the reliability staging need date.

Reliability Project	Need Date	Projected In-Service Date	Model
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	6/1/2022	11/17/2022	BR
Circleville-Goff 115 kV circuit 1 rebuild	6/1/2025	6/1/2025	BR
Goff-Kelly 115 kV rebuild	6/1/2025	6/1/2025	BR
South Shreveport-Wallace Lake 138 kV rebuild	6/1/2024	6/1/2024	BR
Grady 138 kV capacitor bank	12/1/2022	12/1/2022	LPC
Deaf Smith #6-Hereford 115 kV rebuild	6/1/2022	5/17/2023	BR
Deaf Smith #6-Friona 115 kV rebuild	4/1/2022	11/17/2022	BR
Richmond 115 kV substation, Richmond 115/69 kV transformer, Richmond-Aberdeen 115 kV line	12/1/2022	11/17/2023	BR

²⁶ The projected need date was calculated using an incomplete cost estimate. See Table 9.1 for accurate need and projected in-service dates.

		Projected In-Service	
Reliability Project	Need Date	Date	Model
Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV rebuild	6/1/2023	6/1/2023	BR
Bushland-Deaf Smith 230 kV terminal equipment	4/1/2022	5/17/2022	BR
Newhart-Potter County 230 kV terminal equipment	4/1/2022	5/17/2022	BR
Carlisle-Murphy 115 kV rebuild	6/1/2022	11/17/2022	BR
Replace Roswell 115/69 kV transformer	6/1/2022	11/17/2022	BR
S3456-S3458 345 kV terminal equipment	6/1/2029	6/1/2029	BR
Meadowlark-Tower 33 115 kV rebuild	6/1/2023	11/17/2023	BR
Jones-Lubbock South 230 kV terminal equipment circuit 1	6/1/2028	6/1/2028	BR
Jones-Lubbock South 230 kV terminal equipment circuit 2	6/1/2028	6/1/2028	BR
Deaf Smith-Plant X 230 kV terminal equipment	4/1/2022	5/17/2022	BR
Newhart-Plant X 230 kV terminal equipment	4/1/2022	5/17/2022	BR
Lubbock South-Wolfforth 230 kV terminal equipment and clearance increase	6/1/2022	6/1/2022	BR
Allen-Lubbock South 115 kV rebuild	6/1/2022	11/17/2022	BR
Allen-Quaker 115 kV rebuild	6/1/2022	11/17/2022	BR
Eddy County-North Loving 345 kV new line	6/1/2028	6/1/2028	BR
Bismarck 115 kV reactors	4/1/2022	11/17/2022	BR/MPM
Moorehead 230 kV reactor	4/1/2022	11/17/2022	BR/MPM
Russell 115 kV capacitor bank	6/1/2022	11/17/2022	MPM
Maljamar 115 kV capacitor bank	6/1/2028	6/1/2028	MPM
Devil's Lake 115 kV reactor	4/1/2022	11/17/2022	MPM
Agate 115 kV reactor	4/1/2022	11/17/2022	MPM
Nixa-Nixa Espy 69 kV terminal equipment	6/1/2022	6/1/2022	BR

Table 6.18: Project Staging Results-Reliability

6.6.4 SHORT-CIRCUIT PROJECTS

The short-circuit projects were all staged with need dates and projected in-service dates of June 1, 2022.

7 PROJECT RECOMMENDATIONS

7.1 RELIABILITY PROJECTS

7.1.1 WATFORD 230/115 KV TRANSFORMERS

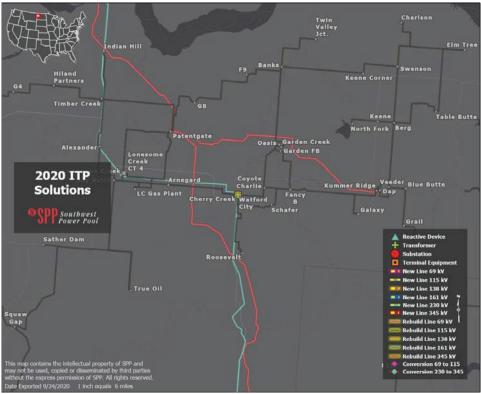


Figure 7.1: Watford 230/115 kV Transformers

In western North Dakota, the Watford City transformers that serve the 115 kV system experience both reliability violations and system congestion when one of the transformers is lost. The area around Watford has experienced expanded oil exploration and increasing load growth to support the shale play. Multiple solutions, including a new delivery point to support the increasing load, were analyzed but this area continues to grow and is expected to be of greater concern in future ITP assessments. The selected project is a no-regrets solution to strengthen the transformation at Watford by upgrading terminal equipment on one 230/115 kV transformer and replacing the other transformer to increase the capacity in cases where one is lost.

7.1.2

AMARILLO NORTH-SOUTH 230 KV CORRIDOR TERMINAL EQUIPMENT AND LINE CLEARANCES

2020 ITP Solutions

Figure 7.2: Amarillo North-South 230 kV Corridor Terminal Equipment

The Bushland-Deaf Smith 230 kV line and the Potter-Newhart-Plant X 230 kV line run parallel in a north-tosouth direction near the city of Amarillo, Texas. When one of these 230 kV paths is out of service, an overload is observed on the parallel path. During light load conditions paired with a high wind output, generation in the south is no longer needed. This combination results in large north-to-south flows coming out of Amarillo. Given that each of these lines are terminally limited and the conductor can handle the observed postcontingency flows, the projects selected to mitigate these issues is to replace any terminal equipment that is limiting these three 230 kV line segments below their conductor rating, as well as increase the height of necessary structures to create appropriate line clearances.

7.1.3 HEREFORD-CURRY 115 KV CORRIDOR REBUILDS

Figure 7.3: Hereford-Curry 115 kV Corridor Rebuild

Southwest of Amarillo, in a series corridor between Amarillo, Texas, and Clovis, New Mexico, seven 115 kV line segments overload for the loss of the Deaf Smith-Plant X 230 kV line. Similar to other needs in the Amarillo area, high wind output and less conventional generation south of Amarillo causes flows on the 115 kV corridor to overload upon loss of the 230 kV path. A rebuild of the Hereford-Deaf Smith #6-Friona-Cargill-Deaf Smith #24-Parmer-Deaf Smith #20-Curry 115 kV corridor is needed to bring these lines up to the same design standards of surrounding upgraded 115 kV lines and mitigate these issues. The Deaf Smith #20-Curry 115 kV portion of this corridor was identified as having been previously approved via a separate planning process with an expected in-service date prior to the ITP need date. Therefore, no NTC will be issued for this facility.

Figure 7.4: Jones-Lubbock South 230 kV Terminal Equipment

On the south end of Lubbock, Texas, in the Texas Panhandle, two parallel 230 kV circuits from Jones to Lubbock South each overload upon contingency of the other circuit. This 230 kV corridor is a common pass-through to deliver energy to the SPS south area. In addition, the fact that the Lubbock South substation feeds a large portion of the Lubbock load center, combined with maximum output of the Jones plant, causes these circuits to overload in contingency conditions during the long-term summer peaks. Given that the ratings of these lines are driven by terminal equipment and the conductors can handle the post-contingency flows, the project selected to mitigate this issue is to upgrade the necessary terminal equipment at these substations and allow the conductors to become the most limiting element long each path.

7.1.5 LUBBOCK SOUTH-WOLFFORTH 230 KV TERMINAL EQUIPMENT AND LINE CLEARANCES

Figure 7.5: Lubbock South-Wolfforth 230 kV Terminal Equipment and Line Clearances

On the south end of Lubbock, Texas, in the Texas Panhandle, the Lubbock South-Wolfforth 230 kV line reaches near base-case overloads in the near-term winter peaks and the long-term summer peaks. The Lubbock South-Wolfforth line is a large feed to deliver energy in the SPS south area which contributes to this base-case flow. Since the flow is already approaching the line rating, many contingencies in the area can cause the line to overload. The project selected to mitigate this issue is to upgrade the terminal equipment limiting the line rating below the conductor rating, as well as increase the height of necessary structures to create appropriate line clearances.

7.1.6 CARLISLE-MURPHY 115 KV REBUILD

Figure 7.6: Carlisle-Murphy 115 kV

On the west side of Lubbock in the panhandle of Texas, the Carlisle-Murphy 115 kV line overloads for the loss of the Allen-Lubbock South 115 kV during the summer peaks. Loss of this 115 kV circuit forces flow to redirect around the city of Lubbock, overloading the Carlisle-Murphy 115 kV line which is serving radial load all the way through to Allen. A rebuild of the Carlisle-Murphy 115 kV line will mitigate the issue by increasing the transmission capability of that circuit.

7.1.7 EDDY COUNTY-NORTH LOVING 345 KV LINE

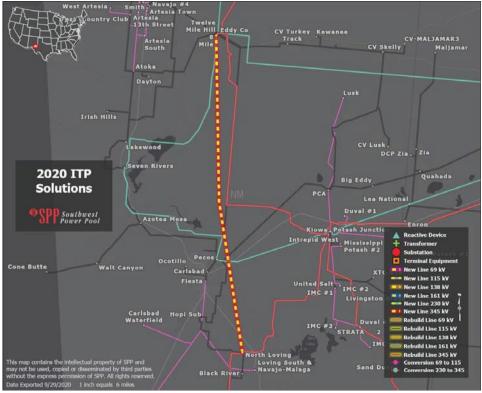


Figure 7.7: Eddy County-North Loving 345 kV

Southeast of Loving, New Mexico, the 115 kV system experiences low voltage for the loss of the Hobbs-Kiowa 345 kV line, including voltage collapse at the Phantom 115 kV bus. Increasing load, combined with a generator retirement in the south SPS area, has made this area less able to maintain minimal voltage in the long-term summer peaks upon the loss of a 345 kV feed into the area which carries critical real and reactive power support. The project selected to mitigate this issue is to construct a new 345 kV line from Eddy County-North Loving to deliver more real and reactive power support to this area.

Impactful out of scope NERC TPL-001-4 P3 planning events and SPSNMTIES interface violations in the base reliability model were identified late in the assessment and question the project's long-term viability. The NERC TPL-001-4 P3 planning events with limited system adjustment options cause voltage collapse in eastern New Mexico area in 2030 summer peak. These system conditions are related to the SPSNMTIES interface as described in section 4.1.2 and these violations were inadvertently not identified as part of the reliability needs assessment. Without these crucial system limits accounted for in reliability project screening and grouping introduces uncertainty in the large-scale project selection that has a June 2028 reliability need date.

For these reasons and consistent with delaying any action on the congested SPSNMTIES interface to future ITP cycles as described in section 6.2.6, it is recommended to not move forward with construction of this planned reliability project at this time and use the 2021 ITP to reassess this portion of the SPP system which

allows for further stakeholder collaboration and opportunity to optimize base reliability solutions and potential economic solutions to identify a comprehensive solution in Eastern New Mexico area.

7.1.8 ROSWELL INTERCHANGE 115/69 KV TRANSFORMER #1 REPLACEMENT

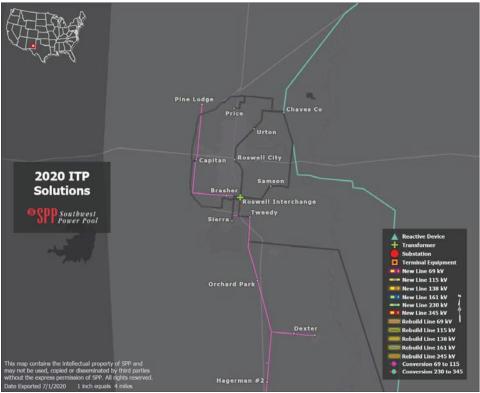


Figure 7.8: Roswell Interchange 115/69 kV Transformer #1

In the southeast corner of New Mexico in the city of Roswell, the 115/69~kV transformer #1 overloads for the loss of transformer #2. Summer peak loading conditions in Roswell, New Mexico, drives the load to levels that cannot be served through the single transformer after the contingency of transformer #2. Replacing transformer #1 with a transformer that meets the same standards as surrounding 115/69~kV transformers will mitigate this issue.

103

Southwest Power Pool, Inc.

7.1.9 CUSHING TAP-SHELL CUSHING TAP-SHELL PIPELINE 69 KV REBUILD

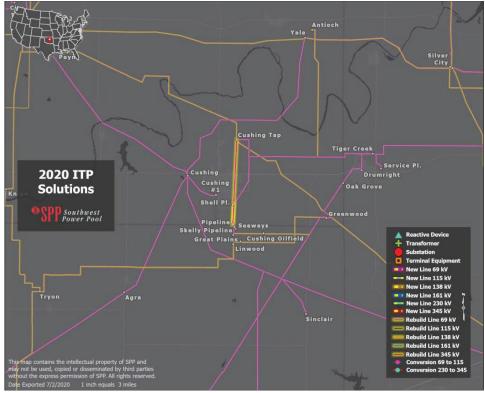


Figure 7.9: Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV

Northeast of Oklahoma City, near the town of Cushing, Oklahoma, the Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV series corridor overloads for the loss of the Highway 99 Tap-Cushing Oilfield 69 kV line. Loss of this feed places the load at Cushing Oilfield at a radial from the Cushing Tap substation, which overloads the Cushing Tap-Shell Cushing Tap 69 kV segment during the summer peaks and very nearly overloads the Shell Cushing Tap-Shell Pipeline segment. Rebuilding the Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV corridor will mitigate this issue by increasing the conductor ratings to tolerate the loss of the Highway 99 Tap-Cushing Oilfield 69 kV line.

7.1.10 SOUTH SHREVEPORT-WALLACE LAKE 138 KV REBUILD

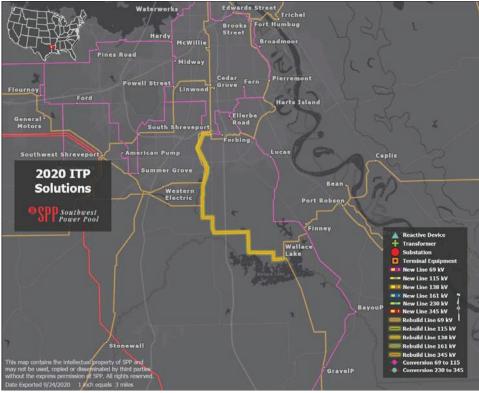


Figure 7.10: South Shreveport-Wallace Lake 138 kV

In northwest Louisiana in the city of Shreveport, the South Shreveport-Wallace Lake 138 kV line overloads for the loss of the Fort Humbug-Trichel 138 kV line. Loss of the 138 kV line which heads east out of the city causes the large amount of load across the Red River to be served out of South Shreveport. Rebuilding the South Shreveport-Wallace Lake 138 kV line will bring the facility up to the same design standards of surrounding upgraded 115 kV line and mitigate this issue.

7.1.11 GRADY 138 KV CAPACITOR BANK

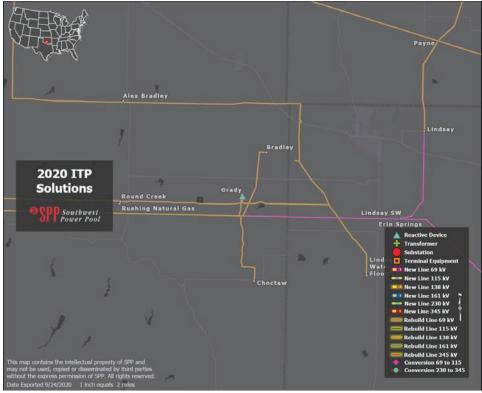


Figure 7.11: Grady 138 kV Capacitor Bank

South of Oklahoma City near the town of Lindsay, Oklahoma, the Choctaw and Grady 138 kV bus voltages dip below AEPW's minimum voltage criteria of 0.92pu for the loss of the Grady-Round Creek 138 kV line. Loss of this 138 kV feed places a large amount of load at Choctaw and Grady on a radial from the Cornville substation, bringing the voltage below acceptable levels during the summer peaks. The project selected to mitigate this issue is to place a capacitor bank capable of 23 MVAR at the Grady 138 kV substation.

7.1.12 NIXA-NIXA ESPY 69 KV TERMINAL EQUIPMENT

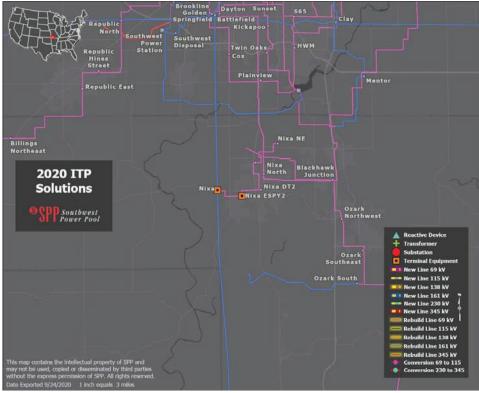


Figure 7.12: Nixa-Nixa Espy 69 kV Terminal Equipment

South of Springfield in the town of Nixa, Missouri, the Nixa-Nixa Espy 69~kV line overloads for the loss of the James River Power Station 161/69~kV transformer. Loss of the transformer causes energy to access the 69~kV system at Nixa and make its way north to serve load at Seminole and Twin Oaks, overloading the Nixa-Nixa Espy 69~kV circuit. The project selected to mitigate this issue is to upgrade the necessary 69~kV terminal equipment at Nixa and Nixa Espy which will increase the line rating up to the conductor capability.

7.1.13 MEADOWLARK-TOWER 33 115 KV REBUILD

Figure 7.13: Meadowlark-Tower 33 115 kV

In the northwest corner of Hutchinson, Kansas, circuit 1 of Meadowlark-Tower 33 115 kV overloads for loss of the Davis-Reno County 115 kV line. Loss of the Davis-Reno County line causes all the load at Davis and South Hutchinson to be served radially through parallel Meadowlark-Tower 33 115 kV circuits, overloading the first circuit in the long-term summer peaks. The project selected to mitigate this issue is to rebuild the first circuit of Meadowlark-Tower 33 115 kV to increase the capacity up to the same design standards of surrounding upgraded 115 kV lines.

108

Southwest Power Pool, Inc.

7.1.14 SUB 3458-SUB 3456 345 KV TERMINAL EQUIPMENT

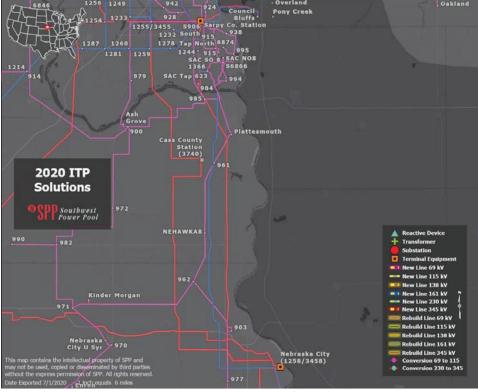


Figure 7.14: S3458-S3456 Terminal Equipment

Flowing south-to-north into the city of Omaha, Nebraska, the S3458-S3456 345 kV line overloads for the loss of the S3740-S3455 345 kV line. During the long-term summer peaks, Cass County and Nebraska City generating plants are operating at full output which overloads the northbound 345 kV line serving the city of Omaha when the parallel 345 kV line is lost. Upgrading the terminal equipment that is most limiting on the S3458-S3456 kV line will increase the rating of this line and mitigate this issue.

7.1.15 CIRCLEVILLE-GOFF-KELLY 115 KV REBUILD

Figure 7.15: Circleville-Goff-Kelly 115 kV

North of Topeka, near the city of Circleville, Kansas, the Circleville-Goff-Kelly 115 kV lines overload for the loss of the Hoyt-Stranger Creek 345 kV line during summer peak of the Kansas City load center. Loss of the 345 kV line redirects flows down to the 115 kV system which then takes a northerly route through Circleville, east to Kelly, and back to the south again to reach Stranger Creek. The project selected to mitigate this issue is to rebuild the Circleville-Goff-Kelly 115 kV transmission lines which will bring those facilities up to the same design standards of surrounding upgraded 115 kV lines.

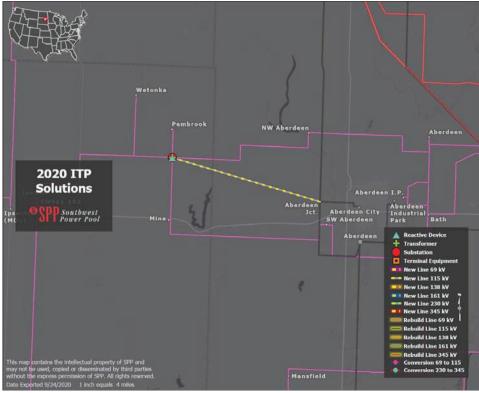


Figure 7.16: Richmond 115 kV Substation and Richmond-Aberdeen 115 kV

In the northeast corner of South Dakota near the town of Aberdeen, two parallel 115/69~kV transformers at Ordway overload, one for the loss of the other. Cold winters drive up energy consumption in North Dakota, which will overload each of these transformers if the parallel feed is lost. The project selected to mitigate this issue is to expand the Richmond substation to accommodate a 115~kV transmission line to Aberdeen as well as a 115/69~kV transformer. This will allow some of the 69~kV load west of Ordway to have an alternate source and take loading away from the Ordway transformers. Additionally, a capacitor needs to be installed at Richmond to provide voltage support in the area.

7.1.17 BISMARCK 115 KV REACTORS

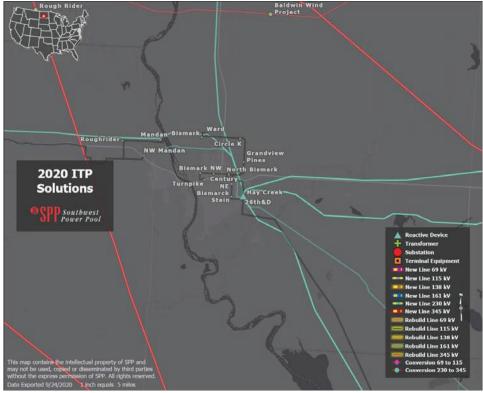


Figure 7.17: Bismarck 115 kV Reactors

Across the Missouri River from the city of Bismarck, North Dakota, light-load conditions cause base-case high voltage conditions at the Mandan 230 kV substation and surrounding 115 kV system. With limited reactive resources in the area to bring down the over-voltage condition, reactive consumption is needed near the 230 kV bus at Mandan. The project selected to mitigate this issue is to add 35 MVARs of reactive capability on two transformers at the Bismarck substation.

7.1.18 MOOREHEAD 230 KV REACTOR

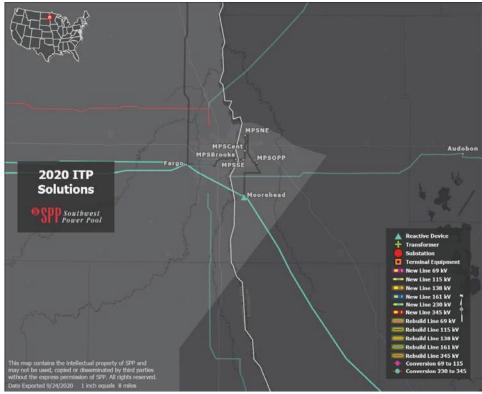


Figure 7.18: Moorehead 230 kV Reactor

Southeast of Fargo, North Dakota, across the border into Minnesota, the Moorehead 230 kV bus experiences base-case high voltage during light-load conditions and the near-term summer peak in the market powerflow models. With no reactive adjustments in the area available to help alleviate the base-case voltage issue, reactive capability must be installed to bring the voltage down to acceptable levels. Installing an 80 MVAR reactor bank at the Moorehead 230 kV bus will mitigate this issue.

7.2 SHORT-CIRCUIT PROJECTS

7.2.1 SHORT-CIRCUIT PROJECT PORTFOLIO

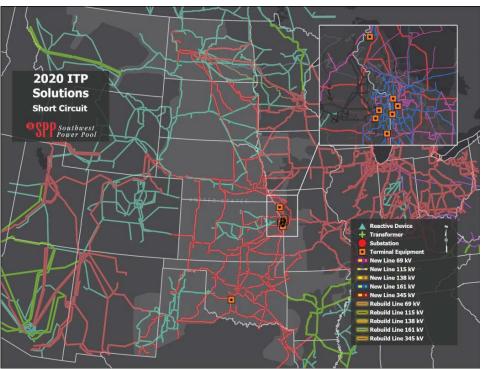


Figure 7.19: Short-Circuit Project portfolio

All short-circuit projects identified in the 2020 ITP were upgrades of overdutied breakers. These upgrades ensure SPP's members can meet short-circuit analysis requirements in the NERC TPL-001-4 standard.

Short-Circuit Project	Area	Scenario*
Replace three breakers at Northeast 161 kV	KCPL	22S / BR
Replace one breaker at Stilwell 161 kV	KCPL	22S / BR
Replace one breaker at Leeds 161 kV	KCPL	22S / BR
Replace one breaker at Shawnee Mission 161 kV	KCPL	22S / BR
Replace one breaker at Southtown 161 kV	KCPL	22S / BR
Replace two breakers at Lake Road 161 kV	KCPL	22S / BR
Replace two breakers at Craig 161 kV	KCPL	22S / BR
Replace four breakers at Anadarko 138 kV	WFEC	22S / BR

Table 7.1: Short-Circuit Projects

7.3 ECONOMIC PROJECTS

7.3.1 BUTLER-TIOGA 138 KV

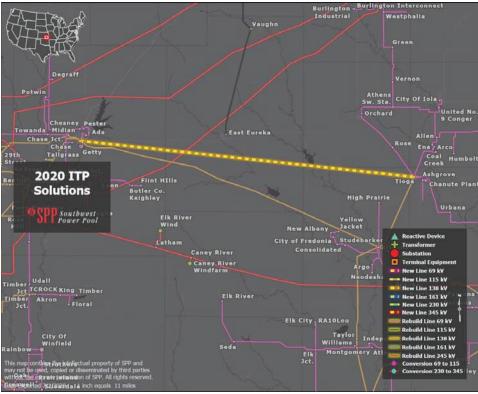


Figure 7.20: Butler-Tioga 138 kV

In southeast Kansas, the Butler-Altoona 138 kV line becomes congested for the loss of Caney River-Neosho 345 kV. The Butler-Altoona 138 kV constraint was identified as a part of Target Area 1 of the 2019 ITP assessment but was not addressed due to concerns with the final selected project, installing a phase-shifting transformer (PST) at the Butler 138 kV station. This PST project was originally selected and paired with the Wolf Creek-Blackberry 345 kV line to address residual congestion on Butler-Altoona 138 kV. Concerns were raised about the long-term viability of leaving the Butler-Altoona 138 kV in-service and installing a PST to divert system flows, primarily due to the age and condition of the facility. As discussed in the 2019 ITP, the Butler-Altoona 138 kV is known for its high outage rates during periods of high wind output or storm conditions and is nearing the level of becoming a persistent operational need for system reconfiguration, as defined in the ITP manual. The congestion in the 2020 ITP increased such that addressing the Butler-Altoona 138 kV directly was cost-beneficial to the SPP region. The preferred solution, given the benefit and the age and condition of the Butler-Altoona 138 kV line, is to wreck-out and rebuild a portion along existing right-of-way between Butler and Altoona, and re-route the termination point to Tioga, with the objective of minimizing transmission costs. This solution will provide a stronger source to an area of larger load.

7.3.2 ANADARKO-GRACEMONT 138 KV REBUILD AS DOUBLE-CIRCUIT

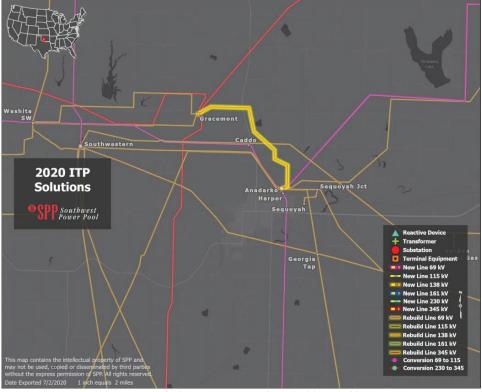


Figure 7.21: Anadarko-Gracemont 138 kV Rebuild as Double-Circuit

In southwest Oklahoma, the Southwestern Station-Anadarko 138 kV line becomes congested for loss of the Anadarko-Gracemont 138 kV line. This area is impacted by west-to-east system flows and existing renewable generation on the 138 kV system. This area was analyzed as part of the 2019 ITP assessment and a project to rebuild the Anadarko-Gracemont line was selected to address congestion when the Washita-Southwestern Station line is out of service. The Anadarko-Gracemont and Washita-Southwestern Station lines form a parallel transmission path east from Washita. This area has been identified in multiple ITP assessments and currently experiences operational congestion. The initial solutions evaluated included upgrading the Southwestern Station-Anadarko line, but given that the congestion is expected to increase, further analysis was performed to determine if a modification of the existing NTC would be prudent to strengthen the area and leverage the work that will be underway. The project selected to mitigate this issue is to modify the existing NTC and rebuild the Anadarko-Gracemont 138 kV line as a double circuit. This modified solution will increase the ability of the system to facilitate west-to-east flows and protect against the single circuit contingency that causes additional congestion in real-time and for the foreseeable future.

116

Southwest Power Pool, Inc.

7.3.3 RUSSETT-SOUTH BROWN 138 KV REBUILD

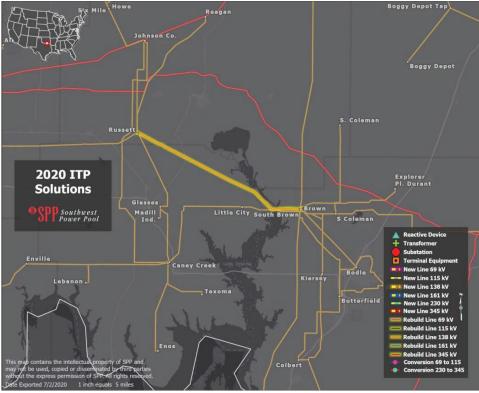


Figure 7.22: Russett-South Brown 138 kV Rebuild

In south-central Oklahoma, the Russett-South Brown 138 kV line becomes congested for the loss of the Caney Creek-Little City 138 kV line. This area is impacted by west-to-east system flows aggravated by existing and future renewable expansion. This flowgate was identified as a need in the 2019 ITP assessment but the project selected did not meet the consolidation criteria because it was identified in Future 2 and did not perform reasonably well in Future 1. With increasing bulk transfers in the area evaluated in the 2020 ITP assessment, congestion increased in both futures and a project became cost-beneficial to the region. The project selected to address the congestion is a rebuild of the Russett-South Brown 138 kV line, consistent with the top solution analyzed in the 2019 ITP.

7.3.4 GRDA 345/161 KV TRANSFORMERS

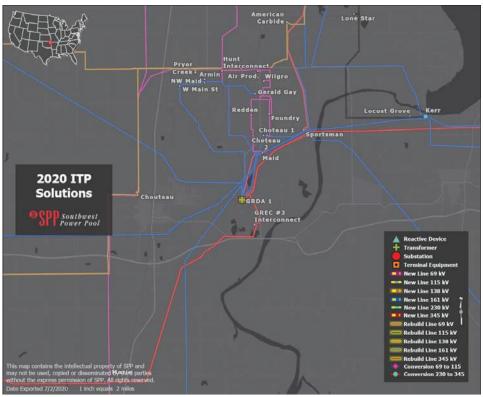


Figure 7.23: GRDA 345/161 kV Transformers

East of Tulsa, Oklahoma, at the GRDA plant substation, the second GRDA 345/161~kV transformer becomes congested for the loss of the first transformer. Both transformers are rated equally and are terminally limited, driving the need for the selected project to upgrade terminal equipment to increase the capacity of both transformers.

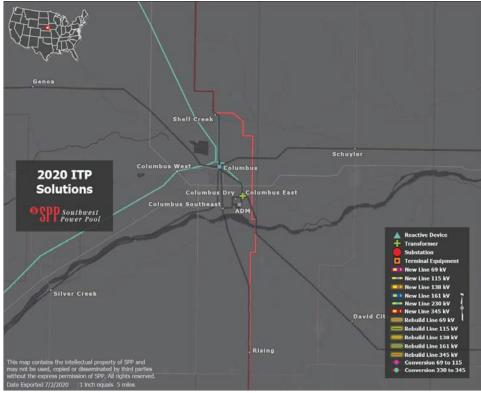


Figure 7.24: Columbus East 230/115 kV Transformer

Northwest of Omaha and Lincoln, Nebraska, the Columbus East 230/115 kV transformer becomes congested for the loss of the Columbus East-Shell Creek 345 kV line. This area experiences north-to-south system flows that are diverted with the loss of the 345 kV connection and has seen system congestion in real-time operations today. The project selected to address the congestion is to replace the Columbus East transformer in order to better utilize the HV system that feeds into Columbus, Lincoln, and Omaha, NE load centers.

7.3.6 FRANKS-SOUTH CROCKER-LEBANON 161 KV

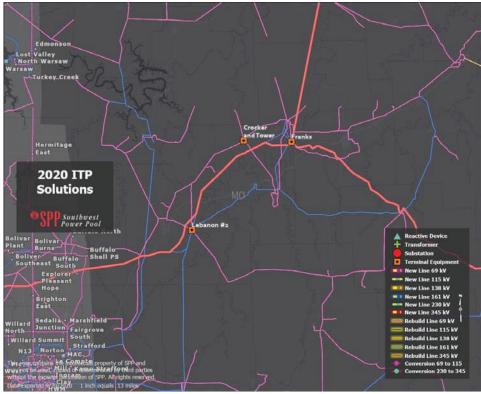


Figure 7.25: Franks-South Crocker-Lebanon 161 kV

In south-central Missouri, northeast of Springfield, the Franks-Crocker 161 kV line becomes congested for the loss of the Huben-Franks 345 kV line. The 161 kV path parallels the 345 kV path and carries the power when the EHV line is out of service. The 161 kV path is terminally limited so upgrading the terminal equipment at the Franks, South Crocker, and Lebanon substations relieves the congestion by allowing for increased flows in the area.

7.3.7 CHISHOLM-WOODWARD/BORDER TAP 345 KV

Figure 7.26: Chisholm-Woodward/Border Tap 345 kV

In western Oklahoma, just east of the Texas border, the 345 kV system out of Gracemont to the west is built out but not connected. The top congested flowgate in the area is the Shamrock 115/69 kV transformer for the loss of the Sweetwater-Chisholm 230 kV line. The project selected for the area is to tap the Border-Tuco 345 kV line and connect to the Chisholm 345 kV station less than a mile away. This project connects the 345 kV radial from Gracemont to the rest of the 345 kV system and allows more bulk transfers across the east Texas/west Oklahoma system. The Sweetwater-Chisholm outage has also been identified as a limiting constraint in the assessment of resource adequacy.

7.3.8 DOVER SWITCH-OKEENE AND ASPEN-MOORELAND-PIC 138 KV

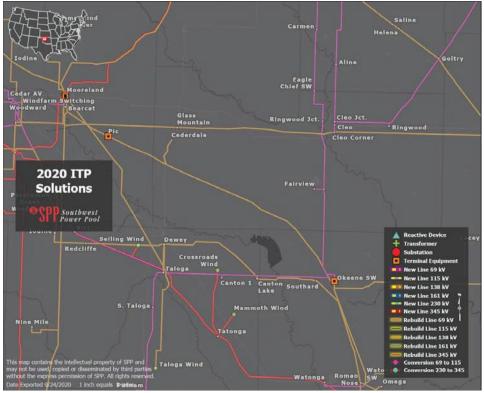


Figure 7.27: Dover Switch-Okeene and Aspen-Mooreland-Pic 138 kV

Northwest of Oklahoma City towards Woodward, the Dover-Okeene 138 kV line becomes congested for the loss of the Watonga-Okeene 138 kV line. The line to Watonga is a parallel 138 kV path to the south while the line to Dover is to the east out of the Okeene substation. This 138 kV network supports west-to-east bulk power transfers to bring low cost generation to the central and eastern load centers. The Dover-Okeene line is terminally limited, and when those limitations are eliminated, congestion increases on the 138 kV system to the north. The project selected to address the congestion is to upgrade terminal equipment on the Dover Switch-Okeene 138 kV line. To realize the benefits of increased transfers on the Dover-Okeene line, terminal equipment on the upstream elements of Aspen-Mooreland-Pic 138 kV must also be upgraded.

7.3.9 MINCO-PLEASANT VALLEY-DRAPER 345 KV

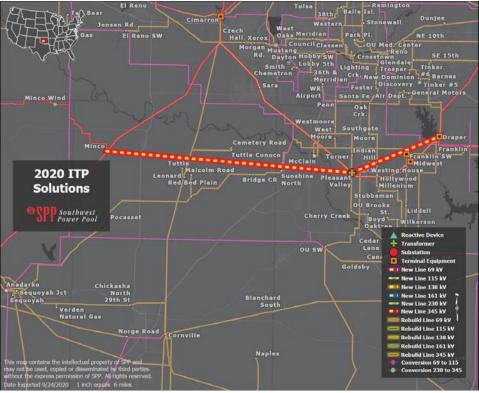


Figure 7.28: Minco-Pleasant Valley-Draper 345 kV

Several different needs were identified in and around the Oklahoma City (OKC) area. The first of two 345/138 kV transformers at Cimarron experiences congestion for the loss of the second. Just south of the Cimarron station, the Czech Hall-Cimarron 138 kV line, which feeds the west side of the city, experiences congestion for the loss of the Cimarron-Draper 345 kV line. The Skyline-Quail Creek 138 kV line to the north of the city experiences congestion for the loss of the Northwest-Arcadia 345 kV line. These issues show the impact of west-to-east power flows across the EHV loop around OKC as well as the need for additional sources into OKC to serve local load.

Multiple solutions to address congestion in the area were analyzed, from new EHV on both the north and south sides of OKC, to HV solutions attempting to address the congestion directly. The project selected is:

- A new Minco-Pleasant Valley-Draper 345 kV line on the south side of OKC;
- A tie-in of the existing Cimarron-Draper 345 kV line to the Pleasant Valley substation;
- Terminal upgrades at Cimarron and Draper to increase the line rating to a 3.000 amp standard that the new facilities will be built at; and
- Terminal upgrades on the Midwest-Franklin 138 kV line to address downstream congestion on the HV system that exists today.

7.3.10 SPLIT ROCK 345/115 KV TRANSFORMERS

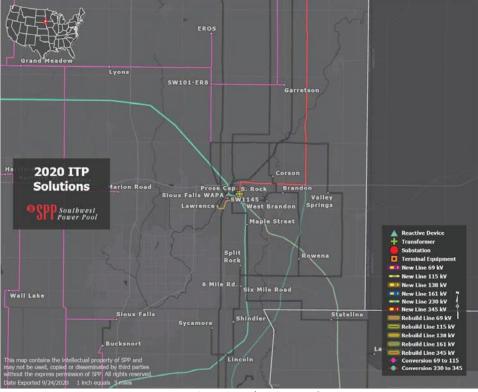


Figure 7.29: Split Rock 345/115 kV Transformers

On the northeast side of Sioux Falls, South Dakota, the Split Rock substation helps to serve as a transmission hub for power transfers, mostly in support of north-to-south flows. The first Split Rock 345/115 kV transformer becomes congested for the loss of the second. This issue was also analyzed in the CSP study with MISO but did not produce a solution beneficial to both regions because SPP generation is largely redispatching to resolve the congestion. These transformers are terminally limited and by upgrading this equipment, the SPP region still sees benefit even though this facility is not under the SPP tariff, but rather a Northern States Power facility in MISO. The selected solution is to upgrade terminal equipment on both Split Rock 345/115 kV transformers.

An upgrade of a Non-SPP facility in MISO would require additional coordination with Northern States Power (NSPP) and MISO, and a FERC filing to support SPP regional highway/byway cost allocation. The project benefits are primarily driven by Future 2 and marginally passed consolidation by including a small amount of real-time operational congestion. Additionally, there are stakeholder concerns around the benefits and staff concerns that the upgrade may reflect the need for a generator outlet facility for a MISO-projected resource and siting plan assumed in Future 2.

For these reasons, there is not strong enough justification for SPP to pursue this upgrade at this time and is recommending to defer addressing this system limit to future ITP/CSP cycles.

7.3.11 OAHE-SULLY BUTTES-WHITLOCK 230 KV

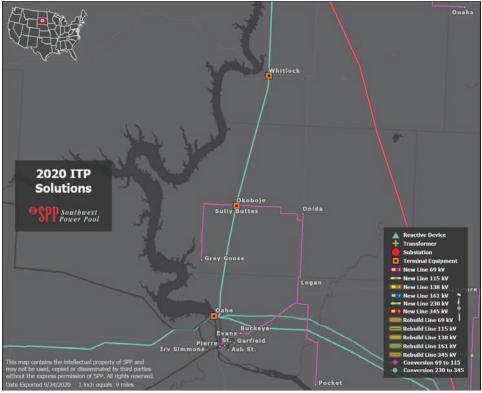


Figure 7.30: Oahe-Sully Buttes-Whitlock 230 kV

To the north of Pierre, South Dakota, multiple transmission paths help to serve load centers to the north towards Bismarck, North Dakota. The Oahe-Sully Buttes 230 kV line becomes congested for the loss of the Fort Thompson-Leland Olds 345 kV line. The 230 kV segments from Oahe moving north are all terminally limited. Solutions were tested to determine the number of segments that would need to be upgraded to relieve congestion in a cost-beneficial manner on the full 230 kV path to the north. The optimal solution was to replace terminal equipment and increase line clearances for the Oahe-Sully Buttes-Whitlock 230 kV lines.

However, estimated cost did not include additional expenses for transmission line clearance mitigations which, when considered, do not make this project cost beneficial enough to receive an NTC at this time. SPP recommends that this project be reconsidered in future ITP cycles.

7.3.12 MALJAMAR 115 KV CAPACITOR BANK

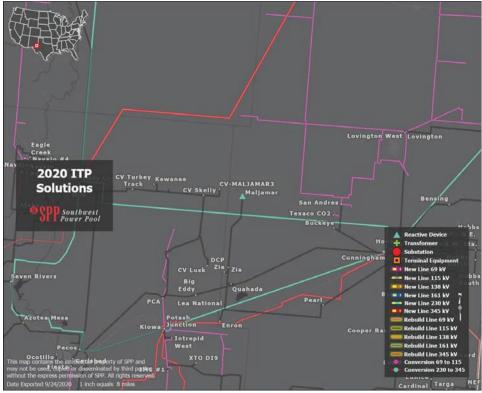


Figure 7.31: Maljamar 115 kV Capacitor Bank

West of Hobbs near the community of Maljamar, New Mexico, the Maljamar 115 kV bus experiences both base-case low voltage and low voltage for the loss of the PCA-Big Eddy 115 kV line. These low voltages are present only in the long-term summer peaks of the market powerflow models. The Maljamar bus serves load at the end of a radial feed, making it susceptible to lower voltages. The PCA-Big Eddy 115 kV line is a connector to the 230 kV bus at Potash Junction, which causes the Maljamar 115 kV bus to lose voltage support once the contingency occurs. Adding a capacitor capable of producing 14.4 MVAR at the Maljamar 115 kV bus will mitigate this issue.

7.3.13 RUSSELL 115 KV CAPACITOR BANK

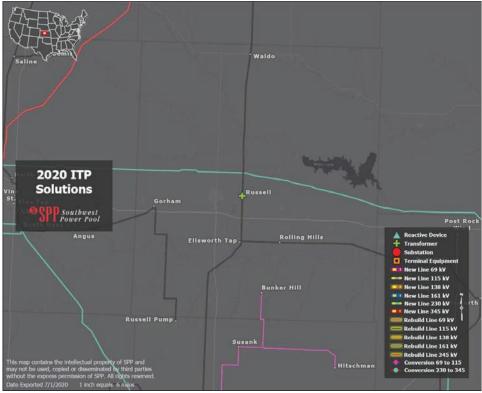


Figure 7.32: Russell 115 kV Capacitor Bank

West of Salina near the town of Russell, Kansas, the Russell substation experiences low voltage for the loss of the Ellsworth Tap-Russell 115 kV transmission line. Upon contingency, the Russell load is fed at the end of a long radial 115 kV line, which causes voltage drop below criteria when load is high in the summer in the market powerflow models. The project selected to mitigate this issue is to add a 24 MVAR capacitor at the Russell substation to bring the voltage back up to acceptable levels.

7.3.14 AGATE 115 KV REACTOR

Figure 7.33: Agate 138 kV Reactor

Northwest of Grand Forks, near the town of Rolla, North Dakota, light-load conditions in the market powerflow models cause the 69~kV system to experience base-case high voltages coming off the 115/69~kV transformers at Agate and Leeds. Tap adjustments on the Agate 115/69~kV transformer shift the overvoltage to the high side of the transformer, making this an infeasible mitigation. With no other reactive resources in the area to bring down the over-voltage condition, reactive consumption needs to be installed near the 69~kV loads in this region. The project selected to mitigate this issue is to add a 12~MVAR reactor at the Agate 115~kV bus.

7.3.15 DEVIL'S LAKE 115 KV REACTOR

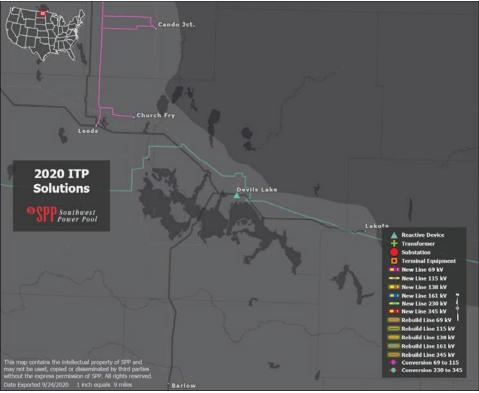


Figure 7.34: Devil's Lake 115 kV Reactor

West of Grand Forks, near the town of Devil's Lake, North Dakota, the 115 kV bus at Devil's Lake and surrounding area experiences high base-case voltages during light-load conditions in the market powerflow models. Without any reactive consumption devices or tap changing transformers nearby, no reactive adjustments are available to bring the voltage back to acceptable levels. The project selected to mitigate this issue is to install a 25 MVAR capable reactor bank at the Devil's Lake 115 kV substation.

7.4 POLICY PROJECTS

No policy projects are required for the 2020 ITP assessment.

8 INFORMATIONAL PORTFOLIO ANALYSIS

8.1 BENEFITS

8.1.1 METHODOLOGY

Benefit metrics were used to measure the value and economic impacts of the final portfolio. The Benefit Metrics Manual²⁷ provides the definitions, concepts, calculations, and allocation methodologies for all approved metrics. The ESWG directed that the 2020 ITP B/C ratios be calculated for the final portfolio using the Future 1 and Future 2 models. The benefit analysis is performed on all reliability and economic projects in the final portfolio shown in Table 9.1 (regardless of NTC recommendation). The benefit structure shown in Table 8.1 illustrates the metrics calculated as the incremental benefit of the projects included in the portfolios.

Metric Description					
APC Savings					
Savings Due to Lower Ancillary Service Needs and Production Costs					
Avoided or Delayed Reliability Projects					
Marginal Energy Losses					
Capacity Cost Savings Due to Reduced On-Peak Transmission Losses					
Reduction of Emissions Rates and Values					
Public Policy Benefits					
Assumed Benefit of Mandated Reliability Projects					
Mitigation of Transmission Outage Costs					
Increased Wheeling Through and Out Revenues					

Table 8.1: Benefit Metrics

8.1.2 APC SAVINGS

APC captures the monetary cost associated with fuel prices, run times, grid congestion, unit operating costs, energy purchases, energy sales and other factors that directly relate to energy production by generating resources in the SPP footprint. Additional transmission projects aim to relieve system congestion and reduce

²⁷ Benefit Metrics Manual

costs through a combination of a more economical generation dispatch, more economical purchases and optimal revenue from sales.

To calculate benefits over the expected 40-year life of the projects²⁸, two years were analyzed, 2025 and 2030. APC savings were calculated accordingly for these years. The benefits are extrapolated to the fifteenth year based on the slope between the two points. After that, they are assumed to grow at an inflation rate of 2.5 percent per year. Each year's benefit was then discounted to 2025 using an eight percent discount rate, and a 2.5 percent inflation rate from 2025 back to 2020. The sum of all discounted benefits was presented as the NPV benefit. This calculation was performed for every zone.

Figure 8.1 shows the regional APC savings for the recommended portfolio over 40 years.

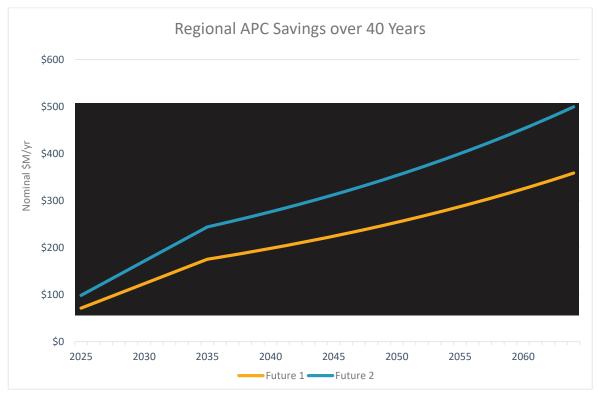


Figure 8.1: Regional APC Savings for the 40-Year Study Period

Table 8.2 provides the zonal breakdown and the NPV estimates. Future 2 has higher congestion compared to Future 1. Therefore, the projects in the recommended portfolio provide more congestion relief in Future 2 than in Future 1, resulting in larger APC savings.

²⁸ The SPP OATT requires that the portfolio be evaluated using a 40-year financial analysis.

	Refere	ence Case (Fut	ure 1)	Emerging Technologies (Future 2)			
_			40-yr NPV			40-yr NPV	
Zone	2025 (\$M)	2030 (\$M)	(\$2020M)	2025 (\$M)	2030 (\$M)	(\$2020M)	
AEPW	\$9.2	\$22.4	\$350.0	\$15.9	\$37.7	\$587.8	
EMDE	\$5.2	\$3.7	\$39.4	\$8.3	\$5.1	\$50.2	
GMO	\$0.2	\$1.2	\$20.5	\$1.8	\$3.7	\$56.7	
GRDA	\$8.7	\$12.9	\$186.3	\$6.9	\$10.5	\$152.3	
KCBPU	(\$0.1)	\$0.6	\$11.5	\$0.0	\$2.1	\$37.5	
KCPL	\$1.9	\$3.8	\$57.2	(\$0.3)	\$1.6	\$30.4	
LES	\$0.2	\$0.3	\$4.2	\$0.3	\$1.6	\$26.2	
MIDW	(\$1.1)	(\$1.5)	(\$20.7)	(\$1.2)	(\$1.3)	(\$16.8)	
NPPD	\$0.2	\$0.7	\$12.1	(\$0.1)	\$0.9	\$16.8	
OKGE	\$31.4	\$57.0	\$854.4	\$33.5	\$64.7	\$979.5	
OPPD	\$0.3	(\$0.4)	(\$8.0)	\$0.8	\$1.4	\$21.0	
SPRM	\$1.1	\$0.7	\$5.9	\$1.1	\$0.4	\$2.0	
SPS	(\$0.4)	(\$0.1)	\$0.7	\$9.4	\$2.0	(\$11.7)	
SUNC	(\$3.5)	(\$4.8)	(\$67.1)	(\$3.4)	(\$3.9)	(\$52.2)	
SWPA	\$0.3	\$0.7	\$11.6	\$1.6	\$2.4	\$34.2	
UMZ	\$5.8	\$9.2	\$134.1	\$9.6	\$23.1	\$361.1	
WERE	\$4.6	\$6.0	\$83.1	\$4.7	\$4.6	\$58.3	
WFEC	\$7.0	\$11.3	\$165.4	\$9.3	\$16.6	\$248.0	
TOTAL:	\$71.2	\$123.8	\$1,840.4	\$98.4	\$173.3	\$2,581.3	

Table 8.2: APC Savings by Zone

Table 8.3 provides the zonal breakdown and the NPV estimates for the SPP "other" zone. This zone includes merchant generation (without contractual arrangements with load-serving entities) and additional renewable resource plan wind resources. The calculation for this zone is 100 percent production cost minus sales to other zones (revenue).

	R	eference Ca	Emer	ging Techno	ologies (F2)	
Zone			40-yr NPV (\$2020M)	2025 (\$M)	2030 (\$M)	40-yr NPV (\$2020M)
OTHSPP	\$38.8	\$85.3	\$1,317.2	\$54.8	\$69.6	\$960.9

Table 8.3: Other SPP APC Benefit

8.1.3 REDUCTION OF EMISSION RATES AND VALUES

Additional transmission may result in a lower fossil-fuel burn (for example, less coal-intensive generation), resulting in less SO2, NOX, and CO2 emissions. Such a reduction in emissions is a benefit that is already

monetized through the APC savings metric, based on the assumed allowance prices for these effluents. Note that neither ITP future assumes any allowance prices for CO2.

8.1.4 SAVINGS DUE TO LOWER ANCILLARY SERVICE NEEDS AND PRODUCTION COSTS

Ancillary services, such as spinning reserves, ramping (up/down), regulation, and 10-minute quick start are essential for the reliable operation of the electrical system. Additional transmission can decrease the ancillary services costs by: (a) reducing the ancillary services quantity needed, or (b) reducing the procurement costs for that quantity.

The ancillary services needs in SPP are determined according to SPP's market protocols and do not change based on transmission. Therefore, the savings associated with the "quantity" effect are assumed to be zero.

The costs of providing ancillary services are captured in the APC metric. The production cost simulations set aside fixed levels of resources to provide regulation and spinning reserves. As a result, the benefits related to "procurement cost" effect are already included as a part of the APC savings presented in this report.

8.1.5 AVOIDED OR DELAYED RELIABILITY PROJECTS

Potential reliability needs are reviewed to determine if the upgrades proposed for economic or policy reasons defer or replace any reliability upgrades. The avoided or delayed reliability project benefit represents the costs associated with these additional reliability upgrades that would otherwise have to be pursued.

To calculate the avoided or delayed reliability projects benefit for the recommended portfolio, the ability for economic projects to avoid or delay a base reliability project is analyzed and identified in the optimization milestone. No overlap was identified; therefore, no avoided or delayed reliability projects were identified, and the associated benefits are estimated to be zero.

8.1.6 CAPACITY COST SAVINGS DUE TO REDUCED ON-PEAK TRANSMISSION LOSSES

Transmission line losses result from the interaction of line materials with the energy flowing over the line. This constitutes an inefficiency inherent to all standard conductors. Line losses across the SPP system are directly related to system impedance. Transmission projects often reduce losses during peak load conditions, which lowers the costs associated with additional generation capacity needed to meet the capacity requirements.

The capacity cost savings for the recommended portfolio are calculated based on the on-peak losses estimated in the base reliability powerflow model. The loss reductions are then multiplied by 112 percent to estimate the reduction in installed capacity requirements. The value of capacity savings is monetized by applying a net cost of new entry (CONE) of \$85.61/kW-yr in 2018 dollars. The net CONE value was obtained from Attachment AA Resource Adequacy-Attachment AA Section 14 of the tariff. The net CONE was assumed to grow at an inflation rate of 2.5 percent for each study year, \$2M for 2025, and \$2.7M for 2030. Table 8.4 displays the associated capacity savings for each zone in each study year and the 40-year NPV.

Base Reliability						
Zone	2025 (\$M)	2030 (\$M)	40-yr NPV (2020\$M)			
AEPW	\$0.08	\$0.11	\$1.46			
EMDE	(\$0.00)	(\$0.00)	(\$0.01)			
GMO	\$0.00	\$0.00	\$0.04			
GRDA	\$0.00	\$0.00	\$0.01			
KCBPU	\$0.00	\$0.00	(\$0.00)			
KCPL	\$0.01	\$0.00	\$0.03			
LES	\$0.00	\$0.00	\$0.03			
MIDW	\$0.00	\$0.00	\$0.02			
NPPD	\$0.02	\$0.01	\$0.08			
OKGE	\$0.38	\$0.47	\$6.46			
OPPD	(\$0.00)	(\$0.00)	(\$0.01)			
SPRM	(\$0.00)	(\$0.00)	(\$0.00)			
SPS	\$0.73	\$1.20	\$17.63			
SUNC	\$0.01	\$0.01	\$0.10			
SWPA	\$0.04	\$0.04	\$0.50			
UMZ	\$0.38	\$0.52	\$7.42			
WFEC	\$0.11	\$0.11	\$1.36			
WERE	\$0.22	\$0.25	\$3.36			
Total:	\$2.0	\$2.7	\$38.5			

Table 8.4: On-Peak Loss Reduction and Associated Capacity Cost Savings

8.1.7 ASSUMED BENEFIT OF MANDATED RELIABILITY PROJECTS

This metric monetizes the benefits of reliability projects built to meet compliance requirements and mitigate SPP Criteria violations. The regional benefits are assumed to be equal to the 40-year NPV of ATRRs of the projects, totaling \$217 million in 2020 dollars.

The system reconfiguration (SR) approach to allocate zonal benefits utilizes the powerflow models to measure incremental flows shifted onto the existing system during an outage of the proposed reliability upgrade. This is used as a proxy for how much each upgrade reduces flows on the existing transmission facilities in each zone. Results from the production cost simulations are used to determine hourly flow direction on the upgrades and applied as weighting factors for the powerflow results.

Table 8.5 summarize the SR analysis results, load-ratio shares (LRS), and the benefit allocation factors for different voltage levels. The table shows the overall zonal benefits calculated by applying these allocation factors.

Mandated Reliability Benefits Base Reliability and Short-Circuit									
< 100 kV 100-300 kV > 300 kV All Proje						ojects			
SPP- wide Benefit	\$22.86		\$130			\$64		\$2	17
Zone	100% SR	67% SR	33% LRS	Wtd. Avg	33% SR	67% LRS	Wtd. Avg	Allocation	Benefit 2020\$M
AEPW	6.8%	10.4%	20.3%	13.7%	0.5%	20.3%	13.7%	13.0%	\$28.1
EMDE	3.2%	1.5%	2.3%	1.8%	0.6%	2.3%	1.7%	1.9%	\$4.2
GMO	2.9%	7.2%	3.7%	6.1%	24.9%	3.7%	10.8%	7.1%	\$15.5
GRDA	1.1%	0.6%	1.6%	1.0%	0.4%	1.6%	1.2%	1.1%	\$2.3
KCBPU	0.1%	1.9%	0.9%	1.5%	0.2%	0.9%	0.7%	1.1%	\$2.5
KCPL	4.5%	7.0%	7.4%	7.2%	20.5%	7.4%	11.8%	8.2%	\$17.9
LES	0.3%	0.2%	1.4%	0.6%	17.0%	1.4%	6.6%	2.4%	\$5.1
MIDW	4.9%	2.8%	0.7%	2.1%	0.3%	0.7%	0.6%	2.0%	\$4.3
NPPD	6.9%	4.0%	6.0%	4.7%	7.4%	6.0%	6.5%	5.4%	\$11.8
OKGE	17.3%	13.0%	12.9%	13.0%	1.3%	12.9%	9.1%	12.3%	\$26.7
OPPD	4.0%	2.5%	4.6%	3.2%	0.4%	4.6%	3.2%	3.3%	\$7.1
SPRM	4.6%	3.2%	2.1%	2.9%	0.0%	2.1%	1.4%	2.6%	\$5.7
SPS	3.2%	2.8%	0.7%	2.1%	0.3%	0.7%	0.6%	1.8%	\$3.9
SUNC	7.3%	1.2%	1.3%	1.3%	0.3%	1.3%	1.0%	1.8%	\$3.9
SWPA	23.2%	29.3%	11.4%	23.3%	23.0%	11.4%	15.3%	20.9%	\$45.4
UMZ	4.4%	2.7%	9.4%	4.9%	0.0%	9.4%	6.3%	5.3%	\$11.5
WERE	3.5%	5.3%	9.8%	6.8%	2.9%	9.8%	7.5%	6.7%	\$14.5
WFEC	1.7%	4.1%	3.2%	3.8%	0.2%	3.2%	2.2%	3.1%	\$6.8
Total:	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	\$216.9

Table 8.5: Mandated Reliability Benefits

8.1.8 BENEFIT FROM MEETING PUBLIC POLICY GOALS

This metric represents the economic benefit provided by the transmission upgrades for facilitating public policy goals. In this study, the scope is limited to meeting public policy goals related to renewable energy. System-wide benefits are assumed to be equal to the cost of policy projects.

Since no policy projects were identified as a part of the recommended portfolio, the associated benefits are assumed to be zero.

8.1.9 MITIGATION OF TRANSMISSION OUTAGE COSTS

The standard production cost simulations used to estimate APC savings assume that transmission lines and facilities are available during all hours of the year, ignoring the added congestion-relief and production cost benefits of new transmission facilities during the planned and unplanned outages of existing transmission facilities.

To estimate the incremental savings associated with the mitigation of transmission outage costs, the production cost simulations can be augmented for a realistic level of transmission outages. Due to the significant effort needed to develop these augmented models for each case, the findings from the RCAR II study were used to calculate this benefit metric for the consolidated portfolio as a part of this ITP assessment.

In the RCAR analysis, adding a subset of historical transmission outage events to the production cost simulations increased the APC savings by 11.3 percent.²⁹ Applying this ratio to the APC savings estimated for the recommended portfolio translates to a 40-year NPV benefit of \$1,840 million for Future 1 and \$2,581 million for Future 2 in 2020 dollars. These benefits are allocated to zones based upon their LRS within the region. Table 8.6 shows the outage mitigation benefits allocated to each SPP zone.

Zone	Future 1 (2020\$M)	Future 2 (2020\$M)
AEPW	\$43.2	\$59.9
EMDE	\$4.9	\$6.8
GMO	\$7.9	\$11.0
GRDA	\$3.5	\$4.9
KCBPU	\$1.9	\$2.7
KCPL	\$15.8	\$21.9
LES	\$3.0	\$4.2
MIDW	\$1.6	\$2.2
NPPD	\$12.7	\$17.6
OKGE	\$27.5	\$38.2
OPPD	\$9.7	\$13.5
SPRM	\$2.8	\$3.9
SPS	\$24.3	\$33.7
SUNC	\$4.6	\$6.3
SWPA	\$1.5	\$2.1

²⁹ SPP Regional Cost Allocation Review Report, October 8, 2013 (pp. 36-37)

7	Future 1 (2020\$M)	Future 2 (2020\$M)
Zone		
UMZ	\$20.0	\$27.8
WERE	\$20.8	\$28.9
WFEC	\$6.9	\$9.6
Total:	\$212.7	295.0

Table 8.6: Transmission Outage Cost Mitigation Benefits by Zone

8.1.10 INCREASED WHEELING THROUGH AND OUT REVENUES

Increasing available transfer capacity (ATC) with a neighboring region improves import and export opportunities for the SPP footprint. Increased interregional transmission capacity that allows for increased through and out transactions will also increase SPP wheeling revenues.

To estimate how increased ATC could affect the wheeling services sold, the historical long-term firm transmission service request (TSR) allowed by the historical NTC projects are analyzed and compared against the ATC increase in the 2014 powerflow models estimated based on a First-Contingency Incremental Transfer Capability (FCITC) analysis. As summarized in Table 8.7, the NTC projects that have been put inservice under SPP's highway/byway cost allocation methodology enabled 13 long-term TSRs to be sold between 2010 and 2014. The TSRs remain active for 2020. The amount of capacity granted for these TSRs add up to 1,402 MW. The associated wheeling revenues are estimated to be \$50.4 million annually based on current SPP tariff rates. The results of the FCITC analysis are summarized in Table 8.8. The export ATC increase in the 2014 powerflow models is calculated to be 1,142 MW, which is comparable to the amount of firm capacity granted for the incremental TSRs sold historically for 2020.

	N 1		2014 Wheeling Revenues in \$million			
Point of Delivery	Number of Firm PtP Service Requests	MW Capacity Granted	Sch 7 Zonal	Sch 11 Reg-Wide	Sch 11 Thru & Out Zonal	TOTAL
AECI	6	716	\$8.3	\$11.8	\$5.4	\$25.6
KACY	1	100	\$1.4	\$1.7	\$0.8	\$3.9
Entergy	6	586	\$6.8	\$9.7	\$4.4	\$20.9
Total:	13	1,402	\$16.5	\$23.2	\$10.6	\$50.4

Table 8.7: Estimated Wheeling Revenues from Incremental Long-Term TSRs Sold (2010-2014)

Export ATC in 2014 Base Case	1,630 MW
Export ATC in 2014 Change Case	2,943 MW
Increase in Export ATC due to NTCs	1,313 MW
Incremental TSRs Sold due to NTCs	1,402 MW
TSRs Sold as a Percent of Increase in Export ATC	107%

Table 8.8: Historical Ratio of TSRs Sold against Increase in Export ATC

The 2025 and 2030 base reliability powerflow models were utilized for the FCITC analysis on the final consolidated portfolio. The ratio of TSRs sold as a percent of increase in export ATC is capped at 100 percent, as incremental TSR sales would not be expected to exceed the amount of increase in export ATC. The recommended portfolio increased the export ATC by 104 MW in 2025 and 234 MW in 2030. Applying the historical ratio suggests the recommended portfolio could enable incremental TSRs by the same amount, generating additional wheeling revenues of \$5-12 million annually.

The 40-year NPV of benefits is estimated to be \$226 million. These benefits are allocated based on the current revenue sharing method in the tariff. Figure 8.2 shows the distribution of wheeling revenue benefits in each SPP zone.

Figure 8.2: Increased Wheeling Revenue Benefits by Zone (40-year NPV)

8.1.11 MARGINAL ENERGY LOSSES BENEFIT

The standard production cost simulations used to estimate APC do not reflect the impact of transmission upgrades on the MWh quantity of transmission losses. To make run-times more manageable, the load in the production cost simulations is "grossed up" for average transmission losses for each zone. These loss assumptions do not change with additional transmission. Therefore, the traditional APC metric does not capture the benefits from reduced MWh quantity of losses.

APC savings due to such energy loss reductions can be estimated by post-processing the marginal loss component (MLC) of the LMPs from simulation results and applying a methodology³⁰ for marginal energy losses, which accounts for losses on generation and market imports. The 40-year NPV of benefits is estimated to be \$10.97 million in Future 1 and \$14.7 million in Future 2, as shown in Table 8.9.

	R	eference Ca	se (F1)	Emerg	jing Technol	ogies (F2)
Zone	2025 (\$M)	2030 (\$M)	40-yr NPV (2020\$M)	2025 (\$M)	2030 (\$M)	40-yr NPV (2020\$M)
AEPW	(\$0.09)	(\$1.3)	(\$22.6)	(\$1.16)	(\$1.19)	(\$15.37)
EMDE	(\$0.2)	(\$0.3)	(\$4.3)	(\$0.30)	\$0.01	\$1.73
GMO	\$0.34	\$0.4	\$5.9	\$0.71	\$0.22	\$0.30
GRDA	(\$0.3)	(\$0.5)	(\$7.3)	(\$0.30)	(\$0.27)	(\$3.37)
KCBPU	\$0.27	\$0.4	\$5.2	(\$0.33)	\$0.14	\$4.15
KCPL	\$0.4	\$0.5	\$7.3	\$0.25	\$0.09	\$0.30
LES	\$0.03	\$0.2	\$2.7	\$0.02	\$0.07	\$1.12
MIDW	(\$0.0)	(\$0.1)	(\$1.1)	(\$0.02)	(\$0.02)	(\$0.34)
NPPD	\$0.06	\$0.5	\$7.9	\$0.22	\$0.23	\$2.95
OKGE	(\$0.2)	(\$1.2)	(\$19.8)	\$0.44	\$0.14	\$0.31
OPPD	\$0.15	\$1.4	\$23.5	\$0.31	\$0.18	\$1.61
SPRM	\$0.0	\$0.1	\$2.0	\$0.24	\$0.25	\$3.19
SPS	\$1.91	\$2.0	\$25.8	\$1.61	\$2.07	\$28.69
SUNC	\$0.1	\$0.1	\$1.8	\$0.18	\$0.02	(\$0.59)
SWPA	(\$0.03)	(\$0.0)	(\$0.3)	(\$0.03)	\$0.06	\$1.26
UMZ	\$0.2	\$0.1	\$1.3	\$0.21	(\$0.73)	(\$14.04)
WERE	\$0.64	(\$0.1)	(\$4.4)	(\$0.03)	(\$0.23)	(\$3.92)
WFEC	\$0.2	(\$0.6)	(\$12.5)	(\$4.93)	(\$0.99)	\$6.76
Total:	\$3.56	\$1.61	\$10.97	(\$2.89)	\$0.03	\$14.75

Table 8.9: Energy Losses Benefit by Zone

8.1.12 **SUMMARY**

Table 8.10 through Table 8.13 summarize the 40-year NPV of the estimated benefit metrics and costs and the resulting B/C ratios for each SPP zone.

For the region, the B/C ratio is estimated to be 4.0 in Future 1 and 5.2 in Future 2. The higher B/C ratio in Future 2 is driven by the APC savings due to higher congestion relief.

³⁰ As described in the Benefit Metric Manual

				~	Reference Case (Future 1)	e (Future 1)					
		Prese	Present Value of 40-yr	/r Benefits fo	Benefits for the 2025-2065 Period (in 2020\$M)	55 Period (in	2020\$M)			Present	Est.
		Avoided or Delayed	Capacity Savings from	Assumed Benefit of Mandated	Benefit from Meeting	Mitigation of Trans- mission	Increased Wheeling Through	Marginal Energy		Value of 40-yr ATRRs	Benefit/
Zone	APC Savings	Reliability Projects	Reduced On- peak Losses	Reliability Projects	Public Policy Goals	Outage Costs	and Out Revenues	Losses Benefits	Total Benefits	(in 2020\$M)	Cost Ratio
AEPW	\$350	\$0	\$1	\$28	\$0	\$43	\$23	(\$23)	\$423	\$93	4.6
EMDE	\$39	\$0	(\$0)	\$4	\$0	\$5	\$2	(\$4)	\$46	\$8	5.5
GMO	\$20	\$0	\$0	\$15	\$0	\$8	\$4	9\$	\$53	\$13	4.0
GRDA	\$186	\$0	\$0	\$2	\$0	\$4	\$2	(\$7)	\$187	\$7	27.1
KCBPU	\$12	\$0	(0\$)	\$3	\$0	\$2	\$0	\$5	\$22	\$3	9.9
KCPL	\$57	\$0	\$0	\$18	\$0	\$16	\$8	\$7	\$106	\$32	3.3
LES	\$4	\$0	\$0	\$5	\$0	\$3	\$1	\$3	\$16	\$5	3.2
MIDW	(\$21)	\$0	\$0	\$4	\$0	\$2	\$1	(\$1)	(\$15)	\$3	(2.8)
NPPD	\$12	\$0	\$0	\$12	\$0	\$13	\$6	\$8	\$51	\$25	2.0
OKGE	\$854	\$0	\$6	\$27	\$0	\$28	\$12	(\$20)	\$907	\$61	14.9
OPPD	(\$\$)	\$0	(0\$)	\$7	\$0	\$10	\$4	\$23	\$36	\$16	2.2
SPRM	\$6	\$0	(0\$)	\$6	\$0	\$3	\$2	\$2	\$18	\$5	3.9
SPS	\$1	\$0	\$1	\$4	\$0	\$24	\$18	\$26	\$73	\$92	0.8
SUNC	(\$67)	\$0	\$0	\$4	\$0	\$5	\$2	\$2	(\$2\$)	\$11	(4.9)
SWPA	\$12	\$0	\$18	\$45	\$0	\$2	\$1	(0\$)	\$77	\$3	27.9
NMZ	\$134	\$0	\$7	\$11	\$0	\$20	\$16	\$1	\$190	\$65	2.9
WERE	\$83	\$0	\$1	\$14	\$0	\$21	\$30	(\$4)	\$145	\$159	6.0
WFEC	\$165	\$0	\$3	\$7	\$0	\$7	\$5	(\$12)	\$175	\$31	9.5
Total:	\$1,840	\$0	\$38	\$217	\$0	\$213	\$137	\$11	\$2,456	\$634	3.9

Table 8.10: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal

				Emerç	Emerging Technologies (Future 2)	ogies (Future	e 2)				
		Prese	Present Value of 40-yr Benefits for the 2025-2065 Period (in 2020\$M)	yr Benefits fo	r the 2025-206	5 Period (in 2	(020\$M)			Present	Est.
		Avoided	Capacity	Assumed Benefit of	Benefit from	Mitigation of Trans-	Increased Wheeling	Marginal		Value of 40-yr	
7002	APC	or Delayed Reliability	Reduced On-	Reliability	Meeting Public Policy	Mission Outage	and Out	Losses Pandita	Total	AIKKS (in	Cost
AEPW	\$588	\$0	\$1	\$28	\$0 \$0	\$60	\$23	(\$15)	\$685	\$93	7.4
EMDE	\$50	\$0	(0\$)	\$4	\$0	2\$	\$2	\$2	\$65	\$8	7.8
GMO	\$57	\$0	\$0	\$15	\$0	\$11	\$4	\$0	\$87	\$13	6.5
GRDA	\$152	\$0	\$0	\$2	\$0	\$5	\$2	(\$3)	\$158	\$7	22.9
KCBPU	\$38	\$0	(0\$)	\$3	\$0	\$3	\$0	\$4	\$47	\$3	14.4
KCPL	\$30	\$0	\$0	\$18	\$0	\$22	\$8	\$0	\$78	\$32	2.4
LES	\$26	\$0	\$0	\$5	\$0	\$4	\$1	\$1	\$38	\$5	7.4
MIDW	(\$17)	\$0	\$0	\$4	\$0	\$2	\$1	(0\$)	(\$10)	\$3	(3.8)
NPPD	\$17	\$0	\$0	\$12	\$0	\$18	\$6	\$3	\$55	\$25	2.2
OKGE	\$980	\$0	\$6	\$27	\$0	\$38	\$12	\$0	\$1,063	\$61	17.4
OPPD	\$21	\$0	(0\$)	\$7	\$0	\$13	\$4	\$2	\$47	\$16	2.9
SPRM	\$2	\$0	(0\$)	\$6	\$0	\$4	\$2	\$3	\$17	\$5	3.5
SPS	(\$12)	\$0	\$1	\$4	\$0	\$34	\$18	\$29	\$73	\$92	0.8
SUNC	(\$52)	\$0	\$0	\$4	\$0	\$6	\$2	(\$1)	(\$41)	\$11	(3.7)
SWPA	\$34	\$0	\$18	\$45	\$0	\$2	\$1	\$1	\$102	\$3	36.9
OMZ	\$361	\$0	\$7	\$11	\$0	\$28	\$16	(\$14)	\$410	\$65	6.3
WERE	\$58	\$0	\$1	\$14	\$0	\$29	\$30	(\$4)	\$129	\$159	0.8
WFEC	\$248	\$0	\$3	\$7	\$0	\$10	\$5	\$7	\$280	\$31	8.9
Total:	\$2,581	\$0	\$38	\$217	\$0	\$295	\$137	\$15	\$3,283	\$634	5.2

Table 8.11: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal

Table 8.12: Estimated 40-year NPV of Benefit Metrics and Costs-State

³¹ State level numbers are representative of load and generation in the SPP region, not the entire state.

				~	Reference Case (Future 1)	e (Future 1)					
		Prese	Present Value of 40-yr Benefits for the 2025-2065 Period (in 2020\$M)	yr Benefits fo	or the 2025-206	55 Period (in	2020\$M)			Present	Est.
		Avoided or	Capacity Saving from	Assumed Benefit of	Benefit from	Mitigation of Trans-	Increased Wheeling Through	Marginal		Value of 40-yr	Ronofit/
Zone	APC	Reliability Projects	Reduced On-	Reliability Projects	Public Policy Goals	Outage	and Out	Losses	Total	(in 2020\$M)	Cost
AEPW	\$350	\$0	\$1	\$28	\$0	\$43	\$23	(\$23)	\$423	\$93	4.6
EMDE	\$39	\$0	(0\$)	\$4	\$0	\$5	\$2	(\$4)	\$46	\$8	5.5
GMO	\$20	\$0	\$0	\$15	\$0	\$8	\$4	9\$	\$53	\$13	4.0
GRDA	\$186	\$0	\$0	\$2	\$0	\$4	\$2	(\$7)	\$187	\$7	27.1
KCBPU	\$12	\$0	(0\$)	\$3	\$0	\$2	\$0	\$5	\$22	\$3	9.9
KCPL	\$57	\$0	\$0	\$18	\$0	\$16	\$8	\$7	\$106	\$32	3.3
LES	\$4	\$0	\$0	\$5	\$0	\$3	\$1	\$3	\$16	\$5	3.2
MIDW	(\$21)	\$0	\$0	\$4	\$0	\$2	\$1	(\$1)	(\$15)	\$3	(2.8)
NPPD	\$12	\$0	\$0	\$12	\$0	\$13	\$6	\$8	\$51	\$25	2.0
OKGE	\$854	\$0	\$6	\$27	\$0	\$28	\$12	(\$20)	\$907	\$61	14.9
ОРРБ	(\$\$)	\$0	(0\$)	\$7	\$0	\$10	\$4	\$23	\$36	\$16	2.2
SPRM	\$6	\$0	(0\$)	\$6	\$0	\$3	\$2	\$2	\$18	\$5	3.9
SPS	\$1	\$0	\$1	\$4	\$0	\$24	\$18	\$26	\$73	\$92	0.8
SUNC	(\$67)	\$0	\$0	\$4	\$0	\$5	\$2	\$2	(\$22)	\$11	(4.9)
SWPA	\$12	\$0	\$18	\$45	\$0	\$2	\$1	(0\$)	\$77	\$3	27.9
OMZ	\$134	\$0	\$7	\$11	\$0	\$20	\$16	\$1	\$190	\$65	2.9
WERE	\$83	\$0	\$1	\$14	\$0	\$21	\$30	(\$4)	\$145	\$159	6.0
WFEC	\$165	\$0	\$3	\$7	\$0	\$7	\$5	(\$12)	\$175	\$31	5.6
Total:	\$1,840	\$0	\$38	\$217	\$0	\$213	\$137	\$11	\$2,456	\$634	3.9

Table 8.10: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal

				Emer	Emerging Technologies (Future 2)	ogies (Future	e 2)				
		Prese	Present Value of 40-yr Benefits for the 2025-2065 Period (in 2020\$M)	yr Benefits fo	r the 2025-206	5 Period (in 2	:020\$M)			Present	Est.
		Avoided	Capacity	Assumed Benefit of	Benefit from	Mitigation of Trans-	Increased Wheeling	Marginal		Value of 40-yr	
	APC	or Delayed Reliability	Savings from Reduced On-	Mandated Reliability	Meeting Public Policy	mission Outage	Through and Out	Energy Losses	Total	ATRRs (in	Benefit/ Cost
Zone	Savings	Projects	peak Losses	Projects	Goals	Costs	Revenues	Benefits	Benefits	2020\$M)	Ratio
AEPW	\$588	0 4	_ (\$28	0	\$60	\$23	(\$I\$) \$\	\$685	\$93	7.7
EMDE	\$50	0,50	(0\$)	\$ £	0\$	/ \$	\$ 5	25	\$65	\$ £	8.7
GRDA	\$57	0 \$	Q	\$15	0\$	\$ I.	\$ 25	(\$3)	\$87	\$13	6.5
KCBPU	\$38	\$0	(0\$)	\$3	0\$	\$3	\$0	\$4	\$47	\$3	14.4
KCPL	\$30	\$0	\$0	\$18	\$0	\$22	\$8	\$0	\$78	\$32	2.4
LES	\$26	\$0	\$0	\$5	\$0	\$4	\$1	\$1	\$38	\$5	7.4
MIDW	(\$17)	\$0	\$0	\$4	\$0	\$2	\$1	(0\$)	(\$10)	\$3	(3.8)
NPPD	\$17	\$0	\$0	\$12	\$0	\$18	\$6	\$3	\$55	\$25	2.2
OKGE	\$980	\$0	\$6	\$27	\$0	\$38	\$12	\$0	\$1,063	\$61	17.4
OPPD	\$21	\$0	(0\$)	\$7	\$0	\$13	\$4	\$2	\$47	\$16	2.9
SPRM	\$2	\$0	(0\$)	\$6	\$0	\$4	\$2	\$3	\$17	\$5	3.5
SPS	(\$12)	\$0	\$1	\$4	\$0	\$34	\$18	\$29	\$73	\$92	0.8
SUNC	(\$52)	\$0	\$0	\$4	\$0	\$6	\$2	(\$1)	(\$41)	\$11	(3.7)
SWPA	\$34	\$0	\$18	\$45	\$0	\$2	\$1	\$1	\$102	\$3	36.9
DMZ	\$361	\$0	\$7	\$11	\$0	\$28	\$16	(\$14)	\$410	\$65	6.3
WERE	\$58	\$0	\$1	\$14	\$0	\$29	\$30	(\$4)	\$129	\$159	0.8
WFEC	\$248	\$0	\$3	\$7	\$0	\$10	\$5	\$7	\$280	\$31	8.9
Total:	\$2,581	\$0	\$38	\$217	\$0	\$295	\$137	\$15	\$3,283	\$634	5.2

Table 8.11: Estimated 40-year NPV of Benefit Metrics and Costs-Zonal

Table 8.12: Estimated 40-year NPV of Benefit Metrics and Costs-State

³¹ State level numbers are representative of load and generation in the SPP region, not the entire state.

, Inc.
Pool
Power
Southwest

				Emerging	Technolo	Emerging Technologies (Future 2) $^{ m 32}$	e 2) ³²				
		Present Valu	Present Value of 40-yr Benefits for the 2025-2065 Period (in 2020\$M)	nefits for the	s 2025-206	5 Period (in	2020\$M)			Present	Est.
	APC	Avoided or Delayed Reliability	Capacity Savings from Reduced On-peak	Assumed Benefit of Mandated Reliability	Benefit from Meeting Public Policy	Mitigation of Trans- mission Outage	Increased Wheeling Through and Out	Marginal Energy Losses	Total	Value of 40-yr ATRRs (in	Benefit/ Cost
States	Savings	Projects	Losses	Projects	Goals	Costs	Revenues	Benefits	Benefits	2020\$M)	Ratio
Arkansas	\$150	\$0	\$0	\$12	\$0	\$18	9\$	(\$3)	\$184	\$26	7.2
lowa	\$24	\$0	\$0	\$0	\$0	\$1	\$0	(\$0)	\$25	\$1	19.2
Kansas	\$346	\$0	\$26	\$74	\$0	\$81	\$41	\$20	\$587	\$185	3.2
Louisiana	\$86	\$0	\$0	\$4	\$0	\$	\$3	(\$5)	\$100	\$14	7.4
Minnesota	\$4	\$0	\$0	\$0	\$0	\$0	\$0	(\$0)	\$4	\$0	22.9
(Missouri	\$1,078	\$0	\$7	\$62	\$0	\$78	\$26	\$3	\$1,252	\$115	10.9
Montana	\$2	\$0	\$0	\$0	\$0	\$0	\$0	(\$0)	\$2	\$0	22.9
Oklahoma	\$307	\$0	\$1	\$27	\$0	\$48	\$17	(\$2)	\$398	\$70	5.7
Nebraska	\$347	\$0	\$5	\$24	\$0	\$41	\$36	\$7	\$460	\$194	2.4
New Mexico	(\$\$)	\$0	\$0	\$2	\$0	\$1	\$0	(\$0)	(\$4)	\$1	(3.8)
North Dakota	\$ 67	\$0	\$0	\$1	\$0	\$2	\$1	(\$1)	\$70	\$3	22.9
South Dakota	\$49	\$0	\$0	\$1	\$0	\$2	\$1	(\$1)	\$51	\$2	22.9
Texas	\$125	\$0	\$0	\$	\$0	\$15	9\$	(\$4)	\$151	\$23	9.9
Wyoming	\$1	\$0	\$0	\$0	\$0	\$0	\$0	(\$0)	\$1	\$0	22.9
Total:	\$2,581	\$0	\$38	\$217	\$0	\$295	\$137	\$15	\$3,283	\$634	5.2

Table 8.13: Estimated 40-year NPV of Benefit Metrics and Costs-State

 32 State level numbers are representative of load and generation in the SPP region, not the entire state.

8.2 RATE IMPACTS

The rate impact to an average retail residential ratepayer in SPP was computed for the recommended portfolio. Rate impact costs and benefits³³ are allocated to the average retail residential ratepayer based on an estimated residential consumption of 1,000 kWh per month. Benefits and costs for the 2030 study year were used to calculate rate impacts. All 2030 benefits and costs are shown in 2020 dollars, discounting at a 2.5 percent inflation rate.

The retail residential rate impact benefit is subtracted from the retail residential rate impact cost to obtain a net rate impact cost by zone. If the net rate impact cost is negative, it indicates a net benefit to the zone. The rate impact costs and benefits are shown in Table 8.14 through Table 8.17. There is a monthly net benefit for the average SPP residential ratepayer of 16 cents for Future 1. There is a monthly net benefit for the average SPP residential ratepayer of 30 cents for Future 2.

Zone	One-Year ATRR Costs 2030 (\$thousands)	One-Year Benefit 2030 (\$thousands)	Rate Impact- Cost	Rate Impact Benefit	Net Impact (2020\$)
AEPW	\$7,896	\$17,468	\$0.15	\$0.34	(\$0.19)
EMDE	\$719	\$2,859	\$0.14	\$0.56	(\$0.42)
GMO	\$1,156	\$950	\$0.12	\$0.10	\$0.02
GRDA	\$581	\$10,114	\$0.06	\$1.05	(\$0.99)
KCBPU	\$283	\$496	\$0.10	\$0.18	(\$0.08)
KCPL	\$2,688	\$2,940	\$0.18	\$0.20	(\$0.02)
LES	\$443	\$230	\$0.13	\$0.07	\$0.06
MIDW	\$227	(\$1,145)	\$0.10	(\$0.50)	\$0.60
NPPD	\$1,854	\$577	\$0.11	\$0.03	\$0.07
OKGE	\$5,184	\$44,561	\$0.16	\$1.33	(\$1.18)
OPPD	\$1,417	(\$281)	\$0.10	(\$0.02)	\$0.12
SPRM	\$408	\$509	\$0.14	\$0.18	(\$0.04)
SPS	\$7,336	(\$63)	\$0.25	\$0.00	\$0.25
SUNC	\$910	(\$3,729)	\$0.14	(\$0.56)	\$0.70
SWPA	\$235	\$583	\$0.43	\$1.07	(\$0.64)
UMZ	\$5,297	\$7,186	\$0.17	\$0.23	(\$0.06)
WERE	\$13,179	\$4,675	\$0.49	\$0.17	\$0.31
WFEC	\$2,521	\$8,817	\$0.16	\$0.56	\$0.40
Total:	\$52,334	\$96,748	\$0.19	\$0.35	(\$0.16)

Table 8.14: Future 1 2030 Retail Residential Rate Impacts by Zone (2020\$)

³³ APC savings are the only benefit included in the rate impact calculations.

Zone	One-Year ATRR Costs 2030 (\$thousands)	One-Year Benefit 2030 (\$thousands)	Rate Impact- Cost	Rate Impact Benefit	Net Impact (2020\$)
AEPW	\$7,896	\$29,423	\$0.15	\$0.57	(\$0.42)
EMDE	\$719	\$4,016	\$0.14	\$0.79	(\$0.65)
GMO	\$1,156	\$2,901	\$0.12	\$0.31	(\$0.19)
GRDA	\$581	\$8,221	\$0.06	\$0.86	(\$0.80)
KCBPU	\$283	\$1,665	\$0.10	\$0.60	(\$0.50)
KCPL	\$2,688	\$1,269	\$0.18	\$0.09	\$0.10
LES	\$443	\$1,230	\$0.12	\$0.35	(\$0.22)
MIDW	\$227	(\$1,009)	\$0.10	(\$0.44)	\$0.54
NPPD	\$1,854	\$732	\$0.11	\$0.04	\$0.06
OKGE	\$5,184	\$50,551	\$0.15	\$1.51	(\$1.35)
OPPD	\$1,417	\$1,110	\$0.10	\$0.08	\$0.02
SPRM	\$408	\$327	\$0.14	\$0.11	\$0.03
SPS	\$7,336	\$1,530	\$0.25	\$0.05	\$0.20
SUNC	\$910	(\$3,052)	\$0.14	(\$0.46)	\$0.60
SWPA	\$235	\$1,853	\$0.43	\$3.41	(\$2.98)
UMZ	\$5,297	\$18,039	\$0.17	\$0.08	(\$0.40)
WERE	\$13,179	\$3,594	\$0.49	\$0.13	\$0.35
WFEC	\$2,521	\$12,985	\$0.16	\$0.82	\$0.60
Total:	\$52,334	\$135,386	\$0.19	\$0.49	(\$0.30)

Table 8.15: Future 2 2030 Retail Residential Rate Impacts by Zone (2020\$)

145

Southwest Power Pool, Inc.

State ³⁴	One-Year ATRR Costs 2030 (\$thousands)	One-Year Benefit 2030 (\$thousands)	Rate Impact- Cost	Rate Impact Benefit	Net Impact ³⁵ (2020\$)
Arkansas	\$1,972	\$4,773	\$0.15	\$0.36	(\$0.21)
lowa	\$84	\$1,415	\$0.06	\$1.08	(\$1.02)
Kansas	\$18,815	\$9,380	\$0.17	\$0.09	\$0.09
Louisiana	\$1,155	\$2,556	\$0.15	\$0.34	(\$0.19)
Minnesota	\$16	\$278	\$0.06	\$1.09	(\$1.02)
Missouri	\$8,148	\$46,549	\$0.14	\$0.81	(\$0.67)
Montana	\$9	\$151	\$0.06	\$1.09	(\$1.02)
Nebraska	\$8,234	\$11,123	\$0.20	\$0.26	(\$0.07)
New Mexico	\$411	\$338	\$0.50	\$0.41	\$0.09
North Dakota	\$257	\$4,481	\$0.06	\$1.09	(\$1.02)
Oklahoma	\$10,488	\$7,735	\$0.39	\$0.29	\$0.10
South Dakota	\$195	\$3,276	\$0.06	\$1.08	(\$1.01)
Texas	\$2,545	\$4,616	\$0.19	\$0.35	(\$0.16)
Wyoming	\$4	\$77	\$0.06	\$1.09	(\$1.02)
Total:	\$52,334	\$96,748	\$0.19	\$0.35	(\$0.16)

Table 8.16: Future 1 2030 Retail Residential Rate Impacts by State (2020\$)

³⁴ State level numbers are representative of load and generation in the SPP region, not the entire state.

³⁵ State level results are based on load allocations by zone, by state. For example, 4.2 percent of Upper Missouri Zone (UMZ) load is in Nebraska, so 4.2 percent of UMZ benefits are attributed to Nebraska.

State ³⁶	One-Year ATRR Costs 2030 (\$thousands)	One-Year Benefit 2030 (\$thousands)	Rate Impact- Cost	Rate Impact Benefit	Net Impact ³⁷ (2020\$)
Arkansas	\$1,972	\$7,700	\$0.15	\$0.59	(\$0.44)
lowa	\$84	\$1,164	\$0.06	\$0.89	(\$0.83)
Kansas	\$18,815	\$13,928	\$0.17	\$0.13	\$0.05
Louisiana	\$1,155	\$4,305	\$0.15	\$0.57	(\$0.42)
Minnesota	\$16	\$226	\$0.06	\$0.88	(\$0.82)
Missouri	\$8,148	\$56,385	\$0.14	\$0.98	(\$0.84)
Montana	\$9	\$123	\$0.06	\$0.88	(\$0.82)
Nebraska	\$8,234	\$21,487	\$0.20	\$0.51	(\$0.31)
New Mexico	\$411	\$1,031	\$0.50	\$1.26	(\$0.76)
North Dakota	\$257	\$3,642	\$0.06	\$0.88	(\$0.82)
Oklahoma	\$10,488	\$14,078	\$0.39	\$0.52	(\$0.13)
South Dakota	\$195	\$2,660	\$0.06	\$0.88	(\$0.81)
Texas	\$2,545	\$8,596	\$0.19	\$0.64	(\$0.45)
Wyoming	\$4	\$62	\$0.06	\$0.88	(\$0.82)
Total:	\$52,334	\$135,386	\$0.19	\$0.49	(\$0.30)

Table 8.17: Future 2 2030 Retail Residential Rate Impacts by State (2020\$)

8.3 SENSITIVITY ANALYSIS

The recommended portfolio was tested under select sensitivities to understand the economic impacts associated with variations in certain model assumptions. These sensitivities were not used to develop transmission projects nor filter out projects, but rather to measure the flexibility of the final consolidated portfolio in both futures under different uncertainties. The demand and natural gas price sensitivities were included in the 2020 ITP Scope, however, SPP staff performed additional sensitivities to further explore the performance of the portfolio.

The following sensitivities were conducted:

- Scoped sensitivities
 - High/low natural gas price
 - High/low demand

³⁶ State level numbers are representative of load and generation in the SPP region, not the entire state.

³⁷ State level results are based on load allocations by zone, by state. For example, 4.2 percent of Upper Missouri Zone (UMZ) load is in Nebraska, so 4.2 percent of UMZ benefits are attributed to Nebraska.

- Supplemental sensitivities
 - High/low wind³⁸
 - High/low solar
 - High/low energy storage
 - High/low unit retirements

The consolidated portfolio was tested in both futures. The APC savings impacts of variations in the model inputs were calculated for the simulations. Figure 8.3 illustrates the expected range of APC savings benefit in comparison to the range of portfolio cost and the impacts of varying sensitivity assumptions on that range of benefits. The cost ranges represent the ± 30 percent Study Estimate requirement. The dashed bar in subsequent figures represents the expected case B/C ratio for comparison to the sensitivity case B/C ratios.

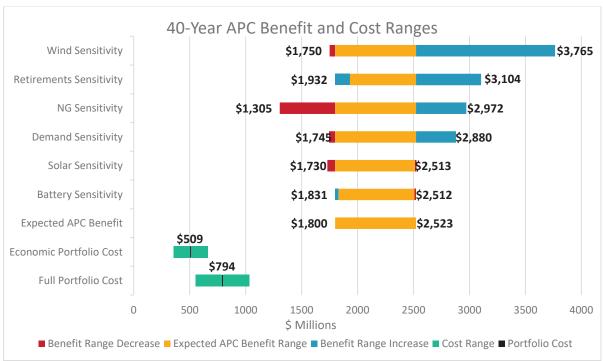


Figure 8.3: 40-Year APC Benefit and Cost Ranges

8.3.1 PEAK DEMAND SENSITIVITY

A single confidence interval for demand levels was developed from FERC Form No. 714. The demand sensitivities had a 67 percent confidence interval (1 standard deviation) in positive and negative directions.

The change in peak demand and energy reflects the SPP regional average volatility based on historical data. The average deviation from the projected 2030 load forecasts developed by the MDWG and

³⁸ Low wind sensitivity was only assessed in Future 2.

reviewed by the ESWG results in a ±7.5 percent change. This change was implemented on the load at a company level. For companies without available data, the SPP regional average confidence interval was used.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	53	55	53	55
Peak Demand (GW)	Expected	58	59	58	59
	High	62	64	62	64

Table 8.18: Peak Demand Sensitivity

These high and low values were included as inputs to the base models of each future with and without the recommended portfolio. The results of the 40-year APC benefit for this sensitivity are reflected in Figure 8.4. An increase in demand creates an increase in congestion on the SPP system, resulting in higher congestion costs for the portfolios to mitigate, thus increasing the benefit. The opposite is true for the low demand case, which decreases the opportunity for the portfolio to mitigate congestion.

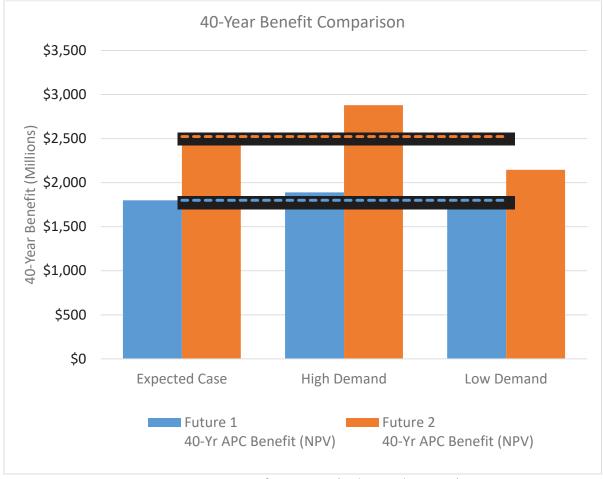


Figure 8.4: 40-Year Benefit Comparison (Peak Demand Sensitivity)

8.3.2 NATURAL GAS SENSITIVITY

A single confidence interval for natural gas prices was developed from the ABB fundamental forecast. The natural gas sensitivity had a 95 percent confidence interval (1.96 standard deviations) in positive and negative directions.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	2.72	2.95	2.72	2.95
Natural Gas (2020\$)	Expected	3.75	4.07	3.75	4.07
	High	4.79	5.19	4.79	5.19

Table 8.19: Natural Gas Sensitivity

A change in gas price is reflected by a corresponding change in the overall price of energy. The high natural gas sensitivity shows the portfolio's ability to reduce overall energy costs by allowing for a more economical generation dispatch. The low natural gas sensitivity shows a reduced benefit caused by lessened economic opportunity of resources with similar energy costs.

Figure 8.5: 40-Year Benefit Comparison (Natural Gas Sensitivity)

8.3.3 WIND CAPACITY SENSITIVITY

A wind sensitivity was conducted to test the portfolio's performance under alternative wind conditions. For this sensitivity, wind capacity and energy were scaled to the projected amounts shown in Table 8.20. For Future 1 only an increase in the wind capacity and energy was assessed due to the current growth of wind installation in real-time since scope development. For the high wind sensitivity, wind capacity and energy was added to existing and resource plan sites in the base case assumptions on a pro rata basis. For the low wind sensitivity, wind capacity and energy was reduced at only the resource plan sites.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	N/A	N/A	25	28
Wind (GW)	Expected	26	28	30	33
	High	34	38	38	44

Table 8.20: Wind Capacity Sensitivity

Testing the portfolio against increased wind showed an increase in APC benefit. This influx of additional energy increases congestion in the base cases, leaving more congestion to be addressed by the project portfolio. The increase in benefit for both portfolios confirms that additional renewables would be facilitated by these specific sets of projects. For the reduced wind Future 2 sensitivity, the opposite occurs. A reduction in wind capacity and energy reduces the benefits the portfolio can realize.

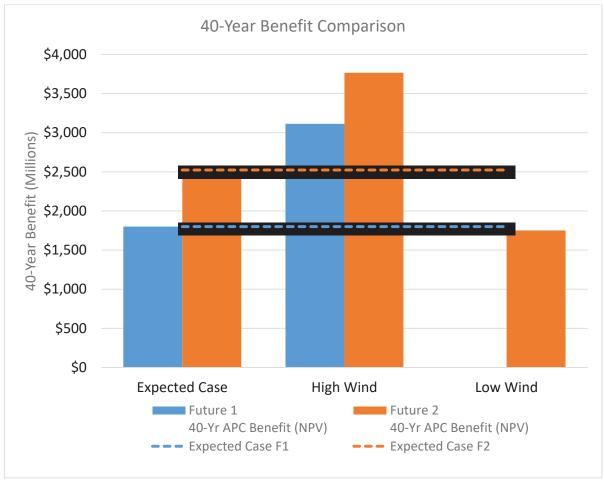


Figure 8.6: 40-Year Benefit Comparison (Wind Capacity Sensitivity)

8.3.4 SOLAR CAPACITY SENSITIVITY

Performance of the portfolio was assessed under varying solar capacity and energy assumptions. In this sensitivity, solar capacity and energy was scaled to the projected amounts shown in Table 8.21.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	0	0	0	0
Solar (GW)	Expected	4	7	5	9
	High	9	11	10	13

Table 8.21: Solar Capacity Sensitivity

Like the wind sensitivity, increased solar capacity and energy reduces the overall cost of energy available to the system. This leads to similar changes in portfolio performance as those seen in the wind sensitivity, except for the high solar sensitivity in Future 2. The increased solar capacity and energy is competing

with higher amounts of energy from wind resources with a lower cost of energy, which results in a negligible change due to the increase solar in Future 2.

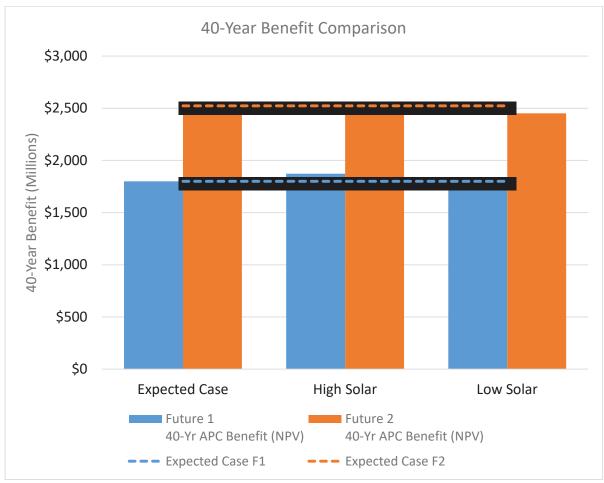


Figure 8.7: 40-Year Benefit Comparison (Solar Capacity Sensitivity)

8.3.5 ENERGY STORAGE SENSITIVITY

The 2020 ITP was the first study to incorporate the development of energy storage resources. To understand the impacts of energy storage on the portfolio a sensitivity was conducted. Energy storage amounts were scaled to the amounts shown in Table 8.22.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	0.0	0.0	0.0	0.0
Energy Storage (GW)	Expected	0.8	1.4	1.7	3.1
	High	1.5	2.7	3.3	6.1

Table 8.22: Energy Storage Sensitivity

As illustrated in Figure 8.8 below, modifying the amounts of energy storage caused negligible effect on the benefits observed by the portfolio in an hourly simulation. More impacts would generally be expected in a sub-hourly simulation due to increased volatility.

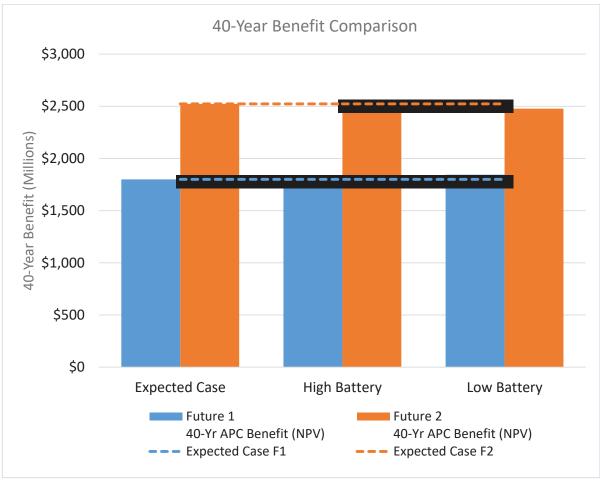


Figure 8.8: 40-Year Benefit Comparison (Energy Storage Sensitivity)

8.3.6 UNIT RETIREMENTS SENSITVITY

Retirement assumptions for the 2020 ITP resulted in additional capacity retirements compared to the 2019 ITP. As a result of stakeholders' concerns related to this assumption a sensitivity was conducted to understand the effect of varying this assumption. Table 8.23 shows the change in the amount of retirements, in gigawatts, for the low, expected, and high retirement amounts. For the low retirement sensitivity, the conventional resource plan units were deactivated from the simulation and the previously retired units were placed back in service. The high retirements sensitivity targeted coal facilities from the 2017 ITP10 with a lower than average capacity factor under emission restrictions, which were replaced by combustion turbines primarily at the same locations to maintain zonal reserve margins.

Variable	Sensitivity	Future 1 Year 5	Future 1 Year 10	Future 2 Year 5	Future 2 Year 10
	Low	0	0	0	0
Unit Retirements (GW)	Expected	6	11	13	17
	High	17	20	23	25

Table 8.23: Unit Retirements Sensitivity

All four scenarios of this sensitivity experienced increased congestion for the portfolio to address, which was somewhat unexpected. This can be explained by the wide range of variables as it relates to the SPP fleet. Locations of added/removed retirements, the large change in resource mix, and system congestion patterns all play a significant role in the APC of the system.

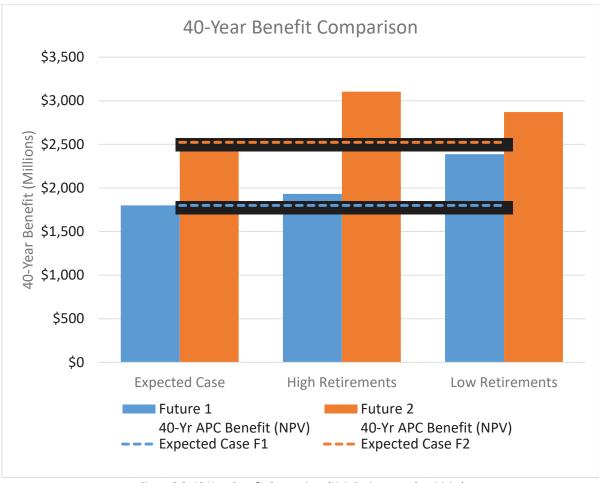


Figure 8.9: 40-Year Benefit Comparison (Unit Retirements Sensitivity)

155

Southwest Power Pool, Inc.

8.4 VOLTAGE STABILITY ASSESSMENT

A voltage stability assessment was conducted with the recommended portfolio using Future 1 and 2 market powerflow models to assess the transfer limit (GW) from renewables in SPP to conventional thermal generation in SPP, and from renewables in SPP to conventional thermal generation in external areas.³⁹ The assessment was performed to determine whether the generation dispatch with the recommended portfolios adversely impacts system voltage stability. The assessment was intentionally scoped to determine how the planned system performs under high renewable dispatch, given the projected renewable amounts assumed for the 2020 ITP assessment.

The planned system supports the future-specific renewable generation dispatches observed in the reliability hours after modeling the consolidated portfolio, reaching either minimum internal conventional thermal generation levels or thermal limits prior to reaching voltage stability limits.

8.4.1 METHODOLOGY

To determine the amount of generation transfer that could be accommodated by the planned system, generation in the source zone was increased and generation in the sink zone was decreased. Table 8.24 identifies the transfer zones and boundaries.

Transfer Zones	Zone Boundaries
SPP renewables	SPP conventional thermal generation
SPP renewables	First-Tier and Second-Tier conventional thermal generation

Table 8.24: Generation Zones

Table 8.25 shows the transfers that were performed on the 2030 light load and 2030 summer models by scaling both on-line and off-line renewables from the source zone and scaling down the sink zone. Utility scale solar was not included in the source zone for the 2030 light for the 2029 light load model due to the reliability hour being identified as 4 a.m.

³⁹ See TWG 11/13/2018 meeting minutes and attachments for the TWG-approved 2020 ITP Voltage Stability Scope.

Model	Source Zone	Sink Zone
2030 Light Load	SPP renewables (Wind)	SPP conventional thermal generation
2030 Light Load	SPP renewables (Wind)	First-Tier and Second-Tier conventional thermal generation
2030 Summer	SPP renewables (Wind and Utility Scale Solar)	First-Tier and Second-Tier conventional thermal generation
2030 Summer	SPP renewables (Wind and Utility Scale Solar)	SPP conventional thermal generation

Table 8.25: Transfers by Model

Single contingencies (N-1) for all SPP branches, transformers, and ties greater than or equal to 345 kV were analyzed. SPP and first-tier 100 kV and above facilities were monitored for voltage and thermal violations. The initial condition for each model was the source zone sum of real power generation output (MW). The maximum source zone transfer capability was the real power maximum generation (Pmax). The transfers were performed on each model in 200 MW steps until voltage collapse occurred in the precontingency and post-contingency (N-1, 345 kV and 500 kV facilities) conditions. Each future was evaluated for increasing generation transfer amounts to determine different voltage collapse points of the transmission system. Source and sink generation was scaled on a pro-rata basis to reach the precontingency maximum power transfer limit, or the voltage stability limit (VSL). Multiple transfer limits were determined based on the worst N-1 contingency and independently evaluating the next worst contingency to determine the top five post-contingency VSL.

8.4.2 SUMMARY

Figure 8.2 shows a summary of the voltage stability assessment limits by future, model and transfer path. The table includes the transfer path, source and sink generation pre-transfer levels, critical contingency, post transfer level when VSL is reached, incremental transfer limit amount, and whether or not thermal overloads occur prior to voltage collapse. The table shows in all instances either minimum internal conventional thermal generation levels or when a thermal limit is reached prior to the VSL.

Transfer Source >Sink	Initial Source (GW)	Initial Sink (GW)	Event Future 1: 2030 Light	VSL Source (GW)	VSL Sink (GW)	Transfer (GW)	Thermal Overloads Prior to Voltage Collapse
Wind			ruture 1: 2030 Light	Loau			
>Internal			Reached Minimum Sink				N/A
Wind							
>External	19.7	18.3	Blackberry-Wolf Creek	21.5	17.0	1.8	Yes
Thermal							
"	19.7	18.3	Sooner-Wekiwa	21.5	17.0	1.8	Yes

Transfer Source >Sink	Initial Source (GW)	Initial Sink (GW)	Event	VSL Source (GW)	VSL Sink (GW)	Transfer (GW)	Thermal Overloads Prior to Voltage Collapse	
	19.7	18.3	Terry Road-Sunnyside	21.5	17.0	1.8	Yes	
		I	Future 1: 2030 Summe	er Peak		ı		
Solar & Wind >Internal	21.1	28.7	Crossroad-Eddy County	26.2	23.8	5.2	Yes	
"	21.1	28.7	Holt-S3458	26.2	23.8	5.2	Yes	
Solar & Wind >External	21.1	72.1	Ketchem-Sibley	26.7	67.5	5.4	Yes	
"	21.1	72.1	La Cygne-Stillwell	26.6	67.5	5.4	Yes	
"	21.1	72.1	JEC-Hoyt	26.8	67.3	5.7	Yes	
	Future 2: 2030 Light Load							
Wind >Internal			Reached Minimum Sink				N/A	
Wind >External	18.8	17.9	Hugo-Sunnyside	21.0	16.1	1.8	Yes	
"	18.8	17.9	Blackberry-Wolf Creek	21.6	15.7	2.2	Yes	
	18.8	17.9	Fort Smith-ANO	21.6	15.7	2.2	Yes	
			Future 2: 2030 Summe	er Peak				
Solar & Wind >Internal	25.2	24.6	Crossroad-Eddy County	29.6	20.4	4.1	Yes	
"	25.2	24.6	Terry Road-Sunnyside	39.0	11.6	13.0	Yes	
	25.2	24.6	Mathewson-Northwest	39.8	10.9	13.7	Yes	
Solar & Wind >External	25.2	70.5	Ketchem-Sibley	30.4	66.2	4.4	Yes	
"	25.2	70.5	La Cygne-Stilwell	30.6	66.0	4.5	Yes	
"	25.2	70.5	Blackberry-Wolf Creek	31.0	65.7	4.6	Yes	

Table 8.26: Post-Contingency Voltage Stability Transfer Limit Summary

Table 8.27 shows a summary of the voltage stability assessment limits and thermal limits by future, model, and transfer path. The table includes the transfer path, total renewable capacity, post transfer level when thermal violations and VSLs are reached, and a comment summarizing either the minimum internal conventional thermal generation levels or when a thermal limit is reached prior to the VSL

	Total	VSL	Thermal	
Transfer	Renewable	Limit	Limit	
Source>Sink	Capacity (GW)	(GW)	(GW)	Comment
	Futu	ire 1: 2030	Light Load	
Wind>Internal	25.6	N/A	N/A	
Wind>External	26.9	21.5	20.2	
	Future	e 1: 2030 :	Summer Pea	ak
Solar & Wind >Internal	33.1	26.2	23.4	
Solar & Wind>External	33.1	26.7	23.8	
	Futu	ire 2: 2030	Light Load	
Wind>Internal	30.1	N/A	N/A	
Wind>External	30.8	21.0	20.2	
	Future	e 2: 2030 S	Summer Pea	ak
Solar & Wind >Internal	40.2	29.6	28.0	
Solar & Wind>External	41.2	30.4	28.2	

Table 8.27: Voltage Stability Results Summary

8.4.3 CONCLUSION

The analysis demonstrates the planned system does not reach a VSL prior to system thermal limits; therefore, the potential benefits attributed to the consolidated portfolio are validated. Voltage collapse occurs at renewable levels less than the projected renewable capacity amounts. However, thermal issues (*i.e.*, causing renewable curtailments) occur prior to voltage collapse when thermal issues are captured in the market economic models as congestion. The APC benefit of the consolidated portfolio generally derives from relieving congestion on thermal issues. Voltage collapse occurs at aggregate renewable levels greater than what is observed in the reliability hours after modeling the consolidated portfolio.

8.5 FINAL RELIABILITY ASSESSMENT

8.5.1 METHODOLOGY

Thermal and voltage violations were identified in the market powerflow portfolio rebuilt models following the same methods in the base reliability powerflow assessment. There were three thermal violations identified a result of the new market dispatch and portfolio additions, although they were reclassified and invalidated as reliability violations per section 4.2.5 of the ITP Manual. No additional voltage violations were observed and no supplementary solutions were developed to accommodate the market powerflow models.

8.5.1.1 Short-Circuit Model

A proxy automatic sequencing fault calculation (ASCC) short-circuit analysis was performed on the 2020 ITP year-two summer maximum fault current model to find percent increases in fault currents in relation to the base case model on which the needs assessment was performed. All consolidated portfolio projects expected to alter or need zero sequence data were added to the model regardless of their in-service dates.

After performing this analysis, it was found that 113 of the 9,888 buses monitored experienced a 5 percent increase in fault current. Only nine of the 113 buses appeared to exceed common breaker duty ratings of 20kA. The subsequent short-circuit analysis performed next cycle will confirm whether or not the duty ratings are exceeded given the latest modeling assumptions.

8.5.2 SUMMARY

8.5.2.1 Base Reliability Models

The resulting thermal and voltage violations were solved or marked invalid through methods such as reactive device setting adjustments, model updates, identification of invalid contingencies, non-load-serving buses, and facilities not under SPP's functional control. Additional rebuilds were identified as needed for portfolio inclusion based on downstream overloads resulting from rebuilds already selected in the proposed portfolio. Due to the fact that these sections of the Deaf Smith 115kV corridor were not up to minimum design standard, they have all been identified as rebuild projects. Per the ITP manual, base reliability projects driving additional needs require portfolio project adjustment or additions in order to fully mitigate the resulting needs. The details of the additional rebuilds are listed below.

Rebuild Projects	Portfolio Need Identification
Deaf Smith #6-Hereford 115 kV rebuild	Base Reliability
Deaf Smith #6-Friona 115 kV rebuild	Base Reliability
Cargill-Friona 115 kV rebuild	Final Reliability Assessment
Cargill-Deaf Smith #24 115 kV rebuild	Final Reliability Assessment
Parmer-Deaf Smith #24 115 kV rebuild	Final Reliability Assessment
Parmer-Deaf Smith #20 115 kV rebuild	Final Reliability Assessment
Curry-Deaf Smith #20 115 kV rebuild	Final Reliability Assessment

Table 8.28: Additional Identified Reliability Rebuilds

8.5.2.2 Market Powerflow Models

The resulting thermal and voltage violations identified in the market powerflow portfolio rebuilt models were generated using the same methods in the base reliability powerflow assessment. There were three thermal violations identified as resultant of the new market dispatch and portfolio additions, although they were reclassified and invalidated as reliability violations per Section 4.2.5 of the ITP Manual. Of the fifteen voltage violations identified, thirteen were related to local planning more stringent monitoring criteria and only two were low voltage per the SPP Planning Criteria. Per the ITP manual, no new solutions were developed for these identified violations, and the facilities will be monitored in the 2021 ITP for any further issues.

8.5.2.3 Short-Circuit Model

The final reliability assessment for the short-circuit model did not show any new fault-interrupting equipment to have its duty ratings exceeded by the maximum available fault current (potential violation) due to the addition of the consolidated portfolio.

8.5.3 CONCLUSION

Overall, only the Base Reliability assessment yielded any additional needs which were addressed by portfolio project additions per the direction provided in the ITP Manual.

9 NTC RECOMMENDATIONS

SPP staff makes NTC recommendations for projects included in the consolidated portfolio based on results from the staging process and SPP Business Practice 7060. If financial expenditure is required within four years from board approval, the project is generally recommended for an NTC or NTC-C. To determine the date when financial expenditure is required, the project's lead time is subtracted from its need date. Expected lead times for transmission projects are determined using historical data on construction timelines from SPP's project tracking process. NTC-Cs are issued for projects with an operating voltage greater than 100 kV and a Study Estimate greater than \$20 million.

Two exceptions to this process for the 2020 ITP are the Eddy County-North Loving 345 kV line identified as a reliability project with a June 2028 need date and the Split Rock 345/115 kV terminal equipment identified as an economic project with a January 2025 need date for the reasons discussed in section 7.1.7 and 7.3.10, warranting additional analysis necessary in future planning studies before move forwarded with the planned projects.

As discussed throughout the report the eastern New Mexico area is extremely complex. Both economic and reliability issues are present and a comprehensive solution is necessary to address the thermal loading, low voltage, and voltage collapse conditions. The Eddy County-North Loving 345 kV line does not address some of these conditions as it is not a comprehensive solution. Additionally, there are some out of scope compliance events NERC TPL 001-4 P3 planning events that are also known to cause concerns in the area. SPP Operations staff is also currently working to update interface ratings due to transmission topology being placed in service in the near future. SPP expects to continue studying this in the 2021 ITP assessment with the goal of utilizing information gathered in the 2020 ITP along with new analysis to provide a comprehensive solution to address the system conditions in the area.

The terminal equipment that would require replacement to increase the rating of the Split Rock 345/115 kV transformers, which is not an SPP tariff facility and would require FERC filings to support SPP regionally beneficial seams project cost allocation. The project was also identified and assessed during the 2020 MISO-SPP CSP, but was not found to be jointly beneficial. Additionally, the project marginally passed SPP's consolidation criteria.

For the reasons listed above the Eddy County-North Loving 345 kV line and the Split Rock 345/115 kV terminal equipment upgrades are not recommended for an NTC.

Table 9.1 below shows SPP's NTC recommendations when considering staging results, expected lead times, and other qualitative information related to the recommended projects.

Description	Need Date	Lead Time (months)	Financial Expenditure Date	NTC?
Watford 230/115 kV transformer circuit 1 terminal equipment, circuit 2 replacement	6/1/2022	24	11/17/2020	NTC

Description	Need Date	Lead Time (months)	Financial Expenditure Date	NTC?
Circleville-Goff 115 kV circuit 1 rebuild	6/1/2025	24	6/1/2023	NTC
Goff-Kelly 115 kV rebuild	6/1/2025	24	6/1/2023	NTC
South Shreveport-Wallace Lake 138 kV rebuild	6/1/2024	24	6/1/2022	NTC-C
Grady 138 kV capacitor bank	12/1/2022	24	12/1/2020	NTC
Richmond 115 kV substation, Richmond 115/69 kV transformer, Richmond-Aberdeen 115 kV line	12/1/2022	36	11/17/2020	NTC
Cushing Tap-Shell Cushing Tap-Shell Pipeline 69 kV rebuild	6/1/2023	24	6/1/2021	NTC
Bushland-Deaf Smith 230 kV terminal equipment	4/1/2022	18	11/17/2020	NTC
Newhart-Potter County 230 kV terminal equipment	4/1/2022	18	11/17/2020	NTC
Carlisle-Murphy 115 kV rebuild	6/1/2022	24	11/17/2020	NTC
Roswell 115/69 kV replace transformer #1	6/1/2022	24	11/17/2020	NTC
S3456-S3458 345 kV terminal equipment	6/1/2029	18	12/1/2027	No
Meadowlark-Tower 33 115 kV rebuild	6/1/2023	36	11/17/2020	NTC
Jones-Lubbock South 230 kV terminal equipment circuit 1	6/1/2028	18	12/1/2026	No
Jones-Lubbock South 230 kV terminal equipment circuit 2	6/1/2028	18	12/1/2026	No
Deaf Smith-Plant X 230 kV terminal equipment	4/1/2022	18	11/17/2020	NTC
Newhart-Plant X230 kV terminal equipment	4/1/2022	18	5/17/2022	NTC
Lubbock South-Wolfforth 230 kV terminal equipment and clearance increase	6/1/2022	18	12/1/2020	NTC
Allen-Lubbock South 115 kV rebuild	6/1/2022	24	11/17/2020	NTC
Allen-Quaker 115 kV rebuild	6/1/2022	24	11/17/2020	NTC
Eddy County-North Loving 345 kV new line	6/1/2028	48	6/1/2024	No
Bismarck 115 kV reactors	4/1/2022	24	11/17/2020	NTC
Moorehead 230 kV reactor	4/1/2022	24	11/17/2020	NTC
Russell 115 kV capacitor bank	6/1/2022	24	11/17/2020	NTC
Maljamar 115 kV capacitor bank	6/1/2028	24	6/1/2026	No
Devil's Lake 115 kV reactor	4/1/2022	24	11/17/2020	NTC
Agate 115 kV reactor	4/1/2022	24	11/17/2020	NTC
Nixa-Nixa Espy 69 kV terminal equipment	6/1/2022	18	12/1/2020	No
Replace four breakers at Anadarko 138 kV	6/1/2022	18	12/1/2020	NTC
Replace three breakers at Northeast 161 kV	6/1/2022	18	12/1/2020	NTC
Replace one breaker at Stilwell 161 kV	6/1/2022	18	12/1/2020	NTC
Replace one breaker at Leeds 161 kV	6/1/2022	18	12/1/2020	NTC

Description	Need Date	Lead Time (months)	Financial Expenditure Date	NTC?
Replace one breaker at Shawnee Mission 161 kV	6/1/2022	18	12/1/2020	NTC
Replace one breaker at Southtown 161 kV	6/1/2022	18	12/1/2020	NTC
Replace two breakers at Lake Road 161 kV	6/1/2022	18	12/1/2020	NTC
Replace two breakers at Craig 161 kV	6/1/2022	18	12/1/2020	NTC
Anadarko-Gracemont 138 kV rebuild as double- circuit	1/1/2023	36	11/17/2020	NTC- Modify
Russett-South Brown 138 kV rebuild	1/1/2022	30	11/17/2020	NTC
Butler-Tioga 138 kV new line; wreck-out Butler- Altoona 138 kV	1/1/2024	36	1/1/2021	NTC-C
GRDA 1 345/161 kV circuit 1 and circuit 2 terminal equipment	1/1/2022	18	11/17/2020	NTC
Columbus East 230/115 kV transformer replacement	1/1/2039	24	1/1/2037	No
Franks-South Crocker-Lebanon 161 kV terminal equipment	1/1/2028	18	7/1/2026	No
Tap Woodward-Border 345 kV, Chisholm-Tap 345 kV new line	1/1/2022	48	11/17/2020	NTC-C
Dover Switch-Okeene 138 kV and Aspen- Mooreland-Pic 138 kV terminal equipment	1/1/2022	18	11/17/2020	NTC
Pleasant Valley 345/138 kV Station, Minco- Pleasant Valley-Draper 345 kV new line, Franklin-Midwest 138 kV terminal equipment, Cimarron-Draper 345 kV terminal equipment and Pleasant Valley cut-in	1/1/2025	48	1/1/2021	NTC-C
Split Rock 345/115 kV circuit 10 and 11 terminal equipment	1/1/2025	18	7/1/2023	No
Oahe-Sully Buttes-Whitlock 230 kV terminal equipment ⁴⁰	1/1/2028	18	7/1/2026	No
Deaf Smith #6-Hereford 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Deaf Smith #6-Friona 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Cargill-Friona 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Cargill-Deaf Smith #24 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Parmer-Deaf Smith #24 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Parmer-Deaf Smith #20 115 kV rebuild	4/1/2022	24	11/17/2020	NTC
Curry-Deaf Smith #20 115 kV rebuild	4/1/2022	24	11/17/2020	No

Table 9.1: NTC Recommendations

 $^{^{\}rm 40}$ Information in this table includes considerations of the updated cost estimate.

10 GLOSSARY

Acronym	Name
ABB	ABB Group licenses the PROMOD enterprise software SPP uses for economic simulations
APC	Adjusted production cost = Production Cost \$ + Purchases \$-Sales \$
ARR	Auction Revenue Rights
ATC	Available transfer capacity
BAA	Balancing Authority Area
BAU	Business as usual
B/C	Benefit-to-Cost Ratio
BES	Bulk-Electric System
cc	Combined cycle
CLR	Cost per loading relief
СТ	Combustion turbine
CVR	Cost per voltage relief
DPP	Detailed Project Proposal
E&C	Engineering and construction cost
ERCOT	Electric Reliability Council of Texas (ERCOT)
EHV	Extra-high voltage
ESWG	Economic Studies Working Group
FCITC	First contingency incremental transfer capacity
FERC	Federal Energy Regulatory Commission
GI	Generator Interconnection
GIA	Generator Interconnection Agreement
GOF	Generator outlet facilities
GW	Gigawatt
GWh	Gigawatt hour
HV	High voltage
IFTS	Interruption of firm transmission service
IRP	Integrated resource plan

Acronym	Name
IS	Integrated System, which includes the Western Area Power Administration's Upper Great Plains Region (Western-UGP), Basin Electric Power Cooperative, and the Heartland Consumers Power District
ITP	Integrated Transmission Planning
ITP Manual	Integrated Transmission Planning Manual
kV	Kilovolt
LMP	Locational Marginal Price = the market-clearing price for energy at a given Price Node equivalent to the marginal cost of serving demand at the Price Node, while meeting SPP Operating Reserve requirements
MISO	Midcontinent Independent System Operator
MTEP19	2019 MISO Transmission Expansion Plan
MTEP20	2020 MISO Transmission Expansion Plan
MTEP	MISO Transmission Expansion Plan
MDWG	Model Development Working Group
MMWG	Multi-regional Modeling Working Group
МОРС	Markets and Operations Policy Committee
MW	Megawatt
NERC	North American Electric Reliability Corporation
NITSA	Network Integration Transmission Service Agreement
NPV	Net present value
NREL	National Renewable Energy Laboratory
NCLL	Non-consequential load loss
NTC	Notification to Construct
PPA	Power Purchase Agreement
PST	Phase-shifting transformer
RCAR	Regional Cost Allocation Review
RPS	Renewable portfolio standards
SASK	Saskatchewan Power
SPC	Strategic Planning Committee
SPP OATT	SPP Open Access Transmission Tariff
то	Transmission Owner
TSR	Transmission Service Request

Acronym	Name
TVA	Tennessee Valley Authority
TWG	Transmission Working Group
US EIA	United States Energy Information Administration
VSL	Voltage stability limit

Table 10.1: Glossary

Voltages (kV)	230	115	115	115	115	345	345/230	345	115	115	115	115	115	115
Project Description/ Comments	Build new 16.8-mile 230 kV line from Carlisle to Wolfforth South and install necessary terminal equipment.	Build new 5.1-mile 115 kV line from Centre St. to Hereford NE. Convert distribution transformer high side at Centre St. from 69 kV to 115 kV. Install any necessary terminal equipment at Hereford NE.	Convert 1.04 miles of 233 to 115 kV service by tapping the 115 kV line from Sunset Substation to Coulter Interchange at 140 & Soncy Street. At Soncy Sub split the converted 233 line off the 69 kV bus and terminate to a new 115/13.2 kV transformer to serve the Soncy distribution load. Install new 115/13.2 kV distribution transformer. Leave 69 kV underground cable to Lawrence Park to be fed by Y72 out of Coulter Interchange.	Rebuild 6-mile 115 kV line from Lubbock South Interchange to Allen substation.	Rebuild 13.5-mile 4/0 segment of 115 kV line from Canyon East Sub to Randall County Interchange.	Construct new 107-mile 345 kV line from Tuco to Yoakum. Install any necessary 345 kV terminal equipment at Yoakum associated with new 345/230 kV transformer.	Install new 345/230 kV 640 MVA transformer at Yoakum substation. Install any necessary 230 kV terminal equipment.	Construct new 52-mile 345 kV line from Hobbs to Yoakum.	Install 28.8-MVAR capacitor bank at Cochran 115 kV (two 14.4-MVAR stages).	Build new 12-mile 115 kV line from Atoka to Eagle Creek and install necessary terminal equipment.	Build new 6-mile 115 kV line from South Portales to Market St. and install necessary terminal equipment.	Build new 10.4-mile 115 kV line from Market St. to Portales and install necessary terminal equipment.	Construct new 7.7-mile 115 kV line from Mustang to Shell CO2.	Rebuild 3-mile 69 kV line from CV Pines to Price converting to 115 kV.
əmeN suā oT	Carlisle Interchange 230 kV	Hereford Centre Street Sub	New Soncy 115 KV	Allen Sub 115 kV	Canyon East Sub 115 kV		Amoco Switching Station 230 kV (Amoco Slaughter)	Hobbs Interchange 345 kV		Eagle Creek 115 kV	Market ST 115 kV	Portales Interchange 115 kV	Shell Co2 Gas Sub 115 kV	CV-PINES 3 115 kV
From Bus Name	Wolfforth Interchange 230 kV	Northeast Hereford Interchange 115 kV	Soncy Tap 115 kV	Lubbock South Interchange 115 kV	Randall County Interchange 115 kV	TUCO Interchange 345 kV			Cochran Interchange 115 kV	Atoka Interchange 115 kV	S Portales 115 kV	Market ST 115 kV	Mustang Interchange North Bus 115 kV	PRICE 3 115 KV
Project Status	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete
beed Determined OTA	6/1/2017	6/1/2014	6/1/2015	6/1/2019	2/1/2014	6/1/2017	6/1/2017	6/1/2020	6/1/2016	6/1/2015	6/1/2018	6/1/2018	6/1/2015	6/1/2017
Project Owner Indicated In-Service Date	3/27/2018	4/6/2018	12/31/2018 6/1/2015	4/26/2019	3/20/2020	6/1/2020	5/31/2019	5/30/2019	12/31/2018	12/31/2018	7/13/2018	2/7/2018	4/29/2019	1/30/2018
Project Type	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	High Priority	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Transmission Service	Regional Reliability
əmsN əbsıgqU	Carlisle Interchange - Wolfforth Interchange 230 kV Ckt 1	Centre St Hereford NE 115 kV Ckt 1	Soncy Tap 115 kV - New Soncy 115 kV	Allen Substation - Lubbock South Interchange 115 kV Ckt 1	Canyon East Sub - Randall County Interchange 115 kV Ckt 1 Rebuild	Tuco - Yoakum 345 kV Ckt 1	Yoakum 345/230 kV Ckt 1 Transformer	Hobbs - Yoakum 345 kV Ckt 1	Cochran 115 kV Cap Bank	Atoka - Eagle Creek 115 kV Ckt 1	Market St South Portales 115 kV Ckt 1	Market St Portales 115 kV Ckt 1	Mustang - Shell CO2 115 kV Ckt 1	CV Pines - Price 115 kV Ckt 1 Rebuild
Project Mame	Line - Carlisle - Wolfforth 230 kV	Multi - Centre St Hereford NE 115 kV Ckt 1 and Centre St. and Hereford 115 kV Load Conversion	Line - Soncy convert load to 115 kV	Line - Allen Sub - Lubbock South Interchange 115 kV Ckt 1	Line - Canyon East - Randall 115 kV Ckt 1 Rebuild	Multi - Tuco - Yoakum 345/230 kV Ckt 1	Multi - Tuco - Yoakum 345/230 kV Ckt 1	Multi - Hobbs - Yoakum 345/230 kV Ckt 1	Device - Cochran 115 kV Cap Bank	Line - Atoka - Eagle Creek 115 kV Ckt 1	Multi - Kilgore Switch - South Portales - Market St Portales 115 kV	Multi - Kilgore Switch - South Portales - Market St Portales 115 kV	Line - Mustang - Shell CO2 115 kV Ckt 1	Line - Chavis - Price - CV Pines - Capitan 115 kV Ckt 1

Voltages (kV)	115	345	115	345	115	115	115	230/115	230/115	230/115	115	115	115	115	115	115	115	115
Project Description/ Comments	Rebuild 5-mile 69 kV line from Capitan to CV Pines converting to 115 kV.	Construct new 20.4-mile 345 kV line from new Kiowa substation to North Loving.	Construct new 18.4-mile 115 kV line from China Draw to new Yeso Hills substation.	Construct 1-mile of double circuit structures from the new Kiowa substation to Potash Junction. Construct Circuit 1 with 345 kV conductor and Circuit 2 with 115 kV conductor.	Construct new 115 kV Ponderosa substation. Install any necessary 115 kV terminal equipment.	Tap the existing 115 kV line from Ochoa to Whitten to construct new 115 kV Ponderosa Tap substation. Install any necessary 115 kV terminal equipment.	Construct new 19.7-mile 115 kV line from North Loving to China Draw.	Replace first existing 230/115 transformer at Seminole.	Replace second existing 230/115 transformer at Seminole.	Replace 230/115 kV transformer at Wolfforth substation.	Construct new 9.3-mile 115 kV line from new Ponderosa substation to new Ponderosa Tap substation.	Rebuild 8.3-mile 115 kV line from Northwest to Rolling Hills.	Rebuild 9.5-mile 115 kV line from Livingston Ridge to IMC #1 Tap.	Reconductor 5.9-mile 115 kV line from Ponderosa Tap to Whitten.	Rebuild 1.5-mile 115 kV line from Intrepid West Tap to Potash Junction.	Rebuild 3.9-mile 115 kV line from Intrepid West Tap to IMC#2.	Construct new 115 kV Battle Axe substation. Install any necessary 115 kV terminal equipment.	Construct new 115 kV Yeso Hills substation. Install any necessary 115 kV terminal equipment.
этвИ su d oT	Capitan 115 kV			Road Runner 345 kV			China Draw 115 kV	Seminole Interchange 115 kV	Seminole Interchange 115 kV	Wolfforth Interchange 115 kV		Northwest Interchange 115 kV		Whitten Sub 115 kV	Potash Junction Interchange 115 kV	I. M. C. #1 Sub Tap 115 kV (International Mineral Co)		
From Bus Name	CV-PINES 3 115 kV		China Draw 115 kV				North Loving 115 kV	Seminole Interchange 230 kV	Seminole Interchange 230 kV	Wolfforth Interchange 230 kV			I. M. C. #1 Sub Tap 115 kV (International Mineral Co)					
Project Status	Closed Out	Complete	Complete	Complete	Closed Out	Closed Out	Closed Out	Complete	Complete	On Schedule < 4	Closed Out	On Schedule < 4	Complete	Complete	Complete	Complete	Closed Out	Complete
Defermined Need Date	6/1/2017	6/1/2018	6/1/2018	6/1/2018	6/1/2018	6/1/2018	6/1/2015	6/1/2017	6/1/2017	6/1/2021	6/1/2018	6/1/2021	6/1/2015	6/1/2015	6/1/2015	6/1/2015	6/1/2018	6/1/2018
Project Owner lbdicated In-Service ated	1/30/2018	6/1/2018	5/3/2019	4/30/2018	6/1/2017	6/1/2017	5/25/2015	12/28/2018	4/30/2019	4/15/2021	6/1/2017	5/15/2021	3/22/2019	1/26/2018	3/22/2019	3/22/2019	12/4/2015	5/3/2019
Project Type	Regional Reliability	High Priority	High Priority	High Priority	High Priority	High Priority	High Priority	Regional Reliability	Regional Reliability	Regional Reliability	High Priority	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	High Priority	High Priority
emsN ebs₁gqU	Capitan - CV Pines 115 kV Ckt 1 Rebuild	Kiowa - North Loving 345 kV Ckt 1	China Draw - Yeso Hills 115 kV Ckt 1	Kiowa - Potash Junction 345/115 kV Ckt 1	Ponderosa 115 kV Substation	Ponderosa Tap 115 kV Substation	China Draw - North Loving 115 kV Ckt 1	Seminole 230/115 kV #1 Transformer	Seminole 230/115 kV #2 Transformer	Wolfforth 230/115 kV Ckt 1 Transformer	Ponderosa - Ponderosa Tap 115 kV Ckt 1	Northwest - Rolling Hills 115 kV Rebuild Ckt 1	IMC #1 Tap - Livingston Ridge 115 kV Ckt 1 Rebuild	Ponderosa Tap - Whitten 115 kV Ckt 1 Rebuild	Intrepid 115	Multi - Road Runner 115 kV IMC#1 Tap - Intrepid West 115 kV Loop Rebuild Ckt 1 Rebuild	Battle Axe 115 kV Substation	Yeso Hills 115 kV Substation
9msM tɔəlorq	Line - Chavis - Price - CV Pines - Capitan 115 kV Ckt 1	Multi - Kiowa - North Loving - China Draw 345/115 kV Ckt 1	Multi - China Draw - Yeso Hills 115 kV	Multi - Potash Junction - Road Runner 345 kV Conv. and Transformers at Kiowa and Road Runner	Multi - Ponderosa - Ponderosa Tap 115 kV	Multi - Ponderosa - Ponderosa Tap 115 kV	Line - Hopi Sub - North Loving - China Draw 115 kV Ckt 1	XFR - Seminole 230/115 kV #1 and #2	XFR - Seminole 230/115 kV #1 and #2	XFR - Wolfforth 230/115 kV Ckt 1 Transformer	Multi - Ponderosa - Ponderosa Tap 115 kV	Line - Northwest - Rolling Hills 115 kV Ckt 1	Multi - Road Runner 115 kV Loop Rebuild	Multi - Road Runner 115 kV Loop Rebuild	Multi - Road Runner 115 kV Loop Rebuild	Multi - Road Runner 115 kV Loop Rebuild	Multi - Battle Axe - Road Runner 115 kV	Multi - China Draw - Yeso Hills 115 kV

Voltages (kV)	230/115	230/115	230/115	230	230	115/69	345	115	115	69	115	230	230	115	230	115
Project Description/ Samments	Upgrade 230/115 kV transformer at Tuco to 273 MVA.	Upgrade Yoakum County Interchange Ckt 1 230/115 kV transformer to 250 MVA.	Upgrade Yoakum County Interchange Ckt 2 230/115 kV transformer to 250 MVA.	Upgrade switches and wave traps at Sundown and Amoco and increase the line clearance to increase the rating of the 230 kV line from Amoco to Sundown.	Replace wave trap at Amarillo South to increase the rating of the $230\mathrm{kV}$ line from Amarillo South to Swisher County.	Replace 115/69 kV transformer at Lynn County substation.	Tap the existing 345 kV line from Finney to Hitchland to construct the new Stevens Co. substation. Install any necessary 345 kV terminal equipment.	Rebuild 4.3-mile 115 kV line from National Enrichment Plant to Targa.	Install 115 kV terminal equipment at Lynn County substation necessary to replace 115/69 kV transformer.	Rebuild 4.5-mile 69 kV line from Cochran to Whiteface Tap to 115 kV standards (operated at 69 kV).	Rebuild 6.5-mile 115 kV line from Cunningham to Monument Tap.	Reconfigure 230 kV bus tie at Eddy Co. substation to convert to a double bus and breaker scheme.	Replace wavetrap at Potash Junction 230 kV substation.	Rebuild 6.8-mile 115 kV line from National Enrichment Plant to Teague.	Upgrade terminal equipment at both Potter Co. and Harrington 230 kV substations.	Construct new 115 kV line from Agave Red Hills to Road Runner.
emsN suā oT	TUCO Interchange 115 kV	Yoakum County Interchange 115 kV	Yoakum County Interchange 115 kV	Amoco Switching Station 230 kV (Amoco Slaughter)	Swisher County Interchange 230 kV	Lynn County Interchange 69 kV		Whitten Sub 115 kV			Monument Tap 115 kV			Teague Sub 115 kV	Harrington Station East Bus 230 kV	Road Runner 115 kV
From Bus Name	TUCO Interchange 230 kV	Yoakum County Interchange 230 kV	Yoakum County Interchange 230 kV	Sundown Interchange 230 kV	Amarillo South Interchange 230 kV	Lynn County Interchange 115 kV	Walkemeyer Tap 345 kV	National Enrichment Plant Sub 115 kV	Lynn County Interchange 115 kV		Cunningham Station 115 kV	Eddy County Interchange 230 kV	Potash Junction Interchange 230 kV	National Enrichment Plant Tap 115 kV	Potter County Interchange 230 kV	
eutst2 toelorq	Complete	Complete	Complete	Complete	On Schedule < 4	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete	Complete
beed benimated OTA	6/1/2018	6/1/2019	6/1/2019	1/1/2019	4/1/2020	6/1/2019	6/1/2015	6/1/2015	6/1/2019	6/1/2016	6/1/2021	10/1/2017	6/1/2018	6/1/2018	6/1/2019	4/1/2020
Project Owner esiving Indicated In-Service ested	6/15/2019	3/15/2019	5/7/2019	2/20/2019		5/15/2019	6/1/2018	3/20/2019	5/15/2019	11/28/2018	12/20/2019	12/20/2019	6/1/2018	12/14/2018	5/16/2019	3/20/2017 4/1/2020
Project Type	Transmission Service	Transmission Service	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Transmission Service	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability
Upgrade Name	Tuco 230/115 kV Ckt 1 Transformer	Yoakum County Interchange 230/115 kV Ckt 1 Transformer	Yoakum County Interchange 230/115 kV Ckt 2 Transformer	Amoco - Sundown 230 kV Terminal Upgrades	Amarillo South 230 kV Terminal Upgrades	Lynn County 115/69 kV Ckt 1 Transformer	Stevens Co. 345 kV Substation	National Enrichment Plant - Targa 115 kV Ckt 1	Lynn County 115 kV Terminal Upgrades	Cochran - Whiteface Tap 69 kV Ckt 1 Rebuild	Cunningham - Monument Tap 115 kV Ckt 1 Rebuild	Eddy Co. 230 kV Bus Tie	Potash Junction 230 kV Terminal Upgrade	National Enrichment Plant - Teague 115 kV Ckt 1 Rebuild	Potter Co Harrington 230 kV Terminal Upgrades	Agave Red Hills - Road Runner 115 KV Ckt 1 New Line
Project Name	XFR - Tuco 230/115 kV Ckt 1	XFR - Yoakum County Interchange 230/115 kV Ckts 1 and 2	XFR - Yoakum County Interchange 230/115 kV Ckts 1 and 2	Sub - Amoco - Sundown 230 kV Terminal Upgrades	Sub - Amarillo South 230 kV Terminal Upgrades	XFR - Lynn County 115/69 kV Ckt 1 Transformer	Multi - Walkemeyer Tap - Walkemeyer 345/115 kV	Multi - Road Runner 115 kV Loop Rebuild	XFR - Lynn County 115/69 kV Ckt 1 Transformer	Line - Cochran - Whiteface Tap 69 kV Ckt 1 Rebuild	Line - Cunningham - Monument Tap 115 kV Ckt 1 Rebuild	Sub - Eddy Co. 230 kV Bus Tie	Sub - Potash Junction 230 kV Terminal Upgrade	Line - National Enrichment Plant - Teague 115 kV Ckt 1 Rebuild	Sub - Potter Co Harrington 230 kV Terminal Upgrades	Line - Road Runner - Agave Red Hills/Ochoa/Custer Mountain 115 kV New Line

Voltages (kV)	115	230/115	115	115	115	115	115	115	115	115		115	115	115	115
Project Description/ Comments	Add new 1-mile segment to existing 115 kV line from Custer Mountain to Ochoa, re-terminating at Road Runner.	Upgrade the existing 230/115 kV transformer at Sundown and replace any terminal equipment required to meet the full rating of the new transformer.	Tap the 115 kV line from Atoka to Eagle Creek and install 3- way switch at tap point.	Construct new 115 kV line from Mustang to Seminole.	Install terminal upgrades at Mustang 115 kV substation needed to accommodate termination of new line from Seminole.	Install terminal upgrades at Seminole 115 kV substation needed to accommodate termination of new line from Mustang.	Rebuild 3-mile segment of 115 kV line from Canyon East Tap to Randall.	Upgrade terminal equipment at Terry Co. and Wolfforth to increase the rating of the 115 kV line from Terry Co. to Wolfforth.	Rebuild 2.8-mile 115 kV line from Livingston Ridge to Wipp.	Install terminal upgrades at Carlsbad and/or Pecos to increase the rating of the 115 kV line between the substations.	TUCO 230kV Switching Station: Communications; Revenue Metering; 230kV Line arrestors.	Upgrade any necessary terminal equipment at Stanton and/or Tuco to increase the rating of the 115 kV line between the two substations.	Upgrade any necessary terminal equipment at Indiana and/or SP-Erskine to increase the rating of the 115 kV line between the two substations.	Rebuild 19.88 miles of 115 kV transmission line from Cox Interchange to Hale Co Interchange.	Replace wave trap at Hockley County Interchange to increase the line capacity for Hockley County Interchange - Lamb County Interchange 115 kV Ckt 1.
9meN su8 oT	Road Runner 115 kV	Sundown Interchange 115 kV	Atoka Interchange 115 kV	Seminole Interchange 115 kV			Randall County Interchange 115 kV	Wolfforth Interchange 115 kV	WIPP Sub 115 kV	Pecos Interchange 115 kV		Stanton Sub 115 kV	South Plains REC- Erskine 115 kV		
From Bus Name		Sundown Interchange 230 kV	Eagle Creek 115 kV	Mustang Interchange North Bus 115 kV	Mustang Interchange North Bus 115 kV	Seminole Interchange 115 kV	Canyon East Sub 115 kV	Terry County Interchange 115 kV	Livingston Ridge Sub 69 kV	Carlsbad Interchange 115 kV		TUCO Interchange 115 kV	Indiana Sub 115 kV		
eusest Status	Complete	Closed Out	Complete	Closed Out	Closed Out	Closed Out	Complete	Complete	On Schedule < 4	On Schedule < 4	On Schedule < 4	In Service	Delay - Mitigation	On Schedule < 4	Complete
Determined Meed Date	4/1/2020	6/1/2019	6/1/2017	6/1/2017	6/1/2017	6/1/2017	6/1/2017	4/1/2020	6/1/2021	6/1/2021		1/1/2017	1/1/2017	6/1/2021	6/1/2021
Project Owner Indicated In-Service Date	4/28/2017	12/15/2020	12/17/2018	12/15/2020	12/15/2020	12/15/2020	5/16/2019	6/1/2018	4/15/2021	6/1/2021	12/14/2018	12/31/2018	2/28/2020	4/15/2021	11/15/2019
Project Type	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Generation Interconnection	Economic	Economic	Regional Reliability	Regional Reliability
Upgrade Name	Custer Mountain - Road Runner 115 kV Ckt 1 New Line	Sundown 230/115 kV Transformer	Artesia Country Club Tap 115 kV Line Tap	Mustang - Seminole 115 kV Ckt 1 New Line	Mustang 115 kV Terminal Upgrades	Seminole 115 kV Terminal Upgrades	Canyon East Tap - Randall 115 kV Ckt 1 Rebuild	Terry Co Wolfforth 115 kV Terminal Upgrades	Livingston Ridge - Wipp 115 kV Ckt 1 Rebuild	Carlsbad - Pecos 115 kV Terminal Upgrades	TUCO 230kV Switching Station GEN-2012-020 Addition (TOIF)	Tuco - Stanton 115 kV Terminal Upgrades	Indiana - SP-Erskine 115 kV Terminal Upgrades	Cox Interchange - Hale Co Interchange 115 kV Ckt 1	Hockley County Interchange 115 kV Terminal Upgrades
Project Name	Line - Road Runner - Agave Red Hills/Ochoa/Custer Mountain 115 kV New Line	XFR - Sundown 230/115 kV Transformer	Multi - Artesia County 115 kV	Line - Mustang - Seminole 115 kV Ckt 1 New Line	Line - Mustang - Seminole 115 kV Ckt 1 New Line	Line - Mustang - Seminole 115 kV Ckt 1 New Line	Line - Canyon East Tap - Randall 115 kV Ckt 1 Rebuild	Sub - Terry Co Wolfforth 115 kV Terminal Upgrades	Line - Livingston Ridge - Wipp 115 kV Ckt 1 Rebuild	Sub - Carlsbad - Pecos 115 kV Terminal Upgrades	SUB - TUCO 230kV Switching Station GEN-2012- 020 Addition	Sub - Tuco - Stanton 115 kV Terminal Upgrades	Sub - Indiana - SP-Erskine 115 kV Terminal Upgrades	Line - Cox Interchange - Hale Co Interchange 115 kV Rebuild	Sub - Hockley County Interchange 115 kV Terminal Upgrades

Λοltages (kV)	115	115	115	230	230	115	115	115	230	115	115	230	230/115	345	345	345/115	345/115	345	345	115
Project Description/ Comments	Upgrade any necessary terminal equipment at Martin and/or Pantex North to increase the rating of the 115 kV line between the two substations.	Upgrade any necessary terminal equipment at Pantex South and/or Highland Tap to increase the rating of the 115 kV line between the two substations.	Install terminal upgrades on the 115 kV circuit W71 (Coulter - Puckett) at Coulter Substation.	Install terminal upgradeson the 230 kV circuit K46 (Plant X-Sundown) at Plant X.	Install terminal upgrades on the 230 kV circuit K46 (Plant X - Sundown) at Sundown.	Replace terminal equipment on the Clauene-Terry (circuit VSS) line and address any line clearance concerns to meet or exceed the line's conductor rating.	Upgrade terminal equipment on the Texas County - Hitchland 115 kV Ckt 1 at Texas County.	Upgrade terminal equipment on the Texas County - Hitchland 115 kV Ckt 2 at Texas County.	Install terminal upgrades on the Nichols - Amarillo 230 kV circuit at Nichols.	Rebuild 10.83-mile 115 kV line from Etter to Moore.	Replace terminal equipment on the Carlisle to Murphy (circuit V40) line and address any line clearance concerns to meet or exceed the conductor rating.	Tap Moore-Potter 230kV and tap Exell-Fain 115kV and tie into a new substation at McDowell Creek.	Install a 230/115 kV transformer at the McDowell Creek substation	Build new 21 mile 345 kV line from Bopco to Road Runner.	Build new 19 mile 345 kV line from Bopco to China Draw.	Construct 345/115 kV transformer at Bopco substation.	Construct second 345/115 kV transformer at Bopco substation.	Build new 34 mile 345 kV line from Eddy County to Kiowa.	Build 345 kV portion of new 345/115 kV Bopco substation.	Build 115 KV portion of new 345/115 KV Bopco substation. This includes work to reterminate the Wood Draw - Red Bluff 115 KV line into the new substation.
emsN sua oT	Pantex North Sub 115 kV	Highland Park Tap 115 kV					Hitchland Interchange 115 kV	Hitchland Interchange 115 kV	Amarillo South Interchange 230 kV	Etter Rural Sub 115 kV	Murphy Sub 115 kV			Road Runner 345 kV						
From Bus Name	Martin Sub 115 kV	Pantex South Sub 115 kV	Coulter Interchange 115 kV	Plant X Station 230 kV	Sundown Interchange 230 kV	Lyntegar REC- Clauene 115 kV	Texas County Interchange 115 kV	Texas County Interchange 115 kV	Nichols Station 230 kV	Moore County Interchange East Bus 115 kV	Carlisle Interchange 115 kV							Eddy County Interchange 345 kV		
Project Status	Complete	Complete	Closed Out	Delay - Mitigation	Delay - Mitigation	Complete	Delay - Mitigation	Delay - Mitigation	Closed Out	Delay - Mitigation	On Schedule < 4	Delay - Mitigation	Delay - Mitigation	Delay - Mitigation	On Schedule < 4	Delay - Mitigation	On Schedule < 4	Closed Out	Delay - Mitigation	In Service
Determined Need Date	1/1/2017	1/1/2017	6/1/2018	6/1/2018	6/1/2018	6/1/2019	6/1/2018	6/1/2018	12/1/2018	6/1/2018	6/1/2022	6/1/2019	6/1/2019	12/1/2018	12/1/2021	12/1/2018	12/1/2021	6/1/2024	12/1/2018	12/1/2018
Project Owner lbdicated In-Service ated	3/15/2018	3/15/2018	5/15/2020	12/31/2018	12/31/2018	12/31/2019	12/31/2018	12/31/2018	5/15/2020	12/15/2021	3/11/2022	4/16/2022	4/16/2022	11/15/2021	11/15/2021	11/15/2021	11/15/2021	11/3/2020	11/15/2021	11/15/2020 12/1/2018
Project Type	Economic	Economic	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability
əmsN əbsıgqU	Martin - Pantex North 115 kV Terminal Upgrades	Pantex South - Highland Tap 115 kV Terminal Upgrades	Coulter 115 kV Terminal Upgrades	Plant X 230 kV Terminal Upgrades	Sundown 230 kV Terminal Upgrades	Terry County - LG Clauene 115 kV Terminal Upgrades	Texas County 115 kV Terminal Upgrades #1	Texas County 115 kV Terminal Upgrades #2	Nichols 230 kV Terminal Upgrades	Etter - Moore 115 kV Rebuild	Carlisle - Murphy 115 kV Terminal Upgrades	McDowell Creek 230/115kV Substation	McDowell Creek 230/115kV Transformer	Bopco - Road Runner 345 kV Ckt 1 New Line	Bopco - China Draw 345 kV Ckt 1 New Line	Bopco 345/115 kV Ckt 1 Transformer	Bopco 345/115 kV Ckt 2 Transformer	Eddy County - Kiowa 345 kV Ckt 1 New Line	Bopco 345 kV Substation	Bopco 115 KV Substation
Project Name	Sub - Martin - Pantex N 115 kV Terminal Upgrades	Sub - Martin - Pantex N 115 kV Terminal Upgrades	Sub - Coulter 115 kV	Sub - Plant X - Sundown 230 kV	Sub - Plant X - Sundown 230 kV	Terry County - LG Clauene 115 kV Terminal Upgrades	Sub - Texas County - Hitchland 115 kV bus	Sub - Texas County - Hitchland 115 kV bus	Sub - Nichols - 230 kV	Line - Etter - Moore - 115 kV	Carlisle - Murphy 115kV Terminal Upgrades	XFR - McDowell 230/115 kV Ckt 1	XFR - McDowell 230/115 kV Ckt 1	Multi - China Draw - Road Runner 345 kV	Multi - China Draw - Road Runner 345 kV	Multi - China Draw - Road Runner 345 kV	Multi - China Draw - Road Runner 345 kV	Line - Eddy County - Kiowa 345 kV New Line	Multi - China Draw - Road Runner 345 kV	Multi - China Draw - Road Runner 345 kV

Voltages (kV)	115	115	115	115	115/115	115/115		115							
Project Description/ Comments	Replace 1 breaker at Carlsbad Interchange 115 kV with 40 kA breakers	Replace 3 breakers at Hale County Interchange 115 kV with 40 kA breakers	Replace 1 breaker at Denver City Interchange North 115 kV with 40 kA breaker	Replace 2 breakers at Denver City Interchange South 115 kV with 40 kA breakers	Upgrade any necessary terminal equipment at Sundown and/or Amoco Tap to increase the summer emergency rating to 175 MVA	Rebuild 1.2 miles of 115 kV line from Spearman to Hansford and replace structures at Hansford and/or Spearman as needed to increase the summer emergency rating to 233 MVA	Rebuild 10.5 miles of Hobbs Interchange to Millen 115kV Line	New 28.8 MVAR capacitor bank addition at Johnson Draw 115kV	Rebuild 3.6 miles 115 kV line from Allen to Quaker and upgrade any necessary terminal equipment to achieve a summer emergency rating of 300 MVA	Rebuild 5.98 miles of 115 kV line from Allen to Lubbock and upgrade any necessary terminal equipment to achieve a summer emergency rating of 300 MVA.	Increase clearances and upgrade any necessary terminal equipment at Bushland and/or Deaf Smith 230 kV to achieve a summer emergency rating of 546 MVA.	Increase clearances and upgrade any necessary terminal equipment at Newhart and/or Potter 230 kV to achieve a summer emergency rating of 540 MVA.	Rebuild 18.9 miles of 115 kV line from Deaf Smith #6 to Friona and upgrade any necessary terminal equipment at Deaf Smith #6 and/or Friona to achieve a summer emergency rating of 120 MVA	Rebuild 4.0 miles of 115 kV line from Carlisle to Murphy and upgrade any necessary terminal equipment to achieve a summer emergency rating of 240 MVA	Rebuild 2.33 miles of 115 kV line from Deaf Smith #6 to Hereford and upgrade any necessary terminal equipment to achieve a summer emergency rating of 239 MVA
9msN sua oT					Amoco Tap 115 kV	Hansford County Switch Station 115 kV (POI: JD Wind #4 80MW)	Millen Sub 115 kV		South Plains REC- Quaker 115 kV	Lubbock South Interchange 115 kV	Deaf Smith County Interchange 230 kV	Potter County Interchange 230 kV	Friona Sub 115 kV	Murphy Sub 115 kV	Hereford Interchange 115 kV
From Bus Name	Carlsbad Interchange 115 kV	Hale Co Interchange 115 kV	Denver City Interchange N. 115 kV	Denver City Interchange S. 115 kV	Sundown Interchange 115 kV	Spearman Interchange 115 kV	Hobbs Interchange 115 kV	Johnson Draw 115 kV	Allen Sub 115 kV	Allen Sub 115 kV	Bushland Interchange 230 kV (POI: Wildorado Wind, 160MW)	Newhart Interchange 230 kV	Deaf Smith REC-#6 115 kV	Carlisle Interchange 115 kV	Deaf Smith REC-#6 115 kV
Project Status	On Schedule < 4	On Schedule < 4	On Schedule < 4	On Schedule < 4	Closed Out	On Schedule < 4	On Schedule < 4	On Schedule < 4	On Schedule < 4	On Schedule < 4	Delay - Mitigation Window	On Schedule < 4	Delay - Mitigation Window	On Schedule < 4	On Schedule < 4
beed Determined Need Date	6/1/2021	6/1/2021	6/1/2021	6/1/2021	1/1/2023	1/1/2021	6/1/2022	6/1/2022	6/1/2022	6/1/2022	4/1/2022	4/1/2022	4/1/2022	6/1/2022	4/1/2022
Project Owner esivie and solice ested		12/18/2020	3/15/2021	3/15/2021	6/1/2020	4/15/2021	6/1/2022	6/1/2022			4/15/2022	12/15/2022	4/1/2022	6/1/2022	4/1/2022
Project Type	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Economic	Economic	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability
əmsM əbsıgqU	Carlsbad Interchange 115 kV Breaker	Hale County Interchange 115 kV Breakers	Denver City Interchange North 115 kV Breaker	Denver City Interchange South 115 kV Breakers	Amoco - Sundown 115kV Terminal Upgrades	Hansford - Spearman 115 kV Rebuild	Hobbs Interchange to Millen Rebuild 115 kV Ckt1	Johnson Draw 115 kV Capacitor Bank	Allen - Quaker 115 kV Ckt 1 Rebuild	Line - Allen - Lubbock South 115 kV Ckt 115kV 1Rebuild	Bushland - Deaf Smith 230 kV Terminal Upgrades	Newhart - Potter 230 kV Terminal Upgrades	Deaf Smith #6 - Friona 115 kV Rebuild	Carlisle - Murphy 115 kV Ckt 1 Rebuild	Deaf Smith #6 - Hereford 115 kV Ckt 1 Rebuild
Project Name	Sub - Carlsbad Interchange 115 kV	Sub - Hale Cty Interchange 115 KV	Sub - Denver City Interchange 115 kV North	Sub - Denver City Interchange South 115 kV	Sub - Amoco - Sundown 115 kV	Line - Hansford - Spearman 115kV	Multi-Hobbs Interchange- Millen 115kV	Multi-Hobbs Interchange- Millen 115kV	Line - Allen - Quaker 115kV	Line - Allen - Lubbock South 115kV	Sub - Bushland - Deaf Smith 230 kV	Sub - Newhart - Potter 230 kV	Sub - Deaf Smith #6 - Friona 115 kV	Line - Carlisle - Murphy 115 kV #2	Line - Deaf Smith #6 - Hereford 115 kV

(VA) segestioV					
Project Description/ stnemmoD	: Increase clearances and upgrade any necessary terminal equipment at Lubbock South and/or Wolfforth to achieve a summer emergency rating of S50 MVA	Rebuild 1.15 miles of existing 115 kV line from Cargill to Friona and upgrade any necessary terminal equipment to achieve a summer emergency rating of 240 MVA	Rebuild 7.74 miles of 115 kV line from Cargill to Deaf Smith #24 and upgrade any necessary terminal equipment to achieve a summer emergency rating of 240 MVA	Rebuild 1.16 miles of 115 kV line from Parmer - Deaf Smith #24 and upgrade any necessary terminal equipment to achieve a summer emergency rating of 240 MVA	Rebuild 7.6 miles of 115 kV line from Parmer - Deaf Smith #20 and upgrade any necessary terminal equipment to achieve a summer emergency rating of 240 MVA
əmsM zuð oT	Wolfforth Interchange 230 kV				
From Bus Name	Lubbock South Interchange 230 kV				
eutst2 toelorq	On Schedule < 4	On Schedule < 4	On Schedule < 4	On Schedule < 4	On Schedule < 4
beed Need Need DTR	6/1/2022	4/1/2022	4/1/2022	4/1/2022	4/1/2022
Project Owner epivie-dingspection Pate	6/1/2022				
Project Type	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability	Regional Reliability
Upgrade Name	Lubbock South - Wolfforth 230 kV Ckt 1 Terminal Upgrades #2	Cargill - Friona 115 kV Ckt 1 Rebuild	Cargill - Deaf Smith #24 115 kV Ckt 1 Rebuild	Parmer - Deaf Smith #24 115 kV Ckt 1 Rebuild	Parmer - Deaf Smith #20 115 kV Ckt 1 Rebuild
Project Name	Sub - Lubbock South - Wolfforth 230 kV	Line - Cargill - Friona 115 kV	Line - Cargill - Deaf Smith #24 115 kV	Line - Parmer - Deaf Smith #24 115 kV	Line - Parmer - Deaf Smith #20 115 kV

	Q2 2021 Quarterly Project Tracking Appendix 1 - Project Status Definitions
CLOSED OUT	Upgrade is operation, all project activities are complete, & all close-out requirements fulfilled
COMPLETE	Upgrade is operation and all project activities are complete
DELAY - MITIGATION	Behind schedule, interim mitigation provided or project may change but time permits the implementation of project; asterisk (*) indicates interim mitigation plan provided by SPP
IDENTIFIED	Upgrade identified and included in Board approved study results
IN SERVICE	Upgrade is in service, but not all project activities are complete
NTC - COMMITMENT WINDOW	NTC/NTC-C issued, still within the 90 day written commitment to construct window and no commitment received
NTC-C PROJECT ESTIMATE WINDOW	Within the NTC-C Project Estimate (CPE) window
ON SCHEDULE < 4	On Schedule within 4-year horizon
ON SCHEDULE > 4	On Schedule beyond 4-year horizon
RE-EVALUATION	NTC/NTC-C active; pending re-evaluation
RFP ISSUED	Request for proposal has been issued for competitive upgrade
RFP PENDING	Request for proposal issuance for a competitive upgrade is pending
SUSPENDED	NTC/GIA suspended

APPENDIX D - ELECTRIC ENERGY AND DEMAND FORECAST

- *Current Load Forecast Tables:* This appendix contains tables of the base case energy sales and coincident peak demand forecasts for each year within the planning period, 2022-2041:
 - Annual sales of energy and coincident peak demand on a system-wide basis;
 - Annual sales of energy and coincident peak demand by customer class;
 - Annual sales of energy and coincident peak demand disaggregated between Commission jurisdictional sales, FERC jurisdictional sales, and sales subject to the jurisdiction of other states;
 - Annual Sales of Energy and Coincident Peak Demand by Retail and Wholesale Customer Class
 - Annual coincident peak system losses and the allocation of such losses to the transmission and distribution components of the system;
 - Assumptions for economic and demographic factors relied on in load forecasting; and
 - Expected capacity and energy impacts of existing and proposed demand-side resources.
 - Annual Actual and Forecasted Firm Peak Demand for Base, and Forecasted Firm Peak
 Demand for Low and High Probable Scenario
 - Annual Actual and Forecasted Energy Sales for Base, and Forecasted Energy Sales for Low and High Probable Scenario
 - Annual Energy Sales Forecast Comparison
 - Annual Coincident Peak Demand Forecast Comparison
 - Annual Weather Normalized Firm Peak Demand Forecast Comparison

Table D-1: SPS's Base Case Energy Sales and Coincident Peak Demand Forecasts in the Context of the Last Twelve Years of History

	Energy	Annual	Peak	Annual
	Sales	Increase	Demand	Increase
	(GWh)	(GWh)	(MW)	(MW)
2010	27,935	568	4,951	(36)
2011	28,843	908	5,155	204
2012	26,614	(2,229)	5,145	(10)
2013	27,443	829	5,026	(119)
2014	26,162	(1,281)	4,844	(182)
2015	24,584	(1,578)	4,643	(201)
2016	24,678	93	4,800	157
2017	24,223	(455)	4,344	(456)
2018	25,433	1,210	4,618	274
2019	24,677	(756)	3,888	(730)
2020	23,082	(1,595)	3,748	(140)
2021	23,338	256	4,060	312
2022	23,731	393	3,969	(91)
2023	23,671	(60)	3,874	(94)
2024	23,748	77	3,899	24
2025	23,987	239	3,937	38
2026	23,772	(214)	3,867	(69)
2027	23,650	(123)	3,905	38
2028	23,808	159	3,934	29
2029	23,994	185	3,961	26
2030	24,145	151	3,982	21
2031	24,290	145	4,007	25
2032	24,451	161	4,033	26
2033	24,647	196	4,061	28
2034	24,849	202	4,085	24
2035	25,104	255	4,122	37
2036	25,267	163	4,153	31
2037	25,527	260	4,183	30
2038	25,722	196	4,207	24
2039	25,976	254	4,241	34
2040	26,212	235	4,275	35
2041	26,418	206	4,302	27

Table D-2: Forecasted Annual Sales of Energy and Coincident Peak Demand by Customer Class

		Ene	Energy Sales (GV	(GWh)			Coinciden	Coincident Peak Demand (MW)	ind (MW)	
		Commercial					Commercial			
	Residential	& Industrial	Other	Resale	Total	Residential	& Industrial Other	Other	Resale	Total
2021	3,577	16,876	520	2,365	23,338	1,128	2,388	107	436	4,060
2022	3,582	17,632	514	2,003	23,731	1,142	2,417	109	301	3,969
2023	3,603	18,239	516	1,314	23,671	1,167	2,471	111	125	3,874
2024	3,618	18,742	514	874	23,748	1,183	2,503	113	100	3,899
2025	3,639	19,047	512	788	23,987	1,195	2,528	114	100	3,937
2026	3,669	19,262	509	333	23,772	1,204	2,548	115	-	3,867
2027	3,701	19,443	909	ı	23,650	1,216	2,574	116	-	3,905
2028	3,742	19,565	502	ı	23,808	1,225	2,593	117	-	3,934
2029	3,785	19,708	200	ı	23,994	1,233	2,610	117	-	3,961
2030	3,830	19,818	497	ı	24,145	1,240	2,624	118	-	3,982
2031	3,878	19,918	494	-	24,290	1,248	2,641	119	-	4,007
2032	3,942	20,019	490	-	24,451	1,256	2,658	120	-	4,033
2033	4,023	20,135	489	ı	24,647	1,264	2,676	120	-	4,061
2034	4,124	20,239	486	ı	24,849	1,272	2,692	121	-	4,085
2035	4,233	20,388	483	-	25,104	1,283	2,716	122	-	4,122
2036	4,348	20,439	479	1	25,267	1,293	2,737	123	-	4,153
2037	4,463	20,586	478	ı	25,527	1,302	2,757	124	-	4,183
2038	4,579	20,669	475	ı	25,722	1,310	2,772	125	-	4,207
2039	4,696	20,809	472	1	25,976	1,320	2,795	126	-	4,241
2040	4,810	20,933	469	ı	26,212	1,331	2,817	127	_	4,275
2041	4,937	21,013	467	ı	26,418	1,340	2,835	128	-	4,302

Table D-3: Forecasted Annual Sales of Energy and Coincident Peak Demand by Jurisdiction

		Energy Sales (GWh)	les (GWh)		C	incident Peak	Coincident Peak Demand (MW	()
	Commission	FERC	Other States	Total	Commission	FERC	Other States	Total
2021	1,680	2,365	13,293	23,338	1,214	436	2,411	4,060
2022	8,242	2,003	13,486	23,731	1,228	301	2,439	3,969
2023	8,721	1,314	13,637	23,671	1,256	125	2,494	3,874
2024	9,189	874	13,685	23,748	1,272	100	2,526	3,899
2025	9,462	788	13,737	23,987	1,285	100	2,552	3,937
2026	099'6	333	13,779	23,772	1,295	-	2,572	3,867
2027	9,822	-	13,827	23,650	1,308	-	2,597	3,905
2028	9,932	-	13,877	23,808	1,318	-	2,617	3,934
2029	10,060	1	13,934	23,994	1,326	ı	2,634	3,961
2030	10,153	1	13,992	24,145	1,333	-	2,648	3,982
2031	10,230	-	14,060	24,290	1,342	-	2,665	4,007
2032	10,309	-	14,141	24,451	1,351	-	2,682	4,033
2033	10,397	-	14,250	24,647	1,360	_	2,701	4,061
2034	10,474	-	14,374	24,849	1,368	_	2,717	4,085
2035	10,589	1	14,515	25,104	1,380	-	2,741	4,122
2036	10,617	-	14,650	25,267	1,391	_	2,762	4,153
2037	10,736	-	14,791	25,527	1,401	_	2,782	4,183
2038	10,790	-	14,933	25,722	1,409	_	2,798	4,207
2039	10,898	-	15,078	25,976	1,420	_	2,821	4,241
2040	10,988	ı	15,223	26,212	1,432	ı	2,844	4,275
2041	11,020	-	15,398	26,418	1,441	-	2,862	4,302

Table D-4: Historical and Forecasted Annual Sales of Energy and Coincident Peak Demand by Retail and Wholesale Customer Class

		Energy (GWh)			Peak (MW)	
	Retail Firm	Wholesale Firm	System Firm	Retail Firm	Wholesale Firm	System Firm
2010	18,575	9,359	27,935	3,361	1,590	4,951
2011	18,639	10,204	28,843	3,297	1,858	5,155
2012	18,532	8,082	26,614	3,378	1,767	5,145
2013	18,768	8,675	27,443	3,285	1,741	5,026
2014	19,108	7,055	26,162	3,316	1,531	4,847
2015	19,127	5,457	24,584	3,304	1,344	4,648
2016	19,259	5,419	24,678	3,436	1,370	4,806
2017	19,305	4,917	24,223	3,407	941	4,348
2018	20,450	4,982	25,433	3,590	1,032	4,622
2019	21,027	3,650	24,677	3,542	521	4,063
2020	20,574	2,508	23,082	3,507	417	3,924
2021	20,973	2,365	23,338	3,624	436	4,060
2022	21,728	2,003	23,731	3,668	301	3,969
2023	22,358	1,314	23,671	3,749	125	3,874
2024	22,874	874	23,748	3,799	100	3,899
2025	23,199	788	23,987	3,837	100	3,937
2026	23,440	333	23,772	3,867	0	3,867
2027	23,650	0	23,650	3,905	0	3,905
2028	23,808	0	23,808	3,934	0	3,934
2029	23,994	0	23,994	3,961	0	3,961
2030	24,145	0	24,145	3,982	0	3,982
2031	24,290	0	24,290	4,007	0	4,007
2032	24,451	0	24,451	4,033	0	4,033
2033	24,647	0	24,647	4,061	0	4,061
2034	24,849	0	24,849	4,085	0	4,085
2035	25,104	0	25,104	4,122	0	4,122
2036	25,267	0	25,267	4,153	0	4,153
2037	25,527	0	25,527	4,183	0	4,183
2038	25,722	0	25,722	4,207	0	4,207
2039	25,976	0	25,976	4,241	0	4,241
2040	26,212	0	26,212	4,275	0	4,275
2041	26,418	0	26,418	4,302	0	4,302

Table D-5: Forecasted Coincident Peak Demand System Losses (MW)

			Retail				
	Secondary	Primary	Sub-	Backbone	Total	1	
	Distribution	Distribution	Transmission	Transmission	Retail	FERC	Total System
2021	281	62	4	22	369	29	399
2022	284	63	4	23	374	31	404
2023	290	64	4	23	382	30	412
2024	294	65	4	23	387	30	417
2025	297	66	4	24	391	16	407
2026	300	66	5	24	394	16	410
2027	302	67	5	24	398	17	415
2028	305	68	5	24	401	0	401
2029	307	68	5	24	404	0	404
2030	308	68	5	24	406	0	406
2031	310	69	5	25	408	0	408
2032	312	69	5	25	411	0	411
2033	315	70	5	25	414	0	414
2034	316	70	5	25	416	0	416
2035	319	71	5	25	420	0	420
2036	322	71	5	25	423	0	423
2037	324	72	5	26	426	0	426
2038	326	72	5	26	429	0	429
2039	328	73	5	26	432	0	432
2040	331	73	5	26	436	0	436
2041	333	74	5	26	439	0	439

Table D-6: Economic and Demographic Assumptions Used in Load Forecasting

							Pct Chg		2.3%	3.3%	2.1%	2.2%	2.4%	2.4%	2.3%	2.1%	2.2%	2.0%	2.0%	2.0%	2.0%	2.0%	2.0%	1.8%	1.6%	1.5%	1.6%	1.5%
Real	Personal	Income -	Texas	Service	Territory	Millions of	2009	25,747	26,332	27,189	27,769	28,369	29,044	29,734	30,411	31,059	31,727	32,348	32,993	33,662	34,326	35,010	35,700	36,331	36,918	37,488	38,070	38,658
							Pct Chg		2.2%	2.7%	2.3%	2.6%	2.7%	2.7%	2.9%	2.9%	2.8%	2.6%	2.2%	2.4%	2.3%	2.5%	2.1%	2.0%	1.9%	2.0%	2.0%	1.8%
Real	Personal	Income -	New Mexico	Service	Territory	Millions of	2009	13,801	14,106	14,481	14,818	15,207	15,614	16,030	16,498	16,973	17,446	17,891	18,290	18,736	19,166	19,647	20,059	20,464	20,849	21,266	21,693	22,090
							Pct Chg		7.6%	2.2%	2.1%	2.2%	2.3%	2.4%	2.5%	2.4%	2.4%	2.3%	2.3%	2.3%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%	2.4%
				Consumer	Price Index	1982-	84=1.00	2.65	2.72	2.78	2.84	2.90	2.96	3.04	3.11	3.19	3.26	3.34	3.42	3.50	3.58	3.67	3.75	3.84	3.93	4.03	4.12	4.22
							Pct Chg		3.4%	6.1%	3.8%	1.9%	2.3%	2.8%	2.6%	2.4%	2.6%	2.4%	2.3%	2.2%	2.0%	2.0%	1.8%	1.7%	1.7%	1.7%	1.7%	1.5%
Real Gross	County	Product -	Texas	Service	Area	Millions of	2009 \$	42,035	43,472	46,118	47,884	48,799	49,927	51,320	52,646	53,900	55,326	56,651	57,939	59,226	60,412	61,620	62,726	63,816	64,907	900,99	67,127	68,163
							Pct Chg		4.2%	3.1%	1.8%	1.6%	2.6%	3.1%	3.5%	2.9%	2.5%	1.9%	1.9%	1.7%	1.8%	1.7%	1.5%	1.7%	1.8%	1.7%	1.6%	1.6%
Real Gross	County	Product -	New Mexico	Service	Area	Millions of	2009	24,469	25,503	26,286	26,761	27,187	27,902	28,754	29,768	30,625	31,396	31,981	32,586	33,156	33,763	34,332	34,853	35,437	36,091	36,703	37,289	37,870
					Variable		Units	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Table D-7: Economic and Demographic Assumptions Used in Load Forecasting (continued)

	Pct Chg	1.4%	1.2%	1.0%	0.9%	1.0%	1.0%	1.0%	0.9%	0.9%	0.8%	0.7%	0.6%	0.5%	0.5%	0.4%	0.3%	0.2%	0.2%	0.2%	0.1%
Household - New Mexico Service Territory	Thousands	105	106	107	108	109	110	111	112	113	114	115	115	116	117	117	118	118	118	118	118
	Pct Chg	0.7%	0.6%	0.6%	0.5%	0.7%	0.7%	0.6%	0.6%	0.7%	0.7%	0.7%	0.7%	0.6%	0.6%	0.5%	0.4%	0.4%	0.4%	0.3%	0.3%
Household - Texas Service Territory	Thousands	200	202	203	204	206	207	208	210	211	213	214	216	217	218	219	220	221	222	223	224
	Pct Chg	2.5%	2.5%	2.9%	3.0%	2.7%	2.6%	2.5%	2.3%	2.2%	2.1%	2.2%	2.2%	2.2%	2.2%	2.0%	1.9%	1.9%	1.8%	1.9%	1.8%
Real Gross Domestic Product	Billions of 2012 \$	19,464	19,945	20,528	21,142	21,717	22,290	22,853	23,373	23,898	24,411	24,939	25,487	26,035	26,613	27,156	27,676	28,191	28,707	29,244	29,781
	Pct Chg	1.2%	1.5%	1.0%	0.6%	0.5%	0.4%	0.3%	0.3%	0.4%	0.4%	0.6%	0.6%	%9.0	0.6%	%9.0	0.5%	0.4%	0.4%	0.5%	0.3%
Non-farm Employment - Texas	Thousands	240	244	246	248	249	250	251	251	252	253	255	256	258	259	261	262	263	264	265	266
	Pct Chg	1.4%	1.4%	1.5%	1.1%	1.0%	1.0%	%6.0	0.8%	1.0%	%9.0	0.7%	0.8%	0.8%	0.8%	0.8%	0.7%	%9.0	%9.0	0.7%	0.4%
Non-farm Employment - New Mexico	Thousands	113	122	124	126	127	128	129	130	131	132	133	134	135	137	138	139	139	140	141	142
Variable	Units	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Table D-8: Economic and Demographic Assumptions Used in Load Forecasting (continued)

	Pct Chg	2.9%	2.1%	2.1%	2.4%	3.1%	1.8%	0.7%	0.3%	0.2%	0.1%	0.7%	-0.1%	-0.2%	%8.0	%6.0	0.3%	0.1%	0.3%	-0.1%	-0.3%
Industrial production-Oil and gas extraction	index 2012=100.0	122.80	129.10	131.83	134.95	139.10	141.64	142.62	143.10	143.33	143.43	144.50	144.30	144.03	145.12	146.39	146.81	146.96	147.36	147.28	146.91
	Pct Chg	19.8%	%6.9	2.0%	4.3%	7.6%	7.7%	5.7%	3.8%	2.7%	2.4%	2.4%	2.3%	2.3%	2.3%	2.2%	2.1%	2.1%	2.0%	1.5%	1.8%
Average Price of West Texas Intermediate Crude	\$ per barrel	43.91	56.22	57.37	59.82	64.34	69.29	73.24	76.01	78.09	80.00	81.90	83.75	85.64	87.59	89.56	91.44	93.34	95.25	96.63	98.34
	Pct Chg	0.0%	0.2%	0.2%	0.2%	0.3%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.4%	0.3%	0.3%	0.2%	0.2%	0.2%	0.1%	0.1%	0.1%
Resident Population - Texas Service Territory	Thousands	564	565	999	267	569	571	573	575	578	580	582	584	586	588	589	290	591	592	593	593
	Pct Chg	0.5%	%9.0	%9.0	%9.0	0.6%	0.6%	%9.0	%9.0	%9.0	0.4%	0.3%	0.2%	0.2%	0.2%	0.1%	%0.0	%0.0	0.0%	0.0%	-0.1%
Resident Population - New Mexico Service Territory	Thousands	272	275	277	278	280	282	284	285	287	288	289	290	290	291	291	291	291	291	291	291
	Pct Chg	2.0%	2.1%	2.1%	2.1%	2.2%	2.3%	2.4%	2.4%	2.4%	2.3%	2.3%	2.3%	2.3%	2.3%	2.2%	2.2%	2.2%	2.2%	2.3%	2.2%
Chained Price Index for Gross Domestic Product	0.0	115.82	120.60	123.12	125.71	128.44	131.39	134.52	137.74	141.05	144.30	147.60	150.97	154.39	157.89	161.44	165.03	168.72	172.48	176.37	180.28
Variable	Units	2021	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Table D-9: Expected Capacity and Energy Impacts of Existing and Proposed Demand-Side Management Resources

	Existing Demand-Side Resources	mand-Side Management Resources	Proposed Demand Reso	Proposed Demand-Side Management Resources
	Energy (GWh)	Capacity (MW)	Energy (GWh)	Capacity (MW)
2021	28	3	9	١,
2022	115	27	11	1
2023	173	40	17	1
2024	231	53	22	1
2025	288	99	27	1
2026	346	08	32	1
2027	404	93	37	1
2028	462	106	42	1
2029	519	119	47	2
2030	276	133	52	2
2031	634	146	57	2
2032	693	159	63	2
2033	749	172	89	2
2034	807	186	73	2
2035	830	191	81	3
2036	840	195	85	7
2037	847	198	88	7
2038	855	201	92	5
2039	863	204	95	9
2040	874	207	99	9
2041	872	207	98	9

Table D-10: Actual and Forecasted Firm Peak Demand

							Compe	Compound Growth	owth
		MW		Ann	Annual Growth	vth	to/f	to/from 2020	07
	Base	Low	High	Base	Low	High	Base	Low	High
2010	4,951						-2.7%		
2011	5,155			4.1%			-3.5%		
2012	5,145			-0.2%			-3.9%		
2013	5,026			-2.3%			-4.1%		
2014	4,844			-3.6%			-4.2%		
2015	4,643			-4.1%			-4.2%		
2016	4,800			3.4%			-6.0%		
2017	4,344			-9.5%			0.0%		
2018	4,618			6.3%			11.0%		
2019	3,888			-15.8%			3.7%		
2020	3,748			-3.6%			0.0%		
2021	4,060	3,867	4,141	8.3%		3.2% 10.5%	8.3%		3.2% 10.5%
2022	3,969	3,709	4,133	-2.2%	-4.1%	-4.1% -0.2%	2.9%		-0.5% 5.0%

Table D-10: Actual and Forecasted Firm Peak Demand (continued)

							Compo	Compound Growth	owth
		MW		Ann	Annual Growth	vth	to/f	to/from 2020	0
2023	3,874	3,528	4,115	-2.4%	-4.9%	-0.4%	1.1%	-2.0%	3.2%
2024	3,899	3,507	4,207	0.6%	-0.6%	2.2%	1.0%	-1.6%	2.9%
2025	3,937	3,484	4,269	1.0%	-0.7%	1.5%	1.0%	-1.4%	2.6%
2026	3,867	3,363	4,240	-1.8%	-3.5%	-0.7%	0.5%	-1.8%	2.1%
2027	3,905	3,376	4,333	1.0%	0.4%	2.2%	0.6%	-1.5%	2.1%
2028	3,934	3,363	4,403	0.7%	-0.4%	1.6%	0.6%	-1.3%	2.0%
2029	3,961	3,343	4,464	0.7%	-0.6%	1.4%	0.6%	-1.3%	2.0%
2030	3,982	3,308	4,522	0.5%	-1.1%	1.3%	0.6%	-1.2%	1.9%
2031	4,007	3,332	4,565	0.6%	0.7%	1.0%	0.6%	-1.1%	1.8%
2032	4,033	3,312	4,652	0.6%	-0.6%	1.9%	0.6%	-1.0%	1.8%
2033	4,061	3,322	4,706	0.7%	0.3%	1.2%	0.6%	-0.9%	1.8%
2034	4,085	3,307	4,767	0.6%	-0.5%	1.3%	0.6%	-0.9%	1.7%
2035	4,122	3,295	4,799	0.6%	-0.4%	0.7%	0.6%	-0.9%	1.7%
2036	4,153	3,298	4,890	0.8%	0.1%	1.9%	0.6%	-0.8%	1.7%
2037	4,183	3,324	4,952	0.7%	0.8%	1.3%	0.6%	-0.7%	1.7%
2038	4,207	3,278	4,987	0.6%	-1.4%	0.7%	0.6%	-0.7%	1.6%
2039	4,241	3,270	5,066	0.8%	-0.2%	1.6%	0.7%	-0.7%	1.6%
2040	4,275	3,285	5,125	0.8%	0.5%	1.2%	0.7%	-0.7%	1.6%
2041	4,302	3,283	5,182	0.6%	-0.1%	1.1%	0.7%	-0.6%	1.6%

Table D-11: Actual and Forecasted Annual Energy Sales

							Comp	Compound Growth	owth
		GWh		Ann	Annual Growth	vth	to/	to/from 2020	.0
	Base	Low	High	Base	Low	High	Base	Low	High
2010	27,935								
2011	28,843			3.3%			-2.1%		
2012	26,614			-7.7%			-2.7%		
2013	27,443			3.1%			-2.0%		
2014	26,162			-4.7%			-2.8%		
2015	24,584			-6.0%			-2.5%		
2016	24,678			0.4%			-1.6%		
2017	24,223			-1.8%			-2.2%		
2018	25,433			5.0%			-2.4%		
2019	24,677			-3.0%			-9.2%		
2020	23,082			-6.5%			0.0%		
2021	23,338	22,178	24,408	1.1%	-3.9%	5.7%	1.1%	-3.9%	5.7%
2022	23,731	21,941	25,451	1.7%	-1.1%	4.3%	1.4%	-2.5%	5.0%

Table D-11: Actual and Forecasted Annual Energy Sales (continued)

							Comp	Compound Growth	wth
		GWh		Ann	Annual Growth	'th	to/	to/from 2020	0
2023	23,671	21,362	25,878	-0.3%	-2.6%	1.7%	0.8%	-2.5%	3.9%
2024	23,748	20,946	26,452	0.3%	-1.9%	2.2%	0.7%	-2.4%	3.5%
2025	23,987	20,730	27,108	1.0%	-1.0%	2.5%	0.8%	-2.1%	3.3%
2026	23,772	20,186	27,282	%6.0-	-2.6%	0.6%	0.5%	-2.2%	2.8%
2027	23,650	19,696	27,519	-0.5%	-2.4%	0.9%	0.3%	-2.2%	2.5%
2028	23,808	19,522	27,996	0.7%	-0.9%	1.7%	0.4%	-2.1%	2.4%
2029	23,994	19,398	28,470	0.8%	-0.6%	1.7%	0.4%	-1.9%	2.4%
2030	24,145	19,206	28,929	%9.0	-1.0%	1.6%	0.5%	-1.8%	2.3%
2031	24,290	19,074	29,371	%9.0	-0.7%	1.5%	0.5%	-1.7%	2.2%
2032	24,451	18,913	29,807	0.7%	-0.8%	1.5%	0.5%	-1.6%	2.2%
2033	24,647	18,839	30,342	0.8%	-0.4%	1.8%	0.5%	-1.6%	2.1%
2034	24,849	18,762	30,882	0.8%	-0.4%	1.8%	0.5%	-1.5%	2.1%
2035	25,104	18,638	31,400	1.0%	-0.7%	1.7%	0.6%	-1.4%	2.1%
2036	25,267	18,466	31,885	0.6%	-0.9%	1.5%	0.6%	-1.4%	2.0%
2037	25,527	18,451	32,503	1.0%	-0.1%	1.9%	0.6%	-1.3%	2.0%
2038	25,722	18,304	32,996	0.8%	-0.8%	1.5%	0.6%	-1.3%	2.0%
2039	25,976	18,276	33,556	1.0%	-0.2%	1.7%	0.6%	-1.2%	2.0%
2040	26,212	18,155	34,137	0.9%	-0.7%	1.7%	0.6%	-1.2%	2.0%
2041	26,418	18,026	34,697	0.8%	-0.7%	1.6%	0.6%	-1.2%	2.0%

Table D-12: Energy Sales Forecast Comparison (GWh)

	Actual	2020 Forecast	2019 Forecast	2018 Forecast	2020 Forecast 2019 Forecast 2018 Forecast 2017 Forecast 2016 Forecast 2015 Forecast 2014 Forecast 2013 Forecast	2016 Forecast	2015 Forecast	2014 Forecast	2013 Forecas
	Energy Sales	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
2013	27,443								25,981
2014	26,162							26,256	26,173
2015	24,584						24,909	26,941	26,441
2016	24,678					24,386	26,806	28,303	26,872
2017	24,223				24,327	24,310	27,901	29,821	26,895
2018	25,433			24,749	24,346	24,489	28,876	30,447	27,147
2019	24,677		25,041	23,984	23,737	23,879	28,273	29,703	25,949
2020	23,082	23,009	25,210	23,769	23,558	23,807	28,372	29,747	25,611

Table D-13: Forecast Sales less Actual Sales (GWh)

	st									
	2013 Foreca	Summer	9.6%	%0.0	%0''-	-8.2%	%6.6-	-6.3%	-4.9%	%6.6-
	2014 Forecast	Summer		-0.4%	-8.7%	-12.8%	-18.8%	-16.5%	-16.9%	-22.4%
	2015 Forecast	Summer			-1.3%	-7.9%	-13.2%	-11.9%	-12.7%	-18.6%
Percent Difference	**Orecast 2014 Forecast 2013 Forecast 2020 Forecast 2019 Forecast 2018 Forecast 2017 Forecast 2016 Forecast 2015 Forecast 2014 Forecast 2014 Forecast 2014 Forecast 2014 Forecast 2015 Forecast 2014 Forecast 2015 Forecast 2014 Forecast 2015 F	Summer				1.2%	-0.4%	3.9%	3.3%	%0.£-
Percent I	2017 Forecast	Summer					-0.4%	4.5%	%0'4	%0.2-
	2018 Forecast	Summer						2.8%	2.9%	-2.9%
	2019 Forecast	Summer							-1.5%	-8.4%
	2020 Forecast	Summer								0.3%
	2013 Forecast	Summer	1,462	(11)	(1,857)	(2,194)	(2,673)	(1,714)	(1,272)	(2,529)
	2014 Forecast	Summer		(94)	(2,357)	(3,626)	(5,598)	(5,015)	(5,026)	(6,665)
	2015 Forecast	Summer			(325)	(2,129)	(3,678)	(3,443)	(3,596)	(5,290)
recast (GWh)	2016 Forecast	Summer				292	(87)	944	862	(725)
Actual less Forecast (GWh)	2017 Forecast	Summer					(104)	1,087	940	(477)
	2020 Forecast 2019 Forecast 2018 Forecast 2017 Forecast 2016 Forecast 2015 F	Summer						683	693	(889)
	2019 Forecast	Summer							(364)	(2,128)
	2020 Forecast	Summer								72
			2013	2014	2015	2016	2017	2018	2019	2020

Table D-14: Firm Load Obligation Coincident Peak Demand Forecast Comparison (MW)

		2013	Forecast	Summer	5,103	5,102	4,998	5,077	4,980	5,053	4,406	4.485
	,	2014	Forecast	Summer		4,940	4,948	5,199	5,295	5,443	4,853	4 982
	,	2015	Forecast	Summer			4,818	4,993	4,963	5,158	4,626	4 757
	,	2016	Forecast	Summer				4,748	4,442	4,496	4,073	4 146
	1	2017	Forecast	Summer					4,412	4,452	3,999	4 045
	9	2018	Forecast	Summer						4,423	3,978	4 023
	4	2019	Forecast	Summer							4,138	4 161
	4	2020	Forecast	Summer								4 008
Available	Interrupt	Load	2013	Forecast	30	34	39	44	48	53	99	50
Available	_	Load	2014	Forecast		31	34	36	38	40	42	43
Available	1	Load	2015	Forecast			35	36	37	38	39	40
Available	1	Load	2016	Forecast				41	41	42	43	43
Available	Interrupt	Load	2017	Forecast					30	30	31	31
Available	Interrupt	Load	2018	Forecast						32	32	32
Available Available Available Available Available Available Available	Interrupt	Load	2019	Forecast Forecast							34	90
Available	Interrupt	Interrupted Load	2020	Forecast								28
		Interrupted	Actual Peak Load at	Peak	0	0	0	0	0	0	0	C
			Actual Peak	Demand	5,056	4,871	4,678	4,836	4,374	4,648	3,921	3 774
					2013	2014	2015	2016	2017	2018	2019	2020

Table D-15: Firm Load Obligation Actual Peak Demand less Firm Load Obligation Forecast Peak Demand (MW)

			Ac	Actual less Forecast (MW)	recast (MW)							Percen	Percent Difference			
	2020	2019	2018	2017	2016	2015	2014	2013	2020	2019	2018	2017	2016	2015	2014	2013
	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast	Forecast
	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer	Summer
2013								(LL)								-1.5%
2014							(66)	(265)							-2.0%	-5.2%
2015						(175)	(304)	(326)						-3.6%	-6.1%	-7.2%
2016					47	(194)	(400)	(285)					1.0%	-3.9%	-7.7%	-5.6%
2017				(89)	(110)	(626)	(096)	(654)				-1.6%	-2.5%	-12.6%	-18.1%	-13.1%
2018			193	165	110	(548)	(835)	(458)			4.4%	3.7%	2.4%	-10.6%	-15.3%	-9.1%
2019		(251)	(06)	(109)	(194)	(744)	(974)	(541)		-6.1%	-2.3%	-2.7%	-4.8%	-16.1%	-20.1%	-12.3%
2020	(263)	(413)	(282)	(302)	(416)	(1,023)	(1,251)	(0LL)	%9.9-	%6.6-	-7.0%	-7.5%	-10.0%	-21.5%	-25.1%	-17.2%

Appendix D Page 17 of 17 Case No. 21-00169-UT

Table D-16: Weather Normalized Firm Load Obligation Coincident Peak Demand Forecast Comparison (MW)

	2013	Forecast	Summer	5,103	5,102	4,998	5,077	4,980	5,053	4,406	4,485
	2014	Forecast	Summer		4,940	4,948	5,199	5,295	5,443	4,853	4,982
	2015	Forecast	Summer			4,818	4,993	4,963	5,158	4,626	4,757
	2016	Forecast	Summer				4,748	4,442	4,496	4,073	4,146
	2017	Forecast	Summer					4,412	4,452	3,999	4,045
	2018	Forecast	Summer						4,423	3,978	4,023
	2019	Forecast	Summer							4,138	4,161
	2020	Forecast	Summer								4,008
Available Available Available Available Available Available Available Interrupt Interr	Load	2013	Forecast Forecast	30	34	39	44	48	53	99	59
Available Available Interrupt	Load	2014		0	31	34	36	38	40	42	43
Available Interrupt	Load	2015	Forecast	0	0	35	36	37	38	39	40
Available Interrupt	Load	2016	Forecast	0	0	0	41	41	42	43	43
Available Interrupt	Load	2017	Forecast	0	0	0	0	30	30	31	31
Available Interrupt	Load		Forecast						32	32	32
Available Available Available Available Interrupt Interrupt	Load	2019	Forecast							34	26
Available Interrupt	Interrupted Load	2020	Forecast								28
	Interrupted	Load at	Peak	0	0	0	0	0	0	0	0
		Actual Peak Load at	Demand	4,971	4,889	4,830	4,753	4,314	4,511	4,150	3,868
				2013	2014	2015	2016	2017	2018	2019	2020

Table D-17: Weather Normal Firm Load Obligation Peak Demand Less Firm Load Obligation Forecast Peak

	2013	Forecast	Summer	-3.2%	-4.8%	-4.1%	-7.3%	-14.3%	-11.8%	-7.1%	-15.1%
	2014	Forecast	Summer		-1.6%	-3.1%	-9.3%	-19.3%	-17.9%	-15.3%	-23.2%
	2015	Forecast	Summer			-0.5%	-5.5%	-13.8%	-13.3%	-11.1%	-19.5%
Percent Difference	2016	Forecast	Summer				%8:0-	-3.8%	%9:0-	%8.0	-7.7%
Percen	2017	Forecast	Summer					-2.9%	0.6%	3.0%	-5.1%
	2018	Forecast	Summer						1.3%	3.5%	4.7%
	2019	Forecast	Summer							-0.5%	-7.7%
	2020	Forecast	Summer								-4.2%
	2013	Forecast	Summer	(163)	(247)	(207)	(368)	(714)	(595)	(312)	(675)
	2014	Forecast	Summer		(81)	(152)	(483)	(1,020)	(972)	(745)	(1,157)
	2015	Forecast	Summer			(23)	(277)	(989)	(685)	(515)	(626)
ecast (MW)	2016	Forecast	Summer				(36)	(170)	(27)	34	(321)
Actual less Forecast (MW)	2017	Forecast	Summer					(128)	28	120	(207)
Act	2018	Forecast	Summer						99	139	(187)
	2019	Forecast	Summer							(22)	(319)
	2020	Forecast	Summer								(168)
				2013	2014	2015	2016	2017	2018	2019	2020

Appendix E Page 1 of 121 Case No. 21-00169-UT

Southwestern Public Service Company Hourly Load Profiles

This section contains typical day load patterns on a system-wide basis for each customer class provided for peak day, average day and representative off-peak days for each calendar month.

The following monthly class load shapes are developed from company load research data for the year 2020. The following statistics were used for each requirement:

REQUIREMENT	STATISTIC
Peak Day	System Peak Day
Average Day	Average Weekday Excluding Holidays
Representative Off-Peak Day	Average Weekends and Holidays

The following pages contain tables and graphs for each of the load patterns described above.

Primary General Service	Tables E-1.1 $-$ E-1.12
Large Municipal and School	Tables E-2.1 $-$ E-2.12
Small Municipal and School	Tables E-3.1 $-$ E-3.12
Secondary General Service	Tables E-4.1 $-$ E-4.12
Large General 69 kV	Tables E-5.1 $-$ E-5.12
Large General Transmission Customers	Tables E-6.1 $-$ E-6.12
Residential Regular	Tables E-7.1 $-$ E-7.12
Residential Heat	Tables E-8.1 $-$ E-8.12
Small General Service	Tables E-9.1 $-$ E-9.12
Irrigation Power Service	Tables E-10.1 – E-10.12

TABLE E-1.1

Average	Weekend/Holidays (kW)	52.7106	52.3720	52.2953	52.7200	52.5755	52.4857	52.0912	52.1847	51.9871	52.0810	51.9067	51.4298	51.2506	51.2292	51.3255	51.5313	51.3832	51.6911	51.7649	52.1567	52.2329	52.6061	52.6993	52.4826
Average	Weekday (kW)	52.3106	52.1350	52.3069	52.4187	52.5201	52.7617	53.0102	53.2836	53.4473	53.2681	53.2640	53.2491	52.9408	52.9053	52.9784	52.9220	52.6605	52.7498	52.9570	53.0660	52.8756	52.8281	52.8341	52.6547
System	Peak Day (kW)	51.7257	51.2606	52.2814	51.9641	51.9168	52.6431	53.5030	53.9943	54.1367	53.4316	54.2230	54.5837	53.6688	54.2732	54.8444	54.9400	53.7904	53.8217	54.3586	54.3241	53.6750	54.2495	53.5526	53.1935
	Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

PRIMARY GENERAL SERVICE - January	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day ———————————————————————————————————
	56.00 57.00 57.00 57.00 50.00 50.00	-

TABLE E-1.2

	40.00	System Peak Day ——— Average Weekday Average Weekend/Holidays
KM		

	Average	Weekend/Holidays (kW)	52.6591	52.4536	52.4896	52.5038	52.6379	52.4267	52.3227	51.8173	51.2338	51.1757	51.1093	50.9076	51.0748	50.9568	51.0360	51.3587	51.2182	51.2078	51.6999	52.1665	51.9652	52.0238	52.1681	52.3372
Feb-20	Average	Weekday (kW)	53.9446	53.7354	53.7703	53.8184	54.1785	54.0221	54.2393	54.0771	53.9395	53.5244	53.8794	53.9156	53.8254	53.6770	53.6356	53.7118	53.9357	53.6107	54.2617	54.3496	54.2240	54.3382	54.5233	54.5063
	System	Peak Day (kW)	55.2179	54.6186	54.5307	53.5444	53.7296	53.5783	54.3839	54.0467	53.6191	52.8927	52.4834	53.2047	53.9344	56.5144	55.9007	56.6239	58.0271	57.5677	57.9461	58.2644	58.3195	58.5200	59.6428	59.8169
		Hour	1	7	က	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-1.3

PRIMARY GENERAL SERVICE - March		6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	— Average Weekday Average Weekend/Holidays
PRIMARY G	57.00 56.00 54.00 52.00 51.00	50.00	System Peak Day

	Average	Weekend/Holidays (kW)	53.9446	53.7318	54.1018	53.7317	53.7794	53.7549	53.2865	52.8246	52.8291	52.7281	52.6577	52.5241	52.6275	52.5482	52.6578	52.5948	52.6006	52.7482	52.7716	52.8066	53.0808	53.1211	53.2062	53.1031
Mar-20	Average	Weekday (kW)	54.1503	54.1014	54.0840	54.1224	54.1368	54.3296	54.4230	54.3188	54.2078	54.2514	54.5701	54.4784	54.4280	54.4071	54.6378	54.6625	54.3917	54.3830	54.6431	55.0701	55.4179	55.2590	55.0553	54.6951
	System	Peak Day (kW)	55.8011	55.5180	56.1315	55.6737	55.9523	55.6992	55.8744	55.3549	55.0488	54.9084	54.5006	54.1330	54.3653	54.5346	54.7457	55.1573	54.3970	53.8767	54.4095	54.7165	54.4148	54.9039	54.4267	53.6255
		Hour	_	7	က	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-1.4

Average	Weekend/Holidays (kW)	47.8437	47.7487	47.6924	47.7298	47.4985	47.8317	47.8218	47.5650	47.0423	47.2072	47.2024	47.0611	46.7765	46.8416	47.1493	47.3729	47.3579	47.1963	47.1048	47.1479	47.4644	47.4371	47.5292	47.5449
Average	Weekday (kW)	47.8498	47.8853	47.8463	47.9976	47.7668	47.8778	48.2214	48.1114	48.1098	48.1154	48.2074	48.0134	48.0176	47.8335	48.1149	48.3421	48.4002	48.0994	47.7390	47.6373	47.8309	47.8889	47.7350	47.6494
System	Peak Day (kW)	46.4903	46.1441	45.3061	45.2209	44.8487	44.1569	44.6043	45.0650	44.7883	44.6812	44.2844	44.5677	45.4373	44.5761	44.9989	45.5154	46.9293	47.2708	46.0693	45.5289	45.8274	46.1182	45.8011	45.4573
	Hour	1	2	က	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

PRIMARY GENERAL SERVICE - April	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays
	49.00 47.00 47.00 47.00 47.00 47.00 47.00	

TABLE E-1.5

		PRIMARY GENERAL SERVICE - May		52.00	50.00		48:00	46.00	KM	1, no. #	42.00	60	40.00	ſ	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day Average Weekday Average Weekend/Holidays		
Average kend/Holidays (kW)	43.3718	43.4092	43.3208	43.0002	42.6297	42.7536	42.7402	42.3715	42.4599	42.9629	43.3656	43.1907	43.4589	44.0281	44.2152	44.4455	44.2844	44.3684	

			_																							
	Average	Weekend/Holidays (kW)	43.3718	43.4092	43.3208	43.0002	42.6297	42.7536	42.7402	42.3715	42.4599	42.9629	43.3656	43.1907	43.4589	44.0281	44.2152	44.4455	44.2844	44.3684	44.1285	44.4269	44.3134	44.1208	44.0782	43.6193
May-20	Average	Weekday (kW)	43.8965	43.9223	43.7630	43.5548	43.3107	43.3194	43.2823	43.4021	43.7516	44.0198	44.4323	44.9023	44.8166	45.1453	45.3220	45.4914	45.0116	44.8520	44.9160	44.9585	44.7592	44.8210	44.8038	44.2754
	System	Peak Day (kW)	43.9854	44.5020	44.0038	44.1731	44.1254	44.2528	44.3849	44.3705	44.8613	46.0469	48.4965	49.5281	49.6796	49.3792	49.5708	49.0470	48.1247	47.2063	47.9714	48.0550	47.7922	48.3513	48.2575	47.5812
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

Average Weekday ---- Average Weekend/Holidays

ω _

Southwestern Public Service Company **Hourly Load Profiles**

TABLE E-1.6

Jun-20

PRIMARY GENERAL SERVICE - June

		PRIMARY		26.00	54.00		52.00	50.00		48.00	46.00		44.00	-	1234567		System Peak Day -							
Average	Weekend/Holidays (kW)	48.0245	47.9631	47.8291	47.7588	47.4960	47.1699	46.9418	47.3037	47.4100	47.8304	48.7444	48.9183	49.0292	49.1334	49.3650	49.6476	50.0126	49.3996	49.1562	49.1029	49.2446	48.8122	48.5828
Average	Weekday (kW)	47.7210	47.4052	47.5554	47.5118	47.5227	47.5079	47.3531	48.1981	48.3923	49.1304	49.6435	49.5734	49.9302	50.2915	50.6280	49.9868	49.9365	49.5533	49.4663	49.1861	49.0405	48.8966	48.4002
System	Peak Day (kW)	49.3698 49.4063	49.8783	49.5905	48.8294	49.2233	49.5513	49.8552	50.6563	50.8027	52.1690	52.0243	53.8443	54.6921	54.3173	54.1062	54.5923	53.5060	52.7482	52.3771	52.0785	51.8407	51.2647	51.1032
	Hour	- ~	ı က	4	2	9	7	∞	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-1.7

		PRIMARY GENERAL SERVICE - July		54.00	53.00	22.00		00:10	№ 20:00	49:00	000	00:00	47.00	- - -	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day Average Weekday Average Weekdays				
Weekend/Holidays (kW)	50.4836	50.2034	20.0657	49.9732	49.5290	49.2341	49.0586	48.8575	48.9418	49.5348	49.8603	50.1242	50.1057	50.3447	51.2096	51.4428	51.0619	50.8665	50.5061	50.0755	49.7821
ekday (kW) Weel	50.9545	50.5991	50.5292	50.5460	50.0664	49.8799	49.7665	49.7403	50.3669	50.7471	51.3926	51.6837	51.7366	52.1423	52.5534	52.4567	52.1167	51.9380	51.7211	51.8788	51.9919

						2	2	2		ი	W)	1		1	4	4										
	Average	Weekend/Holidays (kW)	50.4836	50.2034	50.0657	49.9732	49.5290	49.2341	49.0586	48.8575	48.9418	49.5348	49.8603	50.1242	50.1057	50.3447	51.2096	51.4428	51.0619	50.8665	50.5061	50.0755	49.7821	49.8894	49.9677	50.2417
20	Average	Weekday (kW)	50.9545	50.5991	50.5292	50.5460	50.0664	49.8799	49.7665	49.7403	50.3669	50.7471	51.3926	51.6837	51.7366	52.1423	52.5534	52.4567	52.1167	51.9380	51.7211	51.8788	51.9919	52.1366	51.8365	51.4651
	System	Peak Day (kW)	52.4880	51.5018	51.2410	51.4338	51.6658	50.1966	49.9005	50.1388	50.7429	50.7923	52.2545	52.7839	53.5570	52.8554	53.5541	53.3518	53.6306	52.9094	52.5663	53.0920	52.1180	52.3634	51.8416	51.9379
		Hour	_	7	ო	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24
•																										

Southwestern Public Service Company Hourly Load Profiles

TARLE E-1.8

|--|

		Aug-20	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	48.4087	50.2323	50.1308
7	48.5211	50.2480	49.7294
8	48.4471	50.3550	49.5521
4	49.1207	50.4108	49.6944
2	48.4744	49.9173	49.3344
9	48.7643	49.9722	49.2288
7	49.5828	50.1071	48.9686
∞	49.2652	50.1498	48.7034
6	49.5491	50.6538	48.9072
10	50.2660	51.1570	49.2113
7	51.0526	51.9271	50.0882
12	51.9787	52.0143	49.6519
13	51.2770	52.2065	49.7157
14	51.6186	52.6785	50.4662
15	51.9949	53.4565	51.0635
16	54.3334	53.6130	51.2004
17	54.0374	53.2677	50.8291
18	53.7825	53.1519	51.1906
19	53.3936	52.7330	50.8312
20	52.3362	52.5041	51.1964
21	52.5075	52.5216	51.4409
22	52.5660	52.0395	51.1416
23	52.7818	51.6641	50.6461
24	52.1906	51.0920	50.2779

TABLE E-1.9

Ī																										\neg
	Average	Weekend/Holidays (kW)	49.4708	49.2450	49.2926	49.1704	49.1386	48.8956	48.9205	49.0467	48.8421	49.0811	49.5015	49.6418	49.9863	50.1379	50.2943	50.4371	9602.09	50.4594	50.5133	50.2964	50.3309	50.1407	50.1199	49.8965
Sep-20	Average	Weekday (kW)	50.1463	49.8465	49.9310	49.6648	49.4580	49.5047	49.5988	49.8841	50.1298	50.4321	50.8274	50.8576	51.0510	51.3532	51.5959	51.6358	51.4826	51.1978	50.8945	50.5329	50.4514	50.4304	50.0880	50.0742
	System	Peak Day (kW)	53.0611	49.6479	49.9849	50.3636	50.0155	49.5637	49.4618	49.4069	50.6347	50.6630	51.8611	51.5874	50.1265	51.8148	51.9266	52.0205	51.7447	51.2877	51.1818	51.0294	50.4867	49.9516	49.7108	48.7527
		Hour	_	7	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

54.00 52.00 49.00 47.00 47.00 47.00 47.00 47.00 5.00 47.00 48.00 48.00 48.00 49.00 40.00 4
--

TABLE E-1.10

	PRIMARY GENERAL SERVICE - October	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day ———— Average Weekday Average Weekend/Holid
	9	kW 55.00 49.00 4	
(//			

	Average	Weekend/Holidays (kW)	49.1528	48.8358	48.7134	48.8777	48.7070	48.8360	48.8549	49.5691	49.2993	49.4126	49.4145	49.3991	49.4254	49.8300	50.1358	50.5410	50.5684	50.1382	49.7885	49.6659	50.1941	50.0355	49.8713	49.6029
Oct-20	Average	Weekday (kW)	48.8309	48.6359	48.7094	48.5417	48.5375	48.3833	48.3814	48.9724	48.9316	48.8738	49.2491	49.2996	49.3619	49.5654	50.0643	50.4379	50.6077	50.4793	50.3785	49.9186	49.6277	49.3133	48.8744	48.8454
	System	Peak Day (kW)	49.1643	49.1027	48.9072	49.2799	48.6245	48.3132	48.3601	49.1359	49.3093	48.9246	49.9975	50.6230	50.3578	51.1876	53.3271	54.2597	54.1182	54.5473	54.3529	54.5602	53.6433	54.0433	53.5030	53.1957
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

TABLE E-1.11

	Average	Weekend/Holidays (kW)	54.1993	53.9555	53.5866	53.8511	53.4947	53.4318	53.8259	53.7559	53.5453	53.5139	53.4359	53.4658	53.7146	53.8860	53.7733	53.7989	53.8296	53.8039	53.9439	53.8471	53.8761	54.1665	53.9987	53.8789
Nov-20	Average	Weekday (kW)	53.5977	53.4916	53.6869	53.4517	53.4192	53.4841	53.8265	53.5595	53.5202	53.6307	53.6425	53.6437	54.1493	54.4846	54.6894	54.9841	54.9424	54.8267	54.8393	54.4672	54.2276	54.2294	54.0988	54.0894
	System	Peak Day (kW)	55.0085	54.6287	54.4755	54.1723	53.9223	53.6228	54.0880	54.0632	54.0320	53.7455	53.7617	53.6410	54.2093	54.6993	54.2397	54.3153	54.4677	54.7105	55.0452	55.0946	54.9567	55.2857	55.3405	54.9917
		Hour	_	7	က	4	2	9	7	∞	0	10	=	12	13	4	15	16	17	18	19	20	21	22	23	24

PRIMARY GENERAL SERVICE - November		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average WeekdayAverage Weekend/Holidays
	55.50 55.00 54.50 53.00 52.50	

TABLE E-1.12

	Average	Weekend/Holidays (kW)	48.5369	48.4994	48.4737	48.5955	48.1741	48.1484	48.1078	48.1941	47.8626	47.9597	48.1423	48.1613	48.2203	48.1177	47.8870	48.1132	47.8982	47.9547	48.2191	48.2950	48.3123	48.2246	48.3298	48.4186
Dec-20	Average	Weekday (kW)	48.8218	48.7840	48.7065	48.6905	48.2700	48.3080	48.4404	48.3639	48.2846	48.3160	48.4774	48.7055	48.8199	48.9481	48.9392	49.3653	49.0454	49.2201	49.4389	49.2932	49.3003	49.5165	49.4618	49.2653
	System	Peak Day (kW)	47.4839	47.9219	47.6504	47.7003	47.4298	46.9468	47.6411	47.6792	48.1075	48.5035	48.9712	49.6525	49.8835	50.3731	49.4833	49.9962	49.3109	49.3291	48.9111	48.6279	48.7363	49.4861	49.7353	49.5003
		Hour	_	2	က	4	2	9	7	œ	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

PRIMARY GENERAL SERVICE - December		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	—— System Peak Day ——— Average Weekday Average Weekend/Holidays
	50.00		

TABLE E-2.1

	Average	Weekend/Holidays (kW)	18.2753	18.0198	17.9626	17.6670	17.9497	18.4729	18.6672	19.4392	19.0154	18.3463	19.2824	19.8432	19.8597	19.3082	18.7113	18.4610	18.5910	19.1190	19.4243	20.0253	20.1972	20.0330	18.6100	17.5257
Jan-20	Average	Weekday (kW)	18.2490	18.0652	18.3334	18.3887	18.0588	18.4740	19.7858	23.6844	26.5928	27.7786	27.7104	27.4817	27.4932	27.5810	26.7535	25.1456	24.1358	22.8732	22.6970	21.7256	21.2949	21.2599	20.0809	19.2261
	System	Peak Day (kW)	19.6477	16.9769	16.7492	17.7754	18.6856	19.3915	19.7311	23.0107	27.6072	30.3452	29.4099	27.3583	27.7269	29.2969	28.7849	26.1836	24.6153	22.6654	23.7530	23.3505	22.5064	20.4362	19.9445	22.1473
		Hour	_	7	က	4	2	9	7	∞	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

LARGE MUNICIPAL AND SCHOOL - January		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	System Peak Day Average Weekday Average Weekend/Holidays
	35.00 30.00 25.00 15.00 10.00 5.00	6 	•

TABLE E-2.2

	Average	Weekend/Holidays (kW)	18.2174	17.9052	18.0153	17.7472	17.7802	18.3668	18.5796	18.6599	18.2854	18.9342	19.4357	19.3956	19.4513	19.5890	18.8453	18.4633	18.6902	18.6987	18.3502	18.7327	19.3021	19.1878	18.8019	18.0692
Feb-20	Average	Weekday (kW)	19.1115	18.7852	18.6048	18.3637	18.6727	19.6097	20.8557	24.0540	27.4257	29.4629	29.7692	29.2132	28.6024	28.6455	27.9311	26.9348	25.5469	23.5824	23.1065	23.0481	22.6389	21.2131	20.4205	19.7095
	System	Peak Day (kW)	18.4501	18.8069	19.6881	19.6679	20.0224	20.1323	21.3950	27.1206	30.1794	32.6399	32.0706	30.0590	27.8556	29.3499	29.3866	26.5766	24.4204	23.6276	23.4356	24.3041	22.6401	21.3419	18.8022	20.4553
		our	_	2	3	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-2.3

Mar-20

					35.00	30.00	i i	25.00	20.00	W	15.00	10.00	S L	00.00	00:00	1 2		ys —							
Average	Weekend/Holidays (kW)	17.1879	17.4654	17.9069	17.5284	17.1764	17.5070	17.9494	17.8231	18.0850	17.9521	18.1169	18.1453	18.3872	18.7936	18.8503	19.1610	18.7698	18.6827	19.1969	19.9236	20.1714	19.7612	19.1378	18.4263
Average	Weekday (kW)	18.9507	18.5877	18.0396	17.5636	17.5115	18.1374	19.8172	22.3221	24.0504	26.1288	26.9603	26.7086	26.1463	26.3170	26.3733	25.7074	24.6117	22.7866	21.5415	21.7203	21.7033	20.7825	20.1697	19.6810
System	Peak Day (kW)	18.3856	17.9567	18.0570	17.2152	18.5177	21.0308	19.3459	21.7452	25.1019	28.7001	30.0172	29.2104	27.5822	26.8370	28.8634	29.2994	28.4560	25.9034	22.1437	23.3514	23.5659	20.9631	17.9600	17.2209
	Hour	_	7	က	4	2	9	7	œ	6	10	=	12	13	4	15	16	17	18	19	20	21	22	23	24

LARGE MUNICIPAL AND SCHOOL - March		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	—— System Peak Day ——— Average Weekday Average Weekend/Holidays
	35.00 30.00 25.00 70.00 10.00 5.00) ;	·

TABLE E-2.4

	Average	Weekend/Holidays (kW)	17.0033	16.6053	17.0422	16.9412	16.7666	16.0100	16.7935	17.1614	16.2195	15.8395	15.9578	16.5820	17.3255	17.6992	17.0503	16.9717	17.7518	18.2267	18.0730	18.4488	19.0487	18.8428	18.4424	18.2351
Apr-zu	Average	Weekday (kW)	17.9977	17.3457	17.3729	17.6401	17.6335	17.2341	18.8195	20.4401	21.4859	21.9270	22.2380	22.0233	22.1827	22.4914	22.3686	22.1003	21.8879	21.2387	20.6357	20.2955	20.1784	19.6075	19.3227	18.7023
	System	Peak Day (kW)	18.7800	17.9474	18.9208	19.6475	19.5714	19.5669	20.7595	21.5713	23.6355	24.6080	24.7927	25.0190	26.1118	26.4023	26.8792	26.8390	26.0981	25.1951	24.9358	24.4618	23.4908	21.9346	22.3350	21.1450
		Hour	_	2	က	4	2	9	7	00	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

LARGE MUNICIPAL AND SCHOOL - April		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———————————————————————————————————
	30.00 25.00 20.00 10.00 5.00	00.00

Southwestern Public Service Company **Hourly Load Profiles**

TABLE E-2.5

May-20

System

			LARGE MUNICIPAL AND SCHOOL - May		40.00	35.00	30.00		23.00	× 20.00	15.00	1000	20.01	5.00	-	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2	Hour	System Peak Day Average Weekday Average Week							
	W eekend/Holidays (KW)	21.6648	20.8808	20.3785	20.0215	20.3300	20.2374	20.3501	19.8163	20.0310	20.7408	21.4020	21.5465	21.8286	21.9261	22.3150	22.7609	23.1302	22.8372	22.3299	22.1936	23.0376	22.6615	22.5310	21.4147
085 087 1 1 1 1 1 1 1 1 1	Weekday (KW)	21.2377	20.8567	20.8219	20.3960	20.2999	20.3572	21.4403	22.7267	24.2035	25.6019	26.4456	27.3525	27.4501	27.7744	28.0758	28.2794	27.2404	26.1292	25.5145	24.9761	25.1080	24.4061	23.0254	22.0777
(1987)	Peak Day (KW)	21.7076	20.4315	20.9659	19.7571	20.6376	19.8597	20.2200	22.0151	25.8374	27.2655	30.1357	30.5322	30.7145	30.2764	33.0178	33.3820	31.5428	29.9082	29.1390	29.8464	28.6404	25.9497	24.7106	22.8662

- Average Weekday ---- Average Weekend/Holidays

24.9427 25.0467 23.7739

25.5644 25.0361 23.2295

31.4079

29.8001 28.9927

34.8064 32.4224

27.0626

25.3987 25.5450 24.0598

Southwestern Public Service Company Hourly Load Profiles

TABLE E-2.6

Jun-20

Average

Peak Day (kW) System

22.1006 21.4616 22.1559 25.2008 27.3511 29.2449 33.2160 33.6432 34.3144 32.8285 34.4374 34.4493

22.2081

			LARGE MUNICIPAL AND		40.00	35.00	30.00		75.00	KW 20.00	15.00	10 00	20.00	5.00	-	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Hour	System Peak Day ——— Average Weekda				
282	Weekend/Holidays (kW)	22.9042	22.0239	22.0564	21.3610	20.6593	20.8467	21.1199	21.3774	21.8836	22.8346	23.0875	23.9851	24.2502	25.0070	24.9569	24.8945	25.5049	26.0222	25.7761	25.1473	24.7266
280	Weekday (kW)	22.7108	21.8326	21.8194	21.6991	21.1005	21.2815	23.7012	25.6538	28.2509	30.0282	31.0352	32.2177	31.7194	31.7388	32.2749	32.4668	30.8654	29.1237	28.0331	27.3313	26.6400

	LARGE MUNICIPAL AND SCHOOL - June	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	— System Peak Day ——— Average Weekday Average Weekend/Holidays
--	-----------------------------------	--	--

TABLE E-2.7

Jul-20

System

			LARGE MUNICIPAL AND SCHOOL - July			01	01	00	0		00	0	00	00	-	1 2 3 4 5 6 7 8 9 1011121314151617181920212	Hour	———— System Peak Day ———— Average Weekday Average Weeke							
					20.00	45.00	40.00	35.00	30.00	W 25.00	Z 20.00	15.00	10.00	5.00	00.00										
_	ュ																								
	Weekend/Holidays (kW)	25.7802	25.3657	24.6789	24.0650	23.5278	23.3818	24.0869	24.4061	24.7449	25.7142	26.6753	27.4026	28.1120	28.2829	28.7370	29.1039	28.9229	28.1875	27.8269	27.8211	27.7653	27.1088	26.4260	26.0129
	Weekday (kW)	26.1521	25.3055	24.6068	24.0135	24.0346	24.4816	27.9756	29.7966	32.2066	34.5191	35.8145	37.0045	37.6935	37.9144	38.2978	38.0351	36.9095	34.6119	33.5810	32.2989	31.4377	30.1638	28.2041	26.5241
	Peak Day (kW)	28.2088	26.4253	25.9281	25.9344	26.0189	27.1441	30.9525	32.1031	34.5664	38.3458	39.7151	41.8981	42.6929	43.3614	42.8197	42.7184	41.2788	39.7374	38.7049	37.0694	34.2674	33.5543	31.7386	29.5294

- Average Weekday ---- Average Weekend/Holidays

 $7 \ \ 8 \ \ 9 \ \ 10 \ \ 11 \ \ 12 \ \ 13 \ \ 14 \ \ 15 \ \ 16 \ \ 17 \ \ 18 \ \ 19 \ \ 20 \ \ 21 \ \ 22 \ \ 23 \ \ 24$

TABLE E-2.8

		LARGE MUNICIPAL AND SCHOOL - August		50.00	45.00	40.00	35.00	30.00	x 25.00	20.00	15.00	10.00	5.00	0.00	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays			
lidays (kW)	018	727	327	188	998	382	104	968	312	337	598	592	388	040	322	313	290	391	312	353
Weekend/Holidays (kW)	24.4018	24.0727	23.4627	22.8188	22.4866	21.9682	22.8404	22.9896	23.1812	23.8837	24.5298	24.9592	25.7388	26.1040	26.5622	26.6813	26.8067	26.4391	26.5612	26.2853
day (kW)	.9462	.4047	.0121	.4691	.1014	.3964	.5599	.0948	.8492	.5831	.8899	9698	.6434	.0438	.6919	.3581	.9772	.9952	.4019	.0045

						20.00	45.00	40.00	35.00	30.00	W 25.00	20.00	15.00	10.00	5.00											
	Average	Weekend/Holidays (kW)	24.4018	24.0727	23.4627	22.8188	22.4866	21.9682	22.8404	22.9896	23.1812	23.8837	24.5298	24.9592	25.7388	26.1040	26.5622	26.6813	26.8067	26.4391	26.5612	26.2853	26.1275	25.5832	25.2939	24.9438
Aug-zo	Average	Weekday (kW)	24.9462	24.4047	24.0121	23.4691	23.1014	23.3964	26.5599	29.0948	31.8492	34.5831	35.8899	36.8696	37.6434	38.0438	38.6919	38.3581	36.9772	33.9952	32.4019	31.0045	30.2574	28.9505	27.2777	25.7379
	System	Peak Day (kW)	26.8491	24.8421	24.9576	23.6191	24.1151	24.5302	28.5282	30.9406	34.1616	36.8848	38.9262	40.5783	41.8351	42.7212	43.4762	41.3641	40.0512	38.0835	36.5774	34.8141	33.3735	31.9530	29.5818	27.7713
ľ		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-2.9

	Average	Weekend/Holidays (kW)	23.1691	22.7605	22.1413	22.1365	22.1166	22.1895	22.4248	22.7832	22.7073	23.1612	23.6673	24.3547	24.9320	24.7885	24.8242	24.7688	25.3746	24.7849	24.1380	23.7504	24.1910	24.1215	23.4358	23.1621
Sep-20	Average	Weekday (kW)	22.7812	22.3931	22.1671	22.4403	22.2436	22.0813	24.5436	27.8466	29.6869	31.7586	32.5208	32.7992	33.0760	33.1392	32.6736	32.5252	31.1356	27.7621	25.6820	24.3654	25.0906	24.3583	23.3711	23.2039
	System	Peak Day (kW)	24.0678	25.2188	23.9562	23.6432	23.9559	25.0377	27.8697	32.5086	36.6989	39.3748	39.6580	40.3943	42.2058	42.0061	43.0479	42.5190	41.1075	35.0481	32.2980	28.3495	27.8074	26.5430	26.6556	27.0928
		Hour	_	7	ო	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

50.00 45.00 45.00 35.00 30.00 25.00 15.00 5.00

TABLE E-2.10

ĺ		۷)																								
	Average	Weekend/Holidays (kW)	19.5633	19.6789	19.3133	18.7836	18.5605	18.8310	19.1291	19.1118	18.5882	18.5932	18.7246	19.6712	19.9043	19.6636	19.9533	20.7840	20.6071	20.2768	20.0729	20.3062	19.8985	19.8994	19.7089	19.5732
Oct-20	Average	Weekday (kW)	20.0683	19.9968	19.9884	19.2722	19.2870	19.6713	21.3114	23.7273	25.4007	26.9842	27.4637	28.2069	28.6578	28.4086	28.7017	29.1212	27.1446	24.9103	24.1406	23.2603	22.3384	21.5213	20.8110	20.5042
	System	Peak Day (kW)	20.1081	20.4336	19.3241	18.8925	19.7749	18.8633	19.5066	22.8209	24.0000	26.0651	25.8946	28.2997	29.2182	30.2430	31.4272	31.7155	29.9817	28.2048	28.0420	25.5630	23.8417	22.4573	20.5068	20.3866
		Hour	1	7	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

LARGE MUNICIPAL AND SCHOOL - October		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Average Weekday Average Weekend/Holidays
	35.00 30.00 25.00 20.00 10.00 6.00	

TABLE E-2.11

		(kW)																									
	Average	Weekend/Holidays (kW)	16.9184	17.2218	17.1813	16.3425	16.5163	16.7415	17.1924	17.1973	17.1581	17.4592	17.2829	17.9886	18.2982	17.9969	18.8496	18.9328	18.6245	18.7261	19.5002	18.7920	18.6825	18.5505	17.9132	17.1711	
NOV-ZU	Average	Weekday (kW)	17.2835	16.7735	16.6225	16.6979	16.6106	17.0571	20.4191	23.0031	24.8961	26.6859	26.9764	26.7931	26.8521	26.5020	26.0989	25.5241	23.8416	22.2408	21.6423	20.4726	19.4420	18.5628	18.0170	17.9013	
	System	Peak Day (kW)	19.0788	17.6175	17.9778	18.6071	19.4026	19.4859	22.4197	26.8740	28.0967	28.5607	27.4876	27.6548	28.4786	28.9638	29.0538	27.9115	26.4124	25.1740	24.8233	23.8696	21.9157	20.9979	20.5957	20.5424	
		Hour	_	2	3	4	2	9	7	8	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	

LARGE MUNICIPAL AND SCHOOL - November		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	——————————————————————————————————————
	35.00 25.00 20.00 10.00 5.00 0.00		-

TABLE E-2.12

LARGE MUNICIPAL AND SCHOOL - December		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	——— System Peak Day ———— Average Weekday Average Weekend/Holidays
	25.00 20.00 10.00 10.00 5.00	00.00	

TABLE E-3.1

_																										
	Average	Weekend/Holidays (kW)	1.0105	1.0077	1.0093	1.0077	1.0126	1.0189	1.0272	1.0138	0.9096	0.8852	0.8615	0.8445	0.8275	0.8152	0.7921	0.7750	0.7699	0.7931	0.9195	0.9707	0.9956	1.0120	1.0097	1.0025
Jan-20	Average	Weekday (kW)	0.9701	0.9721	0.9698	0.9678	0.9760	0.9878	1.0127	1.0630	1.0449	1.0617	1.0300	0.9970	0.9475	0.9220	0.9222	9606.0	0.8761	0.8441	0.9404	0.9790	0.9968	0.9994	0.9961	0.9775
	System	Peak Day (kW)	0.9169	0.9274	0.9153	0.9056	0.9282	0.9561	0.9789	1.0207	1.0655	1.0743	1.0922	1.0572	0.9901	1.0230	1.0623	1.0454	1.0255	1.0160	1.0355	1.0554	1.0555	1.0686	1.0554	1.0366
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

	SMALL MUNICIPAL AND SCHOOL - January	1.20 0.80 0.40 0.20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	——— System Peak Day ———— Average Weekday Average Weekend/Holidays
--	--------------------------------------	--	---

TABLE E-3.2

4											W	1														
	Average	Weekend/Holidays (kW)	0.9295	0.9324	0.9286	0.9303	0.9182	0.9271	0.9311	0.8930	0.8010	0.7818	0.7676	0.7531	0.7436	0.7317	0.7198	0.7037	0.7039	0.7190	0.8323	0.9089	0.9335	0.9407	0.9444	0.9078
Feb-20	Average	Weekday (kW)	0.9861	0.9855	0.9834	0.9873	0.9929	1.0057	1.0352	1.0536	1.0431	1.0566	1.0159	0.9927	0.9582	0.9537	0.9581	0.9384	0.8980	0.8513	0.9374	1.0124	1.0374	1.0437	1.0393	1.0148
	System	Peak Day (kW)	1.1218	1.1229	1.1042	1.0942	1.0840	1.1040	1.1307	1.1031	1.1170	1.1485	1.1115	1.0479	0.9972	1.0070	0.9981	0.9818	0.9269	0.8584	0.9188	1.0384	1.0898	1.1009	1.0912	1.0347
		Hour	_	7	က	4	2	9	7	œ	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SMALL MUNICIPAL AND SCHOOL - February		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	System Peak Day ———— Average Weekday Average Weekend/Holidays
	км 1.20 н. 1.	;	

TABLE E-3.3

	SMALL MUNICIPAL AND SCHOOL - March	0.90 0.80 0.70 0.40 0.30 0.10 0.10 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Hour
Jays (KVV)	ប្រុប្	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

	Average	Weekend/Holidays (kW)	0.8085	0.7955	0.7932	0.7941	0.7890	0.7970	0.7918	0.7635	0.6928	0.6545	0.6526	0.6455	0.6333	0.6355	0.6397	0.6341	0.6281	0.6257	0.6589	0.7345	0.8082	0.8359	0.8355	0.8299
Mar-20	Average	Weekday (kW)	0.7911	0.7755	0.7745	0.7733	0.7762	0.7914	0.8100	0.8298	0.8167	0.8333	0.8023	0.7848	0.7565	0.7438	0.7570	0.7503	0.7120	0.6559	0.6700	0.7368	0.8150	0.8288	0.8164	0.8069
	System	Peak Day (kW)	0.8710	0.8761	0.8839	0.8788	0.8989	0.9183	0.9176	0.8583	0.8949	0.9491	0.9185	0.8786	0.8411	0.7935	0.8168	0.7938	0.7312	0.6871	0.7282	0.8496	0.8616	0.8566	0.8434	0.8232
		Hour	_	7	ო	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-3.4

											W	I														
	Average	Weekend/Holidays (kW)	0.7372	0.7165	0.7066	0.7084	0.7080	0.7094	0.7169	0.6658	0.6080	0.5917	0.5804	0.5787	0.5820	0.5750	0.5752	0.5757	0.5740	0.5793	0.5875	0.6337	0.7117	0.7730	0.7573	0.7523
Apr-20	Average	Weekday (kW)	0.7356	0.7187	0.7162	0.7162	0.7118	0.7173	0.7317	0.6941	0.6862	0.7138	0.6949	0.6965	0.6794	0.6908	0.7000	0.6889	0.6662	0.6255	0.6311	0.6628	0.7407	0.7833	0.7769	0.7687
	System	Peak Day (kW)	0.7401	0.7043	0.6752	0.6704	0.6612	0.6526	0.6553	0.5965	0.6339	0.6367	0.6459	0.6866	0.7188	0.7647	0.7498	0.7522	0.7411	0.7382	0.7096	0.7195	0.7475	0.7785	0.7808	0.7985
		Hour	_	7	က	4	2	9	7	_∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SMALL MUNICIPAL AND SCHOOL - April	0.80 0.60 0.50 0.20 0.00 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	——————————————————————————————————————
	0.90 0.80 0.70 0.60 0.50 0.30 0.20 0.10	

TABLE E-3.5

SMALL MUNICIPAL AND SCHOOL - May		0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	——— System Peak Day ———— Average Weekday Average Weekend/Holidays
	1.20 (0.00	

	Average	Weekend/Holidays (kW)	0.7424	0.7099	0.7063	0.6901	0.6710	0.6754	0.6533	0.5721	0.5558	0.5879	0.6183	0.6241	0.6342	0.6502	0.6770	0.6953	0.7131	0.7154	0.7276	0.7506	0.7559	0.8083	0.7924	0.7810
May-20	Average	Weekday (kW)	0.7406	0.7155	0.7039	0.6904	0.6830	0.6852	0.6778	0.6311	0.6750	0.7357	0.7612	0.8011	0.8152	0.8326	0.8608	0.8887	0.8587	0.7772	0.7696	0.7697	0.7691	0.8154	0.7936	0.7707
	System	Peak Day (kW)	0.7247	0.7088	0.6955	0.6850	0.6937	0.7094	0.6763	0.6746	0.7372	0.8328	0.8665	0.9433	0.9776	0.9629	1.0239	1.0659	1.0163	0.9385	0.9101	0.8673	0.8486	0.9180	0.8696	0.8634
		Hour	_	2	က	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-3.6

	Average (kW)	0.8125	0.7981	0.7783	0.7664	0.7317	0.7392	0.7308	0.6560	0.6627	0.7327	0.7795	0.7971	0.8263	0.8621	0.9126	0.9279	0.9255	0.9269	0.9277	0.9026	0.8774	0.9178	9006.0	0.8659
Jun-20	Average Weekday (kW)	0.8028	0.7922	0.7848	0.7715	0.7621	0.7847	0.7373	0.7177	0.8380	0.9477	0.9580	1.0229	1.0632	1.0575	1.1198	1.1455	1.0777	0.9636	0.9361	0.9039	0.8672	0.8984	0.8786	0.8523
	System Peak Day (kW)	0.8981	0.8796	0.8512	0.8408	0.8796	0.8948	0.8351	0.7921	0.9544	1.0951	1.0810	1.1240	1.1809	1.1387	1.2473	1.2608	1.1985	1.0441	1.0628	1.0113	0.9604	0.9891	0.9464	0.9187
	Hour	-	2	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

SMALL MUNICIPAL AND SCHOOL - June		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———————————————————————————————————
	1.40 1.20 1.20 1.00 0.80 0.80 0.40 0.40	

TABLE E-3.7

	SMALL MUNICIPAL AND SCHOOL - July	1.80 1.20 1.00 0.60 0.40 0.20 0.00 1 2 3 4 5 6 7 8 9 10111213141516171819202122324	System Peak Day Average Weekday Average Weekend/Holida
.vv)			

	Average	Weekend/Holidays (kW)	1.1096	1.0344	1.0105	0.9847	0.9646	0.9803	0.9673	0.8711	0.8726	0.9590	1.0312	1.0612	1.0930	1.1402	1.1716	1.1936	1.2007	1.1785	1.1661	1.1560	1.1676	1.2079	1.1626	1.1330
Jul-20	Average	Weekday (kW)	1.1395	1.0781	1.0621	1.0544	1.0551	1.0716	1.0390	1.0013	1.1011	1.2340	1.2711	1.3277	1.3610	1.3769	1.4202	1.4478	1.4054	1.3091	1.2567	1.2325	1.2335	1.2698	1.2186	1.1958
	System	Peak Day (kW)	1.2983	1.2141	1.1675	1.1743	1.1492	1.1550	1.1262	1.0843	1.1873	1.3748	1.4525	1.5058	1.4607	1.5588	1.6303	1.6239	1.5466	1.4334	1.3494	1.3436	1.3706	1.3826	1.3414	1.3112
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-3.8

|--|

		Ang-zo	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW
_	1.1096	1.0448	1.0322
7	1.0544	0.9920	0.9709
က	1.0098	0.9709	0.9426
4	0.9904	0.9583	0.9298
2	1.0054	0.9601	0.9055
9	1.0146	0.9761	0.9121
7	0.9810	0.9791	0.9300
80	0.9308	0.9379	0.8343
0	1.0404	1.0056	0.7995
10	1.1959	1.1351	0.8770
7	1.2204	1.1777	0.9364
12	1.3137	1.2323	0.9601
13	1.3737	1.2717	0.9851
14	1.3791	1.2940	1.0221
15	1.4321	1.3449	1.0530
16	1.4338	1.3586	1.0814
17	1.3803	1.3108	1.0935
18	1.2425	1.2110	1.0801
19	1.1290	1.1375	1.0664
20	1.0896	1.0914	1.0392
21	1.1299	1.1308	1.0932
22	1.1709	1.1584	1.1025
23	1.1252	1.1187	1.0643
24	1.1189	1.0958	1.0378

TABLE E-3.9

км	·	SMALL MUNICIPAL AND SCHOOL - September	1.20 1.00 0.80 0.40 0.20 0.00 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	——————————————————————————————————————
----	---	--	--	--

	Average	Weekend/Holidays (kW)	0.9205	0.8712	0.8610	0.8598	0.8425	0.8433	0.8536	0.8187	0.7432	0.8001	0.8363	0.8626	0.8710	0.9092	0.9320	0.9401	0.9492	0.9489	0.9233	0.9267	1.0127	0.9978	0.9733	0.9469
Sep-20	Average	Weekday (kW)	0.8649	0.8257	0.8069	0.7982	0.7947	0.8166	0.8481	0.8503	0.8608	0.9351	0.9498	0.9831	1.0124	1.0418	1.0828	1.0737	1.0407	0.9449	0.9036	0.8945	0.9693	0.9469	0.9267	0.8909
	System	Peak Day (kW)	0.8688	0.8299	0.8367	0.8410	0.8312	0.8698	0.8839	0.8729	0.8951	1.0048	1.0507	1.0480	1.1178	1.1643	1.2144	1.1697	1.1441	1.0316	0.9337	0.9048	0.9612	0.9746	0.9709	0.9270
		Hour	_	7	ო	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-3.10

Oct-20

System

			SMALL MUNICIPAL AND SCHOOL - October		1.40	1.20		1.00	0.80	(A)	0.00	0.40		0.20	-	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day ——— Average Weekday Average Weekend/Holiday							
	Weekend/Holidays (kW)	0.9300	0.9044	0.8878	0.8804	0.8748	0.8847	0.9059	0.9060	0.8016	0.8422	0.8455	0.8376	0.8458	0.8612	0.8731	0.8763	0.8927	0.8823	0.8867	0.9636	1.0194	0.9978	0.9911	0.9763
,	Weekday (kW)	0.9599	0.9368	0.9214	0.9117	0.9035	0.9228	0.9655	1.0038	0.9800	1.0654	1.0460	1.0489	1.0436	1.0727	1.1117	1.1109	1.0648	0.9642	0.9513	1.0091	1.0535	1.0299	1.0136	0.9826
	Peak Day (kW)	0.8624	0.8834	0.8359	0.8179	0.7964	0.8344	0.8894	0.9332	0.9077	0.9965	0.9566	0.9665	1.0130	1.1013	1.1627	1.1793	1.2092	1.0137	0.9477	0.9579	1.0112	1.0166	0.9708	0.9070
	T																								□

TABLE E-3.11

											κM	l														
	Average	Weekend/Holidays (kW)	0.8769	0.8678	0.8607	0.8601	0.8683	0.8750	0.8850	0.8126	0.7550	0.7329	0.7247	0.7224	0.7177	0.7103	0.7066	0.7097	0.6988	0.7566	0.8696	0.9118	0.9105	0.8984	0.9029	0.9062
OC YON	Average	Weekday (kW)	0.8947	0.8910	0.8832	0.8780	0.8822	0.9041	0.9313	0.8960	0.9365	0.9428	0.8875	0.8717	0.8542	0.8516	0.8676	0.8517	0.8100	0.8007	0.8842	0.9066	0.9035	0.9116	0.9081	0.9015
	Svetem	Peak Day (kW)	0.9397	0.9652	0.9592	0.9431	0.9393	0.9626	1.0527	1.0747	1.0442	1.0342	1.0169	0.9780	0.9452	0.9267	0.9369	0.9039	0.8816	0.8708	0.9792	1.0295	1.0606	1.0959	1.0894	1.0766
		Jour	_	2	ო	4	2	9	7	œ	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SMALL MUNICIPAL AND SCHOOL - November		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	——————————————————————————————————————
	0.100 0.80 0.80 0.40 0.20 0.20 0.20 0.20 0.20 0.20 0.2	5	

TABLE E-3.12

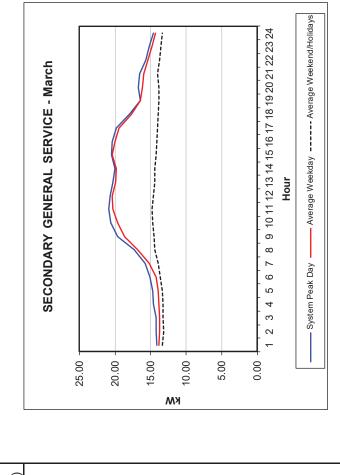
	Average	Weekend/Holidays (kW)	1.0091	1.0202	1.0081	1.0125	1.0142	1.0205	1.0248	1.0153	0.9268	0.8815	0.8543	0.8496	0.8415	0.8298	0.8129	0.8041	0.8076	0.8727	1.0031	1.0386	1.0616	1.0591	1.0631	1.0505
Dec-20	Average	Weekday (kW)	1.0467	1.0432	1.0404	1.0345	1.0388	1.0542	1.0777	1.0983	1.0724	1.0612	1.0235	1.0090	0.9773	0.9502	0.9550	0.9453	0.9192	0.9452	1.0483	1.0590	1.0699	1.0818	1.0867	1.0726
	System	Peak Day (kW)	0.9062	0.9176	0.8937	0.8676	0.9009	0.9157	0.9456	1.0138	1.0344	0.9979	1.0052	1.0485	1.0389	1.0414	1.0435	1.0366	1.0690	1.0458	1.0601	1.0924	1.0841	1.1162	1.0792	1.0578
		Hour	_	7	ო	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-4.1

		(N																									
	Average	Weekend/Holidays (KW)	14.8479	14.7490	14.7857	14.9497	15.0431	15.2730	15.7583	16.5506	16.8403	16.9591	16.8331	16.4983	15.9976	15.8724	15.5976	15.3526	15.1600	15.1099	15.3528	15.2660	15.1705	14.9347	14.7060	14.5916	
Jail-20	Average	Weekday (kW)	15.2170	15.1932	15.3325	15.5211	15.6572	16.0633	17.0919	18.9468	20.7257	21.3788	21.5312	21.4187	20.6185	20.5908	20.7696	20.4571	20.1148	18.5690	17.6049	17.3815	17.0489	16.4574	16.2258	15.7576	
	System	Peak Day (kW)	15.2726	15.4055	15.6165	15.8124	15.9068	16.0401	16.8895	18.5711	20.2153	21.1552	21.6742	21.2004	20.7918	21.0936	21.0499	20.5462	20.2793	18.6112	17.4620	17.3914	17.0728	16.4571	16.3690	15.7624	
		Hour	_	7	က	4	2	9	7	80	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24	

SECONDARY GENERAL SERVICE - January		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day —— Average Weekday Average Weekend/Holidays
	25.00 - 15.00 - 10.00 - 5.00 -	00:00
	ΚM	

TABLE E-4.2


	Average	Weekend/Holidays (kW)	14.8143	14.5902	14.5699	14.7684	14.8930	15.2014	15.6450	16.1753	16.3443	16.5194	16.4331	16.3822	16.1220	16.0323	15.6814	15.4227	15.2697	15.0779	15.0196	15.0395	14.7835	14.6105	14.4839	14.3629
Feb-20	Average	Weekday (kW)	15.7999	15.7441	15.8857	16.1091	16.2152	16.5855	17.4664	19.2109	20.5669	21.3623	21.4820	21.4719	20.7534	20.9676	20.9271	20.5446	20.1906	18.7961	18.0075	17.9783	17.6202	17.0008	16.6990	16.3262
	System	Peak Day (kW)	16.0460	16.0199	15.9568	16.1197	16.0163	16.4662	17.2548	18.8598	20.6698	21.7931	22.1543	21.8881	21.0383	21.3401	21.3747	21.1110	20.5485	18.4035	17.2860	17.4395	16.9057	16.0159	15.8087	15.3841
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

25.00
15.00
1.0.00
1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24

Hour

System Peak Day Average Weekday ----- Average Weekend/Holidays

FABLE E-4.

	Average	Weekend/Holidays (kW)	13.3554	13.1743	13.2017	13.2293	13.3450	13.5988	13.9138	14.3752	14.4671	14.6889	14.7549	14.6361	14.3558	14.3482	14.1766	14.0614	13.9645	13.8818	13.8143	13.8557	13.9704	13.6901	13.5105	13.2899
Mar-20	Average	Weekday (kW)	13.8322	13.6876	13.7010	13.8079	13.8954	14.2230	15.1480	16.7837	18.6482	19.6388	20.2545	20.3986	19.8710	19.8420	20.3617	20.0366	19.4543	17.6557	16.3789	16.1075	15.9892	15.3484	14.8253	14.3247
	System	Peak Day (kW)	14.0723	14.1704	14.2272	14.5753	14.6930	15.0872	15.7406	17.3124	19.5837	20.5344	20.8983	20.6685	20.3060	19.9527	20.5115	20.3460	19.8316	17.9325	16.4566	16.6837	16.4961	15.6588	15.1287	14.5766
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

TABLE E-4.4

SECONDARY GENERAL SERVICE - April	25.00	20.00	15.00	10.00 KV	5.00	0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	System Peak Day ———— Average Weekday Average Weekend/Holidays

	Average	Weekend/Holidays (kW)	13.9562	13.8084	13.8274	13.8909	13.9333	14.0560	14.4509	14.6483	14.7820	15.0036	15.0374	14.9801	14.8938	14.8920	14.9587	14.9457	15.0221	14.8893	14.8457	14.6969	14.5936	14.4188	14.1013	13.7444
Apr-20	Average	Weekday (kW)	14.9009	14.8042	14.8167	14.8676	14.8497	15.1165	15.9460	17.0126	18.6617	19.5888	20.1587	20.4225	20.3321	20.5926	20.7280	20.5321	20.1101	18.7018	17.7616	17.1665	16.9120	16.4154	15.8499	15.3537
	System	Peak Day (kW)	15.0350	14.9804	15.1095	15.1714	15.1306	15.4287	16.0770	16.8216	18.6438	19.6033	20.4215	21.2998	21.5633	22.0918	22.3878	22.1045	21.7197	20.2515	18.7803	18.0014	17.3824	16.5850	15.6911	14.8909
ľ		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-4.5

						რ —		í ——	Ď		κM		- 													
	Average	Weekend/Holidays (kW)	15.5749	15.1526	14.9108	14.7633	14.6686	14.7693	15.1836	15.3866	15.9480	16.5870	17.2558	17.7083	18.0497	18.3874	18.6646	18.8144	18.9146	18.7453	18.4980	17.9253	17.3386	16.8624	16.3894	15.7915
May-20	Average	Weekday (kW)	15.9131	15.6354	15.3762	15.3366	15.3670	15.7531	16.4961	17.8486	20.8326	22.1658	23.2348	23.8748	23.7841	24.6200	25.5323	25.3436	24.8771	22.8533	21.0454	19.9894	19.1646	18.3152	17.3816	16.6757
	System	Peak Day (kW)	15.3496	15.2591	14.9522	15.0299	15.0117	15.3313	16.1539	17.9755	20.6827	22.0448	23.2800	24.5383	25.1285	26.2567	27.1407	27.4786	26.9240	24.9449	23.3486	22.5037	21.0197	20.0823	19.0003	18.0070
		our	_	2	3	4	22	(0		ω	6	0	_	2	က	4	2	9	7	00	6	0.	7.	2	<u>د</u>	4.

SECONDARY GENERAL SERVICE - May		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———————————————————————————————————
	30.00 25.00 20.00 10.00 5.00	3

TABLE E-4.6

	SECONDARY GENERAL SERVICE - June	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour System Peak Day ———— Average Weekday Average Weekend/Holids
	00	7.00 KW 8.00 KW 6.00 KW	
_			
<u> </u>			

Nerage Peak Day (kW) 21.4623 21.4623 20.1162 21.2842 19.7787 20.8705 19.4428 21.1328 19.2669 20.9660 19.4369 20.9660 19.4369 20.9660 19.4369 20.9660 20.9669 20.9669 20.9673 31.3356 22.9095 28.5412 31.3356 28.5412 31.3356 28.947 32.9102 33.6788 31.7844 32.7254 31.4752 30.8194 22.3250 28.3753 26.7726 28.3753 26.7726 28.3753 26.7726 28.3769 28.3753 26.7726 28.3769			UZ-IIIC	
Peak Day (kW) Weekday (kW) 21.4623 20.1162 21.2842 19.7787 20.8705 19.4428 21.1328 19.3487 21.0979 19.2669 20.9660 20.0065 20.9660 21.4862 26.4547 24.9905 28.2578 21.043 30.1139 28.5412 31.3355 29.6973 31.7676 29.9847 32.9102 30.9491 33.5353 31.7844 32.7254 31.7844		System	Average	Average
21.4623 21.2842 20.8705 21.1328 21.0979 20.9660 21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852	Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
21.2842 20.8705 21.0379 20.9660 21.0860 21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	<u></u>	21.4623	20.1162	20.3803
20.8705 21.1328 21.0979 20.9660 21.0860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	2	21.2842	19.7787	19.8593
21.1328 21.0979 20.9660 21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	က	20.8705	19.4428	19.3766
21.0979 20.9660 21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 32.7254 29.3014 28.3753 26.7726 25.1852	4	21.1328	19.3487	19.1007
20.9660 21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	2	21.0979	19.2669	19.0172
21.1860 23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	9	20.9660	19.4369	19.1996
23.0561 26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	7	21.1860	20.0065	19.4733
26.4547 28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 30.8194 29.3014 28.3753 26.7726 25.1852	8	23.0561	21.4862	19.7639
28.2578 30.1139 31.3355 31.7676 32.9102 33.5353 33.67254 30.8194 29.3014 28.3753 26.7726 25.1852	6	26.4547	24.9905	20.8299
30.1139 31.3355 31.7676 32.9102 33.5353 33.6783 30.8194 29.3014 28.3753 26.7726 25.1852	10	28.2578	27.0143	21.9653
31.3355 31.7676 32.9102 33.5353 33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852	7	30.1139	28.5412	23.0589
31.7676 32.9102 33.5353 33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	12	31.3355	29.6973	23.8059
32.9102 33.5353 33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	13	31.7676	29.9847	24.1241
33.5353 33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	4	32.9102	30.9491	24.8437
33.6783 32.7254 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	15	33.5353	31.5890	25.4074
32.7254 30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	16	33.6783	31.7844	25.5024
30.8194 29.3014 28.3753 26.7726 25.1852 23.9132	17	32.7254	31.4752	25.6883
29.3014 28.3753 26.7726 25.1852 23.9132	18	30.8194	29.0142	25.5719
28.3753 26.7726 25.1852 23.9132	19	29.3014	27.3250	25.0658
26.7726 25.1852 23.9132	20	28.3753	26.2143	24.1280
25.1852 23.9132	21	26.7726	24.7901	23.0071
23.9132	22	25.1852	23.4069	22.3113
1	23	23.9132	22.0551	21.4170
22.7452	24	22.7452	21.1494	20.6253

TABLE E-4.7

SECONDARY GENERAL SERVICE - July ### 40.00 ### 35.00 ### 30.00 ### 15.00 ### 10.00 ### 5.00 ### 1.2 3 4 5 6 7 8 9 101112131415161718192021222324 ### Hour ### Hour ### Hour #### Hour #### Average Weekday Average Weekend/Holiday

	Average	Weekend/Holidays (kW)	21.4017	20.8652	20.4495	20.2019	20.1258	20.1429	20.5934	20.8225	21.7261	22.7784	23.7766	24.3296	24.6478	25.1173	25.5605	25.4024	25.6123	25.5203	25.1120	24.3956	23.6046	22.8618	21.9122	21.1813
Jul-Zu	Average	Weekday (kW)	20.9267	20.5742	20.3205	20.2372	20.2430	20.3910	21.1052	22.6820	26.1330	28.1018	29.3691	30.3349	30.6377	31.0251	31.7228	31.6404	31.2491	28.8587	27.1885	26.0110	24.8999	23.7085	22.6428	21.8335
	System	Peak Day (kW)	22.1574	21.8375	21.2933	21.3594	21.2524	21.1035	22.0423	23.3888	26.3995	29.2672	31.1669	32.7479	32.9138	33.4514	34.1093	33.8679	32.8210	30.9691	29.4653	27.9434	26.0486	24.0145	22.7849	21.6137
		Hour	_	7	က	4	2	9	7	∞	o	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-4.8

					40.00	35.00	30.00) (72.00	20.00	15.00	5	0.00	5.00	0.00		L								
										W	1														
Assessed	Weekend/Holidays (kW)	20.7999	20.2256	19.8664	19.5571	19.3748	19.4065	20.0461	20.5652	21.3997	22.5534	23.7528	24.7033	25.2088	25.8770	26.2007	26.2022	26.2652	26.0299	25.5110	24.6449	23.6707	22.7483	21.5716	20.7994
V. Grado	Weekday (kW)	20.6865	20.2996	20.0014	19.8584	19.6934	19.9472	20.8393	22.9104	26.2407	27.9447	29.5355	30.8375	31.5110	32.0583	33.1033	33.2373	32.8775	30.4407	28.4957	27.0198	25.5688	24.1600	22.9039	21.9465
Cyctom	Peak Day (kW)	21.7811	21.2370	20.8568	20.6326	20.6071	21.1213	22.0731	23.8735	27.5025	28.8302	30.8058	32.6850	33.4300	34.7436	35.3206	34.9852	35.0414	32.8430	31.2753	29.5551	28.0936	26.7007	25.0216	24.0915
	our	_	2	3	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SECONDARY GENERAL SERVICE - August		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	System Peak Day Average Weekday Average Weekend/Holidays
	KW 40.00 75.00 10.00 75.00 75.00	5 L	

TABLE E-4.9

											W	Н														
	Average	Weekend/Holidays (kW)	18.9788	18.6038	18.4300	18.3861	18.4666	18.5476	18.8809	19.5109	19.9406	20.8523	21.7740	22.4874	22.8442	23.2659	23.5037	23.5739	23.7165	23.4294	22.8105	21.8611	21.1645	20.3962	19.5405	18.8457
Sep-20	Average	Weekday (kW)	18.9726	18.6839	18.5910	18.6774	18.8142	19.0398	19.7134	21.7690	24.0943	25.2519	26.3184	27.1214	27.4472	27.6858	28.6464	28.7529	28.7163	26.9482	25.0574	23.8369	22.9189	21.7216	20.6416	19.8548
	System	Peak Day (kW)	19.9436	20.1193	19.8627	20.0614	20.2060	20.2422	21.1911	22.8252	24.9414	26.2673	27.0444	28.4164	29.5141	30.4667	31.1317	31.3571	31.1316	29.1267	27.6585	26.2845	25.0198	23.4287	22.4526	21.6954
		lour	1	7	က	4	2	9	7	∞	ဝ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SECONDARY GENERAL SERVICE - September	1 2 3 4 5 6 7 8 9 101112131415161718192021222324	Hour	——— System Peak Day ———— Average Weekday Average Weekend/Holidays
	35.00 kW 20.00 1	_	

TABLE E-4.10

	Average	Weekend/Holidays (kW)	16.8470	16.6024	16.5782	16.6603	16.6430	16.7102	16.9593	17.5620	17.8445	18.1377	18.4864	18.7200	18.8344	18.9826	19.0486	18.9954	19.1338	19.0055	18.8295	18.5692	18.1543	17.6489	17.1626	16.7551
Oct-20	Average	Weekday (kW)	17.3962	17.1906	17.0543	17.1448	17.2913	17.6070	18.1781	19.7801	21.1366	21.8415	22.5675	22.8937	22.9790	23.1652	23.7262	23.9514	23.7336	22.5060	21.4966	20.8094	20.0956	19.1324	18.3893	17.7963
	System	Peak Day (kW)	19.1245	18.9904	18.7347	18.6302	18.5548	18.8824	19.1588	20.7834	22.2297	23.0055	23.8939	24.3951	25.1149	25.7474	26.7351	27.4536	27.6855	26.3742	25.2440	24.4035	23.0986	21.7411	20.3246	19.6260
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SECONDARY GENERAL SERVICE - October		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average WeekdayAverage Weekend/Holidays
	30.00	6 6 7

TABLE E-4.11

	Average	Weekend/Holidays (kW)	14.9904	14.7945	14.8978	14.9670	15.2926	15.4857	15.7876	16.0450	16.0972	16.4061	16.4821	16.4988	16.4104	16.3018	16.0715	15.8892	15.6744	15.7381	15.8821	15.6582	15.4389	15.1461	14.9424	14.7518
NOV-ZU	Average	Weekday (kW)	15.1103	15.0920	15.1702	15.4480	15.6547	15.9831	16.7071	18.0958	19.6625	20.6232	20.9028	20.9474	20.7400	20.6144	21.0274	20.8422	20.4490	19.0617	18.1433	17.6039	17.1060	16.5801	16.2419	15.7870
	System	Peak Day (kW)	16.3874	16.2223	16.3625	16.7286	17.0090	17.1110	18.1488	19.4009	20.7140	21.2409	21.4888	21.3280	21.4599	21.5959	21.1107	20.8674	21.3714	19.8731	19.7476	19.3064	19.2709	19.1795	18.9629	18.2839
		Hour	_	7	က	4	2	9	7	∞	တ	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24

SECONDARY GENERAL SERVICE - November		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day — Average Weekday Average Weekend/Holidays
	25.00 20.00 15.00 5.00	0.00

TABLE E-4.12

											ΚM															
	Average	Weekend/Holidays (kW)	13.5483	13.4420	13.4944	13.7037	13.8907	14.1968	14.5041	14.9651	14.9661	14.8136	14.6508	14.5115	14.2757	14.1383	13.9815	13.7450	13.5183	13.5983	13.8925	13.8273	13.7303	13.7045	13.6023	13.3636
Dec-20	Average	Weekday (kW)	14.5412	14.5584	14.6667	14.8583	15.0765	15.4161	15.9421	17.3535	18.5517	18.9682	19.1561	19.1150	18.7161	18.2781	18.4083	18.0948	17.6538	16.8068	16.2163	15.9911	15.6841	15.2875	15.0207	14.7458
	System	Peak Day (kW)	15.4101	15.4516	15.4332	15.6882	15.9017	15.8732	16.2690	17.7043	19.2984	19.4615	19.5707	19.2356	19.0267	18.8554	18.4013	18.5099	18.0652	17.4531	16.9869	16.4997	16.0261	15.5373	15.2749	15.1352
		our	1	2	က	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SECONDARY GENERAL SERVICE - December		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average WeekdayAverage Weekend/Holidays
	25.00 20.00 15.00 5.00	00.00

TABLE E-5.1

		Į									/۷*1															
		kW)																								
	Average	Weekend/Holidays (kW)	3406.3181	3437.5011	3461.3765	3458.5481	3452.4322	3429.6842	3456.0075	3375.3107	3275.2444	3127.0051	3179.2134	3227.8796	3140.9772	3259.2900	3191.0024	3054.9147	3111.5450	3284.4192	3318.4709	3241.4048	3112.9522	3078.8661	3121.6180	3178.0140
Jan-20	Average	Weekday (kW)	3439.7366	3434.0839	3460.6889	3472.8525	3422.1796	3432.8470	3402.3605	3386.0214	3066.9415	2918.3329	3073.3775	3182.9957	3211.9167	3293.3880	3374.5483	3406.6991	3360.8749	3388.0233	3403.0257	3411.4127	3264.9975	3256.9130	3358.9208	3445.4316
	System	Peak Day (kW)	4455.7506	4403.2039	4447.0684	4334.9121	4263.1038	4284.7681	4140.4717	4153.5583	3682.9860	3704.0861	3950.2028	4178.7130	3891.0256	3909.4678	4165.7343	4449.0807	4359.8083	4330.8643	4306.9491	4231.2215	4080.2855	3948.3886	3896.7943	3944.5087
		Hour	1	2	က	4	2	9	7	∞	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

5000.00 4500.00 3500.00 3500.00 1500.00 1000.00 500.00
--

TABLE E-5.2

	Average	Weekend/Holidays (kW)	3364.6183	3418.7890	3438.0247	3345.5429	3406.7505	3432.9548	3461.8728	3342.4932	3149.3503	3040.6700	3104.6453	3186.6075	3308.5308	3393.6450	3347.0266	3280.8189	3190.3672	3240.9635	3290.1768	3299.5839	3043.2228	3000.9687	3205.2909	3304.9618
Leb-Zu	Average	Weekday (kW)	3967.6374	3993.2020	4008.4633	3948.6995	3961.5094	3994.3540	3962.1629	3840.5897	3402.1342	3178.5938	3083.1557	3292.5559	3485.5719	3663.0426	3693.1517	3730.4923	3741.7512	3805.4359	3810.5765	3862.5583	3634.1116	3605.8152	3821.6675	4010.5883
	System	Peak Day (kW)	3956.3062	4055.4645	4247.2177	3706.4009	4030.3604	3860.7447	3747.8198	3580.7649	3310.8539	3338.2149	3265.0803	3009.5758	3237.5400	3581.1688	3330.2803	3356.1160	3956.6016	3700.6350	3616.2072	3945.8602	3805.5351	3784.6810	3945.8602	4403.2790
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

5000.00 4500.00 3500.00 1500.00 1000.00 500.00

TABLE E-5.3

Mar-20

					4500.0	4000.0	3500.0	3000.0	2500.0	χ. V.	1 4	0.0061	1000.0	500.0	0.0										
Average	Weekend/Holidays (kW)	3797.8942	3886.4071	3513.3961	3899.5696	3837.1416	3745.2842	3674.2705	3631.2770	3320.3542	3213.0893	3310.5828	3570.7585	3698.2592	3752.1566	3840.0753	3765.6150	3743.6532	3744.6723	3785.4740	3825.0699	3600.4706	3478.6093	3530.0124	3685.7633
Average	Weekday (kW)	4070.3821	4113.5453	4060.1737	3950.6021	3977.8513	3996.0158	3918.9351	3861.5015	3499.3440	3311.1277	3402.5068	3494.1582	3676.9320	3789.2273	3817.4293	3800.7498	3835.4081	3859.4159	3881.3810	3890.0475	3692.1730	3630.7796	3757.2802	3944.5600
System	Peak Day (kW)	3416.4691	3931.9259	4210.2163	4258.0286	4089.9389	4084.2013	3412.2245	3296.7688	3345.6298	3058.6011	2835.5210	2945.5312	3221.1824	3178.2692	2909.3133	2876.2495	2842.9487	2912.9738	3140.1584	3755.2753	3581.1407	3559.7579	3736.3615	3927.2615
	Hour	_	2	က	4	2	9	7	∞	0	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

4500.00 4000.00 3500.00 3500.00 1500.00 1 2 3 4 5 6 7 8 9 10111213141516171819202122324 Hour Hour

TABLE E-5.4

		•																								
	Average	Weekend/Holidays (kW)	3657.7647	3724.4790	3749.6923	3681.3930	3639.3812	3616.7071	3449.0001	3496.3311	3400.7198	3377.9126	3341.4220	3478.7181	3587.9743	3622.0608	3534.8212	3606.6377	3691.2015	3716.8897	3806.6188	3715.3114	3532.3235	3374.5309	3376.5060	3581.2742
Apr-20	Average	Weekday (kW)	3996.9522	4007.9300	3939.3102	3880.5490	3887.1825	3832.0417	3803.0958	3724.6195	3392.4149	3239.4455	3307.2214	3471.9736	3571.8626	3603.4485	3672.6105	3720.2442	3671.6228	3793.7549	3791.9118	3758.7772	3594.0867	3556.3302	3659.4804	3859.4884
	System	Peak Day (kW)	4402.2557	4490.2791	4422.2407	3559.7345	3057.3407	3392.5803	3890.1320	3281.3791	2914.1037	2405.1125	2670.1690	3169.4226	3179.3507	2607.4353	3045.0293	3413.0059	3871.4846	4306.2290	4375.1621	3578.2220	3345.8626	4102.5614	4210.2764	4436.6478
		Hour	_	7	က	4	2	9	7	∞	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

5000.000 4500.00 - 4500.00 - 4500.00 - 3500.00 - 3000.00 - 1500.00 - 1500.00 - 1000.00 - 500.00 - 0.
--

Southwestern Public Service Company Hourly Load Profiles

TABLE E-5.5

		May-20	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	3803.9881	4009.8562	3783.9282
2	3808.4087	4021.0448	3737.5701
3	3713.5017	4008.5495	3712.6117
4	3801.7891	3890.6312	3689.8516
2	3888.1604	3996.1830	3657.0969
9	3964.2678	4028.3880	3689.0819
7	4069.0749	4010.7700	3648.8710
00	3970.5650	3840.1860	3619.0611
6	3308.1381	3360.0200	3356.0701
10	3124.0015	3245.8195	3158.8937
7	3118.8278	3412.9281	3252.8303
12	3029.9310	3563.1892	3403.0321
13	3168.2242	3581.6762	3594.0629
4	3381.8473	3628.7796	3645.4910
15	3867.5014	3729.1310	3625.7915
16	3370.2343	3768.6416	3583.0229
17	4054.4785	3876.4268	3550.6678
18	4256.5942	3934.7247	3535.7970
19	4329.5655	4047.6297	3601.5500
20	4191.8063	4014.0077	3578.3472
21	3814.8663	3709.9048	3404.7945
22	3929.1064	3644.3055	3299.3814
23	4156.5057	3802.6995	3459.4619
24	4359.9777	3996.7816	3585.0447

TABLE E-5.6

																				_						
1																										
	Average	Weekend/Holidays (kW)	3658.1935	3780.3921	3636.9208	3551.7182	3623.5454	3672.0392	3602.0823	3484.0265	3292.4975	3094.1356	3162.3916	3322.5385	3448.9534	3391.9053	3436.1469	3383.2508	3470.8915	3475.2502	3590.7683	3521.4123	3362.2364	3335.4412	3475.7923	3621.1996
Jun-20	Average	Weekday (kW)	4071.3377	4016.7471	3981.9549	3889.8026	3899.6302	3944.4021	3923.8005	3789.2141	3305.1815	3213.2332	3466.2792	3685.1706	3772.9006	3827.0092	3859.1951	3888.8118	3892.3080	3921.8195	3991.7703	3994.0383	3748.1586	3719.2927	3908.4417	4095.0516
	System	Peak Day (kW)	4150.8300	4258.7905	3846.2927	4018.1992	4237.5604	4244.7481	3931.2887	4524.6610	3716.4693	3755.9004	4033.0935	3916.4184	4150.1449	4565.9111	4386.1540	4480.5050	4381.1622	4571.3160	4577.3211	4357.1961	4328.5959	4401.0342	4379.9276	4708.5727
		Hour	_	2	က	4	2	9	7	80	6	10	1	12	13	4	15	16	17	18	19	20	21	22	23	24

5000.00 4000.00 3500.00 3500.00 100.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average Weekend/Holidays

TABLE E-5.7

					2000.00	4500.00	4000.00	+	3000.00	% 5200.00	2000.00	1500.00	1000.00	500.00	00:00										
Average	Weekend/Holidays (kW)	3661.9038	3726.3505	3505.6641	3651.6889	3810.9023	3752.4285	3677.9558	3478.8771	3185.2230	3204.5826	3422.7344	3772.0930	3762.2395	3674.8047	3832.5248	3768.3360	3791.9954	3667.1645	3653.2559	3567.2030	3347.5788	3250.1484	3464.2348	3607.4656
Average	Weekday (kW)	4136.6812	3954.9345	3947.4673	3968.3393	3993.3367	4045.8989	4086.8028	3947.1350	3433.3001	3320.9029	3435.6337	3546.7085	3701.5299	3716.8200	3708.2776	3697.7386	3681.7711	3708.3153	3784.2520	3844.0420	3717.0251	3708.0957	3847.6551	4021.5655
System	Peak Day (kW)	4276.5044	4447.6866	4322.8885	4155.5880	4334.9609	4493.9353	4490.9585	4129.1243	3881.9350	3962.0541	3970.6914	3955.1993	4116.3849	4049.9363	4148.4809	4523.4882	4457.0343	4188.4882	4219.0735	4457.8420	3942.3873	3830.3347	4013.3866	4388.9326

\$5000.00 4500.00 3500.00 3500.00 1000.00 1 2 3 4 5 6 7 8 9 101112131415161718192021223324 Hour Hour	
---	--

TABLE E-5.8

Aug-20

			LARGE GENERAL 69 KV - August		4500.00	4000:00	3500.00	3000:00	2500.00	W S	1,000.00	1500.00	1000.00	500.00	0.00	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays					
	Weekend/Holidays (kW)	3697.4094	3700.1224	3623.4961	3571.7400	3587.5304	3688.4543	3725.2323	3685.4102	3365.0202	3195.9368	3437.6447	3605.2323	3683.6638	3765.0484	3662.2977	3577.3222	3635.5572	3621.8440	3704.9215	3694.2251	3508.4652	
985	Weekday (kW)	3952.3476	3917.8645	3897.2949	3913.5517	3883.1855	3972.7083	3890.8723	3810.2182	3361.9510	3242.8565	3376.8006	3525.6250	3699.5985	3789.1041	3818.4363	3814.9846	3808.4639	3907.0150	4063.5847	3987.8820	3703.2882	

		LARGE GENERA		4500.00	4000.00	3500.00	3000:00	2500 00	W	5,000.00	1500.00	1000.00	500.00	0.00	12345678910		System Peak Day Aw							
Weekend/Holidays (kW)	3697.4094	3700.1224	3623.4961	3571.7400	3587.5304	3688.4543	3725.2323	3685.4102	3365.0202	3195.9368	3437.6447	3605.2323	3683.6638	3765.0484	3662.2977	3577.3222	3635.5572	3621.8440	3704.9215	3694.2251	3508.4652	3433.0434	3527.1582	3630.5777
Weekday (kW)	3952.3476	3917.8645	3897.2949	3913.5517	3883.1855	3972.7083	3890.8723	3810.2182	3361.9510	3242.8565	3376.8006	3525.6250	3699.5985	3789.1041	3818.4363	3814.9846	3808.4639	3907.0150	4063.5847	3987.8820	3703.2882	3700.2847	3801.7414	3933.8730
Peak Day (kW)	4202.3776	4183.7067	4049.4168	4263.7158	4074.7030	4265.4878	4092.1510	3870.8716	3190.4017	3145.7666	3576.1088	3719.0374	3874.5446	4038.4139	4112.0040	4079.7815	4101.0826	4148.6256	4073.1926	4112.6214	3985.5526	3912.6906	3850.3966	3962.6878
Ţ	-	7	က	4	2	9	7	∞	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-5.9

_																										
	Average	Weekend/Holidays (kW)	2654.9135	2579.5696	2548.6180	2483.4881	2443.4128	2410.3390	2422.5664	2437.4569	2426.9262	2387.8868	2385.3492	2413.9318	2472.9855	2470.3309	2442.7102	2511.4503	2557.9190	2589.7392	2555.4787	2544.7084	2503.0095	2504.2000	2514.8419	2558.1781
op-dec	Average	Weekday (kW)	2897.5625	2896.2561	2878.3690	2856.0286	2835.4210	2869.1877	2827.3105	2830.5250	2684.8209	2576.6841	2630.9060	2667.4902	2715.9099	2721.6694	2750.5304	2809.5881	2808.6089	2851.1438	2868.0575	2839.1727	2767.0192	2742.9839	2782.5874	2837.6056
	System	Peak Day (kW)	4174.6792	4133.6081	4237.6559	4243.6797	3773.3372	3545.3432	3464.6475	4070.7060	3545.8355	3304.7510	4164.8272	4485.1653	4099.8311	3718.8629	4101.6263	4314.0918	4450.3155	4530.6481	4536.6843	4584.8220	3619.6548	3798.0809	4204.0552	4408.6739
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

5000.00 4500.00 4000.00 3500.00 3000.00 1500.00 1000.00 500.00

TABLE E-5.10

	Average	Weekend/Holidays (kW)	2559.0070	2533.1501	2547.6674	2544.9218	2515.6888	2490.7339	2616.3675	2508.6459	2512.8949	2459.3702	2522.6341	2674.2200	2677.9852	2612.5097	2513.7959	2455.1238	2466.1003	2402.8148	2386.2731	2345.4906	2246.6229	2295.4594	2438.3832	2513.2987
Oct-20	Average	Weekday (kW)	2825.2905	2777.4960	2741.8348	2636.8551	2650.0710	2659.4010	2634.9091	2519.3387	2409.9255	2387.5390	2480.5032	2653.7559	2719.0505	2683.2300	2749.0943	2869.0563	2877.9352	2841.7367	2827.6537	2812.5651	2797.6077	2792.7092	2869.8807	2994.4251
	System	Peak Day (kW)	2162.6756	2252.0507	2327.8805	2203.1899	2260.3968	2345.5758	2230.4593	2191.0827	2230.7263	2186.3947	2112.4055	2158.4713	2217.2497	2432.4121	2553.7730	2659.5907	2979.1898	2492.8556	2385.6321	2378.6651	2483.5424	2479.4533	2452.5069	2376.6010
		Hour	_	2	က	4	2	9	7	∞	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-5.11

	Average	Weekend/Holidays (kW)	3515.6091	3593.8512	3610.8506	3601.3305	3568.5145	3568.8289	3577.5197	3466.0318	3251.5225	3030.5242	3111.9788	3287.1377	3330.8626	3335.6444	3418.4715	3599.9636	3521.8504	3655.8700	3560.3603	3487.6310	3293.1056	3212.6662	3187.4551	3341.1245
NOV-ZU	Average	Weekday (kW)	3744.9534	3805.3185	3753.0986	3695.2398	3760.8846	3903.9531	3757.9151	3595.4376	3305.4737	3083.1539	3189.5859	3347.9818	3465.4394	3567.2220	3649.7839	3701.5134	3764.4322	3826.8721	3859.5842	3899.0962	3693.4637	3524.3092	3634.9495	3747.0088
•	System	Peak Day (kW)	3530.3781	3434.2710	3390.4737	3330.8721	3250.6349	3299.3687	3370.3417	3133.2313	2871.4062	2752.1241	2905.5807	3067.4798	3276.7444	3775.3509	3931.4651	4085.0386	3947.5065	4126.1612	4063.8698	4225.5024	4270.9228	4042.3852	4072.0932	4122.9874
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

4500.00 4000.00 2500.00 1500.00 1000.00 500.00 500.00 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour Hour
--

TABLE E-5.12

_																										
	Average	Weekend/Holidays (kW)	3668.8439	3675.8176	3662.6771	3645.7451	3555.1611	3624.2885	3676.6410	3710.8316	3600.1433	3364.6548	3266.4826	3434.0141	3646.2647	3671.8084	3691.1829	3649.7025	3628.9513	3667.8046	3677.0720	3698.8419	3676.9155	3520.6951	3463.1639	3557.8691
Dec-20	Average	Weekday (kW)	4001.7270	3978.6223	3907.6541	3908.6113	3882.0348	3881.5747	3870.2783	3838.2973	3609.3310	3217.7761	3166.3762	3418.8237	3615.2350	3701.1634	3747.8151	3658.6472	3644.6553	3748.4310	3796.9878	3823.1444	3756.0657	3585.9976	3600.3405	3823.0733
	System	Peak Day (kW)	4494.5014	4404.5562	4036.7069	3851.4390	4213.1934	4044.9010	3652.0933	2932.8683	2439.1253	2386.8231	2380.3249	2262.7326	2288.1465	2401.4497	2313.9041	2324.0477	2630.2992	3012.7042	3444.2467	3274.5197	3618.0998	3824.2679	3779.5928	4208.5647
		Hour	1	2	က	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

\$000.00

TABLE E-6.1

System
Weekday (kW)
10399.1842
10394.2111
10391.8752
10377.4997
10366.8600
10353.1088
10346.0625
10367.6711
10315.2814
10261.3898
10254.8733
10295.5450
10316.8555
10364.3595
10406.3807
10423.7203
10432.6919
10448.4115
10464.2798
10471.7916
10450.4099
10449.6158
10433.4180
10414.9091

TABLE E-6.2

Feb-20

Average	Weekend/Holidays (kW)	10360.4279	10346.1912	10328.6595	10337.7322	10354.0448	10322.4450	10299.6556	10305.2563	10257.1873	10307.6796	10334.1812	10315.8408	10343.2014	10397.8670	10403.5576	10421.2642	10335.4528	10382.2149	10420.3889	10411.1247	10397.0397	10386.1433	10370.4277	10356.7126
Average	Weekday (kW)	10288.3339	10263.0835	10284.7005	10274.4060	10281.5195	10254.3507	10247.9151	10250.1013	10169.9902	10139.5036	10180.7396	10178.8215	10197.9650	10241.5694	10270.4513	10303.9947	10304.1412	10286.2116	10329.9625	10362.2867	10348.9385	10337.3024	10332.7795	10320.5990
System	Peak Day (kW)	10603.9404	10619.1479	10626.1763	10596.5588	10497.2318	10419.1012	10441.5079	10351.8230	9773.9329	9868.3481	10000.3205	10168.5281	10122.2009	10200.5972	10162.9711	10218.4469	10045.2447	10132.8919	10133.2102	10189.8118	10162.1527	10237.4910	10265.2859	10272.6651
	Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

System Peak Day Average Weekday Average Weekend/Holidays	10800.00 10400.00 10200.00 9800.00 9200.00 1 2 3 4 5 6 7 8 9 101112131415161718192021222324	oruary 122 23 24
		ekend/Holidays

TABLE E-6.3

		(M)																								
	Average	Weekend/Holidays (kW)	10320.7353	10312.4345	9202.2147	10296.7304	10283.9655	10261.0746	10179.2764	10082.0287	10066.6599	10118.0283	10195.9373	10223.1437	10236.7792	10297.8754	10330.5096	10347.2924	10370.5693	10374.1671	10357.4131	10361.9086	10355.0821	10341.9263	10358.9792	10337.2202
	Average	Weekday (kW)	10152.4054	10132.2410	10124.6447	10112.3803	10133.3300	10133.5598	10102.4295	10059.4670	10016.8421	9989.5628	10013.7185	10056.4845	10127.6641	10156.9210	10164.2117	10193.4052	10274.2675	10256.2960	10266.9847	10241.3550	10254.5156	10237.7653	10216.3531	10173.2945
•	System	Peak Day (kW)	10038.0287	10112.9735	10263.1557	10212.5694	10197.5324	10197.8550	10127.3717	10080.5104	10116.9227	10091.1416	9821.1616	10014.6778	10034.0423	10036.5947	9835.8639	9982.7061	9999.3860	9805.0610	10049.4868	10182.7040	10159.2323	10135.1158	10137.8267	10129.4869
•		Hour	_	2	က	4	2	9	7	ω	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-6.4

	Average	Weekend/Holidays (kW)	9575.1242	9572.3273	9553.8823	9534.2771	9514.8625	9498.0310	9474.7585	9456.1787	9443.3503	9423.5000	9441.3806	9445.2217	9446.9627	9482.5567	9563.6590	9607.0868	9627.1391	9692.6258	9701.0951	9699.8714	9679.7416	9666.4792	9615.1654	9552.5834
Apr-zu	Average	Weekday (kW)	9558.8366	9552.0966	9541.3208	9521.3569	9482.1498	9458.6471	9450.3240	9415.6316	9385.8358	9380.1843	9398.7075	9405.2845	9399.8236	9466.1861	9479.8672	9538.1985	9578.9991	9599.4998	9618.7238	9592.9800	9585.3051	9577.3910	9564.0939	9538.0565
	System	Peak Day (kW)	8999.9779	8979.7816	8972.9107	8939.7758	8900.0062	8907.0734	8840.9528	8718.1080	8700.7958	8718.4255	8876.2429	8756.6939	8957.1074	9565.2397	9531.5023	9562.6413	9452.3585	9498.1302	9648.1182	9611.2023	9691.3580	9656.0885	9634.4803	9622.3380
		Hour	_	2	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-6.5

	Average	Weekend/Holidays (kW)	8877.2997	8850.2338	8817.0000	8779.0068	8769.9341	8761.2105	8729.3496	8681.1878	8675.6331	8699.8337	8782.0193	8856.0513	8902.2055	8943.6190	8989.9657	9017.1730	9007.7553	9040.4089	9058.3936	9031.4389	8971.7622	8921.1015	8867.9565	8793.1229
May-zu	Average	Weekday (kW)	8803.4382	8785.4373	8747.2704	8707.5838	8684.7058	8641.2482	8642.3277	8637.5369	8650.8056	8700.9850	8733.0946	8785.4342	8825.2863	8879.2500	8935.5861	8989.2024	8997.4393	9009.2190	9020.8353	9020.0646	8973.3105	8968.5541	8921.7183	8873.8912
	System	Peak Day (kW)	8812.4028	8727.7807	8678.4863	8630.6032	8714.9625	8667.5488	8641.6476	8617.0011	8668.6221	8764.7606	8857.7779	8993.3176	9123.0533	9179.0390	9258.0160	9303.0564	9335.9278	9242.2736	9245.1985	9215.5309	9193.2065	9220.5355	9146.0301	8992.7069
		Hour	_	2	က	4	2	9	7	80	6	10	1	12	13	4	15	16	17	18	19	20	21	22	23	24

LARGE GENERAL TRANSMISSION - May		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ——— Average Weekday Average Weekend/Holidays
	9400.00 9200.00 9000.00 8600.00 8400.00	0500.00

TABLE E-6.6

	Average	Weekend/Holidays (kW)	9250.6191	9233.4406	9242.6152	9216.2965	9181.7994	9123.1536	9082.0174	9025.0865	9046.7762	9111.2161	9203.2040	9270.6028	9342.5352	9383.3379	9406.9989	9463.2953	9513.9782	9548.2431	9554.2839	9536.2638	9462.2409	9445.0654	9395.7091	9301.0958
0Z-IIDC	Average	Weekday (kW)	9197.6801	9185.3138	9140.7496	9116.0980	9100.0864	9061.1201	9016.3075	8976.5241	9015.8149	9049.0520	9128.8085	9222.6351	9273.5893	9317.9730	9346.1252	9395.2835	9454.0113	9485.4310	9439.3043	9432.4312	9388.7244	9354.8565	9320.7543	9293.5028
•	System	Peak Day (kW)	9261.2256	9223.8984	9216.5701	9175.5158	9137.3385	9147.0786	9087.7784	9033.8557	9076.4211	9156.2701	9228.4528	9275.4525	9248.9170	9425.1730	9477.1047	9514.8593	9482.8066	9489.6947	9442.4749	9530.8511	9401.8297	9386.6433	9367.9655	9352.6135
		Hour	_	2	က	4	2	9	7	∞	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

9600.00 9400.00 9300.00 9000.00 8900.00 8700.00 8600.00 1 2 3 4 5 6 7 8 9 10111213141516171819202122324 Hour Hour
--

TABLE E-6.7

	Average	Weekend/Holidays (kW)	9441.8708	9495.5194	9463.9953	9433.9400	9435.5350	9444.2074	9402.1470	9351.3029	9402.7500	9422.2566	9519.9449	9642.2066	9713.1976	9784.6152	9804.2357	9844.0852	9774.3135	9760.7340	9734.9147	9748.9239	9813.6949	9805.2062	9718.7753	9680.4766
04-150	Average	Weekday (kW)	9609.8361	9597.7634	9589.1029	9560.6689	9524.0406	9496.0382	9458.0017	9401.9815	9408.2884	9411.3978	9517.3041	9633.0006	9720.1065	9808.7349	9858.2935	9873.1641	9818.6930	9788.7161	9819.6973	9808.8889	9791.1902	9729.1327	9652.4974	9583.4273
	System	Peak Day (kW)	9059.1288	8995.2004	9383.5618	9518.7661	9434.9102	9407.5778	9368.9115	9363.0387	9432.3009	9589.7729	9709.5002	9747.0681	9730.6072	9719.7241	9764.2815	9798.4457	9742.5416	9469.3253	9755.0255	9717.2848	9715.3337	9855.7747	9639.2159	9374.1111
		our	1	2	8	4	5	9	7	œ	О	0	_	12	13	4	15	16	17	8	19	50	21	22	23	24

LARGE GENERAL TRANSMISSION - July		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———— Average Weekday ———— Average Weekend/Holidays
	98 00.00 - 96 00.00 - 94 00.00 - 94 00.00 - 90 00.00 - 90 00.00 - 88 00.00 - 86 00.00 - 90 00.00 -	84,000,000

TABLE E-6.8

	Average	Weekend/Holidays (kW)	10239.7829	10204.6704	10165.4150	10160.5169	10154.1583	10116.5364	10075.9180	10024.5143	10004.7898	10063.3096	10147.0111	10225.4432	10289.8097	10326.0149	10364.5504	10392.7777	10428.3220	10445.8713	10471.0457	10473.1429	10451.8732	10411.7754	10333.5672	10277.3716
Ang-zo	Average	Weekday (kW)	10102.8975	10086.7839	10063.8099	10033.8687	10013.1752	9971.7930	9922.0573	9884.5018	9878.0525	9918.4898	10038.3856	10125.5097	10216.2009	10236.8039	10261.7956	10335.7326	10349.8365	10391.1926	10362.0488	10327.6667	10270.1884	10259.3707	10226.9054	10180.6438
	System	Peak Day (kW)	10202.6791	10149.8407	10136.5100	10077.3241	9995.1774	9998.4314	10001.7773	9780.4046	9804.1956	9850.1590	10184.1507	10326.5043	10539.2675	10375.0877	10372.9072	10483.2358	10602.3877	10717.9896	10674.5424	10589.3802	10556.9836	10609.2647	10640.0359	10548.5491
		Hour	_	7	က	4	2	9	7	80	6	10	1	12	13	4	15	16	17	18	19	20	21	22	23	24

LARGE GENERAL TRANSMISSION - August		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day ———————————————————————————————————
	10800.00 10600.00 10200.00 10200.00 9800.00 9400.00	- 00.0026	

TABLE E-6.9

	Average	Weekend/Holidays (kW)	10141.0582	10133.6023	10122.3499	10113.1932	10075.2854	10069.6082	10035.6896	9974.8479	9944.6048	10011.3802	10104.4951	10192.6039	10273.6375	10308.0778	10399.1110	10410.2677	10422.7547	10408.1638	10351.3642	10327.4104	10296.9104	10246.3234	10211.8924	10172.8376
oz-dae	Average	Weekday (kW)	10049.3424	10029.1374	9999.5787	9963.6363	9951.5945	9926.3959	9926.3370	9917.1811	9871.5008	9928.2462	9983.1485	10046.5367	10124.9617	10175.4928	10191.5937	10175.7820	10209.3256	10218.1701	10149.5170	10128.9093	10141.0374	10081.2849	10081.7511	10070.1419
	System	Peak Day (kW)	10520.6544	10465.5149	10463.6115	10488.5144	10475.8958	10420.8077	10406.7476	10405.3633	10356.5606	10284.8878	10486.8081	10506.9382	10583.9438	10687.3047	10292.4400	9785.7808	10206.6991	10510.9806	10538.8186	10479.1913	10557.6205	10527.2217	10474.5752	10426.9352
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-6.10

	Average	Weekend/Holidays (kW)	10316.7592	10317.4603	10306.6839	10297.4779	10281.0784	10251.1727	10231.7346	10231.3621	10225.2880	10253.2588	10285.6413	10317.4488	10429.2645	10479.6279	10475.3765	10452.2559	10428.9581	10514.0481	10521.0230	10491.2653	10456.5756	10419.2444	10418.6219	10399.5820
Oct-20	Average	Weekday (kW)	10213.9891	10180.3216	10141.7718	10148.5799	10130.4297	10112.3961	10079.1096	10053.3653	9983.7483	9949.2457	9936.8237	10019.4629	10094.1729	10115.1807	10180.8246	10246.9887	10232.6893	10268.0759	10249.2884	10234.9926	10261.8104	10242.0140	10226.7590	10202.2466
	System	Peak Day (kW)	10445.9014	10423.0300	10425.2321	10417.0019	10390.4204	10327.1487	10189.3582	10161.4585	10153.3723	10206.9452	10278.6544	10188.2537	10326.0372	10393.1767	10481.4347	10494.6907	10553.1210	10610.7869	10606.5872	10568.9608	10600.0917	10583.0572	10548.0955	10538.4369
		Hour	1	2	က	4	2	9	7	∞	0	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

LARGE GENERAL TRANSMISSION - October		1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	—— System Peak Day ———— Average Weekday Average Weekend/Holidays
	10800.00 10600.00 10200.00 10200.00 10000.00 9800.00	9400.00	

TABLE E-6.11

	Average	Weekend/Holidays (kW)	10219.5857	10173.2663	10152.2856	10163.5627	10150.4952	10099.6936	10081.6036	10037.5619	10031.9953	10056.0311	10098.7776	10117.9706	10140.1594	10177.0573	10207.5490	10212.9586	10228.2407	10221.4667	10249.9705	10241.7308	10271.8078	10253.9232	10234.1641	10229.0548
Nov-20	Average	Weekday (kW)	10111.2759	10118.3194	10115.6604	10113.2839	10108.2377	10083.6688	10051.2751	10034.1676	10014.9814	10009.8800	10030.1228	10071.0331	10099.2010	10111.4311	10130.7818	10179.2412	10188.7123	10214.6619	10202.1585	10163.2460	10173.5312	10166.9547	10164.3624	10119.7026
	System	Peak Day (kW)	10259.3272	10234.8862	10210.0370	10173.7152	10166.0612	10194.7501	10109.3071	9913.5162	9824.8526	9835.7950	9717.6180	9879.5572	9905.4711	9923.5583	9975.1980	9966.1059	10042.5213	10069.9412	10066.0313	10040.0823	10016.6646	9966.8230	10089.6155	10078.5098
		Hour	1	7	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

10400.00 10200.00 10100.00 10100.00 9800.00 9500.00 9400.00 9400.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average Weekday Average Weekend/Holidays
--

TABLE E-6.12

	Average	Weekend/Holidays (kW)	10076.1108	10080.7311	10077.8461	10078.0654	10090.0566	10079.2765	10031.3012	10020.6163	9995.2923	9992.3854	9988.7134	10002.9190	10009.1149	9964.7470	10039.5804	9983.8261	9967.8876	10013.5613	10112.4758	10108.0695	10119.8654	10134.7409	10117.6422	10133.1743
Dec-20	Average	Weekday (kW)	10114.1107	10108.4940	10092.9276	10078.5324	10065.6357	10055.4348	9999.1328	9983.2951	9933.2068	9915.1743	9922.4530	9959.5216	9982.4290	9965.2660	9985.6774	9979.9157	9976.0557	10052.4815	10083.5195	10075.1164	10069.3366	10057.5784	10054.3876	10051.0748
	System	Peak Day (kW)	10164.8453	10297.1787	10311.6898	10230.5799	10210.7292	10267.0000	10273.8239	10292.0866	10252.0671	10216.4861	10133.0947	10183.0467	10233.8013	10287.9736	10349.7702	10288.1157	10411.9392	10486.5920	10517.4854	10465.0221	10297.5155	10313.8970	10368.9395	10378.0140
		Hour	1	2	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-7.1

	Average Weekend/Holidavs (kW)	1.2418	1.2064	1.1844	1.1785	1.1933	1.2234	1.2340	1.3082	1.4556	1.4359	1.4996	1.4222	1.3330	1.2337	1.1840	1.2006	1.1878	1.3052	1.4354	1.4104	1.4180	1.3811	1.3401	1.2658
Jan-20	Average Weekdav (kW)	1.0946	1.0679	1.0732	1.0844	1.1263	1.2194	1.2496	1.3756	1.3414	1.3111	1.2652	1.1492	1.1446	1.0618	1.0163	0.9730	1.0298	1.1694	1.3421	1.4127	1.4702	1.4559	1.3597	1.2139
	System Peak Day (kW)	1.0473	0.9627	1.1178	1.1037	1.1108	1.2186	1.3939	1.4359	1.4469	1.5383	1.5089	1.3780	1.4287	1.4760	1.3882	1.5432	1.7071	1.7790	1.9796	1.9693	1.6913	1.7511	1.6303	1.4006
	Hour	-	2	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	7	22	23	24

RESIDENTIAL REGULAR - January		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day —— Average Weekday Average Weekend/Holidays	
	2.50 2.00 1.00 0.50 0.50	00.00	J
	κM		

TABLE E-7.2

											W	H														
	Average	Weekend/Holidays (kW)	1.1695	1.1259	1.1501	1.1094	1.1101	1.1225	1.1883	1.2087	1.3102	1.3311	1.3187	1.2920	1.2379	1.1639	1.0586	0.9652	1.0101	1.0095	1.1137	1.2183	1.2381	1.2378	1.1256	1.1293
Fob. 20	Average	Weekday (kW)	1.2715	1.2602	1.2702	1.2735	1.3346	1.3775	1.4456	1.5073	1.5145	1.4575	1.4451	1.3338	1.2650	1.1991	1.1871	1.1858	1.2566	1.3737	1.4689	1.5597	1.5498	1.5611	1.4969	1.3705
	System	Peak Day (kW)	1.5155	1.4959	1.5732	1.5390	1.6439	1.6320	1.6988	1.6662	1.8881	1.7460	1.6807	1.5454	1.3236	1.2698	1.2518	1.1863	1.1233	1.0559	1.2968	1.5320	1.7417	1.6441	1.5602	1.3324
		lour	_	2	က	4	2	9	7	œ	6	10	1	12	13	4	15	16	17	18	19	20	21	22	23	24

2.00 1.80 1.60 1.100 1.00 1.00 1.00 1.00 1.00 1.

TABLE E-7.3

	Average	Weekend/Holidays (kW)	0.8063	0.7580	0.7824	0.7605	0.7846	0.8013	0.8684	0.9581	1.0325	1.1427	1.2586	1.1505	1.1254	1.1231	1.0608	1.1370	1.0675	1.0845	1.0738	1.1180	1.2628	1.1483	0.9857	0.8394
Mar-20	Average	Weekday (kW)	0.7107	0.6802	0.6650	0.6655	0.6972	0.7998	0.9164	0.9359	0.9763	0.9957	1.0089	0.9731	0.9766	0.9362	0.9024	0.8604	0.9355	1.0195	1.0781	1.1116	1.0902	1.0806	0.9788	0.7989
	System	Peak Day (kW)	0.9342	0.8856	0.9681	0.8950	0.9079	1.0767	1.1206	1.2404	1.1056	1.0824	0.9166	0.8398	0.8351	0.7092	0.6679	0.9190	0.7276	0.9167	1.3761	1.1676	1.1155	1.1957	0.9871	0.8876
		Hour	_	7	ო	4	2	9	7	∞	თ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-7.4

	RESIDENTIAL REGULAR - April								The state of the s				-	1 2 3 4 5 6 7 8 9 101112131415161718192021222324	Hour	—— System Peak Day ——— Average Weekday Average Weekend/Holidays	
			2.50 -	;	2.00		1.50 -		1.00 -		0.50		0.00				
								ΚM]
days (KVV)	45 39	27	13	02	24	96	29	92	37	30	59	*	*	38	68	27 23	50

	Average	Weekend/Holidays (kW)	0.7845	0.7309	0.6727	0.6843	0.6902	0.6724	0.7896	0.8659	0.8992	0.8487	0.8580	0.9229	0.9134	0.9834	1.0108	1.0489	1.0521	1.0463	1.1317	1.2160	1.2159	1.1192	1.0504	0.8781
Apr-20	Average	Weekday (kW)	0.7186	0.6837	0.6527	0.6527	0.6516	0.6956	0.6933	0.7685	0.7980	0.8412	0.8899	0.8811	0.9226	0.9629	0.9936	1.0587	1.1540	1.2432	1.2960	1.2045	1.1900	1.1579	0.9575	0.7944
	System	Peak Day (kW)	0.7975	0.6893	0.4922	0.4625	0.4455	0.4739	0.5010	0.5522	0.6156	0.5644	0.6887	0.7767	1.1018	1.2605	1.6758	1.7893	1.9394	2.0313	1.8560	1.7013	1.6460	1.4631	1.1966	0.7775
		Hour	_	7	က	4	2	9	7	∞	თ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-7.5

КМ

	Average	Weekend/Holidays (kW)	0.9514	0.8139	0.7192	0.7057	0.6516	0.6263	0.5990	0.6830	0.8269	0.9394	1.0954	1.1832	1.3866	1.4942	1.6632	1.8299	2.0170	2.0536	2.0080	1.9344	1.7781	1.5738	1.3592	1.0867
May-20	Average	Weekday (kW)	0.8862	0.7903	0.7050	0.6451	0.6306	0.6769	0.6573	0.7272	0.8041	0.9487	1.0518	1.0647	1.2304	1.3767	1.5399	1.6769	1.8791	2.0421	2.0347	2.0129	1.8058	1.6616	1.4443	1.1290
	System	Peak Day (kW)	1.1570	0.9745	0.8013	0.7381	0.7025	0.6690	0.6758	0.8337	0.8608	0.9860	1.2042	1.2209	1.4058	1.9702	2.3146	2.6107	2.6923	2.9497	2.8190	2.7291	2.4073	2.2440	1.9385	1.5240
		Hour	1	2	က	4	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Γ																										\neg
	Average	Weekend/Holidays (kW)	0.9514	0.8139	0.7192	0.7057	0.6516	0.6263	0.5990	0.6830	0.8269	0.9394	1.0954	1.1832	1.3866	1.4942	1.6632	1.8299	2.0170	2.0536	2.0080	1.9344	1.7781	1.5738	1.3592	1.0867
o= (p	Average	Weekday (kW)	0.8862	0.7903	0.7050	0.6451	0.6306	0.6769	0.6573	0.7272	0.8041	0.9487	1.0518	1.0647	1.2304	1.3767	1.5399	1.6769	1.8791	2.0421	2.0347	2.0129	1.8058	1.6616	1.4443	1.1290
	System	Peak Day (kW)	1.1570	0.9745	0.8013	0.7381	0.7025	0.6690	0.6758	0.8337	0.8608	0.9860	1.2042	1.2209	1.4058	1.9702	2.3146	2.6107	2.6923	2.9497	2.8190	2.7291	2.4073	2.2440	1.9385	1.5240
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	41	15	16	17	18	19	20	21	22	23	24

TABLE E-7.6

1											/\\1															
	Average	Weekend/Holidays (kW)	1.3883	1.1885	1.0869	0.9853	0.9298	0.8638	0.8206	0.8799	1.0575	1.2686	1.4879	1.6833	1.9766	2.2596	2.5038	2.7165	2.7233	2.8382	2.7934	2.6993	2.4876	2.3278	2.2419	1.8480
Jun-20	Average	Weekday (kW)	1.3569	1.1481	1.0177	0.9325	0.8956	0.8577	0.8243	0.9285	1.0613	1.1930	1.3910	1.6096	1.8381	2.0194	2.2280	2.4604	2.6206	2.7351	2.7771	2.6859	2.5139	2.2634	2.0381	1.6378
	System	Peak Day (kW)	1.6900	1.4188	1.2348	1.1118	1.1369	1.0123	1.1562	1.1006	1.2081	1.3885	1.6578	1.9105	2.3917	2.5799	2.7027	2.9833	3.2626	3.4743	3.6025	3.5790	3.2246	2.6802	2.5307	2.1052
		Hour	1	7	က	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

3.50 3.50 3.00 1.50 0.00 0.00
--

TABLE E-7.7

	RESIDENTIAL REGULAR - July	3.50 3.00 1.50 0.50 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day Average Weekday Average Weekend/Holida	
$\overline{\mathbf{x}}$				

	Average	Weekend/Holidays (kW)	1.8262	1.5871	1.3954	1.2389	1.1351	1.0377	1.0207	1.0058	1.1822	1.4193	1.6975	2.0042	2.3442	2.4915	2.7305	2.9078	2.9916	3.0397	3.0595	2.9078	2.7295	2.5429	2.3121	2.0608
Jul-20	Average	Weekday (kW)	1.6251	1.4272	1.3079	1.1901	1.0974	1.0233	0.9942	1.0637	1.1646	1.3490	1.5184	1.7190	2.0100	2.2198	2.4335	2.5664	2.7330	2.8664	2.9319	2.8482	2.6669	2.4353	2.2193	1.9071
	System	Peak Day (kW)	2.0404	1.9007	1.8407	1.5668	1.3828	1.2412	1.1721	1.2896	1.6479	1.7595	1.9091	2.1229	2.5238	2.9516	2.9353	3.3483	3.5743	3.6713	3.7025	3.6335	3.2011	2.9410	2.7102	2.3488
		Hour	_	2	က	4	2	9	7	∞	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-7.8

3.00 3.00 1.50 0.00 0.00

		Aug-zo	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	1.8935	1.5053	1.5271
2	1.6665	1.3244	1.3472
က	1.4160	1.1674	1.2070
4	1.3099	1.0554	1.0930
2	1.1358	0.9568	0.9748
9	1.1418	0.9389	0.9194
7	1.1080	0.9515	0.8960
80	1.3530	1.0085	0.8987
6	1.2535	1.0523	1.0743
10	1.5485	1.2047	1.2817
7	1.7909	1.3803	1.4842
12	2.0486	1.5263	1.7550
13	2.1821	1.8518	2.0405
14	2.6527	2.0800	2.3781
15	2.6915	2.3174	2.6000
16	2.8007	2.5049	2.7245
17	3.0688	2.6927	2.8259
18	3.2177	2.8471	2.8731
19	3.1929	2.8631	2.8291
20	3.0485	2.7458	2.6489
21	3.0661	2.4969	2.4940
22	2.9986	2.3331	2.2753
23	2.8727	2.1045	2.0551
24	2.4252	1.7749	1.7817

TABLE E-7.9

ΚM

	Average	Weekend/Holidays (kW)	1.0725	0.9766	0.8482	0.7726	0.7165	0.6794	0.6672	0.7109	0.8944	0.9849	1.1575	1.3125	1.5062	1.7052	1.9108	2.0759	2.2070	2.2742	2.1810	1.9591	1.7768	1.6619	1.4364	1.1926
op-dec	Average	Weekday (kW)	0.9100	0.8366	0.7504	0.7262	0.6888	0.7413	0.7984	0.8458	0.9225	0.9730	0.9694	1.0174	1.1460	1.2526	1.3902	1.5177	1.7298	1.8641	1.8767	1.7502	1.6644	1.5072	1.3119	1.0946
	System	Peak Day (kW)	1.1901	1.0014	0.9218	0.8649	0.8731	0.9078	0.9459	0.9151	0.8909	0.9412	1.1215	1.3392	1.5180	1.7384	2.0285	2.2581	2.3589	2.7254	2.4707	2.3047	1.9987	1.7115	1.5175	1.2767
		Hour	_	7	ო	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-7.10

Oct-20

					7.20 □		2.00		1.50	κM	1.00	<u>/</u>	0.50		0:00	_									
Average	Weekend/Holidays (kW)	0.9723	0.8955	0.8429	0.8165	0.7766	0.8101	0.8448	0.9109	1.0265	1.1207	1.1904	1.2572	1.3292	1.3286	1.4399	1.4955	1.5867	1.6210	1.6165	1.5202	1.5438	1.3653	1.1929	1.1190
Average	Weekday (kW)	1.0427	0.9794	0.9209	0.9067	0.9144	0.9645	1.0313	1.1111	1.1954	1.2175	1.1924	1.1870	1.2275	1.2070	1.2052	1.2997	1.4425	1.5804	1.6498	1.6252	1.6047	1.4611	1.2843	1.1463
System	Peak Day (kW)	0.8149	0.7086	0.6121	0.6076	0.5589	0.7506	0.7279	0.8367	0.9112	0.8614	0.7952	0.7671	0.9956	1.1432	1.2105	1.5983	1.8354	2.2279	2.3399	1.9543	1.6741	1.5142	1.1949	0.9779
	Hour	1	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

RESIDENTIAL REGULAR - October	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day Average Weekday Average Weekend/Holidays
	2.50 2.00 1.50 0.50 0.50	•]
	KM	

TABLE E-7.11

	Average	Weekend/Holidays (kW)	1.0714	1.0313	1.0233	1.0294	1.0378	1.0804	1.1631	1.2819	1.3669	1.4715	1.4641	1.4140	1.3760	1.2956	1.2897	1.2923	1.3104	1.3667	1.4550	1.4569	1.5071	1.4771	1.3083	1.2125
NOV-20	Average	Weekday (kW)	1.0043	0.9556	0.9811	0.9737	1.0078	1.1152	1.2442	1.2905	1.2696	1.2384	1.1679	1.1228	1.0951	1.0533	1.0331	1.0271	1.0737	1.2252	1.3626	1.4418	1.3958	1.2918	1.1688	1.0687
	System	Peak Day (kW)	1.6404	1.5545	1.5133	1.6201	1.6466	1.7023	1.8989	1.9595	2.0005	1.7027	1.6972	1.6585	1.7170	1.6311	1.3983	1.3618	1.1705	1.6737	1.9294	2.1860	2.0519	1.8767	1.6753	1.6246
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

RESIDENTIAL REGULAR - November		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day Average Weekday Average Weekend/Holidays
	2.50 2.00 1.50 0.50	0.00	'
	ΚM		

TABLE E-7.12

	Average	Weekend/Holidays (kW)	1.3243	1.2985	1.3031	1.3852	1.4805	1.4338	1.4946	1.6146	1.6358	1.5936	1.5281	1.5085	1.4974	1.4162	1.2915	1.2464	1.2630	1.3829	1.5125	1.6730	1.6442	1.5963	1.4612	1.3165
Dec-20	Average	Weekday (kW)	1.3585	1.3255	1.3184	1.3167	1.3934	1.4480	1.5615	1.6248	1.5507	1.5332	1.4708	1.3708	1.3226	1.2271	1.1701	1.1924	1.1984	1.4363	1.5948	1.7073	1.7566	1.6989	1.6229	1.4457
	System	Peak Day (kW)	1.1961	1.2335	1.3323	1.6542	1.5343	1.3875	1.5151	1.6108	1.3914	1.5610	1.5650	1.7186	1.9250	1.5565	1.8733	1.7754	1.9785	1.9159	2.0232	2.0953	2.0721	2.3325	1.9433	1.6972
		Hour	1	2	က	4	2	9	7	8	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

RESIDENTIAL REGULAR - December		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———————————————————————————————————
	2.50 2.00 1.50 1.00 0.50	00.00

TABLE E-8.1

	Average	VV eekend/Holidays (KVV)	2.3306	2.3596	2.4024	2.5216	2.6217	2.6397	2.8073	3.0754	3.2093	3.0492	2.7970	2.5038	2.2474	1.9693	1.7490	1.5735	1.6212	1.7481	1.9644	2.1134	2.2774	2.3698	2.3173	2.2725
Jan-20	Average	Weekday (KW)	2.2429	2.2315	2.2676	2.3377	2.3965	2.5034	2.7454	3.0842	3.2011	2.8749	2.6685	2.3929	2.1579	1.9614	1.6980	1.6125	1.6279	1.8187	2.1562	2.3392	2.4980	2.6191	2.5471	2.3925
	System	Peak Day (KW)	2.1362	2.2006	2.1233	2.0500	2.1556	2.2386	2.4618	2.8297	3.0014	3.0226	3.0976	3.0780	3.3322	3.3208	3.0604	3.1647	3.2408	3.7336	4.0497	3.9241	3.8015	4.1948	3.7573	3.5368
	:	Hour,	_	7	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	71	22	23	24

RESIDENTIAL HEAT - January	4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———— Average Weekday Average Weekend/Holidays
	KW 250 - 250	

TABLE E-8.2

4.50 4.00 3.50 7.00 1.50 0.50 0.00 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Hour Hour

	Average	Weekend/Holidays (kW)	2.0225	2.0844	2.0552	2.1327	2.1563	2.2559	2.4090	2.5211	2.6593	2.5792	2.3230	2.0616	1.8203	1.6662	1.5218	1.4428	1.3645	1.4856	1.5231	1.6766	1.7086	1.7691	1.6936	1.7048
Feb-20	Average	Weekday (kW)	2.3415	2.3296	2.3053	2.3786	2.5037	2.6304	2.8779	3.2878	3.3982	3.1458	2.8537	2.6499	2.4700	2.2370	2.0649	1.9777	1.9228	2.0871	2.2684	2.5414	2.6574	2.7309	2.6023	2.4939
	System	Peak Day (kW)	2.9748	3.0645	3.0298	3.0544	3.3586	3.6516	3.9794	4.2519	4.2233	3.6238	2.8951	2.4522	2.3356	2.3256	1.9396	1.6411	1.5216	1.6557	2.0663	2.3498	2.7011	2.7137	2.8987	2.8971
		Hour	1	2	ო	4	2	9	7	∞	<u></u>	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

Average	Weekend/Holidays (kW)	2.0225	2.0844	2.0552	2.1327	2.1563	2.2559	2.4090	2.5211	2.6593	2.5792	2.3230	2.0616	1.8203	1.6662	1.5218	1.4428	1.3645	1.4856	1.5231	1.6766	1.7086	1.7691	1.6936	1.7048
Average	Weekday (kW)	2.3415	2.3296	2.3053	2.3786	2.5037	2.6304	2.8779	3.2878	3.3982	3.1458	2.8537	2.6499	2.4700	2.2370	2.0649	1.9777	1.9228	2.0871	2.2684	2.5414	2.6574	2.7309	2.6023	2.4939
Svetem	Peak Day (kW)	2.9748	3.0645	3.0298	3.0544	3.3586	3.6516	3.9794	4.2519	4.2233	3.6238	2.8951	2.4522	2.3356	2.3256	1.9396	1.6411	1.5216	1.6557	2.0663	2.3498	2.7011	2.7137	2.8987	2.8971
	Hour	1	7	က	4	2	9	7	80	o	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-8.3

3.50 2.50 1.50 0.00 0.50 0.00 1 2 3 4 5 6 7 8 9 10111213141516171819202122324 Hour Notem Peak Day Average Weekend/Holidays
--

	Average	Weekend/Holidays (kW)	1.3849	1.4467	1.4593	1.3702	1.4204	1.4490	1.5286	1.6818	1.9895	2.2480	2.2518	2.2799	2.0722	1.9286	1.8594	1.8059	1.8199	1.8216	1.7981	1.8993	1.9430	1.8143	1.7183	1.5714
Mar-20	Average	Weekday (kW)	1.3303	1.2149	1.1474	1.1542	1.2194	1.2693	1.4348	1.7586	1.9295	1.7717	1.6538	1.6394	1.6527	1.5321	1.4741	1.4531	1.5572	1.5967	1.6942	1.8592	1.9251	1.9058	1.6763	1.4705
	System	Peak Day (kW)	1.8931	1.9881	1.8787	2.0550	2.1820	2.0164	2.4053	3.1176	2.5095	2.4625	1.7915	2.1075	2.1333	1.7745	1.4603	1.3991	1.3773	1.3319	1.2894	1.7581	1.7875	1.7263	1.8855	1.5322
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-8.4

		RESIDENTIAL HEAT - April		3.50	3.00		2.50	2.00		ne:1	1.00		Oc.o.	-	1 2 3 4 5 6 7 8 9 101112131415161718192021222324	Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays				
Weekend/Holidays (kW)	1.2031	1.0878	1.0512	1.0214	1.0312	1.0472	1.0371	1.1595	1.3944	1.5823	1.7705	1.7927	1.7745	1.7171	1.4914	1.5334	1.5712	1.6033	1.5644	1.6269	
/eekday (kW)	1.2053	1.1064	1.0370	0.9682	0.9146	0.9587	1.0731	1.1986	1.4113	1.4857	1.5278	1.5988	1.5734	1.5743	1.6545	1.6780	1.7198	1.8968	1.8908	1.8349	

ı		o= .d\ .	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
	1.4106	1.2053	1.2031
	1.2880	1.1064	1.0878
	1.0167	1.0370	1.0512
	0.8625	0.9682	1.0214
	0.7715	0.9146	1.0312
	0.8054	0.9587	1.0472
	0.7957	1.0731	1.0371
∞	0.8875	1.1986	1.1595
	0.9303	1.4113	1.3944
0	1.2830	1.4857	1.5823
_	1.2497	1.5278	1.7705
2	1.5047	1.5988	1.7927
က	1.7058	1.5734	1.7745
4	1.8065	1.5743	1.7171
2	2.3166	1.6545	1.4914
9	2.4863	1.6780	1.5334
_	2.6466	1.7198	1.5712
8	2.7805	1.8968	1.6033
19	2.7352	1.8908	1.5644
20	3.0194	1.8349	1.6269
21	2.8282	1.8000	1.6882
22	2.5420	1.7967	1.4888
23	2.1831	1.6469	1.4103
24	1.8291	1.4771	1.2509

TABLE E-8.5

KW 0 0 1 1 10 10 10 10 10	RESIDENTIAL HEAT - May	3.50 2.50 1.50 1.00 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day Average Weekday Average Weekend/Holidays
---------------------------	------------------------	--	--

	Average	Weekend/Holidays (kW	1.5399	1.3503	1.1760	0.9766	0.8848	0.8311	0.8119	0.8722	0.9906	1.1928	1.4342	1.6805	1.9354	2.1854	2.4241	2.4940	2.6057	2.7135	2.7079	2.6737	2.4381	2.2923	2.1075	1.7582
May-20	Average	Weekday (kW)	1.4729	1.3049	1.1010	0.9378	0.8858	0.8369	0.8664	0.9705	1.0818	1.1555	1.3387	1.5272	1.8180	2.0948	2.2592	2.5144	2.6932	2.7985	2.8126	2.7266	2.4812	2.2984	2.1304	1.8282
	System	Peak Day (kW)	1.6913	1.4212	1.1617	0.9582	0.9695	0.8454	0.8875	0.9953	1.1824	1.2468	1.5591	1.8934	2.2986	2.9991	3.0915	3.4014	3.5715	3.7651	3.7341	3.6852	3.3081	2.9555	2.6701	2.3816
		Hour	1	7	ო	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-8.6

											Μ×															
	Average	Weekend/Holidays (kW)	1.8999	1.7645	1.5880	1.4031	1.2729	1.1655	1.0402	1.1296	1.2907	1.5402	1.7592	2.2242	2.5944	2.7785	3.0143	3.2055	3.3328	3.3763	3.4192	3.3440	3.0216	2.6981	2.5181	2.2003
Jun-20	Average	Weekday (kW) Week	1.8427	1.6430	1.4512	1.2543	1.1518	1.0879	1.1035	1.1388	1.2879	1.4405	1.6511	1.9185	2.3290	2.6164	2.8632	3.0353	3.1935	3.2926	3.3145	3.2005	2.9364	2.7075	2.4695	2.1859
	System	Peak Day (kW)	1.7253	1.4924	1.4179	1.3436	1.3022	1.1403	1.1629	1.1067	1.5194	1.5656	1.8070	2.1885	2.6405	2.6903	2.8420	3.2609	3.4269	3.5342	3.5994	3.6685	3.2613	2.9669	2.7474	2.4986
		Hour	_	7	က	4	2	9	7	œ	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

RESIDENTIAL HEAT - June	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average WeekdayAverage Weekend/Holidays
	4.00 3.50 3.00 2.50 1.50 1.00 0.00

TABLE E-8.7

))
Hour	

	Average	Weekend/Holidays (kW)	2.1735	1.9397	1.7589	1.5931	1.4632	1.3159	1.3060	1.2876	1.4574	1.7213	2.0529	2.4201	2.8357	3.1457	3.4358	3.5986	3.6858	3.7388	3.6756	3.5484	3.3015	2.9467	2.6635	2.4834
Jul-20	Average	Weekday (kW)	2.1336	1.8997	1.7254	1.5599	1.4257	1.3131	1.2774	1.3251	1.5412	1.6632	1.8554	2.1760	2.5717	3.0169	3.2304	3.4468	3.6089	3.6480	3.6554	3.5311	3.2921	3.0572	2.7732	2.4960
	System	Peak Day (kW)	2.7675	2.4473	2.2782	2.0063	1.7479	1.5230	1.4684	1.4783	1.7428	1.9395	2.2749	3.0377	3.4743	3.8088	3.9886	4.1523	4.3150	4.3869	4.3422	4.2552	3.9029	3.5034	3.2954	2.8220
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-8.8

50 4.00 3.50 1.50 1.50 0.00 1.23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Hour

		Aug-zu	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	2.2365	1.9129	1.9995
7	2.1479	1.6871	1.7826
က	1.9864	1.4885	1.5805
4	1.5721	1.3459	1.4102
2	1.4240	1.2192	1.3086
9	1.3545	1.1575	1.2151
7	1.2571	1.1204	1.1193
80	1.3522	1.1307	1.0923
6	1.4783	1.2800	1.1866
10	1.6341	1.3271	1.4293
11	2.0657	1.4840	1.6774
12	2.4583	1.8329	2.0537
13	2.7762	2.2123	2.4886
14	3.2019	2.6315	2.8732
15	3.4301	2.9174	3.2502
16	3.7021	3.1169	3.4242
17	3.8226	3.2444	3.4579
18	3.8210	3.3579	3.5136
19	3.7312	3.4117	3.4417
20	3.6073	3.3093	3.3611
21	3.3237	3.0722	3.1040
22	3.2156	2.8639	2.8391
23	2.9282	2.5733	2.5306
24	2.6821	2.2370	2.2249

TABLE E-8.9

3.50 2.50 1.50 0.50 0.50 0.50 2.50 0.50	HEAT - September 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Average Weekday Average Weekend/Holidays
--	--

	Average	Weekend/Holidays (kW)	1.4298	1.2591	1.0958	0.9758	0.9107	0.8622	0.8293	0.8771	0.9760	1.1369	1.3605	1.5054	1.7930	2.0996	2.3652	2.6030	2.7280	2.7845	2.7179	2.5435	2.3637	2.1635	1.9661	1.6647
Sep-20	Average	Weekday (kW)	1.2506	1.0950	0.9635	0.8924	0.8468	0.8550	0.9098	0.9781	1.0952	1.1212	1.1614	1.3041	1.5468	1.7430	1.9214	2.0673	2.1714	2.2824	2.2805	2.1933	2.0688	1.9310	1.7660	1.4990
	System	Peak Day (kW)	1.5573	1.3867	1.2371	1.2329	1.1832	1.1335	1.1193	1.1960	1.2932	1.2733	1.4915	1.8573	2.1408	2.4277	2.7167	2.8966	3.0942	3.1454	2.8548	2.6732	2.4343	2.2450	2.1557	1.7285
		Hour	_	2	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

Average	Weekend/Holidays (kW)	1.4298	1.2591	1.0958	0.9758	0.9107	0.8622	0.8293	0.8771	0.9760	1.1369	1.3605	1.5054	1.7930	2.0996	2.3652	2.6030	2.7280	2.7845	2.7179	2.5435	2.3637	2.1635	1.9661	1.6647
Average	Weekday (kW)	1.2506	1.0950	0.9635	0.8924	0.8468	0.8550	0.9098	0.9781	1.0952	1.1212	1.1614	1.3041	1.5468	1.7430	1.9214	2.0673	2.1714	2.2824	2.2805	2.1933	2.0688	1.9310	1.7660	1.4990
System	Peak Day (kW)	1.5573	1.3867	1.2371	1.2329	1.1832	1.1335	1.1193	1.1960	1.2932	1.2733	1.4915	1.8573	2.1408	2.4277	2.7167	2.8966	3.0942	3.1454	2.8548	2.6732	2.4343	2.2450	2.1557	1.7285
	Hour	_	2	က	4	2	9	7	∞	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-8.10

												<u>- </u>														
	Average	Weekend/Holidays (kW)	1.1275	1.0552	0.9704	0.8997	0.8814	0.8666	0.9003	1.0155	1.1262	1.3101	1.3282	1.4652	1.4575	1.4975	1.5847	1.7505	1.8217	1.8947	1.9207	1.8757	1.7937	1.5964	1.4144	1.2697
Oct-20	Average	Weekday (kW)	1.3868	1.2656	1.1355	1.0979	1.1215	1.1535	1.2033	1.3621	1.5196	1.4675	1.5020	1.5048	1.5228	1.5396	1.6458	1.7990	1.9538	2.0380	2.0720	2.0254	1.9681	1.9073	1.8064	1.5774
	System	Peak Day (kW)	0.9770	1.0043	0.8325	0.6980	0.7389	0.7437	0.8297	0.8055	0.9504	1.0139	0.9285	1.1075	1.3244	1.3383	1.5913	1.9393	2.3024	2.2672	2.2104	2.0906	1.9748	1.9377	1.7450	1.4844
		Hour	_	7	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	7	22	23	24

2.50 2.50 1.50 0.50 0.00 0.00

TABLE E-8.11

	Average	Weekend/Holidays (kW)	1.2266	1.2455	1.2007	1.2059	1.2501	1.3480	1.4289	1.5815	1.7002	1.7079	1.6769	1.5978	1.5794	1.5338	1.5228	1.4775	1.4299	1.5141	1.6417	1.5717	1.5949	1.5947	1.4804	1.3923
Nov-20	Average	Weekday (kW)	1.2143	1.1778	1.1410	1.1622	1.2570	1.3229	1.5118	1.7828	1.8138	1.7117	1.4956	1.3887	1.3411	1.3188	1.2816	1.2561	1.2689	1.3504	1.5730	1.6016	1.5682	1.5025	1.4568	1.3110
	System	Peak Day (kW)	2.4100	2.2684	2.2056	2.2524	2.4662	2.5793	2.9244	3.1848	3.5377	2.8845	2.5378	2.1251	1.9287	1.9307	1.7366	1.4951	1.4505	1.7732	2.1733	2.5227	2.6448	2.7341	2.3443	2.2305
		Hour	1	2	က	4	2	9	7	œ	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

RESIDENTIAL HEAT - November	1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Hour	System Peak Day ———— Average Weekday Average Weekend/Holidays
	KW 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

TABLE E-8.12

	RESIDENTIAL HEAT - December	3.00 2.50 1.50 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour Hour
		KM
>	•	

	Average	Weekend/Holidays (kW)	2.0990	2.1151	2.1339	2.1550	2.2660	2.3982	2.5489	2.6708	2.8070	2.6584	2.4201	2.2944	2.1058	1.9735	1.8135	1.7073	1.6999	1.8068	2.0082	2.1710	2.2308	2.3142	2.3257	2.1900
Dec-50	Average	Weekday (kW)	2.1381	2.1522	2.1689	2.2317	2.3224	2.4690	2.6519	3.0597	3.1246	2.7444	2.4705	2.1755	2.0185	1.8596	1.6987	1.5920	1.5758	1.7610	2.1247	2.2910	2.4074	2.4263	2.3980	2.2719
	System	Peak Day (kW)	1.8374	1.8543	1.9590	2.0452	2.1678	2.2311	2.4135	2.7999	2.9670	2.5912	2.6160	2.5001	2.5251	2.5361	2.6255	2.4954	2.3740	2.3652	2.8049	3.0323	3.1033	3.0770	2.9390	2.8979
		Hour	_	7	က	4	2	9	7	∞	o	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-9.1

	Average	Weekend/Holidays (kW)	0.9684	0.9641	0.9675	0.9833	0.9918	1.0075	1.0376	1.0696	1.0113	0.9927	1.0314	1.0342	1.0124	0.9966	0.9872	0.9710	0.9600	0.9750	1.0599	1.0576	1.0169	0.9927	0.9784	0.9645
Jan-20	Average	Weekday (kW)	0.9994	0.9988	1.0068	1.0255	1.0412	1.0563	1.1363	1.2186	1.3207	1.3551	1.3889	1.3895	1.2913	1.3008	1.3040	1.2840	1.2709	1.1986	1.1771	1.1641	1.1388	1.0842	1.0428	1.0250
	System	Peak Day (kW)	0.9567	0.9662	0.9731	0.9846	0.9920	1.0149	1.0752	1.1919	1.3191	1.3809	1.4741	1.4929	1.4169	1.4219	1.4969	1.4692	1.4496	1.4196	1.2677	1.2936	1.2125	1.1747	1.1186	1.0593
		Hour	_	7	က	4	2	9	7	∞	0	10	1	12	13	41	15	16	17	18	19	20	21	22	23	24

SMALL GENERAL SERVICE - January		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day —— Average Weekday Average Weekend/Holidays
	KW 1.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00	

TABLE E-9.2

	Average	Weekend/Holidays (kW)	0.9113	0.9060	0.8937	0.9013	0.9095	0.9102	0.9397	0.9313	0.9257	0.9394	0.9876	0.9629	0.9091	0.9173	0.9152	0.9135	0.9151	0.9037	0.9384	0.9658	0.9433	0.9133	0.8988	0.8833
Feb-20	Average	Weekday (kW)	0.9855	0.9827	0.9818	0.9958	1.0105	1.0261	1.0792	1.1469	1.2359	1.3066	1.3436	1.3407	1.2588	1.2676	1.2691	1.2590	1.2147	1.1194	1.0985	1.1191	1.1129	1.0739	1.0365	1.0095
	System	Peak Day (kW)	1.1291	1.1197	1.1052	1.1225	1.1503	1.1429	1.2139	1.2428	1.3119	1.3990	1.4525	1.3394	1.2956	1.3021	1.2579	1.2165	1.2054	1.0443	0.9830	1.0899	1.1724	1.0924	1.0395	1.0071
		Hour	1	2	8	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-9.3

SMALL GENERAL SERVICE - March	1.20 1.00 0.80 0.60 0.40	0.00	System Peak Day Average Weekday Average Weekend/Holidays
4	н. 1.20 1.20 1.00 0.80 0.80 0.80 0.40	0.00	'

		Mar-20	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	0.8831	0.9022	0.9016
2	0.8754	0.8927	0.8960
က	0.8584	0.8874	0.9013
4	0.8723	0.8877	0.8920
2	0.8708	0.8893	0.8992
9	0.8812	0.9023	0.9058
7	0.9665	0.9571	0.9202
∞	0.9956	1.0146	0.9254
6	1.1646	1.0759	0.9040
10	1.1490	1.0710	0.8741
7	1.2294	1.1110	0.8629
12	1.2372	1.1088	0.8663
13	1.0803	1.0571	0.8887
14	1.0865	1.0533	0.8716
15	1.1131	1.0615	0.8621
16	1.1438	1.0639	0.8507
17	1.0725	1.0187	0.8372
18	0.9917	0.9372	0.8352
19	0.9491	0.8602	0.8280
20	1.0028	0.8870	0.8696
21	0.9421	0.9485	0.9181
22	0.9036	0.9470	0.9275
23	0.8973	0.9287	0.9185
24	0.8763	0.9067	0.9062

TABLE E-9.4

SMALL GENERAL SERVICE - April 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average Weekday Average Weekend/Holidays
1.20 1.00 0.80 0.40 0.60 0.00

Average Average (W) Weekday (kW) 0.6994 0.6868 0.6896 0.6898 0.6942 0.7345 0.7343 0.7343 0.7343 0.7343 0.7343 0.7343 0.7361 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8542 0.8530 0.7761 0.7255 0.7761 0.7255 0.7761 0.7300			Apr-20	•
Peak Day (kW) Weekday (kW) 0.6913 0.6994 0.6839 0.6868 0.6844 0.6868 0.6755 0.6882 0.6779 0.6898 0.6627 0.6898 0.7180 0.7343 0.7253 0.7806 0.7323 0.8140 0.7323 0.8140 0.7323 0.8289 0.8899 0.8289 0.9408 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.7747 0.7755		System	Average	Average
0.6913 0.6994 0.6839 0.6868 0.6644 0.6896 0.6755 0.6898 0.6627 0.6898 0.6627 0.6942 0.7180 0.7345 0.7253 0.7345 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.9831 0.8542 1.0159 0.8542 1.0159 0.8542 1.0159 0.8542 0.9408 0.8542 0.9408 0.8390 0.9408 0.8289 0.9408 0.8289 0.9408 0.8299 0.9408 0.8390 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8032 0.7309 0.7747 0.7155	Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
0.6839 0.6868 0.6644 0.6896 0.6779 0.6882 0.6779 0.6898 0.6627 0.6894 0.7180 0.7345 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8542 1.0159 0.8674 0.9720 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8032 0.7309 0.7808 0.7300	_	0.6913	0.6994	0.6926
0.6644 0.6896 0.6755 0.6882 0.6779 0.6898 0.6627 0.6898 0.7180 0.7345 0.7253 0.7345 0.7253 0.7340 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9408 0.8289 0.9720 0.8674 0.9720 0.8674 0.9720 0.8674 0.9720 0.8032 0.7761 0.8032 0.7309 0.7747 0.7155	2	0.6839	0.6868	0.6807
0.6755 0.6882 0.6779 0.6898 0.6627 0.6942 0.7180 0.7345 0.7253 0.7343 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8289 0.8889 0.8289 0.9408 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8032 0.7309 0.7747 0.7155	က	0.6644	0.6896	0.6810
0.6779 0.6898 0.6627 0.6942 0.7180 0.7345 0.6864 0.7343 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.9408 0.8289 0.9408 0.8542 1.0159 0.8542 1.0159 0.8542 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8032 0.7300 0.7747 0.7155	4	0.6755	0.6882	0.6895
0.6627 0.6942 0.7180 0.7345 0.6864 0.7343 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8674 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8032 0.7031 0.7808 0.7300 0.7747 0.7155	2	0.6779	0.6898	0.6825
0.7180 0.7345 0.6864 0.7343 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.9408 0.8590 0.9831 0.8674 0.9720 0.8674 0.9720 0.8435 0.9214 0.7761 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7155	9	0.6627	0.6942	0.6848
0.6864 0.7343 0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8289 0.9408 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	7	0.7180	0.7345	0.6824
0.7253 0.7806 0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	∞	0.6864	0.7343	0.6584
0.7323 0.8140 0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8674 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7747 0.7155	6	0.7253	0.7806	0.6168
0.7731 0.8419 0.8504 0.8508 0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7747 0.7155	10	0.7323	0.8140	0.6133
0.8504 0.8508 0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7761 0.8099 0.6730 0.8017 0.7031 0.7808 0.7309 0.7747 0.7155	7	0.7731	0.8419	0.6221
0.8889 0.8289 0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	12	0.8504	0.8508	0.6311
0.9408 0.8390 0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7300 0.7747 0.7155	13	0.8889	0.8289	0.6267
0.9831 0.8542 1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	14	0.9408	0.8390	0.6161
1.0159 0.8674 0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	15	0.9831	0.8542	0.6243
0.9720 0.8435 0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7747 0.7155	16	1.0159	0.8674	0.6293
0.9214 0.7761 0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	17	0.9720	0.8435	0.6265
0.8861 0.7255 0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	18	0.9214	0.7761	0.6273
0.8099 0.6730 0.8017 0.7031 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	19	0.8861	0.7255	0.6377
0.8032 0.7331 0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	20	0.8099	0.6730	0.6110
0.8032 0.7309 0.7808 0.7300 0.7747 0.7155	71	0.8017	0.7031	0.6564
0.7808 0.7300 0.7747 0.7155	22	0.8032	0.7309	0.6964
0.7747 0.7155	23	0.7808	0.7300	0.7004
	24	0.7747	0.7155	0.6923

TABLE E-9.5

SMALL GENERAL SERVICE - May	2.00 1.80 1.40 1.20 0.80 0.60 0.40	0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	System Peak Day ———— Average Weekday Average Weekend/Holidays
	KW 6.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	

0	Average	Weekend/Holidays (kW)	0.9881	0.9615	0.9422	0.9271	0.9218	0.9216	0.8966	0.8153	0.7922	0.8149	0.8599	0.9240	0.9622	1.0019	1.0355	1.0787	1.0907	1.0866	1.1061	1.0342	1.0333	1.0739	1.0600	1.0145
May-20	Average	Weekday (kW)	0.9808	0.9605	0.9512	0.9415	0.9397	0.9429	0.9618	0.9120	0.9642	1.0496	1.1418	1.2198	1.2269	1.3067	1.3579	1.3961	1.3897	1.3049	1.2014	1.1163	1.0733	1.0983	1.0605	1.0124
	System	Peak Day (kW)	1.0219	1.0092	0.9573	0.9594	0.9198	0.9600	0.9534	0.9179	0.9737	1.0944	1.2627	1.3228	1.3663	1.5577	1.6368	1.7345	1.6467	1.5268	1.3301	1.2548	1.1927	1.2808	1.1810	1.1047
		Hour	_	7	ဇ	4	2	9	7	ω	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-9.6

		(kW)																									
	Average	Weekend/Holidays (kW)	1.1837	1.1499	1.1218	1.0892	1.0539	1.0345	1.0009	0.9374	0.9814	1.1240	1.2615	1.4005	1.5094	1.5413	1.6212	1.6822	1.7325	1.7218	1.6894	1.6290	1.5027	1.4780	1.3882	1.2905	
0z-unc	Average	Weekday (kW)	1.2114	1.1582	1.1254	1.0949	1.0729	1.0529	1.0604	1.0299	1.1772	1.4276	1.6568	1.8196	1.8699	1.9736	2.0647	2.1383	2.1063	1.9482	1.7647	1.6483	1.5499	1.4768	1.4230	1.2853	
	System	Peak Day (kW)	1.2468	1.1758	1.1354	1.1316	1.0961	1.0960	1.0855	1.0445	1.1848	1.5087	1.7706	1.9259	1.9756	2.2755	2.2011	2.2753	2.2958	2.1168	2.0119	1.8505	1.7799	1.7264	1.5576	1.4294	
		Hour	_	7	က	4	2	9	7	∞	တ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	

SMALL GENERAL SERVICE - June		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day ———— Average WeekdayAverage Weekend/Holidays
	2.50 2.50 1.50 6.50 6.50	0.00

TABLE E-9.7

	SMALL GENERAL SERVICE - July	2.50	1.50 1.00	0.50	1 2 3 4 5 6 7 8 9 10111213141516171819202122232. Hour	System Peak Day ——— Average Weekday Average Weekend/Holi	
S (KVV)							

		JUI-ZO	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	1.6161	1.3704	1.3763
7	1.5726	1.3072	1.3198
က	1.5020	1.2704	1.2807
4	1.4549	1.2338	1.2449
2	1.3947	1.2120	1.2145
9	1.4048	1.1994	1.1970
7	1.4304	1.2460	1.1862
∞	1.3892	1.2267	1.0944
o	1.5623	1.3623	1.0755
10	1.7663	1.5612	1.2108
7	2.0927	1.7683	1.3567
12	2.2285	1.9149	1.4544
13	2.2299	1.9205	1.5310
14	2.3959	2.0373	1.6257
15	2.4700	2.1310	1.6957
16	2.4700	2.1868	1.7267
17	2.4337	2.1646	1.7157
18	2.1767	1.9717	1.7553
19	1.9978	1.7748	1.7580
20	1.8809	1.6769	1.6518
21	1.7921	1.6137	1.5873
22	1.7756	1.5891	1.5561
23	1.7135	1.5403	1.4736
24	1.6175	1.4515	1.4059

TABLE E-9.8

SMALL GENERAL SERVICE - August	3.00 2.50 1.50 1.00	0.00	——————————————————————————————————————
	ΚM		

	Average	Weekend/Holidays (kW)	1.3004	1.2419	1.2075	1.1805	1.1487	1.1417	1.1492	1.0780	1.0639	1.1890	1.3510	1.4965	1.5582	1.6516	1.7434	1.8524	1.8491	1.8451	1.7816	1.6874	1.5678	1.4843	1.3947	1.3105
Aug-20	Average	Weekday (kW)	1.2742	1.2333	1.2055	1.1794	1.1528	1.1482	1.2003	1.2042	1.3332	1.5744	1.7992	1.9803	1.9192	2.0461	2.1520	2.1963	2.2070	2.0294	1.8368	1.7550	1.6625	1.5953	1.4870	1.3377
	System	Peak Day (kW)	1.3575	1.3266	1.2775	1.2661	1.2393	1.2136	1.2859	1.3028	1.4072	1.7182	1.9189	2.1925	2.0552	2.2024	2.3576	2.3996	2.3669	2.2544	2.1721	2.1474	1.9364	1.8983	1.7292	1.4747
		Hour	_	2	ဇ	4	2	9	7	∞	6	10	1	12	13	4	15	16	17	18	19	20	21	22	23	24

TABLE E-9.9

SMALL GENERAL SERVICE - September						1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	System Peak Day ———————————————————————————————————
	2.50	2.00	1.50	1.00	0.50	0.00	
				κM			

(W)		Svetom	Oz-dac	Average
1.1351 1.1021 1.1021 1.0896 1.0409 1.1156 1.1156 1.16034 1.3572 1.6034 1.8051 1.7933 1.9300 2.0273 2.0956 2.0956 1.8595 1.4431 1.3751		System	Average	Average
1.1351 1.0896 1.0896 1.0484 1.10409 1.1156 1.16034 1.8051 1.8051 2.0956 2.0964 1.8595 1.8595 1.8595 1.3751	Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
1.1021 1.0896 1.0484 1.0409 1.1156 1.1156 1.3572 1.8051 1.9300 2.0273 2.0956 2.0956 1.8595 1.4431 1.3751	_	1.1351	1.0273	1.0557
1.0896 1.0556 1.0484 1.0409 1.1156 1.1624 1.3572 1.8051 1.7933 2.0956 2.0956 2.0964 1.8595 1.4431 1.4431	7	1.1021	1.0101	1.0278
1.0556 1.0484 1.0409 1.1156 1.11624 1.3572 1.8051 1.9300 2.0273 2.0956 2.0964 1.8595 1.5801 1.4431 1.2460	က	1.0896	0.9949	1.0055
1.0484 1.0409 1.1156 1.1156 1.1624 1.3572 1.8051 1.9300 2.0273 2.0964 1.8595 1.8595 1.4431 1.4431	4	1.0556	0.9715	0.9715
1.0409 1.1193 1.1156 1.1624 1.3572 1.6034 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.2460	2	1.0484	0.9680	0.9678
1.1193 1.1156 1.1624 1.3572 1.6034 1.8051 1.7933 2.0956 2.0956 2.0964 1.8595 1.5801 1.4431 1.3751	9	1.0409	0.9637	0.9630
1.1156 1.1624 1.3572 1.6034 1.8051 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	7	1.1193	1.0609	0.9909
1.1624 1.3572 1.6034 1.8051 1.7933 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	_∞	1.1156	1.1047	0.9683
1.3572 1.6034 1.8051 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	0	1.1624	1.1792	0.9425
1.6034 1.8051 1.7933 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	10	1.3572	1.3233	0.9902
1.8051 1.7933 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	7	1.6034	1.4881	1.1154
1.7933 1.9300 2.0273 2.0964 1.8595 1.5801 1.4431 1.3751	12	1.8051	1.5864	1.2154
1.9300 2.0273 2.0956 2.0964 1.8595 1.5801 1.4431 1.3751	13	1.7933	1.5204	1.2721
2.0273 2.0956 2.0964 1.8595 1.5801 1.4431 1.3751	4	1.9300	1.6083	1.3177
2.0956 2.0964 1.8595 1.5801 1.4431 1.3751	15	2.0273	1.6641	1.4003
2.0964 1.8595 1.5801 1.4116 1.3751 1.2460	16	2.0956	1.7165	1.4542
1.8595 1.5801 1.4116 1.3751 1.2460	17	2.0964	1.7032	1.5169
1.5801 1.4116 1.4431 1.3751	18	1.8595	1.5123	1.5234
1.4116 1.4431 1.3751 1.2460	19	1.5801	1.3586	1.4386
1.4431 1.3751 1.2460	20	1.4116	1.3092	1.3521
1.3751 1.2460	21	1.4431	1.3259	1.3059
1.2460	22	1.3751	1.2533	1.2223
	23	1.2460	1.1623	1.1615
24 1.1199 1.0460	24	1.1199	1.0460	1.1006

TABLE E-9.10

		SMALL GENERAL SERVICE - October		1.60	1.40	1.20		1.00	0.80 W	09:0		0.4.0	0.20	ŀ	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays			
vv eekend/Holidays (Kvv)	0.8869	0.8729	0.8538	0.8405	0.8421	0.8539	0.8832	0.8827	0.8411	0.8621	0.9137	0.9821	0.9623	1.0088	1.0247	1.0836	1.1125	1.0936	1.0392	

		OCT-ZU	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	0.8646	0.9346	0.8869
7	0.8718	0.9223	0.8729
က	0.8485	0.9100	0.8538
4	0.8414	0.8933	0.8405
2	0.8384	0.8959	0.8421
9	0.8380	0.9028	0.8539
7	0.9114	0.9984	0.8832
∞	0.9365	1.0457	0.8827
တ	0.9480	1.0975	0.8411
10	1.0540	1.2007	0.8621
7	1.1987	1.2807	0.9137
12	1.3606	1.3288	0.9821
13	1.3163	1.2364	0.9623
14	1.3327	1.2772	1.0088
15	1.4670	1.3587	1.0247
16	1.4465	1.3654	1.0836
17	1.4383	1.3492	1.1125
18	1.3280	1.2297	1.0936
19	1.2107	1.1249	1.0392
20	1.1824	1.1364	1.0410
21	1.1003	1.1157	1.0180
22	1.0033	1.0869	0.9692
23	1.0495	1.0378	0.9212
24	0.8550	0.9723	0.9144

TABLE E-9.11

l											ΚM	l														
		W)																								
	Average	Weekend/Holidays (kW)	0.8631	0.8631	0.8463	0.8513	0.8574	0.8742	0.8766	0.8525	0.8201	0.8283	0.8358	0.8255	0.8098	0.7989	0.7970	0.7796	0.7660	0.7810	0.8782	0.8980	0.9063	0.8911	0.8855	0.8748
Nov-20	Average	Weekday (kW)	0.9176	0.9103	0.9085	0.9136	0.9347	0.9507	0.9959	1.0064	1.0463	1.0816	1.0843	1.0634	1.0002	1.0147	1.0200	1.0171	1.0035	0.9198	0.9515	0.9602	0.9546	0.9449	0.9364	0.9182
	System	Peak Day (kW)	0.9656	0.9598	0.9513	0.9692	0.9788	0.9992	1.0999	1.1804	1.2471	1.2713	1.2072	1.1953	1.1353	1.1125	1.0398	1.0456	1.0402	0.9723	1.0020	1.0112	1.0529	1.0297	1.0190	0.9763
		Hour	1	2	က	4	2	9	7	œ	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

SMALL GENERAL SERVICE - November		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average Weekday Average Weekend/Holidays
	1.40 1.20 1.00 0.80 0.80 0.40 0.40	5

TABLE E-9.12

|--|

	Average	Weekend/Holidays (kW)	0.9143	0.9008	0.9015	0.9092	0.9432	0.9558	0.9697	0.9689	0.9362	0.9184	0.9036	0.8855	0.8531	0.8300	0.8132	0.7935	0.7979	0.8459	0.9239	0.9294	0.9168	0.9204	0.9062	0.9023
Dec-50	Average	Weekday (kW)	0.9369	0.9341	0.9304	0.9388	0.9629	0.9822	1.0234	1.0540	1.1093	1.1493	1.1525	1.1494	1.0632	1.0559	1.0447	1.0348	1.0319	1.0069	1.0075	1.0200	0.9957	0.9955	0.9770	0.9476
	System	Peak Day (kW)	0.9377	0.9512	0.9360	0.9396	0.9755	1.0093	1.0517	1.1205	1.1377	1.1813	1.1805	1.1691	1.1624	1.2069	1.1966	1.2399	1.1761	1.1003	1.1181	1.1544	1.1012	1.1183	1.0655	1.0288
		Hour	_	2	က	4	2	9	7	∞	თ	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

TABLE E-10.1

	Average	Weekend/Holidays (kW)	2.0483	2.0202	2.0192	2.0145	2.0077	2.0146	1.9754	1.9766	2.0321	2.0343	2.0431	2.0464	2.1363	2.1705	2.0972	2.0009	2.1211	2.0904	2.0216	1.8957	1.9062	1.9034	1.9029	1.8997
Jan-20	Average	Weekday (kW)	2.0730	2.0501	2.0495	2.0482	2.0376	2.0365	2.0024	2.0115	2.0661	2.1475	2.3360	2.3916	2.3738	2.3470	2.3408	2.4386	2.5406	2.4879	2.3429	2.2506	2.2127	2.1922	2.1525	2.1668
	System	Peak Day (kW)	3.2411	3.2827	3.2567	3.2543	3.2761	3.2137	3.1830	3.2000	3.2996	3.2730	3.2844	3.2064	2.9982	2.9836	3.0065	3.0049	3.0160	3.0526	3.0015	2.6973	2.1041	2.0427	2.0135	1.9965
		Hour	_	2	က	4	2	9	7	®	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

	IRRIGATION POWER SERVICE - January	3.50 2.50 1.50 0.00 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	——— System Peak Day ———— Average Weekday ———— Average Weekend/Holidays
--	------------------------------------	--	--

TABLE E-10.2

					,	4.00	3.50	3.00		06.2	2.00 /	1.50	7	<u>.</u>	0.50	0:00	~									
		·																								
	Average	Weekend/Holidays (kW)	2.2918	2.2664	2.3683	2.3145	2.2488	2.2869	2.2269	2.2735	2.2678	2.3150	2.5290	2.4224	2.4450	2.4984	2.4380	2.4688	2.3844	2.3938	2.3285	2.2838	2.2010	2.2505	2.2898	2.2957
Feb-20	Average	Weekday (kW)	1.8187	1.7638	1.8503	1.7879	1.7209	1.6917	1.6857	1.6917	1.7509	1.8407	1.9989	2.0532	2.0309	1.9744	2.0283	2.1586	2.1642	2.1597	2.1538	2.0747	1.9797	1.9757	1.9686	2.0152
	System	Peak Day (kW)	3.6970	3.7021	3.7371	3.3156	2.8038	2.7884	2.7503	2.5787	2.5723	2.4930	2.4715	2.4189	2.5741	2.5406	2.4231	2.5864	2.6777	3.6071	3.5867	3.2596	2.8733	2.8567	2.8346	2.8986

3.50 3.00 1.50 1.00 0.50 0.00 2.34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day Average Weekend/Holidays

TABLE E-10.3

											W	1														
	Average	Weekend/Holidays (kW)	5.6370	5.5130	5.7965	5.4889	5.4027	5.3528	5.3699	5.3127	5.2213	5.2207	5.3993	5.4304	5.4962	5.5007	5.4926	5.4735	5.4621	5.5458	5.5357	5.4016	5.4701	5.5059	5.4665	5.4036
Mar-20	Average	Weekday (kW)	5.6402	5.5319	5.4408	5.4652	5.4291	5.2977	5.2488	5.2162	5.1330	5.2253	5.5121	5.6316	5.7696	5.8717	5.8571	5.9806	6.0827	6.1316	6.2651	6.3348	6.3843	6.4060	6.3379	6.3224
	System	Peak Day (kW)	2.9327	2.8072	2.7518	2.7356	2.6966	2.8211	2.5935	2.2295	2.2833	2.8057	3.1641	3.8089	3.8523	3.7818	3.9834	3.3787	3.0594	3.0952	3.0460	2.6615	2.8386	2.7848	3.0218	2.6501
		Hour	_	2	3	4	2	9	7	∞	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

7.00 6.00 6.00 2.00 1.00 0.00
--

TABLE E-10.4

	Average	Weekend/Holidays (kW)	12.0605	11.9923	11.8881	11.8403	11.7191	11.5112	11.3183	11.2213	10.8992	10.8894	11.3421	11.2421	10.9863	11.1006	11.1127	11.1966	11.0387	10.9366	10.9307	10.9251	10.9418	10.8945	10.8241	10.7241
Apr-20	Average	Weekday (kW)	11.2690	11.1415	11.0223	10.9185	10.8194	10.7367	10.7126	10.7628	10.5503	10.7044	11.0672	11.4279	11.5949	11.6407	11.6541	11.8786	12.0245	12.0190	12.0156	12.0929	12.0974	11.9342	11.7995	11.7401
	System	Peak Day (kW)	11.2508	11.1126	11.0145	10.8833	10.8956	10.8482	10.9793	11.0338	10.6991	10.7874	11.0507	11.8317	11.8525	11.7182	11.6569	12.1324	12.4815	11.9460	12.4188	12.4235	12.3999	12.4527	12.3995	12.4678
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

13.00 12.50 12.50 17.50

TABLE E-10.5

						~	<u>~</u>	7			κM) \ 		7												
	Average	Weekend/Holidays (kW)	13.3970	13.2703	13.1387	12.9583	12.7224	12.5936	12.4987	12.4256	12.1116	12.2191	12.4091	12.3648	12.3687	12.5266	12.6204	12.6054	12.6782	12.7656	12.8544	13.1269	13.1812	13.1065	12.9142	12.7883
May-20	Average	Weekday (kW)	13.4559	13.3769	13.1194	13.0225	12.8737	12.6940	12.5491	12.4276	12.3043	12.4608	12.8503	13.1125	13.0798	13.1293	13.3070	13.5199	13.5131	13.7409	14.0361	14.1255	14.2111	14.1790	14.0499	14.0035
	System	Peak Day (kW)	9.3874	9.6958	9.7670	9.6622	9.6141	9.5220	8.9000	9.2606	10.5589	11.5417	12.3096	13.5524	13.7430	13.8177	14.1073	13.6058	13.3907	13.4259	13.6914	14.5675	14.8968	15.5867	15.0895	14.9148
		our	_	2	က	4	5	9	7	_∞	6	0	_	12	3	4	15	91	17	8	6	20	7	22	53	24

81.00 14.00 14.00 10
--

Southwestern Public Service Company Hourly Load Profiles

TABLE E-10.6

Average

Jun-20

Average

System

Hour

			IRRIGATION POWER SERVICE - June		20.00	18.00	\	14.00	12.00	KW 10.00	8.00	6.00	4.00	2.00	-	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	Hour	System Peak Day Average Weekday Average M							
	Weekend/Holidays (kW)	17.0881	16.8305	16.9133	16.6144	16.6666	16.4328	16.4620	16.3980	16.0536	15.9434	16.3416	16.7247	16.9265	16.8358	16.7776	16.8749	16.7738	16.9842	17.0110	16.8510	16.9745	16.9295	16.7449	16.6892
98	Weekday (kW)	15.9834	15.8699	15.7871	15.6953	15.6112	15.4889	15.5079	15.6004	15.3592	15.2556	15.6156	16.0029	16.3141	16.3033	16.2470	16.4196	16.4622	16.4785	16.4233	16.5651	16.6283	16.6299	16.4963	16.3803
()	Peak Day (kW)	15.5692	15.3425	15.6199	15.6030	15.6294	15.6098	15.9787	16.4438	16.1993	15.5846	16.1006	16.7598	16.9971	16.8140	16.6263	18.1322	18.2296	18.3155	18.7943	18.7629	18.9635	18.7744	18.4239	18.2041

Average Weekday ---- Average Weekend/Holidays

TABLE E-10.7

	Average	Weekend/Holidays (kW)	19.6678	19.6054	19.4816	19.3040	19.1984	18.8672	18.8542	18.8416	18.3776	18.4576	18.5472	18.8520	19.0818	19.2269	19.1187	19.2182	19.2397	19.2002	18.9914	19.2530	19.4553	19.5646	19.4097	19.3836
70I-20	Average	Weekday (kW)	19.4724	19.3973	19.3241	19.1248	18.9729	18.7820	18.7416	18.6682	18.4018	18.5009	18.8681	19.0772	19.0743	19.1640	19.1014	19.0546	18.9235	19.2201	19.3861	19.4874	19.6344	19.6184	19.4353	19.4230
	System	Peak Day (kW)	22.0794	21.9464	21.8652	21.8709	21.8899	21.9213	22.0992	21.9702	20.8148	20.9275	21.2524	21.1025	21.1208	21.2676	21.1448	21.0287	20.8993	21.8297	21.9968	21.9543	22.6641	22.8136	22.7113	23.0616
		Hour	_	7	က	4	2	9	7	_∞	တ	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

IRRIGATION POWER SERVICE - July		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day — Average Weekday Average Weekend/Holidays
	25.00 20.00 15.00 5.00	00.00

TABLE E-10.8

																				_						
	Average	Weekend/Holidays (kW)	17.4453	17.2940	17.2015	17.1716	17.1160	17.0189	17.0465	17.0837	17.2000	16.7822	17.0296	17.0632	17.0849	16.9997	17.0615	17.1962	17.2367	17.4594	17.4168	17.3255	17.2129	17.0078	16.8453	16.8110
Ang-20	Average	Weekday (kW)	16.9302	16.7965	16.7584	16.5995	16.4413	16.2443	16.2304	16.2658	16.3413	16.5593	17.1890	17.3839	17.3781	17.4363	17.4383	17.5018	17.5451	17.5292	17.5876	17.6056	17.7408	17.6443	17.4482	17.3449
	System	Peak Day (kW)	18.3477	18.0664	18.1303	18.0189	17.9290	17.9232	17.9610	17.5741	18.1089	18.1888	18.2694	17.6088	17.8295	18.2697	18.5357	18.3144	18.4028	18.0863	18.0508	18.4081	18.6215	18.4124	18.4652	18.3944
		Hour	_	2	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

IRRIGATION POWER SERVICE - August	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour	——————————————————————————————————————
	19.00 18.50 17.50 16.50 15.50	

TABLE E-10.9

	Average	Weekend/Holidays (kW)	10.7741	10.6738	10.5823	10.5230	10.4216	10.1616	10.1679	10.2844	10.2830	9.9752	10.2709	10.2951	10.2049	10.2842	10.4497	10.4312	10.3716	10.3386	10.2732	10.2170	10.1167	10.0805	9.9559	9.8881
Sep-20	Average	Weekday (kW)	10.5278	10.4253	10.3792	10.3451	10.2856	10.1407	10.1129	10.2837	10.4637	10.4333	10.9112	11.2024	11.2063	11.2168	11.2259	11.2023	11.1472	11.1547	11.1883	11.1680	11.1881	11.0562	10.8975	10.8343
	System	Peak Day (kW)	13.9445	13.6994	13.1888	13.2809	13.1260	12.9659	12.8186	13.0093	13.4413	13.6890	13.6677	13.4960	13.6511	13.3733	13.4870	13.7382	13.9408	13.7237	13.4084	13.2855	13.5150	13.4156	13.4827	13.3972
		Hour	_	7	က	4	2	9	7	∞	0	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24

8.00 0.00 0.00 0.00 0.00 0.00
--

TABLE E-10.10

	Average	Weekend/Holidays (kW)	7.8963	7.8237	7.8193	7.7073	7.6574	7.6428	7.5744	7.5841	7.5373	7.3359	7.2954	7.3280	7.2427	7.0760	7.0506	7.0678	7.0201	7.0179	7.0060	7.1021	7.0130	6.9043	6.7869	6.7773
Oct-20	Average	Weekday (kW)	7.8428	7.8309	7.7701	7.6792	7.6692	7.6164	7.6061	7.6041	7.5401	7.4467	7.7119	7.8853	8.0123	8.0379	8.0420	8.1493	8.3457	8.4457	8.4243	8.3972	8.3273	8.1934	8.1041	8.0051
	System	Peak Day (kW)	12.5090	12.4828	12.4059	12.4875	12.7276	12.8601	12.7525	12.7397	12.6069	11.5673	11.7097	11.2585	10.9777	11.0242	11.2311	12.2366	12.9679	13.2486	12.7918	12.8058	12.7023	12.7461	12.6624	12.7429
		Hour	_	7	က	4	2	9	7	œ	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

4.00 0.01 0.00 0.00 0.00 0.00 0.00
--

TABLE E-10.11

	Average	Weekend/Holidays (kW)	10.9535	10.9669	10.7783	10.6240	10.4712	10.3437	10.2365	10.2501	9.9498	9.9047	10.1169	10.2313	10.5153	10.7234	10.8329	10.8220	10.8198	10.5680	10.4715	10.4065	10.3404	10.3526	10.3311	10.2783
NOV-ZU	Average	Weekday (kW)	10.5568	10.3701	10.3477	10.1715	10.0327	9.8890	9.7372	10.0239	9.8792	9.9861	10.0552	10.3036	10.7115	10.5841	10.7069	10.7219	11.2598	11.5312	11.4985	11.3978	11.2902	11.2655	11.2482	11.2845
	System	Peak Day (kW)	4.5916	4.3056	4.3385	4.0207	4.2027	4.0359	4.6613	4.3847	4.8458	4.7728	4.4560	5.2757	6.7160	7.0172	8.0962	8.3568	9.0985	9.4001	9.6902	10.1376	10.0440	9.9716	10.0013	9.5553
		Hour	1	7	က	4	2	9	7	∞	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24

IRRIGATION POWER SERVICE - November		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hour System Peak Day —— Average Weekday Average Weekend/Holidays	
	KW 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	; ;	_

TABLE E-10.12

	IRRIGATION POWER SERVICE - December		4.00	3.50	3.00		7.50 OC.2	KW 2.00	1.50	000		0.50	ŀ	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Hour	System Peak Day ——— Average Weekday Average Weekend/Holidays	
JIII (LVV)	957 916	312	531	336	279	812	435	292	297	949	365	821	478	296	258	831	707

		Dec-zo	
	System	Average	Average
Hour	Peak Day (kW)	Weekday (kW)	Weekend/Holidays (kW)
_	3.7774	2.8151	2.5957
7	2.9938	2.7287	2.5916
က	2.9546	2.7116	2.5612
4	2.9380	2.7173	2.5531
2	2.9404	2.6686	2.5036
9	2.9419	2.6635	2.5279
7	2.8632	2.6580	2.4812
∞	2.5682	2.7044	2.5435
о	2.6647	2.5790	2.5667
10	2.8341	2.6579	2.7597
1	2.2310	2.6243	2.7949
12	2.4620	2.7716	2.9065
13	2.3820	2.8363	3.0821
4	2.4298	2.8500	3.1478
15	2.4289	2.8403	3.0596
16	2.7271	3.0028	3.0258
17	2.8086	3.0593	3.0831
18	2.5013	3.0236	3.0267
19	1.7400	3.0184	2.8956
20	1.3990	2.9629	2.8249
21	0.8814	2.8484	2.8074
22	0.8367	2.8234	2.7861
23	0.9350	2.7564	2.7037
24	0.9883	2.7185	2.6775

Southwestern Public Service Company Econometric Model Parameters

The parameters associated with SPS's econometric forecasting models are provided in the following tables:

- Table F-1 through F-12 Retail Energy Sales Residential;
- Table F-13 through F-27 Retail Energy Sales Commercial and Industrial;
- Table F-28 through F-33 Retail Energy Sales Street Lighting;
- Table F-34 through F-39 Retail Energy Sales Other Public Authority;
- Table F-40 through F-57 Retail Customers;
- Table F-58 through F-72 Wholesale Energy Sales;
- Table F-73 through F-75 Coincident Peak Demand Retail; and
- Table F-76 through F-81 Probability Distribution.

Table F-1: Retail Sales - New Mexico Residential Service

Retail Sales - New Mexico Residential Service

Dependent Variable: S ResService_NM

Method: Least Squares

Sample: 2003M01 2020M12

Included observations: 216

S_ResService_NM = C(1)*CYPperHH_NM + C(2)*(Jan*HDD65B_ROS*C_ResService_NM) +

C(3)*(Feb*HDD65B_ROS*C_ResService_NM) + C(4)*Mar*HDD65B_ROS*C_ResService_NM) +

+C(5)*(Dec*HDD65B_ROS*C_ResService_NM) + C(6)*(May*CDD65B_ROS*C_ResService_NM) +

C(7)*(Jun*CDD65B_ROS*C_ResService_NM) + C(8)*(Jul*CDD65B_ROS*C_ResService_NM) +

C(9)*(Aug*CDD65B_ROS*C_ResService_NM) + C(10)*(Sep*CDD65B_ROS*C_ResService_NM) +

 $C(11)*(Oct*CDD65B_ROS*C_ResService_NM) + C(12)*Bin0706 + C(13)*StructuralChange2 + C(14)*Expr1 + [SAR(1)=C(15)]$

+ [SMA(1)=C(16)]

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	258.227808	7.588402	34.029	0.00%
C(2)	0.000699	0.000056	12.474	0.00%
C(3)	0.000494	0.000067	7.432	0.00%
C(4)	0.000506	0.000068	7.455	0.00%
C(5)	0.000556	0.000057	9.692	0.00%
C(6)	0.000618	0.000150	4.114	0.01%
C(7)	0.000994	0.000068	14.654	0.00%
C(8)	0.001092	0.000053	20.514	0.00%
C(9)	0.001117	0.000051	21.848	0.00%
C(10)	0.000954	0.000063	15.147	0.00%
C(11)	0.000979	0.000109	8.942	0.00%
C(12)	-3870.867065	2130.500111	-1.817	7.08%
C(13)	1386.430785	542.704447	2.555	1.14%
C(14)	-4425.837334	2197.523057	-2.014	4.54%
C(15)	0.887336	0.032295	27.476	0.00%
C(16)	-0.696677	0.067086	-10.385	0.00%

Table F-2: Retail Sales - New Mexico Residential Service - Regression Statistics

N	Iodel Statistics
Adjusted Observations	204
R-Squared	0.968
Adjusted R-Squared	0.966
AIC	15.532
BIC	15.792
Log-Likelihood	-1,857.73
Model Sum of Squares	29,657,987,743.69
Sum of Squared Errors	970,485,689.27
Std. Error of Regression	2,272.04
Durbin-Watson Statistic	1.654
Mean dependent var	46,836.47
StdDev dependent var	12,223.57

Appendix F Page 3 of 48 Case No. 21-00169-UT

Table F-3: Retail Sales - New Mexico Residential Service - Definitions

Retail Sales - New Mexico Residential Service

Variable Name	Definition
S_ResSvc_NM	Residential Service sales in New Mexico
	12 Month Moving Average of Real personal income per household in New Mexico
CYPperHH_NM_MA12	service area
H65_bill_ResSvc_NM_Jan	Heating degree days (January) multiplied by customers
H65_bill_ResSvc_NM_Feb	Heating degree days (February) multiplied by customers
H65_bill_ResSvc_NM_Mar	Heating degree days (March) multiplied by customers
H65_bill_ResSvc_NM_Dec	Heating degree days (December) multiplied by customers
C65_bill_ResSvc_NM_May	Cooling degree days (May) multiplied by customers
C65_bill_ResSvc_NM_Jun	Cooling degree days (June) multiplied by customers
C65_bill_ResSvc_NM_Jul	Cooling degree days (July) multiplied by customers
C65_bill_ResSvc_NM_Aug	Cooling degree days (August) multiplied by customers
C65_bill_ResSvc_NM_Sep	Cooling degree days (September) multiplied by customers
C65_bill_ResSvc_NM_Oct	Cooling degree days (October) multiplied by customers
Bin0706	Binary variable for July 2006=1, otherwise =0
StructuralChange2	Binary variable for (January or greater)=1 and 2018=1, otherwise =0
Expr1	Binary variable for June 2019=1, otherwise =0
SAR(1)	First-order Seasonal Autoregressive term
SMA(1)	First-order Seasonal Moving Average term

0.00%

0.00%

0.00%

0.00%

0.11%

0.00%

0.93%

27.31%

Table F-4: Retail Sales – New Mexico Residential Space Heating Service

Retail Sales - New Mexico Residential Space Heat Service

C(7)

C(8)

C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

Dependent Variable: S_ResSpaceHeat_NM Method: Least Squares Sample: 2010M01 2020M12 Included observations: 132 S ResSpaceHeat NM = C(1)*Trend2014 +C(2)*(Jan*HDD65B ROS*C ResSpaceHeat NM) + C(3)*(Feb*HDD65B ROS*C ResSpaceHeat NM) + C(4)*(Mar*HDD65B ROS*C ResSpaceHeat NM) + C(5)*(Nov*HDD65B_ROS*C_ResSpaceHeat_NM) + C(6)*(Dec*HDD65B_ROS*C_ResSpaceHeat_NM) + C(7)*(Jun*CDD65B ROS*C ResSpaceHeat NM) + C(8)*(Jul*CDD65B ROS*C ResSpaceHeat NM) + C(9)*(Aug*CDD65B ROS*C ResSpaceHeat NM) + C(10)*(Sep*CDD65B ROS*C ResSpaceHeat NM) + C(11)*HolidayVariable + C(12)*BILLINGDAYS + [AR(1)=C(13)] + [MA(1)=C(14)]Variable Coefficient Std. Error t-Statistic Prob. -24.561494 12.078 -2.034 4.43% C(1)0.000 38.694 C(2) 0.001321 0.00% 0.00% C(3)0.001214 0.000 28.062 C(4) 0.001003 0.000 19.242 0.00% 0.001192 0.000 0.06% C(5)3.515 0.00% C(6)0.001233 0.000 8.881

0.000

0.000

0.000

0.000

18.926

0.220

0.259

2373.515

10.685

20.557

23.918

13.505

-3.363

54.782

2.646

-1.101

Table F-5: Retail Sales - New Mexico Residential Space Heating Service – Regression Statistics

0.000717

0.000974

0.001070

0.000782

0.583023

-0.285

-7982.155992

1036.796183

Model Statistics		
Adjusted Observations	131	
R-Squared	0.962	
Adjusted R-Squared	0.958	
AIC	15.578	
BIC	15.885	
Log-Likelihood	-1,192.23	
Model Sum of Squares	15,644,886,965.30	
Sum of Squared Errors	616,295,772.17	
Std. Error of Regression	2,295.10	
Durbin-Watson Statistic	1.961	
Mean dependent var	42,037.66	
StdDev dependent var	11,347.34	

Table F-6: Retail Sales - New Mexico Residential Space Heating Service - Definitions

Retail Sales - New Mexico Residential Space Heat Service

Variable Name	Definition
S_ResSpaceHeat_NM	Residential Space Heating Service sales in New Mexico
Trend2014	Trend Variable beginning in January 2014
H65_bill_ResSpHt_NM_Jan	Heating degree days (January) multiplied by customers
H65_bill_ResSpHt_NM_Feb	Heating degree days (February) multiplied by customers
H65_bill_ResSpHt_NM_Mar	Heating degree days (March) multiplied by customers
H65_bill_ResSpHt_NM_Nov	Heating degree days (November) multiplied by customers
H65_bill_ResSpHt_NM_Dec	Heating degree days (December) multiplied by customers
C65_bill_ResSpHt_NM_Jun	Cooling degree days (June) multiplied by customers
C65_bill_ResSpHt_NM_Jul	Cooling degree days (July) multiplied by customers
C65_bill_ResSpHt_NM_Aug	Cooling degree days (August) multiplied by customers
C65 bill ResSpHt NM Sep	Cooling degree days (September) multiplied by customers
HolidayVariable	Binary variable for November and December=1, otherwise =0
BILLINGDAYS	Number of scheduled billing day per revenue month
AR(1)	First-order autoregressive term
MA(1)	First-order Moving Average term

Table F-7: Retail Sales – Texas Residential Service

Retail Sales - Texas Residential Service

Dependent Variable: S_ResService_TX

Method: Least Squares

Sample: 2000M01 2020M12

Included observations: 252

 $S_ResService_TX = C(1)*CYPperHH_TX + C(2)*(Jan*HDD65B_PAN*TX_Res_Cust) + C(2)*(Jan*HD65B_PAN*TX_Res_Cust) + C(2)*(J$

C(3)*(Feb*HDD65B_PAN*TX_Res_Cust) + C(4)*Mar*HDD65B_PAN*TX_Res_Cust) +

C(5)*Apr*HDD65B_PAN*TX_Res_Cust) + C(6)*(Nov*HDD65B_PAN*TX_Res_Cust) +

C(7)*(Dec*HDD65B_PAN*TX_Res_Cust) + C(8)*(May*CDD65B_PAN*TX_Res_Cust) + C(9)*(Jun*CDD65B_PAN*TX_Res_Cust) + C(10)*(Jul*CDD65B_PAN*TX_Res_Cust) +

C(11)*(Aug*CDD65B PAN*TX Res Cust) + C(12)*(Sep*CDD65B PAN*TX Res Cust) +

C(13)*(Oct*CDD65B PAN*TX Res Cust) + C(14)*BILLINGDAYS + [AR(1)=C(15)] + [AR(2)=C(16)] + [MA(1)=C(17)]

C(13) (OCC CDD03D	TAN TA Res Cust)	C(14) BILLINGDATS	AR(1) = C(13) + AR(2)	-C(10)] + [MA(1)-C(17)]
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	272.248	84.169	3.23455	0.00141
C(2)	0.000582	0.000	20.58002	0.00000
C(3)	0.000453	0.000	14.26200	0.00000
C(4)	0.000405	0.000	10.41985	0.00000
C(5)	0.000241	0.000	3.58883	0.00042
C(6)	0.000307	0.000	3.94370	0.00011
C(7)	0.000457	0.000	12.39506	0.00000
C(8)	0.000968	0.000	3.40971	0.00078
C(9)	0.001358	0.000	15.79350	0.00000
C(10)	0.001458	0.000	27.01273	0.00000
C(11)	0.001485	0.000	30.60569	0.00000
C(12)	0.001	0.000	21.53475	0.00000
C(13)	0.001	0.000	8.48935	0.00000
C(14)	3315.763	338.895	9.78405	0.00000
C(15)	1.091	0.064	17.01030	0.00000
C(16)	-0.132	0.061	-2.15576	0.03212
C(17)	-1.049	0.029	-36.42447	0.00000

Table F-8: Retail Sales – Texas Residential Service – Regression Statistics

Retail Sales - Texas Residential Service

Model Statistics		
Adjusted Observations	250	
R-Squared	0.940	
Adjusted R-Squared	0.935	
AIC	18.843	
BIC	19.083	
Log-Likelihood	-2,693.14	
Model Sum of Squares	517,202,104,321.40	
Sum of Squared Errors	33,296,840,096.46	
Std. Error of Regression	11,954.28	
Durbin-Watson Statistic	2.061	
Mean dependent var	192,024.56	
StdDev dependent var	46,930.27	

Table F-9: Retail Sales – Texas Residential Service – Definitions

Retail Sales - Texas Residential Service

Variable Name	Definition
S_ResService_TX	Residential Service sales in Texas
CYP_HH_TX	Real personal income per household in Texas service area
H65_bill_Res_TX_Jan	Heating degree days (January) multiplied by customers
H65_bill_Res_TX_Feb	Heating degree days (February) multiplied by customers
H65_bill_Res_TX_Mar	Heating degree days (March) multiplied by customers
H65_bill_Res_TX_Apr	Heating degree days (April) multiplied by customers
H65_bill_Res_TX_Nov	Heating degree days (November) multiplied by customers
H65_bill_Res_TX_Dec	Heating degree days (December) multiplied by customers
C65 bill Res TX May	Cooling degree days (May) multiplied by customers
C65 bill Res TX Jun	Cooling degree days (June) multiplied by customers
C65_bill_Res_TX_Jul	Cooling degree days (July) multiplied by customers
C65_bill_Res_TX_Aug	Cooling degree days (August) multiplied by customers
C65 bill Res TX Sep	Cooling degree days (September) multiplied by customers
C65 bill Res TX Oct	Cooling degree days (October) multiplied by customers
BILLINGDAYS	Number of scheduled billing day per revenue month
AR(1)	First-order autoregressive term
AR(2)	Second-order autoregressive term
MA(1)	First-order Moving Average term

Table F-13: Retail Sales – New Mexico Small Commercial and Industrial Service

Retail Sales - New Mexico Small Commercial and Industrial

Dependent Variable: S SMCI NM
Method: Least Squares
Sample: 2006M01 2020M12
Included observations: 180

$$\begin{split} &S_SMCI_NM = C(1)*EE_NM + C(2)*(Jan*HDD65B_ROS*CUST_SMCI_NM) + C(3)*(Feb) + \\ &C(4)*(Jun*CDD65B_ROS*CUST_SMCI_NM) + C(5)*(Jul*CDD65B_ROS*CUST_SMCI_NM) + \\ &C(6)*(Aug*CDD65B_ROS*CUST_SMCI_NM) + C(7)*(Sep*CDD65B_ROS*CUST_SMCI_NM) + \\ &C(8)*(Nov*HDD65B_ROS*CUST_SMCI_NM + Dec*HDD65B*CUST_SMCI_NM) + C(9)*HolidayVariable + \\ &C(10)*CustomerShift2016 + C(11)*BIN0707 + C(12)*SalesShift_SMCI_2018 + C(13)*TrendVar \end{split}$$

(-)			(-)	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	698.868	41.802	16.71844	0.00000
C(2)	0.001	0.000	4.17538	0.00005
C(3)	-14962.694	2097.619	-7.13318	0.00000
C(4)	0.002	0.000	6.99881	0.00000
C(5)	0.002	0.000	11.09063	0.00000
C(6)	0.002	0.000	11.86464	0.00000
C(7)	0.002	0.000	5.93449	0.00000
C(8)	0.001	0.000	2.22387	0.02757
C(9)	-17337.954	3609.071	-4.80399	0.00000
C(10)	6471.271	1680.583	3.85061	0.00018
C(11)	18779.816	7139.522	2.63040	0.00937
C(12)	13353.742	1741.182	7.66935	0.00000
C(13)	138.996	17.428	7.97551	0.00000

Table F-14: Retail Sales - New Mexico Small Commercial and Industrial - Regression Statistics

Retail Sales - New Mexico Small Commercial and Industrial

Model Statistics	
Adjusted Observations	180
R-Squared	0.894
Adjusted R-Squared	0.887
AIC	17.926
BIC	18.156
Log-Likelihood	-1,855.72
Model Sum of Squares	80,319,787,568.79
Sum of Squared Errors	9,496,279,717.91
Std. Error of Regression	7,540.82
Durbin-Watson Statistic	2.188
Mean dependent var	124,911.84
StdDev dependent var	22,400.13

Appendix F Page 9 of 48 Case No. 21-00169-UT

Table F-15: Retail Sales - New Mexico Small Commercial and Industrial Service – Definitions

Retail Sales - New Mexico Small Commercial and Industrial

Variable Name	Definition
S_SMCI_NM	Small Commercial & Industrial sales in New Mexico
CYP_NM	Real Personal Income for New Mexico Service Territory
H65_bill_SMCI_NM_Jan	Heating degree days (January) multiplied by customers
Feb	Binary variable for February, otherwise =0
C65_bill_SMCI_NM_Jun	Cooling degree days (June) multiplied by customers
C65 bill SMCI NM Jul	Cooling degree days (July) multiplied by customers
C65 bill SMCI NM Aug	Cooling degree days (August) multiplied by customers
C65 bill SMCI NM Sep	Cooling degree days (September) multiplied by customers
H65 bill SMCI_NM_NovDec	Heating degree days (November and December) multiplied by customers
HolidayVariable	Binary variable for November and December=1, otherwise =0
CustomerShift2016	Shift effective September 2016 forward=1, prior values =0
Bin0707	Binary variable for July 2007=1, otherwise =0
SalesShift_SMCI_2018	Binary variable for (greater than August=1) and Year=2018, otherwise =0
TrendVar	Increasing linear trend variable starting January 1990

0.14182

0.03998

0.00010

0.00006

0.00283

0.08339

Table F-16: Retail Sales – Texas Small Commercial and Industrial Service

Retail Sales - Texas Small Commercial and Industrial Dependent Variable: S SMCI TX Method: Least Squares Sample: 2010M01 2020M12 Included observations: 132 C(3)*(JUN*CDD65B_PAN*CUST_SMCI_TX) + C(4)*(JUL*CDD65B_PAN*CUST_SMCI_TX) + C(5)*(AUG*CDD65B PAN*CUST SMCI TX) + C(6)*(SEP*CDD65B PAN*CUST SMCI TX) + C(7) * (OCT*CDD65B PAN*CUST SMCI TX) + C(8) * (JAN*HDD65B PAN*CUST SMCI TX) + C(9) * (NOV*HDD65B PAN*CUST SMCI TX+DEC*HDD65B PAN*CUST SMCI TX) + C(10)*Bin1016 + C(11)*Bin0318 + C(12)*Bin0112 + C(13)*Bin0413 + C(14)*Bin1118 + C(15)*Bin1017 + C(16)*Nov + C(17)*TrendVar + C(17)*Din1017 + C(18)*Din1017 +C(18)*COVID 19 Impact Mar2020 + [SAR(1) = C(19)]Variable Coefficient Std. Error t-Statistic Prob. C(1) 278606.864 11314.817 24.62319 0.00000 C(2)0.006 0.001 6.08810 0.00000 0.003 0.000 11.10758 0.00000 C(3)C(4) 0.004 0.000 19.69236 0.00000C(5)0.004 0.000 24.70917 0.00000 C(6)0.004 0.000 16.74412 0.00000 C(7)0.004 0.001 7.06419 0.00000 0.00000 C(8)0.0010.000 10.54065 0.0010.000 8.00367 0.00000 C(9)0.00239 C(10)-32840.140 10539.616 -3.11588 10128.482 2.92842 0.00421 C(11)29660.416 -35799.985 0.00078 C(12)10328.744 -3.46605 25592.401 C(13)10081.348 2.53859 0.01265

10347.931

10508.134

4345.521

4764.283

36.143

0.081

-1.48064

-2.08084

-4.06540

-4.18574

-3.06053

1.74867

Table F-17: Retail Sales - Texas Small Commercial and Industrial Service - Regression Statistics

Retail Sales - Texas Small Commercial and Industrial

-15321.610

-21865.710

-17666.276

-14581.223

-151.284

0.142

C(14)

C(15) C(16)

C(17)

C(18)

C(19)

Model Statistics	
Adjusted Observations	120
R-Squared	0.929
Adjusted R-Squared	0.917
AIC	18.680
BIC	19.121
Log-Likelihood	-1,272.08
Model Sum of Squares	148,926,268,592.65
Sum of Squared Errors	11,332,173,119.58
Std. Error of Regression	10,592.44
Durbin-Watson Statistic	1.898
Mean dependent var	267,608.51
StdDev dependent var	37,184.23

Table F-18: Retail Sales - Texas Small Commercial and Industrial Service - Definitions

Retail Sales - Texas Small Commercial and Industrial

Variable Name	Definition
S_SMCI_TX	Small Commercial and Industrial Service sales in Texas
CONST	Constant variable
C65_bill_SMCI_TX_May	Cooling degree days (May) multiplied by customers
C65_bill_SMCI_TX_Jun	Cooling degree days (June) multiplied by customers
C65_bill_SMCI_TX_Jul	Cooling degree days (July) multiplied by customers
C65_bill_SMCI_TX_Aug	Cooling degree days (August) multiplied by customers
C65_bill_SMCI_TX_Sep	Cooling degree days (September) multiplied by customers
C65_bill_SMCI_TX_Oct	Cooling degree days (October) multiplied by customers
H65_bill_SMCI_TX_Jan	Heating degree days (January) multiplied by customers
H65_bill_SMCI_TX_Aggregate	Heating degree days (November and December) multiplied by customers
Bin1016	Binary variable for October 2016=1, otherwise=0
Bin0318	Binary variable for March 2018=1, otherwise=0
Bin0112	Binary variable for January 2012=1, otherwise=0
Bin0413	Binary variable for April 2013=1, otherwise=0
Bin1118	Binary variable for November 2018=1, otherwise=0
Bin1017	Binary variable for October 2017=1, otherwise=0
Nov	Seasonal binary variable, November=1, otherwise =0
TrendVar	Trend Variable starting January 1990
COVID_19_Impact_Mar2020	Binary variable to account for Covid impacts; from March 2020 to June 2024
SAR(1)	First-order Seasonal Autoregressive term

Table F-19: Retail Sales – New Mexico Large Commercial and Industrial Service

Retail Sales - New Mexico Large Commercial and Industrial

Dependent Variable: S LGCI NM					
Method: Least Squares					
Sample: 2006M01 2020M12					
	Included observations: 180				
				*BIN0115 + C(6)*BIN0419 +	
C(7)*BinJan + $C(8)$ *Bi	inFeb + C(9)*BinMar +	C(10)*BinAug + $C(11)$ *Bi	nSep + C(12)*IPSG211A	A3 + C(13)*LGCItrend +	
[MA(1) = C(14)] + [M.	A(2) = C(15) + [MA(3)]	= C(16)]			
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C(1)	37907.032	4734.167	8.00712	0.00000	
C(2)	-22518.913	10212.811	-2.20497	0.02884	
C(3)	28420.556	10054.518	2.82665	0.00529	
C(4)	-23618.678	10066.448	-2.34628	0.02015	
C(5)	27226.838	9843.612	2.76594	0.00633	
C(6)	29531.108	9979.964	2.95904	0.00355	
C(7)	7271.341	3234.601	2.24799	0.02590	
C(8)	-13022.207	3141.793	-4.14483	0.00006	
C(9)	-7421.001	3277.558	-2.26419	0.02486	
C(10)	5208.536	2822.913	1.84509	0.06683	
C(11)	8752.749	2773.290	3.15609	0.00191	
C(12)	1652.904	26.410	62.58671	0.00000	
C(13)	158494.744	22904.190	6.91990	0.00000	
C(14)	0.539	0.081	6.63776	0.00000	
C(15)	0.574	0.080	7.16925	0.00000	
C(16)	0.208	0.084	2.45877	0.01497	

Table F-20: Retail Sales - New Mexico Large Commercial and Industrial Service - Regression Statistics

Retail Sales - New Mexico Large Commercial and Industrial

Model Statistics		
Adjusted Observations	180	
R-Squared	0.950	
Adjusted R-Squared	0.946	
AIC	18.844	
BIC	19.127	
Log-Likelihood	-1,935.34	
Model Sum of Squares	441,255,189,012.08	
Sum of Squared Errors	23,002,066,617.89	
Std. Error of Regression	11,842.99	
Durbin-Watson Statistic	1.853	
Mean dependent var	185,863.01	
StdDev dependent var	50,927.56	

Appendix F Page 13 of 48 Case No. 21-00169-UT

Table F-21: Retail Sales - New Mexico Large Commercial and Industrial Service – Definitions

Retail Sales - New Mexico Large Commercial and Industrial

Variable Name	Definition
S_LGCI_NM	Large Commercial & Industrial sales in New Mexico
NM Large Adj	Shift effective January 2016 forward=1, prior values =0
Bin0309	Binary for March 2009=1, otherwise =0
Bin0709	Binary for July 2009=1, otherwise =0
Bin0110	Binary for January 2010=1, otherwise =0
Bin1115	Binary for November 2015=1, otherwise =0
Bin0419	Binary for April 2019=1, otherwise =0
Jan	Binary variable for
Feb	Binary variable for
Mar	Binary variable for March, otherwise =0
Aug	Binary variable for August, otherwise =0
Sep	Binary variable for September, otherwise =0
IPSG211A3	Oil and gas extraction index
LGCItrend	Trend Variable for Large Commercial sales
MA(1)	First-order Moving Average term
MA(2)	Second-order Moving Average term
MA(3)	Third-order Moving Average term

0.00%

0.00%

0.04%

1.14%

6.68%

3.67%

0.00%

0.01%

Table F-22: Retail Sales – Texas Large Commercial and Industrial Service

Retail Sales - Texas Large Commercial and Industrial-Other

C(9)

C(10)

C(11)

C(12)

C(13) C(14)

C(15)

C(16)

Dependent Variable: S LGCI TX Method: Least Squares Sample: 2009M01 2020M12 Included observations: 144 $S_LGCI_TX = C(1)*CONST + C(2)*GDPR_Log + C(3)*BINFEB + C(4)*BINMAR + C(5)*BINMAY + C(6)*BINAUG + C$ C(7)*BINSEP + C(8)*BINNOV + C(9)*BIN0612 + C(10)*BIN0712 + C(11)*BIN1212 + C(12)*BIN0418 + C(13)*BIN0311 + C(13)*BIN0418 + CC(14)*BIN0211+C(15)*Trend2016+[AR(1)=C(16)]Variable Coefficient Std. Error Prob. t-Statistic 296377.849 -8.296 0.00% C(1)-2458759.474 289386.039 30537.950 9.476 0.00% C(2)-10586.330 3128.473 -3.384 0.10% C(3)C(4) -21341.319 3136.482 -6.804 0.00% C(5)-13130.426 2839.929 -4.624 0.00%C(6)16731.558 3055.226 5.476 0.00% 21698.292 3006.075 7.218 0.00% C(7)3.90% C(8)-5866.161 2811.833 -2.086

10062.376

10074.800

9586.807

9605.347

10422.801

10419.888

619.813

0.085

-5.375

5.201

-3.629

-2.567

-1.849

-2.111

-8.822

4.138

Table F-23: Retail Sales - Texas Large Commercial and Industrial Service - Regression Statistics

-54085.296

52402.072

-34787.911

-24657.477

-19270.604

-21997.955

-5467.741

0.351

Retail Sales - Texas Large Commercial and Industrial-Other

Model Statistics			
Adjusted Observations	143		
R-Squared	0.814		
Adjusted R-Squared	0.792		
AIC	18.533		
BIC	18.864		
Log-Likelihood	-1,512.016		
Model Sum of Squares	55,942,867,847.988		
Sum of Squared Errors	12,791,492,626.85		
Std. Error of Regression	10,035.96		
Durbin-Watson Statistic	2.01		
Mean dependent var	346,535.08		
StdDev dependent var	21,972.11		

Table F-24: Retail Sales - Texas Large Commercial and Industrial Service - Definitions

Retail Sales - Texas Large Commercial and Industrial-Other

Variable Name	Definition
S LGCI_TX	Large Commercial and Industrial sales in Texas
CONST	Constant variable
GDPR log	Log of Real Gross Domestic Product
Feb	Seasonal binary variable, February=1, otherwise =0
Mar	Seasonal binary variable, March=1, otherwise =1
May	Seasonal binary variable, May=1, otherwise =2
Aug	Seasonal binary variable, August=1, otherwise =3
Sep	Seasonal binary variable, September=1, otherwise =4
Nov	Seasonal binary variable, November=1, otherwise =5
Bin0612	Binary variable for June 2012=1, otherwise =0
Bin0712	Binary variable for July 2012=1, otherwise =0
Bin1212	Binary variable for December 2012=1, otherwise =0
Bin0418	Binary variable for April 2018=1, otherwise =0
Bin0311	Binary variable for March 2011=1, otherwise =0
Bin0211	Binary variable for February 2011=1, otherwise =0
Trend2016	Trend Variable starting January 2016
AR(1)	First-order Autoregressive term

Table F-25: Retail Sales – Texas Large Commercial and Industrial Service

Retail Sales - Texas Large Commercial and Industrial -OXY

Retail Sales - Lexas Large Commercial and Industrial -OX Y						
Dependent Variable: S_LGCI_OXY_TX						
Method: Least Squares	Method: Least Squares					
Sample: 2008M01 2020	OM12					
Included observations:	156					
$S_LGCI_OXY_TX = 0$	C(1)*CONST + C(2)*T	rendVar + C(3)*BINJAN +	C(4)*BINFEB + C(5)*E	BINMAR + C(6)*BINAPR +		
C(7)*BINJUN + C(8)*	BINAUG + C(9)*BINS	EP + C(10)*BINNOV + C(11)*BIN1109 + C(12)*E	BIN01209+ [AR(1)=C(13)]		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C(1)	246382.660	17137.123	14.37713	0.00000		
C(2)	179.641	56.829	3.16108	0.00193		
C(3)	9853.029	2579.676	3.81948	0.00021		
C(4)						
C(5)	-14885.577	2942.820	-5.05827	0.00000		
C(6)						
C(7)						
C(8)	9624.568	2266.373	4.24668	0.00004		
C(9)	12766.292	2266.246	5.63323	0.00000		
C(10)						
C(11) 55862.193 8430.392 6.62629 0.0000						
C(12) 54967.485 8292.680 6.62843 0.00000						
C(13)	0.718	0.059	12.15785	0.00000		

Table F-26: Retail Sales - Texas Large Commercial and Industrial Service - Regression Statistics

Retail Sales - Texas Large Commercial and Industrial -OXY

Model Statistics	
Adjusted Observations	155
R-Squared	0.762
Adjusted R-Squared	0.742
AIC	18.251
BIC	18.507
Log-Likelihood	-1,621.425
Model Sum of Squares	35,438,768,067.746
Sum of Squared Errors	11,066,203,471.03
Std. Error of Regression	8,827.85
Durbin-Watson Statistic	2.39
Mean dependent var	304,650.11
StdDev dependent var	17,555.17

Table F-27: Retail Sales - Texas Large Commercial and Industrial Service - Definitions

Retail Sales - Texas Large Commercial and Industrial -OXY

Variable Name	Definition
S LGCI OXY TX	Large Commercial and Industrial sales in Texas - OXY
CONST	Constant variable
TrendVar	Trend Variable starting January 1990
Jan	Seasonal binary variable, January=1, otherwise =0
Feb	Seasonal binary variable, February=1, otherwise =0
Mar	Seasonal binary variable, March=1, otherwise =0
Apr	Seasonal binary variable, April=1, otherwise =0
Jun	Seasonal binary variable, June=1, otherwise =0
Aug	Seasonal binary variable, August=1, otherwise =0
Sep	Seasonal binary variable, September=1, otherwise =0
Nov	Seasonal binary variable, November=1, otherwise =0
Bin1109	Binary variable for November 2009=1, otherwise=0
Bin1209	Binary variable for December 2009=1, otherwise=0
AR(1)	First-order autoregressive term

0.00093

Table F-28: Retail Sales – New Mexico Street Lighting

Retail Sales - New Mexico Street Lighting

C(17)

Dependent Variable: S STLIGHT NM Method: Least Squares Sample: 2012M01 2020M12 Included observations: 108 S STLIGHT NM=C(1)*BINJAN+ C(2)*BINFEB + C(3)*BINMAR + C(4)*BINAPR + C(5)*BINMAY + C(6)*BINJUN + C(7)*BINJUL + C(8)*BINAUG + C(9)*BINSEP + C(10)*BINOCT + C(11)*BINNOV + C(12)*BINDEC + C(11)*BINDEC + C(11)*B $C(13)*SalesShift_StLt_2018 + C(14)*LEDConversionTrend + [AR(1)=C(15)] + [AR(2)=C(16)] + [AR(3)=C(17)]$ Variable Coefficient Std. Error t-Statistic 1107.398 14.071 0.00000 C(1)78.69864 1104.445 14.120 78.21975 0.00000 C(2)0.00000 1107.055 14.192 78.00692 C(3)C(4) 1109.038 14.315 77.47113 0.0000014.314 77.46046 0.00000 C(5)1108.763 1114.300 14.280 0.00000 C(6)78.03051 1112.116 14.246 78.06673 0.00000 C(7)1114.463 14.202 78.47189 0.00000 C(8)1109.450 14.154 78.38639 0.00000 C(9)0.00000 14.098 78.83797 C(10)1111.453 C(11)1109.349 14.052 78.94602 0.00000 0.00000 C(12)1106.855 14.053 78.76467 -2.803 8.940 -0.31356 0.75461 C(13)-17.200 4.895 C(14)-3.51354 0.00071 0.105 0.00000 C(15)1.267 12.02866 0.168 0.61530 0.085 0.50432 C(16)

0.125

-3.42812

Table F-29: Retail Sales - New Mexico Street Lighting - Regression Statistics

Retail Sales - New Mexico Street Lighting

-0.428

Retail Sales - New Ivicalco Str		
Model Statistics		
Adjusted Observations	105	
R-Squared	0.9784	
Adjusted R-Squared	0.9744	
AIC	4.661	
BIC	5.090	
Log-Likelihood	-376.679	
Model Sum of Squares	363,249.711	
Sum of Squared Errors	8,029.83	
Std. Error of Regression	9.55	
Durbin-Watson Statistic	2.14	
Mean dependent var	1,086.72	
StdDev dependent var	59.06	

Table F-30: Retail Sales - New Mexico Street Lighting - Definitions

Retail Sales - New Mexico Street Lighting

Variable Name	Definition		
C_StreetLight	Street Lighting Service sales in the New Mexico service area		
Jan	Seasonal binary variable, January=1, otherwise =0		
Feb	Seasonal binary variable, February=1, otherwise =0		
Mar	Seasonal binary variable, March=1, otherwise =0		
Apr	Seasonal binary variable, April=1, otherwise =0		
May	Seasonal binary variable, May=1, otherwise =0		
Jun	Seasonal binary variable, June=1, otherwise =0		
Jul	Seasonal binary variable, July=1, otherwise =0		
Aug	Seasonal binary variable, August=1, otherwise =0		
Sep	Seasonal binary variable, September=1, otherwise =0		
Oct	Seasonal binary variable, October=1, otherwise =0		
Nov	Seasonal binary variable, November=1, otherwise =0		
Dec	Seasonal binary variable, December=1, otherwise =0		
SalesShift_StLt_2018	Binary variable for month>September and year 2018=1, otherwise =0		
LEDConversionTrend	Binary variable starting April 2019 to December 2050		
AR(1)	Autoregressive corrective term 1st period		
AR(2)	Autoregressive corrective term 2nd period		
AR(3)	Autoregressive corrective term 3nd period		

Table F-31: Retail Sales - Texas Street Lighting

Dependent Variable: SL_UPC_TX						
Method: Least Squares	Method: Least Squares					
Sample: 2011M05 2020	OM12					
Included observations:	116					
$S_{STREET_TX} = C(1)$ [MA(2)=C(6)] + [MA(3)]	$S_{TREET_TX} = C(1)* CONST + C(2)* Street_TXJun2019 + C(3)* LEDConversionTrend + [AR(1)=C(4)] + [MA(1)=C(5)] + [MA(2)=C(6)] + [MA(3)=C(7)]$					
Variable	Coefficient Std. Error t-Statistic Prob.					
C(1)						
C(2)	0.108	0.050	2.14012	0.03459		
C(3)	C(3) -0.316 0.036 -8.70394 0.00000					
C(4) 0.903 0.010 92.55278 0.00000						
C(5)	C(5) 1.116 0.091 12.30655 0.00000					
C(6) 0.849 0.118 7.21741 0.00000						
C(7)	0.399	0.092	4.32121	0.00004		

Table F-32: Retail Sales - Texas Street Lighting - Regression Statistics

Retail Sales - Texas Street Lighting

Tetan Baies Texas Bureet Eighti	**5
Model	Statistics
Adjusted Observations	115
R-Squared	0.9982
Adjusted R-Squared	0.9981
AIC	-5.271
BIC	-5.104
Log-Likelihood	146.918
Model Sum of Squares	295.975
Sum of Squared Errors	0.52
Std. Error of Regression	0.07
Durbin-Watson Statistic	1.67
Mean dependent var	28.23
StdDev dependent var	1.70

Table F-33: Retail Sales - Texas Street Lighting - Definitions

Retail Sales - Texas Street Lighting

Variable Name	Definition
SL UPC TX	Street Lighting Use Per Customer Sales in Texas
CONST	Constant variable
Street_TXJun2019	Binary variable for month > March and year = 2019
LEDConversionTrend	Binary variable starting April 2019 to December 2050
AR(1)	Autoregressive corrective term 1st period
MA(1)	Moving Average term 1st period
MA(2)	First-order autoregressive term
MA(3)	First-order autoregressive term

Table F-34: Retail Sales - New Mexico Other Public Authority

Retail Sales - New Mexico Other Public Authority

Dependent Variable: S_MUNISCHOOL_NM

Method: Least Squares

Sample: 2010M01 2020M12

Included observations: 116

S_MUNISCHOOL_NM = C(1)*Constant + C(2)*(CDD65B_ROS*JUN) + C(3)*(CDD65B_ROS*JUL) + C(4)*(CDD65B_ROS*AUG) + C(5)*(CDD65B_ROS*SEP) + C(6)*BINOCT + C(7)*BIN0511 + C(8)*BIN0917+ C(9)*BIN0417 + C(10)*BIN1112 + C(11)*BIN1217 + C(12)*BIN0114 + C(13)*1016 + C(14)*OtherTrend +

C(15)*Covid 19 Impact Apr2020 School

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	10011.787	106.551	93.96279	0.00000
C(2)	3.949	0.713	5.54296	0.00000
C(3)	4.497	0.467	9.62879	0.00000
C(4)	5.680	0.442	12.85305	0.00000
C(5)	8.640	0.631	13.69441	0.00000
C(6)	3628.197	272.697	13.30486	0.00000
C(7)	2329.871	770.079	3.02550	0.00315
C(8)	-2456.074	794.129	-3.09279	0.00257
C(9)	-1555.409	770.079	-2.01980	0.04605
C(10)	2475.720	770.079	3.21489	0.00176
C(11)	-1994.451	770.079	-2.58993	0.01101
C(12)	2661.527	770.079	3.45617	0.00081
C(13)	-2515.607	804.861	-3.12552	0.00232
C(14)	-214.543	204.106	-1.05114	0.29570
C(15)	-1151.835	333.654	-3.45218	0.00082

Table F-35: Retail Sales - New Mexico Other Public Authority - Regression Statistics

Retail Sales - New Mexico Other Public Authority

Model Statistics		
Adjusted Observations	116	
R-Squared	0.8322	
Adjusted R-Squared	0.8089	
AIC	13.394	
BIC	13.750	
Log-Likelihood	-926.438	
Model Sum of Squares	291,350,515.972	
Sum of Squared Errors	58,748,573.61	
Std. Error of Regression	762.67	
Durbin-Watson Statistic	2.02	
Mean dependent var	11,121.55	
StdDev dependent var	1,744.80	

Table F-36: Retail Sales - New Mexico Other Public Authority - Definitions

Retail Sales - New Mexico Other Public Authority

Variable Name	Definition
S_MUNISCHOOL_NM	Municipal and School Service sales in the New Mexico service area
CONST	Constant variable
C65 bill ROS NM Jun	Cooling degree days (June)
C65_bill_ROS_NM_Jul	Cooling degree days (July)
C65_bill_ROS_NM_Aug	Cooling degree days (August)
C65 bill ROS NM Sep	Cooling degree days (September)
Oct	Seasonal binary variable, October=1, otherwise =0
Bin0511	Binary variable, May 2011=1, otherwise =1
Bin0917	Binary variable, September 2017=1, otherwise =0
Bin0417	Binary variable, April 2017=1, otherwise =0
Bin1112	Binary variable, November 2012=1, otherwise =0
Bin1217	Binary variable, December 2017=1, otherwise =0
Bin0114	Binary variable, January 2014=1, otherwise =0
Bin1016	Binary variable, October 2016=1, otherwise =0
OtherTrend	Binary variable, (month>=November and year>=2018) =1, otherwise =0
COVID 19 Impact Apr2020 School	Binary variable to account for Covid impacts; Starting April 2020 to June 2023

Table F-37: Retail Sales - Texas Other Public Authority

Retail Sales - Texas Other Public Authority

Dependent Variable: S MUNISCHOOL TX

Method: Least Squares
Sample: 2008M01 2020M12

Included observations: 156

 $S_MUNISCHOOL_TX = C(1)*CONSTANT + C(2)*TRENDVAR + C(3)*(BINJUN *CDD65B_PAN*C_MUNISCH_TX) + C(4)*(BINJUL *CDD65B_PAN*C_MUNISCH_TX) + C(5)*(BINAUG *CDD65B_PAN*C_MUNISCH_TX) + C(6)*(BINSEP *CDD65B_PAN*C_MUNISCH_TX) + C(7)*(BINOCT *CDD65B_PAN*C_MUNISCH_TX) + C(8)*Bin0317 + C(9)*Bin0917 + C(9)*CDD65B_PAN*C_MUNISCH_TX) + C(8)*CDD65B_PAN*C_MUNISCH_TX) +$

C(10)*Bin0814 + C(11)*Bin0316 + [AR(1)=C(12)] + [MA(1)=C(13)]

C(10) DI10014 C(11) Dillo310 + [/11(1) C((12)] [1111(1) C(13)]		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	34618.545	1855.151	18.66077	0.00000
C(2)	-18.683	6.161	-3.03251	0.00289
C(3)	0.002	0.000	4.92185	0.00000
C(4)	0.002	0.000	7.43184	0.00000
C(5)	0.003	0.000	10.04114	0.00000
C(6)	0.005	0.000	12.83228	0.00000
C(7)	0.012	0.001	13.16823	0.00000
C(8)	-6153.489	1936.838	-3.17708	0.00183
C(9)	-4881.717	1980.348	-2.46508	0.01488
C(10)	-3810.756	1984.947	-1.91983	0.05688
C(11)	4847.701	1936.697	2.50308	0.01344
C(12)	0.718	0.185	3.88848	0.00016
C(13)	-0.523	0.224	-2.32901	0.02126

Table F-38: Retail Sales - Texas Other Public Authority - Regression Statistics

Retail Sales - Texas Other Public Authority

Treatment of the first of the f	
Model Statistics	
Adjusted Observations	155
R-Squared	0.7490
Adjusted R-Squared	0.7278
AIC	15.269
BIC	15.524
Log-Likelihood	-1,390.260
Model Sum of Squares	1,672,447,634.315
Sum of Squared Errors	560,522,960.32
Std. Error of Regression	1,986.79
Durbin-Watson Statistic	1.98
Mean dependent var	31,358.08
StdDev dependent var	3,795.97

Table F-39: Retail Sales - Texas Other Public Authority - Definitions

Retail Sales - Texas Other Public Authority

Variable Name	Definition
S_MUNISCHOOL_TX	Municipal and School Service sales in Texas
CONST	Constant variable
TrendVar	Trend variable
C65_bill_MSS_TX_Jun	Cooling degree days (June) multiplied by customers
C65_bill_MSS_TX_Jul	Cooling degree days (July) multiplied by customers
C65_bill_MSS_TX_Aug	Cooling degree days (August) multiplied by customers
C65_bill_MSS_TX_Sep	Cooling degree days (September) multiplied by customers
C65_bill_MSS_TX_Oct	Cooling degree days (October) multiplied by customers
Bin0317	Binary variable for March 2017=1, otherwise=0
Bin0917	Binary variable for September 2017=1, otherwise=0
Bin0814	Binary variable for August 2018=1, otherwise=0
Bin0316	Binary variable for March 2016=1, otherwise=0
AR(1)	Autogressive corrective 1st term
MA(1)	Moving Average 1st term

Table F-40: Retail Customers - New Mexico Total Residential

Retail Customers - New Mexico Total FERC Residential

Trotali Gaotolilolo Troti	Vetall Custoffiels - New Mexico Total i ETVO Nesidential				
Dependent Variable: Re	Dependent Variable: Res Cust NM				
Method: Least Squares					
Sample: 2005M01 2020	M12				
Included observations: 19					
$ RES_CUST_NM = C(1)^*$	'HH_NM_MA12 + C(2)*B	IN0808 + C(3)*Customer_	Adjustment + $[AR(1)=C(4)]$] + [AR(2)=C(5)] +	
[MA(1)=C(6)] + [SMA(1)=	=C(7)]				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C(1)	896.956	7.780	115.29105	0.0%	
C(2)	109.712	51.512	2.12985	3.5%	
C(3)	-118.599	56.290	-2.10691	3.6%	
C(4)	1.843	0.073	25.12818	0.0%	
C(5)	-0.847	0.072	-11.75163	0.0%	
C(6)	-0.605	0.113	-5.35167	0.00000	
C(7)	0.147	0.076	1.93257	0.05483	

Table F-41: Retail Customers - New Mexico Total Residential - Regression Statistics

Retail Customers - New Mexico Total FERC Residential

Model Statistics	
Adjusted Observations	190
R-Squared	0.9995
Adjusted R-Squared	0.9995
AIC	8.868
BIC	8.988
Log-Likelihood	-1,105.101
Model Sum of Squares	2,777,796,607.853
Sum of Squared Errors	1,253,923.39
Std. Error of Regression	82.78
Durbin-Watson Statistic	1.93
Mean dependent var	85,517.80
StdDev dependent var	3,882.64

Table F-42: Retail Customers- New Mexico Total Residential - Definitions

Retail Customers - New Mexico Total FERC Residential

Variable Name	Definition
Res_Cust_NM	New Mexico residential customers
HH_NM_MA12	12-month moving average of Households in New Mexico service area
Bin0808	Binary variable for August 2008=1, otherwise =0
Customer_Adjustment	Binary variable for year = 2016 and (month=9 or month=10 or month=11 or month=12) or year = 2017 and (month=1 or month=2 or month=3 or month=4 or month=5 or month=6 or month =7)
AR(1)	Autoregressive correction term, 1st period
AR(2)	Autoregressive correction term, 2nd period
MA(1)	First-order moving average term
SMA(1)	First-order seasonal moving average term

Table F-43: Retail Customers – Texas Total Residential

Retail Customers - Texas Total FERC Residential

Tictali Gustomers - Texas	Netall Customers - Texas Total I LING Nestidential			
Dependent Variable: TX_Res_Cust				
Method: Least Squares				
Sample: 2006M01 2020	M12			
Included observations: 18	80			
TX RES CUST = C(1)*	NR TX + C(2)*BIN0307 -	+ C(3)*BIN0808 + C(4)*BIN	N0908 + C(5)*BINJAN + C	(6)*BINFEB +
		AR(1)=C(10)] + [MA(1)=C		· /
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	395.208	71.720	5.51043	0.0%
C(2)	-2657.187	106.466	-24.95799	0.0%
C(3)	249.969	116.791	2.14030	3.4%
C(4)	662.663	114.846	5.77001	0.0%
C(5)	172.187	35.290	4.87928	0.0%
C(6)	157.292	36.677	4.28862	0.0%
C(7)	173.810	34.517	5.03544	0.0%
C(8)	109.582	28.050	3.90671	0.0%
C(9)	87.576	27.918	3.13689	0.2%
C(10)	0.997	0.005	184.22571	0.0%
C(11)	0.149	0.075	1.98320	4.9%
C(12)	0.308	0.076	4.02794	0.0%

Table F-44: Retail Customers - Texas Total Residential - Regression Statistics

Retail Customers - Texas Total FERC Residential

Model Statistics			
Adjusted Observations	179		
R-Squared	0.9994		
Adjusted R-Squared	0.9994		
AIC	10.213		
BIC	10.427		
Log-Likelihood	-1,156.069		
Model Sum of Squares	7,532,669,339.310		
Sum of Squared Errors	4,267,251.66		
Std. Error of Regression	159.85		
Durbin-Watson Statistic	1.97		
Mean dependent var	197,250.728		
StdDev dependent var	6,566.667		

Table F-45: Retail Customers - Texas Total Residential - Definitions

Retail Customers - Texas Total FERC Residential

Variable Name	Definition
TX_Res_Cust	Texas residential customer counts
NR_TX	Population in Texas service area
Bin0307	Binary variable for March 2007=1, otherwise =0
Bin0808	Binary variable for August 2008=1, otherwise =0
Bin0908	Binary variable for September 2008=1, otherwise =0
Jan	Seasonal binary for January=1, otherwise=0
Feb	Seasonal binary for February=1, otherwise=0
Mar	Seasonal binary for March=1, otherwise=0
Aug	Seasonal binary for August=1, otherwise=0
Oct	Seasonal binary for October=1, otherwise=0
AR(1)	First-order autoregressive term
MA(1)	First-order moving average term
MA(2)	Second-order moving average term

Table F-46: Retail Customers - New Mexico Small Commercial and Industrial

Retail Customers - New Mexico FERC Small Commercial and Industrial

	team edeterment from movies i Ente email commission and modelina				
Dependent Variable:	Dependent Variable: Sm_CI				
Method: Least Squar	es				
Sample: 2006M01 20	020M12				
Included observations	s: 180				
SM_CI = C(1)*NR_N	SM_CI = C(1)*NR_NM_MA12 + C(2)*Trend2016 + C(3)*Bin0118 + C(4)*1118 + [AR(1)=C(5)] + [MA(1)=C(6)]				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C(1)	81.392	11.911	6.83354	0.0%	
C(2)	121.539	27.278	4.45556	0.0%	
C(3)	32.830	17.124	1.91721	5.7%	
C(4)	56.287	17.342	3.24561	0.1%	
C(5)	0.996	0.005	187.03341	0.0%	
C(6)	0.214	0.075	2.84244	0.5%	

Table F-47: Retail Customers - New Mexico Small Commercial and Industrial - Regression Statistics

Retail Customers - New Mexico FERC Small Commercial and Industrial

	LITO Official Confinercial and industrial			
Model Statistics				
Adjusted Observations	179			
R-Squared	0.9997			
Adjusted R-Squared	0.9997			
AIC	6.647			
BIC	6.754			
Log-Likelihood	-842.877			
Model Sum of Squares	402,603,966.054			
Sum of Squared Errors	128,943.39			
Std. Error of Regression	27.30			
Durbin-Watson Statistic	1.89			
Mean dependent var	19,347.15			
StdDev dependent var	1,511.34			

Table F-48: Retail Customers- New Mexico Small Commercial and Industrial – Definitions

Retail Customers - New Mexico FERC Small Commercial and Industrial

Variable Name	Definition
Sm_CI	
	Small Commercial & Industrial FERC Class New Mexico customer counts
NR_NM_MA12	12-month moving average of Population in New Mexico service area
Trend2016	Binary trend variable starting January 2016 to December 2050
Bin0118	Binary variable for January 2018 = 1, otherwise = 0
Bin1118	Binary variable for November 2018 = 1, otherwise = 0
AR(1)	First-order autoregressive term
MA(1)	First-order Moving Average

Table F-49: Retail Customers – Texas Small Commercial and Industrial

Retail Customers - Texas FERC Small Commercial and Industrial

Dependent Variable: TX Sm CI				
Method: Least Squares				
Sample: 2005M01 2020	M12			
Included observations: 1	92			
$TX_SM_CI = C(1)*NR_T$	X_Log + C(2)*BIN0307 -	+ C(3)*BIN1108 + C(4)*BIN	N0210 + C(5)*BIN0910 + C	C(6)*BIN1010 +
[AR(1)=C(7)] + [MA(1)=C(7)]	C(8)]			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	88.066	9.403	9.36529	0.0%
C(2)	3039.013	36.781	82.62525	0.0%
C(3)	95.712	36.760	2.60370	1.0%
C(4)	-96.325	36.758	-2.62051	1.0%
C(5)	783.738	45.454	17.24250	0.0%
C(6)	817.495	44.707	18.28550	0.0%
C(7)	0.996	0.006	156.87221	0.0%
C(8)	0.128	0.075	1.69454	9.2%

Table F-50: Retail Customers - Texas FERC Small Commercial and Industrial – Regression Statistics

Retail Customers - Texas FERC Small Commercial and Industrial

	nao i E i o oman oominiorolarana maaamar			
Model Statistics				
Adjusted Observations	191			
R-Squared	0.9989			
Adjusted R-Squared	0.9988			
AIC	8.081			
BIC	8.217			
Log-Likelihood	-1,034.716			
Model Sum of Squares	506,890,950.411			
Sum of Squared Errors	567,567.32			
Std. Error of Regression	55.69			
Durbin-Watson Statistic	1.98			
Mean dependent var	46,425.66			
StdDev dependent var	1,644.02			

Appendix F Page 31 of 48 Case No. 21-00169-UT

Table F-51: Retail Customers - Texas Small Commercial and Industrial – Definitions

Retail Customers - Texas FERC Small Commercial and Industrial

Variable Name	Definition	
TX_Sm_CI	Texas small commercial and industrial customer counts	
NR_TX	Population in Texas service area	
Bin0307	Binary variable for March 2007=1, otherwise =0	
Bin1108	Binary variable for November 2008=1, otherwise =0	
Bin0210	Binary variable for February 2010=1, otherwise =0	
Bin0910	Binary variable for September 2010=1, otherwise =0	
Bin1010	Binary variable for October 2010=1, otherwise =1	
AR(1)	First-order autoregressive term	
AR(2)	Second-order autoregressive term	

Table F-52: Retail Customers - New Mexico Other Public Authority

Retail Customers - New Mexico FERC Other Public Authority

Dependent Variable: Oth	Dependent Variable: Other Pub Auth					
Method: Least Squares						
Sample: 2008M05 2020	M12					
Included observations: 1	52					
OTHER PUB AUTH = (C(1)*HH NM Log + C(2)	*BIN0908 + C(3)*BIN0412	+ C(4)*BIN0116 + C(5)*B	IN0217 + [AR(1)=C(6)] +		
[MA(1)=C(7)]	- () = = 3 - ()	(1)	- ()	. [(/ - (-/)]		
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C(1)	380.917	4.858	78.41666	0.0%		
C(2)	6.550	2.193	2.98617	0.3%		
C(3)	8.573	2.156	3.97616	0.0%		
C(4)	8.070	2.151	3.75259	0.0%		
C(5)	-24.687	2.148	-11.49284	0.0%		
C(6)	0.980	0.005	188.76758	0.0%		
C(7)	0.149	0.085	1.75680	8.1%		

Table F-53: Retail Customers - New Mexico Other Public Authority - Regression Statistics

Retail Customers - New Mexico FERC Other Public Authority

Retail Customers - New Mexico FERC Other Public Authority				
Model Statistics				
Adjusted Observations	151			
R-Squared	0.9975			
Adjusted R-Squared	0.9974			
AIC	2.414			
BIC	2.554			
Log-Likelihood	-389.518			
Model Sum of Squares	619,410.577			
Sum of Squared Errors	1,538.52			
Std. Error of Regression	3.27			
Durbin-Watson Statistic	2.00			
Mean dependent var	1,681.27			
StdDev dependent var	65.43			

Table F-54: Retail Customers- New Mexico Other Public Authority - Definitions

Retail Customers - New Mexico FERC Other Public Authority

Variable Name	Definition
Other_Pub_Auth	Public Authority FERC Class New Mexico customer counts
Economic.HH_NM_Log	Log of Households in the New Mexico service area
Binary.Bin0908	Binary variable for September 2008=1, otherwise =0
Binary.Bin0412	Binary variable for April 2012=1, otherwise =0
Binary.Bin0116	Binary variable for January 2016=1, otherwise =0
Binary.Bin0217	First-order autoregressive term
AR(1)	Autoregressive correction term, 1st period
MA(1)	First-order Moving Average term

Table F-55: Retail Customers – Texas Other Public Authority

Retail Customers - Texas FERC Other Public Authority

Retail Customers - Texas FERC Other Public Authority				
Dependent Variable: TX	K_OSPA			
Method: Least Squares		-	-	
Sample: 2005M01 2020	0M12			
Included observations: 1	192			
	TX_Log + C(2)*BIN0905 + T0407 + [AR(1)=C(7)] + [,	- C(3)*BIN0809 + C(4)*BIN AR(2)=C(8)]	N0310 + C(5)*BIN0317 +	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	697.354	5.256	132.67755	0.0%
C(2)	8.300	3.399	2.44165	1.6%
C(3)	8.927	3.410	2.61765	1.0%
C(4)	136.185	3.397	40.09490	0.0%
C(5)	-21.406	3.411	-6.27585	0.0%
C(6)	71.552	5.346	13.38464	0.0%
C(7)	1.221	0.072	16.98194	0.0%
C(8)	-0.237	0.071	-3.35438	0.1%

Table F-56: Retail Customers - Texas Other Public Authority - Regression Statistics

Retail Customers - Texas FERC Other Public Authority

Adjusted R-Squared 0 AIC 0 BIC 0 Log-Likelihood -58 Model Sum of Squares 4,427,19 Sum of Squared Errors 5,4	190
R-Squared 0 Adjusted R-Squared 0 AIC BIC Log-Likelihood -58 Model Sum of Squares 4,427,19 Sum of Squared Errors 5,4	190
Adjusted R-Squared 0 AIC 0 BIC 0 Log-Likelihood -58 Model Sum of Squares 4,427,19 Sum of Squared Errors 5,4	
AIC BIC Log-Likelihood -58 Model Sum of Squares 4,427,19 Sum of Squared Errors 5,4	.9988
BIC Log-Likelihood -58 Model Sum of Squares 4,427,19 Sum of Squared Errors 5,4	.9987
Log-Likelihood-58Model Sum of Squares4,427,19Sum of Squared Errors5,4	3.432
Model Sum of Squares4,427,19Sum of Squared Errors5,4	3.569
Sum of Squared Errors 5,4	7.622
	1.812
	02.66
Std. Error of Regression	5.45
Durbin-Watson Statistic	2.04
Mean dependent var 4,3	67.09
StdDev dependent var 1	58.65

Table F-57: Retail Customers- Texas Other Public Authority – Definitions

Retail Customers - Texas FERC Other Public Authority

Variable Name	Definition
TX_OSPA	Texas other public authority customer counts
NR_TX_Log	Log of Population in Texas service area
Bin0905	Binary variable for September 2005=1, otherwise =0
Bin0809	Binary variable for August 2009=1, otherwise =0
Bin0310	Binary variable for March 2010=1, otherwise =0
Bin0317	Binary variable for March 2017=1, otherwise =0
CustomerShift0407	Binary for customer shift starting April 2007=1, otherwise =0
AR(1)	First-order autoregressive term
MA(1)	First-order moving average term

Table F-58: Wholesale Sales – Central Valley

Wholesales Sales - Central Valley

Dependent Variable: S_Central Valley

Method: Least Squares

Sample: 2006M01 2020M12

Included observations: 180

S_CentralValley=C(1)*Extraction_Index+C(2)*BINJAN+C(3)*BINMAR+C(4)*BINAPR+C(5)*BINMAY+C(6)*C65_CAL_RO S_NM_MAY+C(7)*C65_CAL_ROS_NM_JUN+C(8)*C65_CAL_ROS_NM_JUL+C(9)*C65_CAL_ROS_NM_AUG+C(10)C 65_CAL_ROS_NM_SEP+C(11)*BINOCT+C(12)*BINNOV+C(13)*BINDEC+C(14)*BIN0710+C(15)*BIN0211+C(16)*BIN1 114+C(17)*BIN0215+C(18)*BIN0416+C(19)*BIN1217+C(20)*BIN0419+C(21)*BIN0908+C(22)*BIN0520+[AR(1)=C(23)]

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	12,962.0965	201.5280	64.3191	0.00%
C(2)	5,212.5278	515.5687	10.1102	0.00%
C(3)	7,585.7274	516.2084	14.6951	0.00%
C(4)	7,226.6295	679.2461	10.6392	0.00%
C(5)	4,759.0417	1,315.1387	3.6187	0.04%
C(6)	14.7647	5.3847	2.7420	0.68%
C(7)	23.4295	1.5820	14.8099	0.00%
C(8)	27.5720	1.4213	19.3991	0.00%
C(9)	27.6281	1.5042	18.3675	0.00%
C(10)	20.1133	2.7401	7.3403	0.00%
C(11)	3,824.8668	758.7895	5.0407	0.00%
C(12)	1,624.8858	741.7145	2.1907	2.99%
C(13)	4,378.4721	672.3446	6.5122	0.00%
C(14)	-3,816.0518	1,496.8512	-2.5494	1.17%
C(15)	-7,865.8344	1,511.0469	-5.2056	0.00%
C(16)	3,795.6610	1,512.6079	2.5093	1.31%
C(17)	-4,810.2017	1,511.8328	-3.1817	0.18%
C(18)	-4,050.2816	1,523.3538	-2.6588	0.87%
C(19)	3,232.2374	1,515.0764	2.1334	3.44%
C(20)	-3,808.7180	1,516.5028	-2.5115	1.30%
C(21)	-6,628.9145	1,496.3465	-4.4301	0.00%
C(22)	-9,377.7214	1,639.4367	-5.7201	0.00%
C(23)	0.8253	0.0459	17.9966	0.00%

Table F-59: Wholesale Sales – Central Valley – Regression Statistics

Wholesales Sales - Central Valley

Mod	lel Statistics
Adjusted Observations	179
R-Squared	0.9286
Adjusted R-Squared	0.9185
AIC	15.218
BIC	15.627
Log-Likelihood	-1,592.977
Model Sum of Squares	7,317,874,441.644
Sum of Squared Errors	562,631,019.19
Std. Error of Regression	1,899.11
Durbin-Watson Statistic	2.11
Mean dependent var	66,743.49
StdDev dependent var	6,659.74

Table F-60: Wholesale Sales – Central Valley – Definitions

Wholesales Sales - Central Valley

Variable Name	Definition
S_CentralValley	Central Valley sales
Extraction_Index	Oil and Gas Extraction Index
Jan	Seasonal binary variable, January=1, otherwise =0
Mar	Seasonal binary variable, March=1, otherwise =0
Apr	Seasonal binary variable, April=1, otherwise =0
May	Seasonal binary variable, May=1, otherwise =0
C65_cal_ROS_NM_May	May cooling degree days
C65_cal_ROS_NM_Jun	June cooling degree days
C65_cal_ROS_NM_Jul	July cooling degree days
C65_cal_ROS_NM_Aug	August cooling degree days
C65_cal_ROS_NM_Sep	September cooling degree days
Oct	Seasonal binary variable, October=1, otherwise =0
Nov	Seasonal binary variable, November=1, otherwise =0
Dec	Seasonal binary variable, December=1, otherwise =0
Bin0710	Binary variable for July 2010=1, otherwise =0
Bin0211	Binary variable for February 2011=1, otherwise =0
Bin1114	Binary variable for November 2014=1, otherwise =0
Bin0215	Binary variable for February 2015=1, otherwise =0
Bin0416	Binary variable for April 2016=1, otherwise =0
Bin1217	Binary variable for December 2017=1, otherwise =0
Bin0419	Binary variable for April 2019=1, otherwise =0
Bin0908	Binary variable for September 2008=1, otherwise =0
Bin0520	Binary variable for May 2020=1, otherwise =0
AR(1)	First-order autoregressive term

7.70%

0.42%

0.03%

5.22%

0.30%

0.00%

Table F-61: Wholesale Sales – Farmers

Wholesales Sales - Farmers

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

Dependent Variable: S Farmers Method: Least Squares Sample: 2007M01 2020M12 Included observations: 168 S_Farmers=C(1)*CGCP_FARMERS_LOG+C(2)*BINJAN+C(3)*BINFEB+C(4)*BINAPR+C(5)*C65_CAL_ROS_NM_JUN +C(6)*C65 CAL ROS NM JUL+C(7)*C65 CAL ROS NM AUG+C(8)*BINOCT+C(9)*BINNOV+C(10)*BINDEC+C(11)* BIN0515+C(12)*NM_PRECIP_MARAPR+C(13)*BIN0916+C(14)*BIN0817+C(15)*BIN0614+C(16)*FarmersLoadStable+[AR(1)=C(17)Variable Coefficient Std. Error t-Statistic Prob. C(1) 101.535 39.835 0.00% 4044.650 C(2) -3178.167 696.124 -4.566 0.00% -5231.456 575.615 -9.088 0.00% C(3)C(4) 1546.206 0.09% 457.072 3.383 0.00% C(5) 7.347 1.092 6.728 16.875 1.073 15.726 0.00% C(6) 17.396 1.007 17.279 0.00% C(7)0.00% C(8)-3732.422 554.006 -6.737 0.00% C(9)-5255.219 682.097 -7.705 0.00% C(10) -3778.028 720.267 -5.245 C(11) -5031.576 1691.376 -2.975 0.34%

531.515

1654.024

1658.656

1673.947

1147.886

0.054

-1.780

-2.904

-3.739

-1.957

-3.023

14.066

Table F-62: Wholesale Sales – Farmers – Regression Statistics

0.755

-946.336

-4802.837

-6202.416

-3275.615

-3470.050

Wholesales Sales - Farmers

Wholesales cales Tarriers		
Model Statistics		
Adjusted Observations	167	
R-Squared	0.8969	
Adjusted R-Squared	0.8859	
AIC	15.328	
BIC	15.646	
Log-Likelihood	-1,499.883	
Model Sum of Squares	5,381,082,541.606	
Sum of Squared Errors	618,485,811.06	
Std. Error of Regression	2,030.58	
Durbin-Watson Statistic	1.96	
Mean dependent var	32,432.05	
StdDev dependent var	6,020.69	

Table F-63: Wholesale Sales – Farmers – Definitions

Wholesales Sales - Farmers

Variable Name	Definition
S_Farmers	Farmers sales
CGCP_Farmers	New Mexico Gross County Product - Farmers Service Area
Jan	Seasonal binary variable, January=1, otherwise =0
Feb	Seasonal binary variable, February=1, otherwise =0
Apr	Seasonal binary variable, April=1, otherwise =1
C65_cal_ROS_NM_Jun	June cooling degree days
C65_cal_ROS_NM_Jul	July cooling degree days
C65_cal_ROS_NM_Aug	August cooling degree days
Oct	Seasonal binary variable, October=1, otherwise =0
Nov	Seasonal binary variable, November=1, otherwise =0
Dec	Seasonal binary variable, December=1, otherwise =0
Bin0515	Binary variable for May 2015=1, otherwise =0
NM_Precip_MarApr	Precipitation for March and April, otherwise=0
Bin0916	Binary variable for September 2016=1, otherwise =0
Bin0817	Binary variable for August 2017=1, otherwise =0
Bin0614	Binary variable for June 2014=1, otherwise =0
FarmersLoadStable	Binary variable for (month>January and year=2015)=1, otherwise =0
AR(1)	First-order autoregressive term

Table F-64: Wholesale Sales – Lea County

Wholesale - Lea County

Dependent Variable: S_LeaCounty Method: Least Squares

Sample: 2006M01 2020M12 Included observations: 180

S_LEACOUNTY=C(1)*EXTRACTION_INDEX+C(2)*FEB+C(3)*C65_CAL_ROS_NM_MAY+C(4)*C65_CAL_ROS_NM_JUN+C(5)*C65_CAL_ROS_NM_JUL+C(6)*C65_CAL_ROS_NM_AUG+C(7)*C65_CAL_ROS_NM_SEP+C(8)*BIN0810+C(9)*BIN0914+C(10)*BIN1218+C(11)*BIN0419+C(12)*BIN0519+[AR(1)=C(13)]+[SMA(1)=C(14)]

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	19,955.449	389.649	51.214	0.00%
C(2)	(8,362.747)	1,676.085	(4.989)	0.00%
C(3)	36.863	8.188	4.502	0.00%
C(4)	31.555	4.864	6.487	0.00%
C(5)	52.710	4.474	11.781	0.00%
C(6)	60.111	4.558	13.188	0.00%
C(7)	28.709	6.988	4.108	0.01%
C(8)	11,542.302	5,025.815	2.297	2.29%
C(9)	(16,901.114)	5,028.791	(3.361)	0.10%
C(10)	(31,574.789)	4,942.108	(6.389)	0.00%
C(11)	(28,158.201)	5,581.820	(5.045)	0.00%
C(12)	(33,736.420)	5,593.271	(6.032)	0.00%
C(13)	0.655	0.061	10.803	0.00%
C(14)	0.275	0.085	3.259	0.14%

Table F-65: Wholesale Sales – Lea County – Regression Statistics

Wholesale - Lea County

Model Statistics		
179		
0.8428		
0.8304		
17.525		
17.775		
-1,808.500		
33,514,890,743.334		
6,252,280,149.23		
6,155.70		
1.97		
99,039.84		
14,923.21		

Table F-66: Wholesale Sales – Lea County – Definitions

Wholesale - Lea County

Variable Name	Definition
S_LeaCounty	Lea County sales
Extraction_Index	Oil and Gas Extraction Index
Feb	Seasonal binary variable for February
C65_cal_ROS_NM_May	May cooling degree days
C65_cal_ROS_NM_Jun	June cooling degree days
C65_cal_ROS_NM_Jul	July cooling degree days
C65_cal_ROS_NM_Aug	August cooling degree days
C65_cal_ROS_NM_Sep	September cooling degree days
Bin0810	Binary variable for August 2010=1, otherwise =0
Bin0914	Binary variable for September 2014=1, otherwise =0
BIN1218	Binary variable for December 2018=1, otherwise =0
BIN0419	Binary variable for April 2019=1, otherwise =0
BIN0519	Binary variable for May 2019=1, otherwise =0
AR(1)	First-order autoregressive term
SMA(1)	First-order seasonal moving average term

Table F-67: Wholesale Sales – Roosevelt

Wholesales Sales - Roosevelt

THIS COURSE THE COURSE
Dependent Variable: S_Roosevelt
Method: Least Squares
Sample: 2008M01 2020M12
Included observations: 156

S_ROOSEVELT=C(1)*CONST+C(2)*TREND2012+C(3)*BINMAR+C(4)*BINAPR+C(5)*BINMAY+C(6)*C65_CAL_ROS_NM_JUN+C(7)*C65_CAL_ROS_NM_JUL+C(8)*C65_CAL_ROS_NM_AUG+C(9)*C65_CAL_ROS_NM_SEP+C(10)*BINNOV+C(11)*BIN0515+C(12)*BIN1015+C(13)*BIN0916+C(14)*BIN0817+[AR(1)=C(15)]

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	14,506.053	509.136	28.491	0.00%
C(2)	(36.589)	9.211	(3.972)	0.01%
C(3)	2,673.173	278.058	9.614	0.00%
C(4)	3,380.847	352.452	9.592	0.00%
C(5)	2,181.768	391.361	5.575	0.00%
C(6)	7.780	0.781	9.956	0.00%
C(7)	11.119	0.675	16.474	0.00%
C(8)	12.103	0.658	18.388	0.00%
C(9)	8.769	1.019	8.602	0.00%
C(10)	(766.034)	218.897	(3.500)	0.06%
C(11)	(3,079.331)	812.407	(3.790)	0.02%
C(12)	(2,318.457)	813.842	(2.849)	0.51%
C(13)	(3,503.395)	802.335	(4.366)	0.00%
C(14)	(4,086.121)	804.292	(5.080)	0.00%
C(15)	0.758	0.057	13.319	0.00%

Table F-68: Wholesale Sales - Roosevelt - Regression Statistics

Wholesales Sales - Roosevelt

Model Statistics		
Adjusted Observations	155	
R-Squared	0.9107	
Adjusted R-Squared	0.9018	
AIC	13.871	
BIC	14.165	
Log-Likelihood	-1,279.912	
Model Sum of Squares	1,376,638,282.440	
Sum of Squared Errors	134,967,320.65	
Std. Error of Regression	981.86	
Durbin-Watson Statistic	2.01	
Mean dependent var	15,154.32	
StdDev dependent var	3,128.39	

Table F-69: Wholesale Sales - Roosevelt - Definitions

Wholesales Sales - Roosevelt

Variable Name	Definition
S_Roosevelt	Roosevelt sales
CONST	Constant Variable
Trend2012	Trend variable beginning in January 2012
Mar	Seasonal binary variable for March
Apr	Seasonal binary variable for April
May	Seasonal binary variable for May
C65_cal_ROS_NM_Jun	June cooling degree days
C65_cal_ROS_NM_Jul	July cooling degree days
C65_cal_ROS_NM_Aug	August cooling degree days
C65_cal_ROS_NM_Sep	September cooling degree days
Nov	Seasonal binary variable for November
Bin0515	Binary variable for May 2015=1, otherwise =0
Bin1015	Binary variable for October 2015=1, otherwise =0
Bin0916	Binary variable for September 2016=1, otherwise =0
Bin0817	Binary variable for August 2017=1, otherwise =0
AR(1)	First-order autoregressive term

Table F-70: Wholesale Sales - Golden Spread Full Load

Wholesales - GSEC_FullLoad Sales

Dependent Variable: GSECSALES_LOG

Method: Least Squares

Sample: 2004M01 2020M12

Included observations: 204

GSECSALES_LOG=C(1)*CONST+C(2)*C65_CAL_PAN_MAY+C(3)*C65_CAL_PAN_JUNE+C(4)*C65_CAL_PAN_JU

GSECSALES_LOG=C(1)*CONST+C(2)*C65_CAL_PAN_MAY+C(3)*C65_CAL_PAN_JUNE+C(4)*C65_CAL_PAN_JU LY+C(5)*C65_CAL_PAN_AUG+C(6)*C65_CAL_PAN_SEP+C(7)*Bin0407+C(8)*BIN0113+C(9)*BIN0916+C(10)*BIN08 17+C(11)*PRECIP_CAL_PANAPRTOJUL+C(12)*Feb+C(13)*Mar+C(14)*Apr+C(15)*May+C(16)*Bin0417+C(17)*LogEE TX_MA+[AR(1)=C(18)]+[MA(1)=C(19)]

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-7.412	1.655	-4.480	0.00%
C(2)	0.001	0.000	5.401	0.00%
C(3)	0.001	0.000	17.639	0.00%
C(4)	0.002	0.000	26.027	0.00%
C(5)	0.002	0.000	27.197	0.00%
C(6)	0.001	0.000	11.947	0.00%
C(7)	-0.275	0.070	-3.932	0.01%
C(8)	-0.556	0.067	-8.273	0.00%
C(9)	-0.464	0.069	-6.746	0.00%
C(10)	-0.216	0.068	-3.194	0.17%
C(11)	-0.032	0.005	-5.877	0.00%
C(12)	-0.085	0.023	-3.651	0.04%
C(13)	0.116	0.031	3.792	0.02%
C(14)	0.381	0.033	11.571	0.00%
C(15)	0.213	0.053	4.000	0.01%
C(16)	-0.278	0.070	-3.987	0.01%
C(17)	3.675	0.303	12.114	0.00%
C(18)	0.310	0.107	2.894	0.43%
C(19)	0.454	0.102	4.435	0.00%

Table F-71: Wholesale Sales – Golden Spread Full Load – Regression Statistics

Wholesales - GSEC_FullLoad_Sales

Mod	el Statistics
Adjusted Observations	203
R-Squared	0.9489
Adjusted R-Squared	0.9439
AIC	-4.796
BIC	-4.486
Log-Likelihood	217.725
Model Sum of Squares	25.822
Sum of Squared Errors	1.39
Std. Error of Regression	0.09
Durbin-Watson Statistic	1.98
Mean dependent var	12.87
StdDev dependent var	0.37

Table F-72: Wholesale Sales - Golden Spread Full Load - Definitions

Wholesales - GSEC_FullLoad_Sales

Variable Name	Definition
GSECSales_Log	Log of Golden Spread full load sales plus Tri-County Sales
CONST	Constant variable
C65_Cal_Pan_May	May cooling degree days
C65_cal_Panhandle_Jun	June cooling degree days
C65_cal_Panhandle_Jul	July cooling degree days
C65_cal_Panhandle_Aug	August cooling degree days
C65_cal_Panhandle_Sep	September cooling degree days
Bin0407	Binary variable for April 2007=1, otherwise =0
Bin0113	Binary variable for January 2013=1, otherwise =0
Bin0916	Binary variable for September 2016=1, otherwise =0
Bin0817	Binary variable for August 2017=1, otherwise =0
Precip_cal_PanhandleAprtoJul	Precipitation, April May June and July
Feb	Seasonal binary for February=1, otherwise=0
Mar	Seasonal binary for March=1, otherwise=0
Apr	Seasonal binary for April=1, otherwise=0
May	Seasonal binary for May=1, otherwise=0
Bin0417	Binary variable for April 2017=1, otherwise=0
LogEE_TX_MA	Log of 12 month moving average Non-farm Employment in Texas service a
AR(1)	First-order autoregressive term
MA(1)	First-order moving average term

Table F-73: Coincident Peak Demand – Retail

Coincident Peak Demand - Retail

Dependent Variable: Retail_Load_Log

Method: Least Squares

Sample: 2007M01 2020M12

Included observations: 168

LOG(RETAILLOAD-CELANESELOAD+RETAIL INTERRUPTIONS-LUBBLOAD+SUNRAYII) = C(1) +

C(2)*LOG(@MOVAV(TOTAL RETAIL SALES-S CELANESE TX+DSM MWH SAVINGS-LUBB SALES-

NEW_RETAIL_LOAD_SALES+SUNRAYIISALES,12)) + C(3)*(JAN*HDD65_PD_SPS*CUST_SPS) +

C(4)*(FEB*HDD65_PD_SPS*CUST_SPS) + C(5)*(MAR*HDD65_PD_SPS*CUST_SPS) + C(6)*(APR*CDD65_PD_SPS*CUST_SPS) + C(7)*(MAY*CDD65_PD_SPS*CUST_SPS) + C(8)*(JUN*CDD65_PD_SPS*CUST_SPS) + C(9)*(JUL*CDD65_PD_SPS*CUST_SPS) +

C(10)*(AUG*CDD65_PD_SPS*CUST_SPS) + C(11)*(SEP*CDD65_PD_SPS*CUST_SPS) +

C(12)*(OCT*CDD65_PD_SPS*CUST_SPS) + C(13)*(NOV*HDD65_PD_SPS*CUST_SPS) +

C(14)*(DEC*HDD65 PD SPS*CUST SPS) + C(15)*BIN1008 + C(16)*BIN1011 + C(17)*BIN0415 + C(18)*BIN0316 +

C(19)*BIN0118 + C(20)*BIN2020 + C(21)*BINJUN + C(22)*BINJUL + C(23)*BINAUG + C(24)*BINSEP + [MA(1)=C(25)] +

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-3.588	0.712	-5.03603	0.00%
C(2)	0.797	0.050	15.93460	0.00%
C(3)	0.000	0.000	10.52449	0.00%
C(4)	0.000	0.000	10.50991	0.00%
C(5)	0.000	0.000	5.28083	0.00%
C(6)	0.000	0.000	7.43580	0.00%
C(7)	0.000	0.000	17.58511	0.00%
C(8)	0.000	0.000	5.04123	0.00%
C(9)	0.000	0.000	4.02160	0.01%
C(10)	0.000	0.000	2.38387	1.84%
C(11)	0.000	0.000	4.97752	0.00%
C(12)	0.000	0.000	10.04931	0.00%
C(13)	0.000	0.000	7.30365	0.00%
C(14)	0.000	0.000	11.17656	
C(15)	-0.083	0.030	-2.78298	0.61%
C(16)	-0.084	0.029	-2.88441	0.45%
C(17)	-0.064	0.030	-2.15983	3.25%
C(18)	-0.093	0.028	-3.27755	
C(19)	0.063	0.029	2.15783	3.26%
C(20)	-0.036	0.015	-2.47661	1.44%
C(21)	0.092	0.042	2.18554	
C(22)	0.178	0.040	4.46264	0.00%
C(23)	0.203	0.053	3.80642	0.02%
C(24)	0.077	0.036	2.12494	3.53%
C(25)	0.329	0.085	3.86315	0.02%
C(26)	0.232	0.086	2.69271	0.79%

Table F-74: Coincident Peak Demand – Retail – Regression Statistics

Coincident Peak Demand - Retail

Mo	odel Statistics
Adjusted Observations	168
R-Squared	0.9581
Adjusted R-Squared	0.9508
AIC	-6.880
BIC	-6.397
Log-Likelihood	365.562
Model Sum of Squares	2.900
Sum of Squared Errors	0.13
Std. Error of Regression	0.03
Durbin-Watson Statistic	1.98
Mean dependent var	7.93
StdDev dependent var	0.13

Table F-75: Coincident Peak Demand – Retail – Definitions

Coincident Peak Demand - Retail

Variable Name	Definition
Retail_Load_Log	SPS retail coincident peak demand
CONST	Constant variable
Retail_Sales_LogMA12	Log of 12 month moving average of retail sales
H65_bill_Retail_SPS_Jan	Heating degree days (January) multiplied by customers
H65_bill_Retail_SPS_Feb	Heating degree days (February) multiplied by customers
H65_bill_Retail_SPS_Mar	Heating degree days (March) multiplied by customers
C65_bill_Retail_SPS_Apr	Cooling degree days (April) multiplied by customers
C65_bill_Retail_SPS_May	Cooling degree days (May) multiplied by customers
C65_bill_Retail_SPS_Jun	Cooling degree days (June) multiplied by customers
C65_bill_Retail_SPS_Jul	Cooling degree days (July) multiplied by customers
C65_bill_Retail_SPS_Aug	Cooling degree days (August) multiplied by customers
C65_bill_Retail_SPS_Sep	Cooling degree days (September) multiplied by customers
C65_bill_Retail_SPS_Oct	Cooling degree days (October) multiplied by customers
H65_bill_Retail_SPS_Nov	Heating degree days (November) multiplied by customers
H65_bill_Retail_SPS_Dec	Heating degree days (December) multiplied by customers
Bin1008	Binary variable for October 2008=1, otherwise =0
Bin1011	Binary variable for October 2011=1, otherwise =0
Bin0415	Binary variable for April 2015=1, otherwise =0
Bin0316	Binary variable for March 2016=1, otherwise =0
Bin0118	Binary variable for January 2018=1, otherwise=0
Bin2020	Binary variable for year 2020=1, otherwise=0
Jun	Seasonal binary variable for June=1, otherwise=0
Jul	Seasonal binary variable for July=1, otherwise=0
Aug	Seasonal binary variable for August=1, otherwise=0
Sep	Seasonal binary variable for September=1, otherwise=0
MA(1)	First-order moving average term
MA(2)	Second-order moving average term

Table F-76: Probability Distribution – Full Requirement Energy Excluding WTMPA

Full Requirement Energy Excluding WTMPA

Probability Energy

Dependent Variable: Energy
Method: Least Squares
Sample: 2000M01 2020M12
Included observations: 252

Energy = $C(1) + C(2)^*(MOVAV(CGSPNM+CGCPTX),12) + C(3)^*(CDD65_SPS^*BINMAY^*TOTAL_CUSTOMERS) + C(4)^*(CDD65_SPS^*BINJUN^*TOTAL_CUSTOMERS) + C(5)^*(CDD65_SPS^*BINJUN_*TOTAL_CUSTOMERS) + C(6)^*(CDD65_SPS^*BINAUG^*TOTAL_CUSTOMERS) + C(7)^*(CDD65_SPS^*BINSEP^*TOTAL_CUSTOMERS) + C(8)^*(HDD65_SPS^*BINJAN^*TOTAL_CUSTOMERS) + C(9)^*(HDD65_SPS^*BINFEB^*TOTAL_CUSTOMERS) + C(10)^*(HDD65_SPS^*BINMAR^*TOTAL_CUSTOMERS) + C(11)^*(HDD65_SPS^*BINOCT^*TOTAL_CUSTOMERS) + C(12)^*(HDD65_SPS^*BINNOV^*TOTAL_CUSTOMERS) + C(13)^*(CDD65_SPS^*BINDEC^*TOTAL_CUSTOMERS) + C(14)^*BIN0412 + C(15)^*BINFEB + [AR(1)=C(16)] + [AR(2)=C(17)]$

	Coefficient		t Ctatiatia	Prob.
Variable	-		t-Statistic	
C(1)	1011820.833		4.50197	0.00%
C(2)	12.637	3.712	3.40437	0.08%
C(3)	0.002	0.000	15.93293	0.00%
C(4)	0.002	0.000	26.79662	0.00%
C(5)	0.003	0.000	40.39966	0.00%
C(6)	0.003	0.000	38.26489	0.00%
C(7)	0.002	0.000	13.80201	0.00%
C(8)	0.001	0.000	13.51462	0.00%
C(9)	0.001	0.000	3.11468	0.21%
C(10)	0.000	0.000	5.58673	0.00%
C(11)	0.001	0.000	3.89976	0.01%
C(12)	0.000	0.000	2.88904	0.42%
C(13)	0.001	0.000	15.08933	0.00%
C(14)	-417986.217	36369.816	-11.49267	0.00%
C(15)	-227716.222	58731.318	-3.87725	0.01%
C(16)	0.719	0.063	11.32320	0.00%
C(17)	0.218	0.064	3.41769	0.08%

Table F-77: Probability Distribution – Full Requirement Energy Excluding WTMPA – Regression Statistics

Probability Energy

1 Tobability Energy		
Model Statistics		
Adjusted Observations	250	
R-Squared	0.9743	
Adjusted R-Squared	0.9725	
AIC	21.485	
BIC	21.725	
Log-Likelihood	-3,023.369	
Model Sum of Squares	17,715,413,838,134	
Sum of Squared Errors	467,438,829,839.67	
Std. Error of Regression	44,790.35	
Durbin-Watson Statistic	2.01	
Mean dependent var	1,866,130.66	
StdDev dependent var	272,757.55	

Table F-78: Probability Distribution – Full Requirement Energy Excluding WTMPA – Definitions

Probability Energy

Variable Name	Definition
Energy	SPS full requirement energy, excluding WTMPA sales
CONST	Constant
CGCP_SPS_MA12	
	12-Month Moving Average of New Mexico and Texas Gross County Product
C65_SPS_May	May weather index for customer weighted cooling degree days
C65_SPS_Jun	June weather index for customer weighted cooling degree days
C65_SPS_Jul	July weather index for customer weighted cooling degree days
C65_SPS_Aug	August weather index for customer weighted cooling degree days
C65_SPS_Sep	September weather index for customer weighted cooling degree days
H65_SPS_Jan	January weather index for customer weighted heating degree days
H65_SPS_Feb	February weather index for customer weighted heating degree days
H65_SPS_Mar	March weather index for customer weighted heating degree days
H65_SPS_Oct	October weather index for customer weighted heating degree days
H65_SPS_Nov	November weather index for customer weighted heating degree days
H65_SPS_Dec	December weather index for customer weighted heating degree days
Bin0412	Binary variable for April 2012=1, otherwise =0
Feb	Seasonal Binary variable for February=1, otherwise=0
AR(1)	First-order autoregressive term
AR(2)	Second-order autoregressive term

Table F-79: Probability Distribution – Full Requirement Peak Demand **Excluding WTMPA**

Full Requirement Peak Excluding WTMPA

Probability Peak Demand

Dependent Variable: Peak Method: Least Squares Sample: 2000M01 2020M12 Included observations: 252

 $\mathsf{PEAK} = \mathsf{C}(1)^*(\mathsf{MOVAV}(\mathsf{ENERGY}, 12) + \mathsf{C}(2)^*(\mathsf{CDD65_SPS*BINAPR}) + \mathsf{C}(3)^*(\mathsf{CDD65_SPS*BINMAY}) + \mathsf{C}(3)^*(\mathsf{CDD65_SPSS*BINMAY}) + \mathsf{C}(3)^*(\mathsf$

C(4)*(BINJUN*((MAXTEMP+MINTEMP)/2) + C(5)*(BINJUL*((MAXTEMP+MINTEMP)/2) + C(6)*(BINAUG*((MAXTEMP+MINTEMP)/2) + C(7)*(CDD65_SPS*BINSEP) + C(8)*(CDD65_SPS*BINOCT) + C(9)*TREND_PD + C(10)*HDD_SPS + C(11)*BIN0905 + C(12)*BIN1008 + C(13)*BIN1011 + C(14)*BIN0514 + C(15)*BINDEC

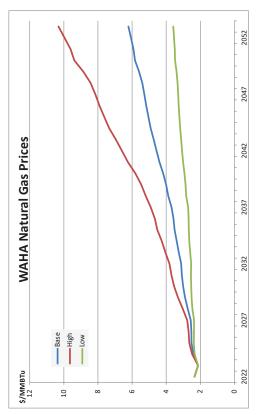
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.001	0.000	70.51418	0.00000
C(2)	4.805	0.762	6.30989	0.00000
C(3)	3.380	0.215	15.71620	0.00000
C(4)	11.292	0.528	21.39179	0.00000
C(5)	12.455	0.536	23.23589	0.00000
C(6)	12.406	0.534	23.22357	0.00000
C(7)	3.361	0.186	18.06078	0.00000
C(8)	3.884	0.643	6.04432	0.00000
C(9)	0.439	0.060	7.28086	0.00000
C(10)	513.817	121.642	4.22402	0.00004
C(11)	-325.357	122.398	-2.65819	0.00839
C(12)	-294.284	118.326	-2.48707	0.01356
C(13)	-215.441	120.425	-1.78900	0.07490
C(14)	-323.457	124.919	-2.58933	0.01021
C(15)	0.530	0.057	9.34928	0.00000

Table F-80: Probability Distribution – Full Requirement Peak Demand Excluding WTMPA – Regression Statistics

Probability Peak Demand

Trobablity real Bernaria	
Model S	tatistics
Adjusted Observations	251
R-Squared	0.9110
Adjusted R-Squared	0.9057
AIC	9.841
BIC	10.051
Log-Likelihood	-1,576.159
Model Sum of Squares	42,814,843.849
Sum of Squared Errors	4,183,302.01
Std. Error of Regression	133.14
Durbin-Watson Statistic	2.21
Mean dependent var	3,099.04
StdDev dependent var	435.34

Table F-81: Probability Distribution – Full Requirement Peak Demand Excluding WTMPA – Definitions


Probability Peak Demand

Variable Name	Definition
Peak	SPS full requirement peak demand, excluding WTMPA peak demand
Energy_MA12	12-month moving average of SPS full requirement energy, excluding WTMPA
	sales
C65_SPS_Apr	April cooling degree days
C65_SPS_May	May cooling degree days
SPS_Avg_Temp_Jun	Peak day average temperature in June
SPS_Avg_Temp_Jul	Peak day average temperature in July
SPS_Avg_Temp_Aug	Peak day average temperature in August
C65_SPS_Sep	September cooling degree days
C65_SPS_Oct	October cooling degree days
HDD_SPS	Service territory heating degree days
Bin1000	Binary variable for October 2000=1, otherwise =0
Bin0905	Binary variable for September 2005=1, otherwise =0
Bin1008	Binary variable for October 2008=1, otherwise =0
Bin1011	Binary variable for October 2011=1, otherwise =0
Bin0915	Binary variable for September 2015=1, otherwise =0
AR(1)	First-order autoregressive term

Appendix G Page 1 of 11 Case No. 21-00169-UT

SPS Forecasted Power/Fuel Prices Base, High, and Low Forecasts

//WBTu	TOL	1.84	1.87	1.91	1.96	2.01	5.06	2.12	2.17	2.21	2.28	2.32	2.36	2.42	2.49	2.55	2.63	2.69	2.76	2.82	2.90	2.98	3.05	3.13	3.22	3.30	3.39	3.48	3.57	3.67	3.76	3.85	3.95
Coal (\$/MMBTu)	HAR	1.61	1.64	1.68	1.72	1.77	1.81	1.86	1.91	1.94	2.00	2.03	2.07	2.12	2.18	2.24	2.30	2.36	2.42	2.48	2.54	2.61	2.68	2.75	2.83	2.90	2.98	3.06	3.14	3.22	3.30	3.38	3.47
Oil (\$/MMBtu)	TUC	1.82	1.78	1.77	1.80	1.84	1.88	1.92	1.96	2.00	2.05	2.09	2.14	2.18	2.23	2.28	2.33	2.38	2.43	2.48	2.53	2.58	2.64	2.69	2.75	2.81	2.87	2.93	3.00	3.06	3.13	3.20	3.27
(\$/MWh)	SPP-OFF	13.40	12.81	15.01	16.03	17.55	17.95	18.56	19.47	20.76	21.42	21.31	22.33	23.19	23.46	23.58	24.46	25.90	26.76	28.25	29.57	30.86	32.10	32.95	34.38	35.18	35.90	37.34	37.40	38.72	39.32	40.32	41.32
Electricity (\$/MWh)	NO-ddS	20.48	18.72	21.54	22.54	23.62	24.15	25.02	25.99	26.94	26.97	26.56	27.10	27.23	27.59	27.49	28.28	29.41	30.49	31.49	33.34	34.62	35.51	36.20	37.05	38.03	38.94	39.89	40.06	40.77	41.37	42.42	43.47
MMBtu)	Low	2.34	2.13	2.33	2.38	2.37	2.36	2.46	2.51	2.53	2.55	2.53	2.59	2.65	2.67	2.68	2.71	2.83	2.86	2.93	3.01	3.07	3.12	3.18	3.22	3.27	3.29	3.33	3.39	3.48	3.50	3.54	3.58
Waha Natural Gas (\$/MMBtu)	High	2.34	2.13	2.48	2.65	2.68	2.77	3.02	3.31	3.53	3.69	3.80	4.04	4.26	4.52	4.67	4.90	5.20	5.46	5.81	6.25	09'9	6.95	7.34	7.63	7.91	8.16	8.43	8.85	9.39	9.61	96.6	10.32
Waha Na	Base	2.34	2.13	2.40	2.51	2.52	2.56	2.73	2.89	3.00	3.08	3.12	3.26	3.38	3.51	3.57	3.69	3.87	4.00	4.18	4.39	4.57	4.73	4.91	5.04	5.17	5.28	5.40	5.59	5.83	5.92	90.9	6.21
		2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053

SPS Forecasted Power/Fuel Prices Base, High, and Low Forecasts

		Dem	Demand and Energy Forecast	rgy Forecast		
	Pe	Peak Demand (MW)			Energy (GWh)	
Year	Financial Forecast	Financial Forecast Planning Forecast	Low Forecast	Financial Forecast	Financial Forecast Planning Forecast	Low Forecast
2022	3,969	4,133	3,709	25,475,845	27,329,919	23,545,944
2023	3,874	4,115	3,528	25,425,620	27,806,276	22,934,842
2024	3,899	4,207	3,507	25,523,530	28,437,432	22,504,125
2025	3,937	4,269	3,484	25,779,795	29,142,514	22,271,129
2026	3,867	4,240	3,363	25,580,420	29,360,490	21,717,416
2027	3,905	4,333	3,376	25,471,918	29,640,113	21,213,941
2028	3,934	4,403	3,363	25,642,615	30,152,730	21,026,343
2029	3,961	4,464	3,343	25,842,979	30,664,557	20,893,456
2030	3,982	4,522	3,308	26,007,388	31,160,661	20,687,294
2031	4,007	4,565	3,332	26,166,304	31,639,736	20,547,144
2032	4,033	4,652	3,312	26,342,128	32,112,771	20,375,791
2033	4,061	4,706	3,322	26,557,979	32,695,224	20,300,016
2034	4,085	4,767	3,307	26,781,145	33,284,261	20,221,534
2035	4,122	4,799	3,295	27,061,409	33,848,773	20,091,776
2036	4,153	4,890	3,298	27,245,226	34,382,271	19,912,222
2037	4,183	4,952	3,324	27,532,561	35,056,498	19,900,664
2038	4,207	4,987	3,278	27,751,721	35,599,380	19,748,257
2039	4,241	5,066	3,270	28,032,684	36,212,303	19,722,193
2040	4,275	5,125	3,285	28,293,573	36,848,387	19,596,808
2041	4,302	5,182	3,283	28,526,079	37,465,743	19,464,632

Input(s):

			Mo	nthly Demand a	nd Energy Forec	asts	
		Financia	l Forecast		Forecast		orecast
Month	Year		Demand (MW)	Energy (MWh)			
1	2022	2,191,258	3,430	2,331,234	3,605	2,049,878	3,168
2	2022	1,842,251	3,424	1,974,369	3,614	1,705,325	3,144
3	2022	2,114,594	3,248	2,263,947	3,437	1,961,625	2,977
4	2022	1,966,287	3,286	2,113,383	3,491	1,815,357	2,998
5	2022	2,037,485	3,733	2,113,303	3,959	1,875,019	3,375
6	2022	2,205,533	3,824	2,362,660	3,987	2,046,961	3,558
7	2022	2,317,183	3,969	2,470,353	4,133	2,155,300	3,709
8	2022	2,334,958	3,934	2,500,600	4,098	2,159,332	3,680
9	2022	2,125,280	3,789	2,287,627	4,064	1,952,379	3,455
10	2022	2,058,759	3,325	2,218,202	3,520	1,891,136	3,043
11	2022	2,060,533	3,304	2,226,677	3,494	1,888,872	3,024
12	2022	2,221,724	3,424	2,387,158	3,612	2,044,761	3,146
1	2023	2,222,088	3,433	2,405,486	3,661	2,029,754	3,103
2	2023	1,837,597	3,429	2,007,426	3,697	1,655,383	3,088
3	2023	2,113,323	3,251	2,303,640	3,511	1,912,381	2,922
4	2023	1,938,396	3,278	2,119,727	3,538	1,745,983	2,930
5	2023	2,047,514	3,723	2,240,708	3,993	1,847,110	3,317
6	2023	2,197,158	3,726	2,396,713	3,965	1,988,113	3,390
7	2023	2,287,442	3,874	2,482,608	4,115	2,080,890	3,528
8	2023	2,333,822	3,833	2,544,552	4,049	2,117,504	3,491
9	2023	2,117,945	3,730	2,328,357	4,053	1,895,962	3,315
10	2023	2,045,800	3,260	2,256,795	3,525	1,824,996	2,902
11	2023	2,064,739	3,238	2,277,196	3,494	1,838,177	2,893
12	2023	2,219,796	3,359	2,443,068	3,623	1,998,589	3,027
1	2024	2,213,351	3,366	2,445,656	3,678	1,970,104	2,972
2	2024	1,856,917	3,360	2,075,821	3,669	1,632,232	2,946
3	2024	2,098,603	3,175	2,333,893	3,485	1,853,314	2,780
4	2024	1,910,051	3,200	2,138,615	3,515	1,673,608	2,787
5	2024	2,014,253	3,644	2,243,360	3,974	1,768,819	3,187
6	2024	2,231,441	3,747	2,473,301	4,030	1,978,093	3,353
7	2024	2,302,334	3,899	2,537,385	4,207	2,056,799	3,507
8	2024	2,351,704	3,851	2,596,611	4,135	2,087,619	3,459
9	2024	2,143,301	3,787	2,401,592	4,166	1,887,363	3,305
10	2024	2,077,787	3,309	2,334,471	3,645	1,809,957	2,905
11	2024	2,087,922	3,284	2,350,959	3,613	1,819,463	2,871
12	2024	2,235,865	3,404	2,505,769	3,719	1,966,754	2,979
1	2025	2,248,793	3,406	2,522,688	3,753	1,959,407	2,945
2	2025	1,817,758	3,394	2,069,690	3,761	1,558,544	2,919
3	2025	2,127,447	3,205	2,404,983	3,562	1,838,273	2,753
4	2025	1,921,747	3,225	2,187,662	3,596	1,651,822	2,773
5	2025	2,022,740	3,670	2,287,683	4,044	1,743,437	3,139
6	2025	2,272,304	3,793	2,562,932	4,147	1,969,135	3,345
7	2025	2,321,792	3,937	2,587,032	4,269	2,042,474	3,484
8	2025	2,377,029	3,891	2,659,332	4,234	2,072,722	3,437
9	2025	2,176,515	3,827	2,467,168	4,262	1,872,603	3,293
10	2025	2,106,167	3,339	2,404,004	3,728	1,796,934	2,879
11	2025	2,122,772	3,313	2,421,865	3,689	1,807,461	2,846
12	2025	2,264,733	3,431	2,567,476	3,802	1,958,316	2,965

		Financia	Forecast	Planning	Forecast	Low Fo	orecast
Month	Year	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)
1	2026	2,276,141	3,434	2,588,505	3,846	1,954,016	2,922
2	2026	1,827,748	3,421	2,107,842	3,842	1,537,350	2,909
3	2026	2,152,625	3,227	2,469,041	3,645	1,827,693	2,722
4	2026	1,938,418	3,247	2,233,552	3,649	1,635,163	2,733
5	2026	2,038,162	3,701	2,342,268	4,112	1,731,941	3,119
6	2026	2,233,820	3,723	2,553,211	4,119	1,908,380	3,243
7	2026	2,269,000	3,867	2,571,539	4,240	1,964,040	3,363
8	2026	2,325,861	3,822	2,646,545	4,197	2,009,040	3,334
9	2026	2,140,292	3,756	2,462,907	4,222	1,806,353	3,175
10	2026	2,069,375	3,264	2,396,481	3,681	1,730,418	2,733
11	2026	2,085,011	3,238	2,424,274	3,664	1,732,376	2,720
12	2026	2,223,967	3,359	2,564,325	3,774	1,880,647	2,846
1	2027	2,184,202	3,362	2,524,842	3,800	1,837,367	2,789
2	2027	1,786,555	3,350	2,105,403	3,804	1,467,204	2,771
3	2027	2,085,669	3,153	2,434,868	3,596	1,727,617	2,593
4	2027	1,902,679	3,173	2,233,049	3,616	1,557,635	2,603
5	2027	2,009,782	3,633	2,343,970	4,082	1,669,315	3,025
6	2027	2,235,346	3,759	2,593,151	4,184	1,872,641	3,227
7	2027	2,333,666	3,905	2,668,806	4,333	1,990,643	3,376
8	2027	2,373,374	3,855	2,724,344	4,276	2,011,701	3,322
9	2027	2,154,791	3,786	2,513,608	4,290	1,784,493	3,171
10	2027	2,076,486	3,289	2,441,681	3,735	1,710,540	2,715
11	2027	2,085,054	3,262	2,443,212	3,728	1,711,973	2,692
12	2027	2,244,313	3,384	2,613,180	3,837	1,872,811	2,814
1	2028	2,207,115	3,386	2,578,452	3,882	1,825,316	2,820
2	2028	1,837,917	3,374	2,180,993	3,884	1,482,837	2,770
3	2028	2,101,298	3,172	2,481,787	3,657	1,709,642	2,572
4	2028	1,906,712	3,194	2,264,250	3,681	1,546,518	2,609
5	2028	2,012,027	3,659	2,371,917	4,169	1,647,294	2,992
6	2028	2,253,517	3,783	2,634,512	4,239	1,871,860	3,202
7	2028	2,332,116	3,934	2,690,279	4,403	1,956,128	3,363
8	2028	2,376,856	3,880	2,746,376	4,360	1,984,880	3,302
9	2028		3,811	2,562,106	4,364	1,779,694	3,161
10	2028	2,089,725	3,309	2,484,127	3,818	1,691,944	2,706
11	2028	2,102,059	3,281	2,504,409	3,782	1,690,272	2,679
12	2028	2,254,805	3,404	2,653,522	3,906	1,839,958	2,815
1	2029	2,240,338	3,408	2,643,005	3,937	1,825,584	2,761
2	2029	1,804,514	3,394	2,166,997	3,942	1,434,762	2,749
3	2029	2,129,160	3,193	2,539,200	3,705	1,703,791	2,570
4	2029	1,921,151	3,214	2,307,449	3,726	1,533,851	2,587
5	2029	2,024,398	3,683	2,406,928	4,172	1,636,106	2,982
6	2029	2,282,145	3,818	2,683,490	4,291	1,866,268	3,196
7	2029	2,338,695	3,961	2,729,170	4,464	1,944,706	3,343
8	2029	2,391,006	3,908	2,781,867	4,386	1,981,994	3,299
9	2029	2,192,701	3,840	2,606,174	4,439	1,762,116	3,137
10	2029	2,113,449	3,330	2,539,232	3,873	1,683,003	2,689
11	2029	2,129,599	3,301	2,562,299	3,847	1,692,686	2,686
12	2029	2,275,823	3,423	2,698,747	3,950	1,828,590	2,773

		Financia	Forecast	Planning	Forecast	Low F	orecast
Month	Year	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)
1	2030	2,262,694	3,427	2,701,789	3,985	1,808,869	2,755
2	2030	1,815,213	3,415	2,204,981	3,999	1,417,556	2,738
3	2030	2,146,367	3,209	2,582,520	3,773	1,691,902	2,540
4	2030	1,931,278	3,229	2,332,479	3,783	1,509,266	2,582
5	2030	2,034,946	3,706	2,446,227	4,264	1,618,524	3,002
6	2030	2,298,418	3,840	2,730,302	4,373	1,850,796	3,194
7	2030	2,338,272	3,982	2,743,344	4,522	1,924,872	3,308
8	2030	2,395,566	3,930	2,823,242	4,478	1,958,578	3,281
9	2030	2,206,957	3,860	2,637,719	4,514	1,745,008	3,144
10	2030	2,133,215	3,348	2,590,977	3,919	1,659,541	2,664
11	2030	2,150,665	3,320	2,612,549	3,889	1,677,509	2,639
12	2030	2,293,798	3,443	2,754,531	4,009	1,824,871	2,780
1	2031	2,237,348	3,447	2,684,579	4,033	1,771,680	2,763
2	2031	1,834,268	3,435	2,245,979	4,057	1,411,567	2,727
3	2031	2,141,249	3,226	2,608,552	3,823	1,667,831	2,535
4	2031	1,957,644	3,247	2,395,553	3,839	1,510,619	2,550
5	2031	2,064,365	3,728	2,498,844	4,325	1,613,738	2,979
6	2031	2,294,829	3,863	2,756,482	4,449	1,829,837	3,199
7	2031	2,396,714	4,007	2,843,257	4,565	1,948,570	3,332
8	2031	2,436,796	3,951	2,882,120	4,511	1,969,592	3,275
9	2031	2,215,651	3,880	2,697,875	4,534	1,733,130	3,106
10	2031	2,135,030	3,365	2,608,618	3,961	1,635,976	2,663
11	2031	2,144,804	3,337	2,628,193	3,927	1,649,581	2,623
12	2031	2,307,606	3,461	2,789,683	4,038	1,805,022	2,759
1	2032	2,260,434	3,466	2,745,334	4,075	1,758,556	2,746
2	2032	1,887,013	3,456	2,335,325	4,087	1,431,611	2,707
3	2032	2,157,043	3,242	2,647,553	3,843	1,654,120	2,529
4	2032	1,962,107	3,266	2,423,684	3,882	1,482,977	2,549
5	2032	2,067,054	3,751	2,525,945	4,367	1,602,537	2,953
6	2032	2,313,335	3,884	2,791,506	4,499	1,818,070	3,162
7	2032	2,395,408	4,033	2,847,952	4,652	1,917,030	3,312
8	2032	2,440,356	3,973	2,913,735	4,564	1,942,877	3,272
9	2032	2,229,708	3,905	2,720,843	4,597	1,718,296	3,122
10	2032	2,148,920	3,387	2,654,616	4,041	1,637,552	2,651
11	2032	2,162,402	3,359	2,675,374	3,995	1,622,441	2,619
12	2032	2,318,346	3,483	2,830,903	4,108	1,789,723	2,731
1	2033	2,294,953	3,490	2,817,273	4,177	1,763,332	2,719
2	2033	1,855,009	3,478	2,312,795	4,125	1,385,019	2,689
3	2033	2,186,114	3,267	2,705,303	3,922	1,654,489	2,504
4	2033	1,977,740	3,291	2,463,583	3,957	1,481,147	2,532
5	2033	2,080,850	3,778	2,567,518	4,433	1,587,366	2,955
6	2033	2,343,310	3,921	2,849,822	4,554	1,817,604	3,160
7	2033	2,402,991	4,061	2,877,253	4,706	1,900,475	3,322
8	2033	2,455,514	4,004	2,963,304	4,617	1,940,680	3,244
9	2033	2,255,200	3,937	2,782,445	4,678	1,719,352	3,105
10	2033	2,174,301	3,411	2,713,137	4,053	1,629,641	2,622
11	2033	2,191,474	3,383	2,755,715	4,053	1,636,024	2,630
12	2033	2,340,524	3,506	2,887,076	4,165	1,784,887	2,743

		Financia	Forecast	Planning	Forecast	Low F	orecast
Month	Year	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)
1	2034	2,322,030	3,513	2,869,235	4,186	1,762,126	2,692
2	2034	1,871,032	3,505	2,369,071	4,234	1,384,671	2,674
3	2034	2,208,160	3,287	2,765,619	3,985	1,646,291	2,511
4	2034	1,992,735	3,311	2,512,368	3,993	1,478,757	2,550
5	2034	2,096,434	3,803	2,603,386	4,477	1,581,084	2,924
6	2034	2,364,281	3,946	2,913,530	4,594	1,799,909	3,137
7	2034	2,407,230	4,085	2,919,634	4,767	1,897,865	3,307
8	2034	2,464,740	4,030	2,989,317	4,718	1,913,508	3,252
9	2034	2,274,205	3,962	2,836,490	4,721	1,714,206	3,106
10	2034	2,199,192	3,436	2,764,939	4,154	1,610,116	2,607
11	2034	2,217,624	3,410	2,797,910	4,080	1,641,338	2,598
12	2034	2,363,482	3,533	2,942,761	4,213	1,791,663	2,708
1	2035	2,306,985	3,541	2,874,889	4,278	1,730,393	2,692
2	2035	1,900,081	3,536	2,417,628	4,308	1,378,598	2,678
3	2035	2,213,138	3,314	2,787,080	4,019	1,621,380	2,482
4	2035	2,029,163	3,339	2,577,168	4,075	1,470,612	2,523
5	2035	2,136,100	3,836	2,670,183	4,566	1,578,661	2,927
6	2035	2,370,834	3,980	2,936,599	4,666	1,801,626	3,161
7	2035	2,475,605	4,122	3,020,977	4,799	1,913,923	3,295
8	2035	2,516,058	4,063	3,075,619	4,724	1,938,368	3,262
9	2035	2,293,115	3,995	2,874,239	4,761	1,692,491	3,091
10	2035	2,211,056	3,467	2,806,423	4,215	1,604,935	2,636
11	2035	2,221,783	3,441	2,810,828	4,180	1,589,553	2,590
12	2035	2,387,490	3,565	2,997,141	4,295	1,771,235	2,715
1	2036	2,332,357	3,572	2,931,581	4,334	1,719,572	2,722
2	2036	1,956,331	3,570	2,500,170	4,332	1,385,189	2,678
3	2036	2,230,212	3,342	2,828,007	4,062	1,604,884	2,476
4	2036	2,034,611	3,369	2,610,180	4,095	1,458,837	2,541
5	2036	2,139,904	3,867	2,710,815	4,601	1,558,596	2,951
6	2036	2,389,708	4,008	2,996,240	4,724	1,787,001	3,151
7	2036	2,473,988	4,153	3,040,484	4,890	1,886,462	3,298
8	2036	2,518,989	4,089	3,100,167	4,806	1,908,866	3,232
9	2036	2,306,816	4,023	2,923,573	4,849	1,677,334	3,069
10	2036	2,225,266	3,492	2,853,534	4,268	1,588,358	2,590
11	2036	2,239,411	3,465	2,861,156	4,220	1,594,337	2,581
12	2036	2,397,631	3,589	3,026,363	4,353	1,742,787	2,724
1	2037	2,373,573	3,597	3,017,114	4,377	1,746,995	2,693
2	2037	1,930,222	3,591	2,484,315	4,411	1,346,338	2,665
3	2037	2,265,965	3,370	2,893,362	4,133	1,620,078	2,486
4	2037	2,056,894	3,398	2,649,616	4,165	1,443,250	2,502
5	2037	2,159,779	3,896	2,759,815	4,641	1,551,315	2,905
6	2037	2,425,353	4,047	3,041,471	4,828	1,775,634	3,169
7	2037	2,487,211	4,183	3,076,763	4,952	1,876,971	3,324
8	2037	2,539,705	4,123	3,166,676	4,864	1,920,766	3,233
9	2037	2,337,944	4,059	2,994,257	4,872	1,684,956	3,084
10	2037	2,256,300	3,521	2,934,132	4,318	1,592,872	2,619
11	2037	2,274,206	3,496	2,946,641	4,317	1,593,899	2,602
12	2037	2,425,410	3,619	3,092,336	4,413	1,747,589	2,703

		Financia	Forecast	Planning	Forecast	Low Fe	orecast
Month	Year	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)	Energy (MWh)	Demand (MW)
1	2038	2,401,432	3,626	3,071,301	4,404	1,724,308	2,658
2	2038	1,947,691	3,627	2,534,225	4,436	1,345,771	2,654
3	2038	2,288,418	3,395	2,962,076	4,180	1,604,737	2,473
4	2038	2,072,179	3,422	2,690,390	4,269	1,430,921	2,529
5	2038	2,175,628	3,925	2,796,533	4,750	1,539,964	2,912
6	2038	2,445,620	4,072	3,101,539	4,861	1,780,355	3,133
7	2038	2,490,417	4,207	3,112,646	4,987	1,862,721	3,278
8	2038	2,547,691	4,149	3,190,619	4,957	1,875,021	3,230
9	2038	2,355,771	4,084	3,025,147	4,959	1,658,559	3,105
10	2038	2,280,465	3,546	2,978,215	4,383	1,586,597	2,589
11	2038	2,299,386	3,521	2,994,675	4,366	1,601,347	2,603
12	2038	2,447,023	3,645	3,142,015	4,452	1,737,958	2,666
1	2039	2,386,886	3,652	3,065,278	4,505	1,699,881	2,691
2	2039	1,977,670	3,657	2,598,469	4,523	1,343,198	2,668
3	2039	2,293,428	3,421	2,985,773	4,257	1,589,172	2,506
4	2039	2,108,715	3,450	2,761,350	4,232	1,437,626	2,473
5	2039	2,215,759	3,954	2,877,564	4,764	1,549,985	2,908
6	2039	2,452,329	4,104	3,145,893	4,930	1,765,697	3,172
7	2039	2,558,358	4,241	3,208,005	5,066	1,884,011	3,270
8	2039	2,598,651	4,179	3,263,356	5,004	1,915,342	3,219
9	2039	2,374,656	4,114	3,064,808	5,016	1,656,432	3,070
10	2039	2,292,334	3,575	3,006,677	4,440	1,574,948	2,603
11	2039	2,303,318	3,552	3,031,211	4,374	1,568,216	2,563
12	2039	2,470,580	3,676	3,203,920	4,503	1,737,685	2,683
1	2040	2,417,561	3,683	3,153,974	4,565	1,693,500	2,674
2	2040	2,039,054	3,691	2,711,368	4,583	1,364,674	2,631
3	2040	2,316,583	3,450	3,058,092	4,336	1,577,230	2,460
4	2040	2,120,634	3,482	2,801,951	4,331	1,433,320	2,480
5	2040	2,225,479	3,987	2,895,275	4,827	1,541,939	2,912
6	2040	2,477,505	4,134	3,187,434	4,989	1,758,834	3,143
7	2040	2,563,798	4,275	3,253,935	5,125	1,873,314	3,285
8	2040	2,608,635	4,210	3,288,053	5,057	1,877,564	3,218
9	2040	2,395,322	4,148	3,138,982	5,088	1,651,841	3,087
10	2040	2,313,138	3,606	3,044,233	4,487	1,543,384	2,600
11	2040	2,327,878	3,583	3,071,623	4,460	1,548,411	2,542
12	2040	2,487,987	3,707	3,243,467	4,570	1,732,797	2,691
1	2041	2,455,503	3,714	3,220,118	4,660	1,700,029	2,650
2	2041	2,010,274	3,713	2,681,169	4,700	1,324,671	2,660
3	2041	2,348,210	3,482	3,100,548	4,397	1,566,783	2,455
4	2041	2,138,483	3,512	2,851,016	4,382	1,419,209	2,481
5	2041	2,241,256	4,016	2,946,220	4,873	1,527,401	2,927
6	2041	2,508,650	4,171	3,253,723	5,060	1,748,495	3,154
7	2041	2,571,737	4,302	3,275,923	5,182	1,844,080	3,283
8	2041	2,623,889	4,240	3,365,627	5,096	1,883,433	3,229
9	2041	2,421,137	4,179	3,195,458	5,190	1,643,563	3,061
10	2041	2,339,407	3,631	3,115,492	4,510	1,545,009	2,578
11	2041	2,357,544	3,609	3,153,200	4,487	1,547,764	2,558
12	2041	2,509,990	3,729	3,307,250	4,677	1,714,196	2,695

Appendix G Page 9 of 11 Case No. 21-00169-UT

SPS Generic Unit Cost Data

CT - OPERATIONAL AND COST MODELING DATA Costs are in 2021\$, escalated at 2% per year

	, 20	3	6	4			0)	2	α
	Winter, 20	233.3	174.9	116.4			9,846	10,215	11 818
Values	Summer, 96 Ann Avg, 59	223.5	167.5	111.6			9,846	10,349	11 986
	Summer, 96	200.9	150.6	100.3			10,009	10,781	12 906
Data Description	Ambient Dry Bulb Temperature, F	Max (100%) Net Capacity MW	75% Net Capacity, MW	50% Net Capacity, MW	Supplemental / Ducts Capacity MW	Supplemental / Ducts Heat Rate	HR 100% Loading, BTU/kW-hr (HHV)	HR 75% Loading, BTU/kW-hr (HHV)	HR 50% Loading BTU/kW-hr (HHV)

\$99,500	\$1,120	\$0.00	\$1,313	\$1,466	3.0%	117	Dry	°N
Construction Costs k\$	Fixed O&M Cost, \$k/yr	Variable O&M Costs, \$/MWh	On-going Capx, \$k/yr	Gas Demand, \$k/yr	EFOR	CO2 Lbs/MMBTu	Wet or dry cooled	Supplemental firing

2x1 - OPERATIONAL AND COST MODELING DATA Costs are in 2021\$, escalated at 2% per year

Data Description		Values	
Ambient Dry Bulb Temperature, F	Summer, 96	Ann Avg, 59	Winter, 20
Max (100%) Net Capacity MW	601.7	644.8	9'299
75% Net Capacity, MW	421.6	474.7	505.0
50% Net Capacity, MW	256.6	293.1	315.5
30% Net Capacity, MW	158.0	178.9	190.8
Supplemental / Ducts Capacity, MW	169.3	167.3	164.1
Supplemental / Ducts Heat Rate, BTU/kW-hr	10,000	10,000	10,000
HR 100% Loading, BTU/kW-hr (HHV)	6,258	6,246	6,287
HR 75% Loading, BTU/kW-hr (HHV)	6,731	6,598	6,583
HR 50% Loading, BTU/kW-hr (HHV)	6,757	6,637	6,654
HR 30% Loading, BTU/kW-hr (HHV)	7,873	7,637	7,582
Construction Costs K\$	\$596,250		
Fixed O&M Cost, \$k/yr	\$5,400	•	
Variable O&M Costs, \$/MWh	\$1.22		

\$596,250	\$5,400	\$1.22	\$5,150	\$16,551	3.0%	117	Dry	Yes
Construction Costs k\$	Fixed O&M Cost, \$k/yr	Variable O&M Costs, \$/MWh	On-going CapX, \$k/yr	Gas Demand, \$k/yr	EFOR	CO2 Lbs/MMBTu	Wet or dry cooled	Supplemental firing

June 30, 2021

VIA HAND DELIVERY

Ms. Melanie Sandoval, Records Bureau Chief New Mexico Public Regulation Commission P.O. Box 1269 Santa Fe, NM 87504-1269

Re: Case No. 21-00169-UT In the Matter of Southwestern Public Service Company's 2021 Integrated Resource Plan

Dear Ms. Sandoval:

In accordance with the Uncontested Comprehensive Stipulation in Case No. 19-00170-UT, Southwestern Public Service Company is filing its Tolk Analysis that will be incorporated into its Integrated Resource Plan to be filed July 16, 2021.

Please date stamp one copy of the referenced document and return to SPS. If you have any questions, please contact me at (806) 378-2115.

Yours very truly,

/s/ Mario Contreras Mario Contreras, Manager Rate Cases

Enclosures

2021 Tolk Analysis

Southwestern Public Service Company

June 30, 2021

Contents

Executive Summary	2
Section 1: Introduction	4
Section 2: Background	4
Section 3: Tolk Analysis Overview	5
Section 4: Technical Conferences	6
Section 5: First Technical Conference	8
Section 5A: Introduction	8
Section 5B: 1st & 2nd Sessions of the First Technical Conference	8
Section 5B.1: General Approach	8
Section 5B.2: Independent Evaluator	9
Section 5B.3: RFI Issuance	
Section 5B.4: Encompass Production Cost Model	10
Section 5B.5: Other Agenda Items	
Section 5C: 3 rd Session of the First Technical Conference	
Section 5D: 4th Session of the First Technical Conference	
Section 5D.1: Operating & Retirement Scenarios	
Section 5D.2: Critical Modeling Inputs & Modeling Sensitivities	
Section 5D.3: Tolk Water Rights Valuation	16
Section 6: Second Technical Conference	17
Section 6A: Introduction	
Section 6B: Final Conclusions	
Section 6C: SPS System Overview	
Section 6D: Modeling Replacement Resources	
Section 6E: Critical Modeling Inputs & External Economic Drivers	
Section 6E.1: Expiring Renewable Tax Credits	
Section 6E.2: Generator Interconnection Agreement – Schedule & Cost Uncertainty	22
Section 6E.3: RFI Proposals vs Generic Cost Assumptions	24
Section 6E.4: Feasibility of RFI Proposals	
Section 6E.5: Secondary Conclusion – The Acquisition of Economic Energy Resources Proposed in the	
RFI Summary	
Section 6F: Primary Conclusion – Economic Analysis	26
Table 2. Planning Load Forecast (Base Gas - \$400/kW network upgrades)	
Table 3. Financial Load Forecast (Base Gas - \$400/kW network upgrades)	
Section 6G: Value of Tolk Water Rights	28
Section 7: Conclusion	28
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	

Executive Summary

Tolk Generation Station ("Tolk") Units 1 and 2, which are located in West Texas and use coal fuel, rely upon the Ogallala Aquifer for generation and cooling water, and the aquifer is in an irreversible decline. If the Tolk Units are dispatched year-round on a purely economic energy basis without accounting for the long term capacity value of the Tolk Units or assigning an opportunity cost to the use of the water supply, aquifer productivity is projected to run out and become uneconomical by the mid 2020's – necessitating the early retirement of the Tolk Units. In New Mexico Base Rate Case No's. 17-00255-UT and 19-00170-UT, SPS presented economic analyses supporting the combination of (1) a change to summer-only economic dispatch of the Tolk Units and (2) a 2032 retirement date. In those prior cases and this current analysis, the objective was, and continues to be, to keep the approximately 1,000 megawatt ("MW") of firm capacity for as long as possible and at the same time maintain the voltage stability and reliability needs of the SPS system while minimizing the cost impact to its customers.

The Uncontested Comprehensive Stipulation ("Stipulation") from New Mexico Case No. 19-00170-UT ultimately set the date of abandonment and retirement for generating purposes of the Tolk Units at December 31, 2032. Further, in the Stipulation, SPS agreed to conduct an analysis by June 2021 of Tolk abandonment and potential means of replacement ("Tolk Analysis"). This submittal provides the Tolk Analysis.

Case No. 21-00169-UT

The Tolk Analysis continues to support summer-only seasonal operations and a 2032

retirement date as the optimal economical solution for serving SPS's customers. Maintaining the

existing depreciated Tolk Units through 2032 is a low-risk option to ensure SPS can reliably and

economically serve customers and meet its planning reserve margin requirements. In the absence of

the Tolk Units, (1) new replacement firm capacity resources will be required and (2) as seen in the

results of the recent request for information ("RFI"), there is a high uncertainty whether SPS could

acquire the necessary resources in the timeframe required, and if so, at what cost. Finally, as

demonstrated during the recent Winter Storm Uri, the Tolk Units continue to provide important and

valuable reliability and fuel diversity benefits to the SPS system.

As an economical, low-risk, and reliable solution, the Tolk Analysis concludes that the best

approach for customers is to continue seasonal operation of the Tolk Units and for the retirement

date of the Tolk Units to remain at December 31, 2032. This Tolk Analysis is not, however,

intended to be a final conclusion; SPS will continue to review and consider what options will most

benefit customers.

¹ During a system emergency in a non-peak month, SPS may convert the generators to generation mode and

operate them during the system emergency as was done during Winter Storm Uri in February 2021.

SPS 2021 Tolk Analysis

3

Section 1: Introduction

SPS presents its 2021 "Tolk Analysis" evaluating the economically optimal future operation and retirement dates of the two coal-fired Tolk Units. The 2021 Tolk Analysis represents over 12 months of robust analysis, including: (1) consideration of the results of the RFI, which was an all-source solicitation; and (2) evaluation of 162 different scenarios and sensitivities. Moreover, the Tolk Analysis was conducted pursuant to the oversight of an Independent Evaluator ("IE"). SPS actively sought feedback from interested parties throughout the Tolk Analysis by hosting a series of 'Technical Conferences' specific to the Tolk Analysis in addition to and in parallel with SPS's 2021 Integrated Resource Plan ("IRP") public advisory process.

Section 2: Background

The Tolk Units rely exclusively on groundwater from the Ogallala Aquifer for generation and cooling water, and the portion of the Ogallala Aquifer underlying Tolk is in an irreversible decline. The part of the aquifer that includes the Tolk wellfield is thin relative to other areas of the aquifer, and it is being depleted to support agricultural, municipal, and industrial uses. Because groundwater extraction for these uses significantly exceeds the aquifer recharge rate, the saturated thickness of the aquifer has declined by over 300 feet in some areas of the Texas Panhandle and will ultimately cause the aquifer productivity to decline to a point where it will be uneconomical to recover water needed to run the two coal-fired steam generating units.

If the Tolk Units continue to operate unconstrained (i.e., 12 months of the year), aquifer productivity is predicted to become uneconomical by the mid 2020's. In New Mexico Base Rate Case Nos. 17-00255-UT and 19-00170-UT, SPS presented economic analyses supporting a change

to the operating parameters and retirement dates of the Tolk Units. SPS's analyses supported preserving the retirement dates of the Tolk Units until 2032 by restricting the units to generate only during the high-load summer months, or during system emergency situations. Because of the reduced operations and retirement of the Tolk units, SPS had to address voltage stability and reliability needs on the transmission system. SPS's solution to address this need was to install the necessary equipment to allow the two generators to operate as synchronous condensers at the Tolk Station site. This solution is reasonable and necessary to assure the continued stability and reliability of the SPS transmission system.

The Stipulation in Case No. 19-00170-UT ultimately set the date of abandonment and retirement for generating purposes of Tolk at December 31, 2032 and SPS agreed to conduct an updated robust analysis by June 2021 of Tolk abandonment and potential means of replacement.

Section 3: Tolk Analysis Overview

The Stipulation in Case No. 19-00170-UT requires SPS to:

"Submit a robust analysis of Tolk abandonment and potential means of replacement by June 2021... The Tolk Analysis shall include evaluation of (i) the type, technical characteristics, and cost of the resources needed or available to replace the capacity provided by Tolk, (ii) the economically optimal (in terms of the public interest) abandonment dates for Tolk, and (iii) the impact on customer rates of multiple abandonment scenarios based on the present value revenue requirements considering SPS's integrated resources. SPS also commits to running at least one scenario in which all of SPS's coal-burning units are retired or replaced before 2030."

As further detailed in the Stipulation in Case No. 19-00170-UT, the Tolk Analysis requires:

(1) SPS to host two technical conferences, (2) a review by an Independent Evaluator, (3)

replacement resources priced based on an RFP or RFI, and (4) the value of reselling the water

rights.

Section 4: Technical Conferences

The Stipulation in Case No. 19-00170-UT stated:

"In the IRP public input process, and prior to filing the IRP, SPS shall hold two technical

conferences located in either Santa Fe or Albuquerque, NM. The first technical conference

will be for SPS to present and solicit feedback on the basic parameters and approach of its

analysis. The second technical conference will be for SPS to provide and solicit feedback on

the preliminary conclusions of its analysis."

The COVID-19 global pandemic prevented SPS from holding the technical conferences in-

person. Instead, the technical conferences were held virtually over video call. Due to the volume

and sequential nature of the materials being presented, SPS split the first "technical conference"

into four separate sessions. The dates and agenda items of the technical conferences are summarized

below in Table 1. The complete presentations are provided in Appendix A and, at the time of filing,

the presentations are also available on Xcel Energy Inc.'s company website:

https://www.xcelenergy.com/company/rates and regulations/resource_plans/2022_new_mexico_in

tegrated resource plan

SPS 2021 Tolk Analysis

6

Table 1. Technical Conferences:

Date	Conf.	Session	Location	Agenda Items
06/18/2020	1	1	Virtually	General approach of the Tolk Analysis
				• Request for Proposal ("RFP") to acquire the services
				of an IE
				Draft RFI to obtain pricing of replacement resources
				• Outline of the scenarios SPS is proposing to evaluate
09/01/2020	1	2	Virtually	Prior and Future Technical Conferences
				Updates from Prior Technical Conference
				1. Independent Evaluator
				2. RFI for generating resources
				Encompass – Production Cost Modeling Software
				Responses to Parties Comments and Questions
				SPS Load Forecast Update
				2. Sierra Club Modeling Questions
10/23/2020	1	3	Virtually	Harrington Station – Modeling Assumptions
02/08/2021	1	4	Virtually	Recap prior technical conferences
				• Tolk Analysis – Final proposed retirement dates and
				operating scenarios
				Replacement Resources in the Encompass Model
				Critical Modeling Parameters / Sensitivities
				Value of Tolk water rights
				Summary of 1st Technical Conference
				Final review of questions previously submitted by
				Sierra Club
04/19/2021	2	1	Virtually	• Introduction
				Tolk Analysis Overview
				SPS System Overview
				Conclusion 1: Replacement Resources
				Conclusion 2: Preliminary Results
				• Final Review

Section 5: First Technical Conference

Section 5A: Introduction

The first two sessions of the First Technical Conference introduced SPS's general approach to the Tolk Analysis, including potential operating and retirement scenarios, the appointment of the IE and the issuance of the RFI. The 3rd Session addressed the decision to model the Harrington Generating Station ("Harrington") Units operating on natural gas beyond 2024 and the 4th Session finalized critical modeling parameters, such as the scenarios and sensitivities to be evaluated.

Section 5B: 1st & 2nd Sessions of the First Technical Conference

The agenda items covered in the 1st and 2nd Sessions were split to allow time for interested parties to provide feedback on (1) acquiring the services of the IE and (2) the issuance of an RFI to acquire pricing for replacement resources.

Section 5B.1: General Approach

The Tolk Analysis is a Present Value Revenue Requirement ("PVRR") Analysis using the Encompass production cost modeling software. The Tolk Analysis incorporates the system-wide costs of multiple operating and retirement dates for the Tolk Units (scenarios), with each scenario incorporating an optimized expansion and generator replacement plan. The type, technical characteristics, and cost of replacement generation was the result of an RFI process. Finally, the Tolk Analysis was overseen by Guidehouse (formerly known as Navigant Consulting), an independent third-party evaluator.

The Tolk Analysis is described in more detail in subsequent sections – at a high level, the Tolk Analysis incorporated the following sequential steps:

- 1. Appoint the IE
- 2. Issue the RFI for replacement resources
- 3. Update EnCompass inputs and assumptions
- 4. Incorporate the proposals from the RFI process
- 5. Conduct the PVRR analysis in EnCompass
- 6. Present preliminary results at the 2nd Technical Conference
- 7. Publish Final results and conclusions

Section 5B.2: Independent Evaluator

A competitive RFP was issued to acquire the services of the IE. A draft copy of the RFP was presented during the 1st Session of the First Technical Conference. Interested parties were given 7 days to provide comments. The RFP was issued on July 6, 2020, a pre-bid meeting was held with prospective bidders two days later, and proposals were due on July 20, 2020. A copy of the final RFP can be found in Appendix B. After evaluating the proposals, SPS recommended awarding the contract to Guidehouse. Before awarding the contract, SPS solicited feedback from interested parties by hosting a virtual meeting on August 9, 2020. A copy of the recommendation presented during the August 9, 2020 meeting can be found in Appendix C. There were no objections or concerns expressed regarding moving forward with Guidehouse. Hearing no objections and after receiving concurrence from NMPRC staff, Guidehouse was formally appointed as the IE for the Tolk Analysis. A copy of Guidehouse's final report can be found in Appendix D.

Section 5B.3: RFI Issuance

A draft copy of the RFI was presented during the 1st Session of the First technical conference. The presentation summarized SPS's intent to issue an all-source solicitation for replacement generating resources that considered all ownership structures including, but not limited to, purchased power agreements, build-own-transfers, and company self-built facilities. The RFI

required bidders to provide information necessary to accurately model the proposed resources – including, but not limited to; pricing, technical characteristics, generator output, and commercial operation date. SPS solicitated comments from interested parties to be provided within 28 days of this 1st Session of the First Technical Conference.

A 'near-final' copy of the RFI was presented during the 2nd Session of the First Technical Conference. The near-final copy of the RFI incorporated a review by Guidehouse, and interested parties were given an additional five days to provide comments before the RFI was issued.

The RFI was subsequently issued on September 9, 2020 with proposals due within 60 days. A copy of the final RFI is included in Appendix E.

A bidders meeting was held on September 21, 2020 to provide potential respondents with an overview of the RFI process, instructions for submitting proposals, and to answer any questions from bidders. Upon receipt of the proposals, SPS scheduled meetings with each bidder to discuss and clarify their proposals.

Finally, a standalone email account was established for bidders to submit their proposals and to ask any questions. Guidehouse was copied on all emails received and sent from this email account to ensure fairness and consistency.

Section 5B.4: EnCompass Production Cost Model

At the time of commencing the Tolk Analysis, SPS had recently transitioned from the Strategist production cost model to a new production cost model, EnCompass which is owned by Anchor Power. Xcel Energy Inc. has a licensing agreement with Anchor Power for use of the model.

During the 1st Session of the First Technical Conference, SPS received several questions regarding the EnCompass software. In response, SPS provided an overview of EnCompass during the 2nd Session of the First Technical Conference. The presentation (found in Appendix A) included the following agenda items: (1) the impetus for change, (2) software options, identification and evaluation, (3) model features, and (4) key stakeholder issues addressed.

Section 5B.5: Other Agenda Items

Finally, during the 1st Session of the First Technical Conference SPS presented proposed operating parameters and retirement dates (scenarios) for the Tolk Analysis. After incorporating feedback from interested parties, the list of scenarios was subsequently updated, and the final list of scenarios was presented during the 4th Session of the First Technical Conference (see section 5D.1).

During the 2nd Session of the First Technical Conference SPS responded to questions and requests from the previous session. SPS's responses to these questions can be found in the complete PowerPoint presentations found in Appendix A.

Section 5C: 3rd Session of the First Technical Conference

During the 3rd Session of the First Technical Conference, SPS addressed an October 2020 signed order with the Texas Commission of Environmental Quality ("TCEQ") resolving National Ambient Air Quality Standards ("NAAQS") compliance issues at Harrington. The TCEQ signed order requires Harrington to cease burning coal by end of year 2024. While the conversion of the Harrington Units to operate on natural gas is outside the scope of the Tolk Analysis, for the purposes of evaluating all scenarios in which the Harrington Units continue to operate beyond 2024

(i.e., Scenario 1 through Scenario 5) SPS assumed the Harrington units would be converted to natural gas at the end of 2024.

Section 5D: 4th Session of the First Technical Conference

The primary focus of the 4th Session of the First Technical Conference was to finalize the critical modeling parameters of the Tolk Analysis, including (1) the operating and retirement scenarios, (2) critical modeling parameters and modeling sensitivities, and (3) the value of Tolk water rights.

Section 5D.1: Operating & Retirement Scenarios

SPS initially presented five different operating and retirement scenarios during the 1st Session of the First Technical Conference. After incorporating comments from interested parties, SPS presented six final operating and retirement scenarios during the 4th Session. The final six scenarios are as follows:

• Scenario 1 – Annual Economic Dispatch

- Summer only economic dispatch throughout 2021
- Annual economic dispatch thereafter
- Both Tolk units retire at end of economically available water EOY 2025
- Harrington converted to gas EOY 2024

• Scenario 2 – Summer Only Economic Dispatch

- Summer only economic dispatch 2021 and beyond
- Both Tolk units retire at end of economically available water EOY 2032
- Harrington converted to gas EOY 2024

• Scenario 3 – Earliest Retirement of Tolk Units

- Summer only economic dispatch 2021
- Annual economic dispatch thereafter
- Both Tolk units retire EOY 2023
- Harrington converted to gas EOY 2024

• Scenario 4 – Staggered Retirement of Tolk Units

- Summer only economic dispatch 2021

- Annual economic dispatch thereafter
- Unit 1 retires EOY 2023
- Unit 2 retires at end of economically available water EOY 2031
- Harrington converted to gas EOY 2024

• Scenario 5 – Staggered Retirement of Tolk Units & Seasonal Operations

- Summer only economic dispatch
- Unit 1 retires EOY 2023
- Unit 2 retires EOY 2032
- Harrington converted to gas EOY 2024

• Scenario 6 – Earliest Retirement of Tolk & Harrington Units

- Tolk Summer only economic dispatch 2021
- Tolk Annual economic dispatch thereafter
- Harrington Annual economic dispatch in all years
- All Tolk and Harrington Units Retire EOY 2023

Section 5D.2: Critical Modeling Inputs & Modeling Sensitivities

During the 4th Session of the First Technical Conference, SPS presented an overview of critical modeling inputs including, (1) natural gas price forecast, (2) market energy price forecast, and (3) demand and energy forecast. As each of these inputs can have a significant impact on the Tolk Analysis, SPS presented proposals for sensitivity analyses.

Natural Gas Price Forecast

The price of natural gas is a significant input into the planning model. SPS uses a combination of market prices and fundamental price forecasts, based on multiple highly respected, industry leading sources, to calculate monthly delivered gas prices. As the foundation of the gas price forecast, Henry Hub natural gas prices are developed using a blend of market information (New York Mercantile Exchange ("NYMEX") futures prices) and long-term fundamentally based forecasts from Wood Mackenzie, IHS Markit, and S&P Global. The forecast is fully market-based for the first few years, then transitions into blending the four sources to develop a composite

forecast. The Henry Hub forecast is adjusted for regional basis differentials and specific delivery

costs for each generating unit to develop final model inputs.

Gas Forecast Sensitivity

SPS conducted low and high gas price forecast sensitivity analyses. For the low and high

price cases, the base gas forecast for Henry Hub was adjusted down by 50% of the growth

(escalation) in the base gas case to represent the low gas case, and adjusted up by 150% of the

growth in the base gas to represent the high gas case.

Market Energy Price Forecast

In addition to resources that exist within SPS's service territory, SPS has access to a

regional market located outside its service territory. SPS is a member of the Southwest Power Pool,

which operates as a consolidated balancing authority and dispatches all available generation

resources within its boundaries. This consolidated dispatch allows SPS access to energy resources

outside SPS's service territory for energy purchases, as well as the opportunity to sell from its

generating sources to other market participants.

SPS uses a simple average of long-term on-peak and off-peak implied heat rate forecasts

provided by Wood Mackenzie, S&P Global, and IHS Markit for Southwest Power Pool South

Hub. The implied heat rates, denominated in million British thermal units/megawatt-hour

("mmBtu/MWh"), are then multiplied by SPS's long-term natural gas price forecast to convert the

implied heat rate values into energy prices. This process is repeated for all months, distinguishing

between on and off-peak prices, through the end of the modeling period.

SPS 2021 Tolk Analysis

14

Market Price Forecast Sensitivities

SPS's market price forecast is dependent on the gas price forecast used. As such, the market price forecast was adjusted with the low and high gas sensitivity analyses.

Demand and Energy Forecast

Projections of future energy sales and coincident peak demand are fundamental inputs into SPS's resource need assessment. SPS forecasts retail energy sales and customers by rate class for each jurisdiction. Retail coincident peak demand is forecasted in the aggregate at the total SPS level. The wholesale energy sales and coincident peak demand forecasts are developed at the individual customer level of detail. SPS models its forecasts on a monthly basis and uses monthly historical data to develop the customer, energy sales, and coincident peak demand forecasts. Energy sales are forecasted at the delivery point and peak demand is forecasted at the generating source.

Demand and Energy Sensitivity Analysis

Development and use of different energy sales and demand forecasts for planning future resources is an important aspect of the planning process. SPS conducted sensitivity analyses using a high and low forecast. The high and low forecasts are based on a Monte Carlo simulation for energy sales and peak demand forecasts with probabilistic inputs for the economic, energy, and weather drivers of the forecast models and for model error. The high forecast scenario is the forecast level from the Monte Carlo simulation that represents a plus one standard deviation confidence band from the base case forecast. The low forecast scenario is the forecast level from the Monte Carlo simulation that represents a minus one standard deviation confidence band from the base case forecast.

SPS 2021 Tolk Analysis

Note: The methodology described above for calculating the 'base' load case forecast is largely used for financial planning purposes and is referred to throughout the Tolk Analysis as the financial load forecast. Despite continued growth in oil and gas developments in the New Mexico portion of the Permian basin and due to the volatility of the industry, the financial load forecast incorporates only a modest amount of projected oil and gas load growth. The 'high' load case forecast, referred to throughout the Tolk Analysis as the planning load forecast, represents a more accurate projection of SPS's capacity position if oil and gas load continues to increase. For the purposes of resource planning, the planning load forecast is predominately used to ensure SPS has enough resources to reliably serve customers.

Section 5D.3: Tolk Water Rights Valuation

SPS presented an overview of the Tolk wellfield, including the basics of Texas groundwater law and valuation practices during the 4th session of the First Technical Conference. The presentation went on further to highlight the critical assumptions that would be required to be able to provide a representative valuation of the Tolk water rights. Some of these assumptions include the exclusion of portions of the wellfield with saturated thickness less than 40 feet (the limit of economic recovery), consideration of probable buyer needs which may negatively influence the purchase price, including the need for a conveyance system from the Tolk wellfield to the place of eventual use, and the assumption of the amount of time between now and when the future water transaction would occur to account for subsequent depletion. Projections of the rate of depletion have been consistent over several years of analyses. Two alternative valuation methodologies were described. The first relies on a depreciation study commissioned annually by the High Plains Underground Water District No.1. This study is used by local landowners to track depreciation of

Case No. 21-00169-UT

water values for tax purposes and specifically identifies District-wide water value. The second

method requires retention of a local expert in water valuation to offer an opinion about the potential

value of the Tolk water rates based on recent local real estate transactions.

Section 6: Second Technical Conference

Section 6A: Introduction

SPS presented the preliminary conclusions from the Tolk Analysis during the Second

Technical Conference, held on April 19, 2021. Although the results presented in the Tolk Analysis

may differ from the preliminary results presented in the technical conference, the conclusions are

consistent between the two.

Section 6B: Final Conclusions

The primary and secondary conclusions of the Tolk Analysis are summarized below and

discussed in detail throughout the remainder of this section.

Primary Conclusion - Retirement of the Tolk Units

The results of the Tolk Analysis continue to support seasonal operations and a 2032

retirement date for the Tolk Units.

Secondary Conclusion – The Acquisition of Economic Energy Resources Proposed in the RFI

Regardless of the operation and retirement dates of the Tolk Units, the Tolk Analysis provides

indication that proposals received from the RFI process could potentially provide economical

energy savings. However, as described in detail in Section 6E, potential energy savings are highly

dependent on critical modeling inputs and external economic drivers, that currently possess a high

SPS 2021 Tolk Analysis

17

level of uncertainty and risk. Because of this uncertainty, SPS is not recommending the acquisition of new resources at this time and will continue to monitor developments in these areas.

Section 6C: SPS System Overview

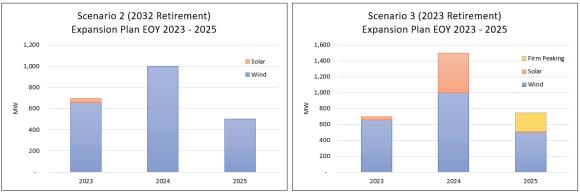
To provide reliable service, all electric utilities must have more capacity available than the projected peak load to allow for system contingencies, including generating unit or transmission outages and potential increases in actual load. The available capacity in excess of the projected peak load is referred to as the "planning reserve margin." Planning reserve margin requirements are frequently specified by the group of interconnected utilities to which the utility belongs. SPS is a member of the Southwest Power Pool Regional Transmission Organization, which currently requires each member to have a planning reserve margin of at least 12% of its peak demand forecast, pursuant to Southwest Power Pool's rules for net planning capability.

Depending on future load growth, SPS currently has adequate capacity (resources) to meet its planning reserve margin until the late 2020's to early 2030's. The early retirement of the Tolk Units would create an immediate capacity need, requiring SPS to acquire new capacity providing resources. Renewable energy resources, such as wind and solar generation, can count a percentage of their nameplate capacity towards SPS's planning reserve margin and could potentially fulfill SPS's capacity need in the short-term. However, as existing firm and dispatchable resources retire, SPS will almost certainly be required to acquire generating resources that can serve load in all hours. These additional resources could include battery storage or traditional thermal resources, such as combustion turbines, combined cycle generation, or new generation technology not yet identified.

Section 6D: Modeling Replacement Resources

EnCompass will not necessarily model replacement of the capacity and energy attributes of the Tolk Units with like-in-kind generation. Instead, the model will optimally create an 'expansion plan' for each scenario based on the resource need, for example, replacing the Tolk Units could consist of a combination of solar, wind, battery storage, combustion turbines etc. – all at different locations, with different in-service dates. While the optimized expansion plan must ensure SPS has enough resources to meet the planning reserve margin, the model may also select additional resources purely for economical energy (i.e., even when there is no capacity need).

Considering the EnCompass model algorithm ensures SPS meets its planning reserve margin, the early retirement of over 1 gigawatt ("GW") of generation (i.e., The Tolk Units) could be expected to produce a substantially different optimized expansion plan than the continued operation of Tolk Station (i.e., there is a greater 'need' in one scenario). For reference, the SPS 2021 peak load is projected to be 4.1 GW. One GW represents approximately 25% of SPS's capacity reserve requirement. However, as demonstrated below in Figure 1, the near-term optimized expansion plans for a 2032 (scenario 2) and a 2023 early retirement of the Tolk Units (scenario 3) are similar. For example, both scenarios add 2,158MW of new wind generation during the three-year period. In fact, all scenarios, result in the addition of significant amounts of renewable generation between 2023 and the end of 2025. As shown in Figure 1, despite the addition of renewable generation, the early retirement of the Tolk Units also results in the addition of a new combustion turbine in 2025.


2023 – 2025 (financial load forecast, base case, \$400/kW)

Scenario 2 (2032 Retirement)

Expansion Plan FOY 2023 - 2025

Expansion Plan FOY 2023 - 2025

Figure 1. Expansion Plans for Scenario 2 and Scenario 3 EOY

In short, the Tolk analysis demonstrated that, regardless of the operation and retirement of the Tolk Units, under the inputs and assumptions modeled, the proposals received in the RFI could provide economic energy savings. To put it another way, a portion of the renewable generation included in each scenario's expansion plan is being added for economic energy benefits, not just to fulfill a capacity need in the absence of Tolk.

However, as described below, the potential energy savings associated with the acquisition of economic renewable energy is highly dependent on critical modeling inputs and external economic drivers that are currently uncertain.

Section 6E: Critical Modeling Inputs & External Economic Drivers

The potential economic energy savings of the proposals received in the RFI are highly dependent on certain critical modeling inputs and external economic drivers that are currently uncertain. For example, it is no coincidence that each scenario included significant amounts of new renewable generation, particularly wind, between the end of 2023 and 2025. Currently, both wind

Case No. 21-00169-UT

and solar generation benefit greatly from federal renewable tax credits that are scheduled to expire,

or step-down, by the end of 2025. Expiring federal renewable tax credits are discussed in more

detail in Section 6E.1.

In addition, the current cost of interconnecting new generation within the Southwest Power

Pool footprint is extremely high. Of great significance, many proposals received in the RFI did not

include the full cost of interconnecting the proposed new generation, consequently SPS had to

assign different levels of network upgrade costs to new generation that required a Generator

Interconnection Agreement ("GIA"). Any potential economic energy savings are highly dependent

on the network upgrade costs assigned to the project. Uncertainty in network upgrade costs are

discussed in more detail in Section 6E.2.

However, before discussing critical modeling inputs and external economic drivers in more

detail, it is also worth considering the logic of production cost modeling when calculating economic

energy savings. For example:

Economically selected resources are not necessarily economical in all years, an

economically selected resource may result in increased system costs for several years –

only providing economical savings in future years.

EnCompass's logic does not include a benefit-to-cost ratio threshold – for example,

EnCompass could select a resource that is forecasted to lower overall energy costs by a

relatively modest amount, even if the projects requires a multi-year, multi-million-dollar

commitment.

EnCompass evaluates system-wide costs over a long-term planning horizon, not

necessarily the immediate impact to SPS's ratepayers.

SPS 2021 Tolk Analysis

21

Case No. 21-00169-UT

To mitigate customer risk, SPS will consider and evaluate factors such as these when conducting any potential future resource acquisition analysis.

Section 6E.1: Expiring Renewable Tax Credits

Whether or not the Federal government decides to extend Renewable Tax Credits will fundamentally change the optimized expansion plan for each scenario. For example, new wind resources currently qualify for a 60% production tax credit ("PTC") through the end of 2025. If PTC's are not extended, wind projects placed in-service after 2025 would no longer receive a PTC. SPS estimates the expiration of PTCs would increase the levelized cost of new wind projects by up to \$15/MWh, resulting in a sudden and sharp increase in the price of wind generation. For the purposes of the Tolk Analysis, SPS assumed renewable tax credits would expire, or step down, based on the current schedule. This assumption generally resulted in the early acquisition of renewable generation, particularly wind, in each of the expansion plans. In short, the model selected wind generation before the end of 2025 as it would become significantly more expensive after PTC's expire. If Renewable Tax Credits are extended, or replaced, the optimized expansion plan may delay the acquisition of new renewable generation.

Section 6E.2: Generator Interconnection Agreement – Schedule & Cost Uncertainty

As described in SPS witness Bennie F. Weeks' rebuttal testimony in New Mexico Case No. 19-00170-UT, in recent years, the Southwest Power Pool has been overwhelmed by the large number of new generators being proposed in the region. This has caused a long delay in studying and finalizing generator interconnection agreements ("GIAs"). To quantify this delay, at the time of filing the Tolk Analysis, the Southwest Power Pool is still evaluating the 2017-01 Definitive Interconnection System Impact Study ("DISIS").

In addition to the long delays, as described in SPS witness Ben R. Elsey's direct testimony in New Mexico Case No. 20-00143-UT transmission costs could potentially be extremely expensive and [new] resources could have significant cost uncertainty and schedule uncertainty.

These concerns are highlighted in the 2017-01 DISIS, for example, the 1st Phase of the Study included 25 projects totaling 3,795MW of new generation in Group 6 (Group 6 incorporates the South Texas Panhandle and New Mexico). These projects were assigned a total of \$3.5B of network upgrades, or an average of \$934/kilowatt ("kW"). For comparison, developers 'typically' include up to \$100/kW for network upgrade costs, and the overnight construction cost of a new wind project or solar project is approximately \$1,500/kW and \$1,000/kW, respectively.

Presumably because of the extremely high interconnection costs assigned, approximately 1,000MW of this new generation subsequently dropped out of the 2017-01 study before the 2nd Phase of the study. Despite the loss of these projects, the remaining projects were still assigned, on average, \$934/kW.

On May 14, 2021 the remaining projects were required to pay a 20% deposit to remain in the 2017-01 DISIS. Of the 3,795MW of new generation originally submitted, only a single 200MW project remains in the queue.

The current network upgrade costs being assigned to developers is, at best, challenging and at worst, cost prohibitive. These issues were reflected in the proposals received in the RFI process. No proposals requiring a new GIA included close to the level of costs currently assigned in the 2017-01 DISIS, and multiple proposals did not include any network upgrade costs. As a result, SPS assigned various indicative network upgrade costs to all proposals that require a new GIA. SPS conducted sensitivity analyses, applying, \$200/kW, \$400/kW, and \$600/kW network upgrade costs to all proposals that required a new GIA (note: all sensitivities incorporated significantly less than

Case No. 21-00169-UT

the \$934/kW assigned in the 2017-01 DISIS). Proposals that were not assigned network upgrade costs were (1) proposals with an existing GIA or (2) 'Build-Transfer' proposals at SPS's existing generator locations. The latter were modeled as 'surplus interconnection' projects or 'generator replacement' projects. In addition, the network upgrade costs described above were applied to all wind, solar and combined cycle resources in future years – including generic replacement resources beyond 2025. Transmission network upgrade costs were not assigned to future combustion turbines or battery energy storage, on the assumption these resources would be installed at the site of retiring SPS generators as generator replacement projects,

Section 6E.3: RFI Proposals vs Generic Cost Assumptions

SPS leveraged the results of the RFI for new resources through 2025. Thereafter, SPS utilized 'generic' pricing for the cost of new resources. The average cost of proposals received from the RFI were used as a baseline for the cost of generic resources. Using an average cost as a baseline, of course, resulted in some of the proposals received in the RFI being lower cost than the generic cost of new generation. All else-being-equal, the lower cost proposals, with in-service dates before 2025 are more favorable than the higher cost generic resources. Again, favoring the early acquisition of additional resources.

Section 6E.4: Feasibility of RFI Proposals

The long delay in finalizing GIA not only creates cost uncertainty, but also casts doubt on whether all the proposals included in the optimized expansion plans could feasibly be constructed in the timeframe necessary (for example, Scenario 3 assumes a EOY 2023 retirement for both units), or if the project will even proceed at all. For example, SPS received several proposals that had not applied for a new GIA. Considering the several year process for acquiring a new GIA, it is unlikely these proposals will be commercially operational in the timeframe required. Likewise, SPS

received several proposals that were included in the 2017-01 DISIS, however, as described in Section 6E.2, all but 200MW of the original 3,795MW of new projects have withdrawn from the queue and are unlikely to be commercially operational in the timeframe required. Despite these very real challenges, for the purposes of the Tolk Analysis, SPS included all projects based on the commercial operation dates submitted in the proposal. Although it is highly unlikely many of the proposals evaluated will be able to meet the necessary commercial operation date, taking this approach allowed SPS to stress test the economic viability of the early retirement of the Tolk units.

<u>Section 6E.5: Secondary Conclusion – The Acquisition of Economic Energy Resources</u> <u>Proposed in the RFI Summary</u>

Regardless of the operation and retirement dates of the Tolk Units, each scenario's optimized expansion plan added substantial amounts of new renewable generation between end of years 2023 and 2025. This large-scale acquisition of new generation was, in part, caused by the modeling inputs and assumptions SPS used for the Tolk Analysis. For example, critical modeling assumptions, such as expiring PTCs/ITCs, generic costs assumptions (both present and future) and the cost of network upgrades (both present and future), fundamentally impact the timing and acquisition of additional resources in each scenario's optimized expansion plan.

Although it is unlikely all the inputs and assumptions used for the analysis are ultimately correct, the Tolk Analysis is primarily a retirement analysis – not a resource acquisition analysis. Therefore, allowing the model to evaluate a potentially infeasible amount of new generation on a possibly unrealistic timeline, allowed SPS to stress-test the economic benefit of continued operation of the Tolk Units. SPS will continue to monitor the feasibility and economic viability of adding economic energy resources.

Section 6F: Primary Conclusion – Economic Analysis

SPS's Tolk Analysis incorporated six different operational scenarios for Tolk, each with different retirement dates. Each scenario was evaluated using different sensitivities for (1) natural gas price forecast, (2) load growth uncertainty, and (3) inclusive of different levels of network upgrades assigned to replacement resources requiring a new GIA. This section of the Tolk Analysis focuses on two different sensitivity analyses: (1) the planning load forecast, with base natural gas forecast and \$400/kW network upgrades and (2) the financial load forecast, with base natural gas forecast and \$400/kW network upgrades. The PVRR tables for each sensitivity analysis are provided in Appendix F. Each PVRR table shows the impact to SPS's customers over three different periods (1) the action period (2022 – 2025), (2) the decision period (2022 – 2032), and (3) the planning period (2022 – 2041).

As shown below in Table 2, using the planning load forecast, with base gas price forecast and \$400/kW of network upgrades, on a PVRR basis maintaining Tolk through 2032 (scenario 2) is \$118M lower cost than a 2023 retirement (scenario 3) and \$117M lower cost than a 2025 retirement (scenario 1), over the 20-year planning period. The savings are higher when evaluated on a shorter planning horizon. Over the 4-year action period, on a PVRR basis maintaining Tolk through 2032 is \$235M lower cost than a 2023 retirement and \$236M lower cost than a 2025 retirement. Over the 11-year decision period, on a PVRR basis maintaining Tolk through 2032 is \$271M lower cost than a 2023 retirement and \$266M lower cost than a 2025 retirement. Clearly, the early retirement of the Tolk Units results in a significant increase in cost to SPS's customers during each of the periods evaluated.

SPS 2021 Tolk Analysis

A staggered retirement of the Tolk Units fairs better than the early retirement of both units, but again is economically sub-optimal when compared to a 2032 retirement date. On a PVRR basis a staggered retirement (scenario 4) is \$61M, \$135M, and \$93M higher cost than a 2032 retirement over the action, decision, and planning periods, respectively. A staggered retirement with seasonal operations is \$30M, \$87M, and \$33M (scenario 5) higher cost than a 2032 retirement over the action, decision, and planning periods, respectively.

The earliest retirement of all SPS's coal burning units (scenario 6) is by far the least economical solution.

Table 2. Planning Load Forecast (Base Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022-2032	Delta (\$M)	NPV (\$M) 2022-2041
Scenario 2	\$0	\$3,213	\$0	\$7,426	\$0	\$11,949
Scenario 1	\$236	\$3,449	\$266	\$7,691	\$117	\$12,066
Scenario 3	\$235	\$3,448	\$271	\$7,696	\$118	\$12,067
Scenario 4	\$61	\$3,274	\$135	\$7,561	\$93	\$12,042
Scenario 5	\$30	\$3,243	\$87	\$7,513	\$33	\$11,982
Scenario 6	\$789	\$4,002	\$1,398	\$8,824	\$1,526	\$13,475

As shown below in Table 3 the results under the financial load forecast are in-keeping with the results of the planning load forecast. Each retirement scenario is higher cost than maintaining operation of the Tolk Units through 2032.

Table 3. Financial Load Forecast (Base Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022-2032	Delta (\$M)	NPV (\$M) 2022-2041
Scenario 2	\$0	\$2,993	\$0	\$6,628	\$0	\$10,388
Scenario 1	\$146	\$3,140	\$165	\$6,792	\$128	\$10,516
Scenario 3	\$147	\$3,140	\$169	\$6,797	\$48	\$10,436
Scenario 4	\$38	\$3,031	\$88	\$6,716	\$75	\$10,462
Scenario 5	\$3	\$2,996	\$28	\$6,655	\$2	\$10,390
Scenario 6	\$548	\$3,541	\$796	\$7,424	\$755	\$11,142

Section 6G: Value of Tolk Water Rights

The PVRR tables presented in Section 6F and included in Appendix F do not include the potential value of selling the Tolk Water Rights. If sold today, and using the methodologies described in Section 5D.3, SPS estimates the value of the water rights at somewhere between \$0 and \$20 million. The value of the water rights will continue to diminish with the declining availability of water.

Section 7: Conclusion

The 2021 Tolk Analysis continues to support seasonal operation of the Tolk Units through 2032 as the most reliable and economical solution. Maintaining the Tolk Units through 2032 is also a low risk solution – the early retirement of the Tolk Units would force SPS to seek new generating resources to meet its planning reserve margin requirements. Based on the high level of cost and schedule uncertainty in acquiring a new GIA, it is unclear if SPS could acquire adequate replacement resources in the timeframe necessary, and if so, exactly what costs these projects

Case No. 21-00169-UT

would be assigned. The cost of replacement generation could exceed the values included in the

Tolk Analysis.

In addition, the Tolk Units continue to add significant reliability and fuel diversity benefits.

These benefits were recently highlighted during the recent Winter Storm Uri. At the height of

Winter Storm Uri, approximately 40% of SPS's natural gas supply was lost due to well freeze offs

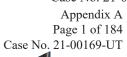
and natural gas processing plant failures associated with extreme cold weather and power outages

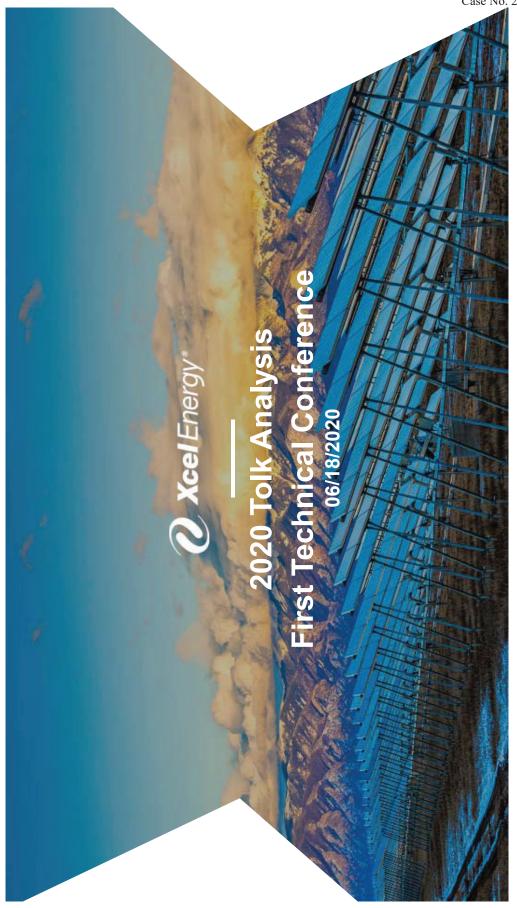
throughout the Electric Reliability Council of Texas ("ERCOT") footprint. SPS was able to keep

the Tolk and Harrington coal units operational which resulted in a reduction in dependence on

natural gas supplies. Also, because SPS's coal generation was on-line during the winter storm,

SPS's customers realized cost savings in the amount of approximately \$600 million.


As an economical, low-risk, and reliable solution, the Tolk Analysis concludes the


retirement date of the Tolk Units should remain at December 31, 2032.

SPS 2021 Tolk Analysis

29

Appendix H Page 32 of 251 Case No. 21-00169-UT Appendix A

The Tolk Analysis

- The uncontested comprehensive stipulation in New Mexico Case No. 19-00170-UT
- SPS to submit a robust analysis of Tolk abandonment and potential means of replacement by June 2021 ("The Tolk Analysis")
- The Tolk Analysis will be incorporated into SPS's 2021 Integrated Resource Plan ("IRP") application
- The Tolk Analysis shall include:
- Two technical conferences
- A review by an independent evaluator ("IE")
- Replacement resources priced based on an RFP or RFI process
- The value of reselling the water rights

Appendix H Page 34 of 251 Case No. 21-00169-UT

Appendix A Page 3 of 184 Case No. 21-00169-UT

3

Stipulation Requirements

The Tolk Analysis shall include evaluation of:

- the type, technical characteristics, and cost of the resources needed or available to replace the capacity provided by Tolk
- The economically optimal (in terms of the public interest) abandonment dates for \equiv
 - The impact on customer rates of multiple abandonment scenarios based on the present value revenue requirements considering SPS's integrated resources (iii)

SPS also committed to running at least one scenario in which all of SPS's coal-burning units are retired or replaced by 2030

Appendix H Page 35 of 251 Case No. 21-00169-UT

Appendix A Page 4 of 184 Case No. 21-00169-UT

4

Technical Conferences

- First Technical Conference Present and solicit feedback on the basic parameters and approach of the Tolk analysis
- Second Technical Conference Provide and solicit feedback on the preliminary conclusions of the Tolk analysis
- Both technical conferences were to be held in-person in either Santa Fe or Albuquerque
- COVID-19 restrictions continue to present challenges for in-person meetings
- SPS proposed to split the first technical conference into two separate sessions The first being held today as a webinar
- The second session of the first technical conference will be held either in-person or as webinar in the near future

ത

Agenda – Session 1 of 1st Technical Conference

To conduct a robust analysis in the timeframe required, SPS is presenting the following critical items for immediate consideration and review:

- 1. General approach of the Tolk Analysis
- Request for Proposal ("RFP") to acquire the services of an IE
- Draft Request for Information ("RFI") to obtain pricing of replacement resources
- 4. Outline of the scenarios SPS is proposing to evaluate

Agenda – Session 2 of 1st Technical Conference

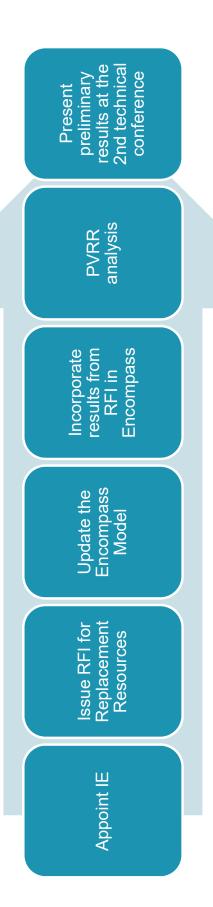
The second session of the first technical conference will include the following discussions:

- 1. Finalize the RFI for pricing of replacement resources
- 2. SPS's Encompass model
- Further discussion on the scenarios outlined in today's presentation რ.
- Critical modeling inputs and assumptions (for example, SPS's gas forecast)

Appendix H Page 38 of 251 Case No. 21-00169-UT

Appendix A Page 7 of 184 Case No. 21-00169-UT

General Approach to the Tolk Analysis Agenda Item 1:


Appendix A Page 8 of 184 Case No. 21-00169-UT

 ∞

General Approach

- A Present Value Revenue Requirement ("PVRR") Analysis using the Encompass production cost modeling software
- Encompass will be discussed in detail during the second session of the first technical conference
- Evaluate multiple retirement and operating scenarios for SPS's coal units
- Each scenario will include an optimized expansion and generator replacement plan
- Type, technical characteristics, and cost of replacement generators available will be the result of an RFI process
- An IE will oversee the RFI process and Tolk Analysis

0

Process

Appendix H Page 41 of 251 Case No. 21-00169-UT

Appendix A Page 10 of 184 Case No. 21-00169-UT

The Independent Evaluator Agenda Item 2:

Case No. 21-00169-UT

Independent Evaluator

- The New Mexico stipulation requires the Tolk Analysis to include a review by an IE
- SPS intends to issue an RFP to acquire the services of an IE
- SPS is soliciting comments from interested parties to be submitted via email
- Comments to be received within 7 days of this meeting
- SPSTolkAnalysis@xcelenergy.com
- SPS's preference is for the IE to review the RFI for replacement resources before it is ssued
- IE proposals will be due within 21 days of issuance of the RFP

Appendix H
Page 43 of 251
Case No. 21-00169-UT
Appendix A
Page 12 of 184
Case No. 21-00169-UT

DRAFT

Scope of Work Independent Evaluator

Executive Summary

Southwestern Public Service Company ("SPS") is planning to issue an all-source Request for Information ("RFI") to obtain current pricing, technical characteristics, and other relevant information for potential generating resources. The results from the RFI will be incorporated into an evaluation of the potential abandonment and replacement of SPS's Tolk Station, herein known as "the Tolk Analysis," which will include an analysis in which all coal-burning units are retired or replaced before 2030 as set forth in the recent New Mexico Public Regulation Commission final order adopting the stipulation in SPS's most recent rate case. SPS is seeking the services of an Independent Evaluator ("IE") to provide an independent review of the RFI process and Tolk Analysis to evaluate the fairness of SPS's bid solicitation and bid evaluation processes. Upon completion of the RFI solicitation and SPS's development of the Tolk Analysis, the IE will report its findings to the New Mexico Public Regulation Commission ("NMPRC") and SPS.

The primary objectives of the IE's independent review will be to:

- Assess whether that the RFI parameters are consistent with the objectives of the Tolk Analysis
- Assess whether the RFI documents including Standard Bidders Forms provide sufficient and consistent information for respondents to the RFI ("Bidders") to prepare proposals
- Identify any undue bias in the criteria used or as applied to evaluate bids
- Assess whether a consistent and fair methodology was used to screen and rank bids
- Assess whether the bids were fairly incorporated into the Tolk Analysis
- Provide an assessment of the Tolk Analysis including any deficiencies in the parameters or results of the analysis

Background

Tolk Station consists of two coal-powered steam turbine units, located in Lamb County, Texas. Each unit has a net capacity of approximately 540 MW, for a total net capacity of approximately 1,080 MW.

Tolk Station relies exclusively on groundwater from the Ogallala Aquifer for generation cooling, and the Ogallala Aquifer is in an irreversible decline. To conserve water, and the life of Tolk Station, SPS has implemented a plan to reduce the number of hours the Tolk units operate annually.

¹ Uncontested Comprehensive Stipulation ("Stipulation") filed at the New Mexico Public Regulation Commission on January 13, 2020 and approved by the New Mexico Public Regulation Commission ("NMPRC") in Case No. 19-00170-UT.

Appendix H
Page 44 of 251
Case No. 21-00169-UT
Appendix A
Page 13 of 184
Case No. 21-00169-UT

DRAFT

SPS is required to analyze a range of operating parameters and retirement dates for Tolk Station. The analysis will incorporate the pricing and technical characteristics obtained in the RFI process. The results of the analysis will be included in SPS's next Integrated Resource Plan ("IRP"), to be filed in July 2021.

As part of the Tolk Analysis, SPS will use the information obtained from this RFI to include an evaluation of the potential retirement and replacement of all of SPS's coal burning generation.

Timeline

SPS is required to complete the Tolk Analysis by June 2021, one month before the IRP. To meet the filing date, SPS anticipates issuing the RFI in the Summer of 2020. Bidders will then be given 60 days to submit their proposals. The evaluation process and Tolk Analysis is expected to take approximately six months from receipt of bids.

IE Responsibilities

To achieve the primary objectives, the IE will be provided immediate and continuing access to all documents and data reviewed, used, or produced by SPS in the preparation of the Tolk Analysis and in its bid solicitation, evaluation, and selection processes. SPS will provide to the IE bid evaluation results and modeling runs so that the IE can verify these results and can investigate options that SPS did not consider.

To conduct a thorough, independent, and unbiased review of the RFI process and Tolk Analysis, the IE will perform the following activities:

Meetings

The IE will attend an initial kickoff meeting prior to issuance of the RFI either via teleconference or in person at SPS's offices in Amarillo, Texas. The kickoff meeting will provide an opportunity to discuss the RFI parameters, specific items which may be required for the Tolk Analysis, and SPS's thoughts, goals and objectives regarding the RFI and Tolk Analysis. SPS will establish and explain confidentiality protection procedures regarding bid information and evaluation. Additional details regarding project administration and public communications will be discussed at the kickoff meeting as well.

The IE will conduct regular project status calls with SPS to discuss the project and identify and mitigate any issues that arise.

The IE will attend via teleconference at all future public technical conferences and other meetings as necessary to achieve the primary objectives.

Review and Finalize RFI Documents and Evaluation Process

The IE will critically review the draft RFI and any associated documents and notification communications with the objective of determining whether there are any undue biases presented to any category of potential Bidders as a result of the structure of the RFI requirements and make recommendations as needed. Additionally, the IE will review and

Appendix H
Page 45 of 251
Case No. 21-00169-UT
Appendix A
Page 14 of 184

Case No. 21-00169-UT

DRAFT

evaluate the draft proposal submittal requirements and standard bidder forms and make recommendations as needed.

Review Bidder Communications

Upon issuance of the RFI, the SPS staff directly involved with the RFI will adhere to strict communication protocols with Bidders. The IE will examine any communications between SPS and Bidders during the RFI review period, which will begin with the issuance of the RFI and end with filing of SPS's 2021 integrated resource plan in July 2021. The purpose of this examination will be to determine whether Bidders were treated fairly during the submittal and evaluation periods, and whether SPS was unduly biased toward a specific bid.

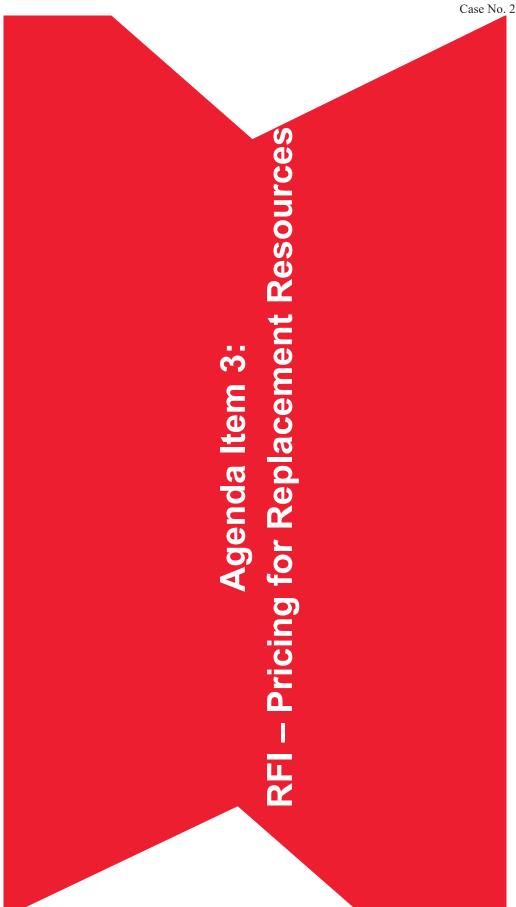
Evaluate the SPS Economic Modeling of Bids

The IE shall conduct a thorough and unbiased review of the due diligence activities performed by SPS for each prospective bid, as well as a review of the economic modeling of each bid to confirm the modeling was accurate and consistent across all bids.

In reviewing the due diligence activities, the IE will review each bid and associated Standard Bidding Forms, followed by a review of SPS's documented non-economic evaluation of all bids.

Evaluation of the Tolk Analysis

The IE shall conduct a thorough, and unbiased review of the Tolk Analysis parameters and results. The review should include, but not be limited to, consideration of potentially different retirement dates of the Tolk units, the feasibility of acquiring adequate replacement resources in the timeframe necessary, and availability of economic water in each of the scenarios modeled.


The IE will conduct a thorough review of key inputs and parameters to the Tolk Analysis including, but not limited, SPS's natural gas price forecasts and system load forecasts.

Prepare and Provide Independent Review Report

The IE will prepare a detailed report of its findings and conclusions regarding the Tolk Analysis. Initial drafts of the report are anticipated to be reviewed internally by SPS and in collaboration with the IE for quality assurance. After incorporating any necessary revisions to the report that are identified as a result of the reviews, the IE will issue the final report redacted as necessary to ensure protection of confidential information; confidential information referenced should be made available only under appropriate protective order procedures.

Appendix H Page 46 of 251 Case No. 21-00169-UT

Appendix A Page 15 of 184 Case No. 21-00169-UT

RFI for Replacement Resources

- SPS will issue an all-source solicitation for replacement generating resources
- SPS will consider all ownership structures including, but not limited to, purchased power agreements, build-own-transfers, and company self-built facilities
- proposed resources including, but not limited to: pricing, technical characteristics, Bidders will be required to provide information necessary to accurately model the generator output, commercial operation date
- SPS is soliciting comments from interested parties to be submitted via email
- Comments to be received within 28 days of this meeting
- Comments will be discussed at the 2nd Session of the 1st Technical Conference
- SPSTolkAnalysis@xcelenergy.com

Appendix H Page 48 of 251 Case No. 21-00169-UT

> Appendix A Page 17 of 184 Case No. 21-00169-UT

DRAFT

Southwestern Public Service Company Request for Information

Introduction:

This announcement constitutes a Request for Information ("RFI") notice soliciting current pricing, technical characteristics, and other relevant information for potential generating resources. This is not a Request for Proposals ("RFP") or solicitation for formal proposals. This RFI does not constitute a commitment, implied or otherwise, that SPS will take action in this matter. SPS will not be responsible for any costs incurred in furnishing SPS responsive information.

SPS is interested in understanding the current availabilities, flexibilities, and preferences of market participants interested in providing capacity and associated energy to SPS from all generating resource types, including energy storage, whether existing or yet-to-be constructed. SPS is considering the availability of capacity resources for possible future owned generation, build-own-transfers ("BOTs"), and purchased power agreements ("PPAs").

General Background:

- SPS is a New Mexico corporation and wholly-owned electric utility subsidiary of Xcel Energy.
- SPS's total company service territory encompasses a 52,000-square-mile area in eastern and southeastern New Mexico, the Texas Panhandle, and the Texas South Plains and its primary business is generating, transmitting, distributing, and selling electric energy.
- SPS has a long history of providing safe, reliable, value-added service to our customers
- SPS serves 394,220 electric retail customers in Texas and New Mexico.
- As prescribed in the Uncontested Comprehensive Stipulation ("Stipulation") filed at the New Mexico Public Regulation Commission on January 13, 2020 and approved by the New Mexico Public Regulation Commission ("NMPRC") in Case No. 19-00170-UT, the Stipulation requires SPS to submit a robust analysis of the possible abandonment of its Tolk Generating Station Units 1 and 2 (Tolk) and potential means of replacement of those resources (the "Tolk Analysis"). The Tolk Analysis shall include replacement resources priced based on an RFI solicitation. The Tolk Analysis will also consider a scenario in which all SPS's coal-burning units are retired or replaced before 2030.
- SPS will be evaluating multiple scenarios with various capacity replacement dates. The minimum net capacity need is approximately 500 MW beginning summer 2023. The maximum net capacity need is approximately 2,200 MW beginning summer 2025.

Appendix H Page 49 of 251 Case No. 21-00169-UT

> Appendix A Page 18 of 184 Case No. 21-00169-UT

DRAFT

Qualifications and Assumptions:

- Expressions of interest should be from existing or proposed generating facilities within the SPS zone or delivered to the SPS zone from existing or proposed sites within the Southwest Power Pool.
- Expressions of interest should include a proposed Commercial Operation Date ("COD")
 if the submission is a future resource.
- Expressions of interest should include all capacity, energy, environmental attributes such as Renewable Energy Credits (RECs), and other generation-related services.
- For purposes of this RFI, "renewable energy" refers to electrical power generated by solar, wind, biomass, or other commercially viable renewable energy technologies including energy storage.
- SPS is interested in the availability of capacity and associated energy resources for possible future owned generation, BOTs, and PPAs.
- PPA durations should be 25 and 30 years.
- Interested parties should respond to this RFI within 60 days of issuance.

Specific Information of Interest:

- Project type, including technical characteristics.
- Project site location for delivery within (or to) the SPS system.
- Proposed COD for resource facilities responsive to this RFI, including details on whether
 a delay in the proposed COD could impact the pricing and if so an estimate of the price
 of those impact(s).
- Pricing and quantity in megawatts. All pricing in respondent proposals should reflect costs (to the extent applicable) at the time of submittal and should include costs of interconnection to the transmission system if applicable.
- Statement on current interconnection status (if any), and anticipated extent of need for transmission system upgrades for the proposal.
- Proposals must demonstrate an anticipated ability to obtain all required state/local preconstruction approvals and any associated risks to meet the COD.

Content of Submissions:

- Appendix A includes a set of forms applicable to the resource type being submitted.
 - o For dispatchable resources the submitter should complete Appendix A-D forms
 - For renewable generation resources the submitter should complete Appendix A-R forms
 - For Build-Own-Transfer or sale of an existing asset the submitter should complete Appendix A-CO.
- Some information may be requested on more than one form. Although such requests
 may be redundant, submitters must provide the information requested on each
 applicable form. Submitters must submit an electronic copy provided on a USB drive in
 a Microsoft Office format to SPS at the address given below.

Appendix H Page 50 of 251 Case No. 21-00169-UT

> Appendix A Page 19 of 184 Case No. 21-00169-UT

DRAFT

Proposal Submission Deadline:

Proposals will be accepted until 5:00 P.M. Central Time on **Friday, August ___, 2020**. All Proposals must be transmitted by express, certified or registered mail, or hand delivered to SPS's RFI point of contact at the following address:

SPS 2020 All-Source RFI submission:

SPS 2020 All-Source RFI Attn: Resource Planning Xcel Energy Services Inc. 1800 Larimer Street, Suite 700 Denver, CO 80202

Proposals received later than the due date and time indicated will be rejected and returned unopened, unless SPS determines in its sole discretion that extenuating circumstances led to late delivery.

Follow-up Requests

To the extent SPS has questions or seeks clarification regarding a Proposal, SPS may pose follow-up questions. Submitters are not obligated to respond to such follow-up questions, but are advised that a failure to provide adequate information may lead to a Proposal or a portion of a Proposal being disregarded.

Confidentiality

SPS recognizes that certain information contained in a Proposal submitted may be deemed by the submitter to be confidential. To the extent a submitter believes portions of its Proposal (or any subsequent responses to follow-up questions) constitute confidential material, the submitter should clearly label such material as confidential ("Confidential Material"). SPS will not be responsible for identifying any Confidential Material that has not been designated as such by the submitter. If SPS receives a request from a regulatory or judicial authority to which Confidential Material is responsive, or if SPS receives a request (that SPS reasonably deems to be a valid request) from a party in a regulatory or judicial proceeding to which request SPS determines Confidential Material in the Proposal is responsive, or to the extent otherwise required by law, SPS may provide the Confidential Material pursuant to a confidentiality or protective agreement or order in such proceeding. To the extent Confidential Material is proposed to be disclosed publicly (i.e., not subject to a confidentiality or protective agreement), SPS will notify the submitter as soon as reasonably possible; it is the sole responsibility of the submitter to seek to protect the material subsequent to such notification. SPS may disclose non-Confidential Material at its discretion without prior notice.

Appendix H Page 51 of 251 Case No. 21-00169-UT

Appendix A Page 20 of 184 Case No. 21-00169-UT

Overview of Scenarios being Evaluated Agenda Item 4:

Multiple Tolk Retirement Scenarios

- Reduced operations
- SPS's currently implemented plan
- Both units are economically dispatched June September and offline in off-peak months
- Economic Dispatch
- Both units are economically dispatched in all months
- Earliest Retirement of Both Tolk Units
- Both units are economically dispatched in all months
- Both units are retired as soon as feasible*

* Feasibility will be determined based on COD dates of replacement resources as submitted in the RFI

Multiple Tolk Retirement Scenarios Continued

- Staggered Retirement of Tolk Units
- One unit is retired as soon as feasible*
- Second unit will be retired upon depletion of economically available water
- Earliest Retirement of all Coal-Burning Units

* Feasibility will be determined based on COD dates of replacement resources as submitted in the RFI

Appendix H
Page 54 of 251
Case No. 21-00169-UT

Appendix A Page 23 of 184 Case No. 21-00169-UT

Appendix H
Page 55 of 251
Case No. 21-00169-UT
Appendix A

Appendix A Page 24 of 184 Case No. 21-00169-UT

Today's Meeting Agenda

- 1. Prior and Future Technical Conferences
- 2. Updates from Prior Technical Conference
- A. Independent Evaluator
- Request for Information for generating resources <u>.</u>
 - Encompass Production Cost Modeling Software
- Responses to Parties Comments and Questions
 - A. SPS Load Forecast UpdateB. Sierra Club Modeling Questions

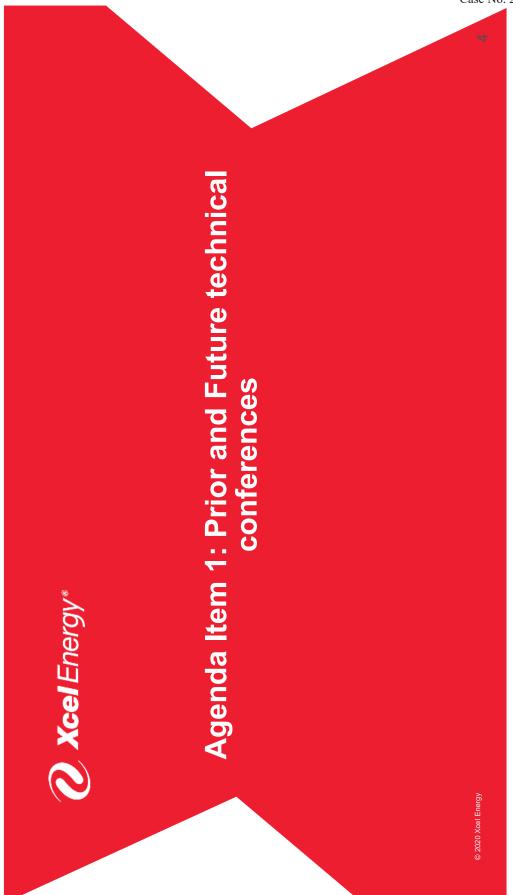
Appendix H
Page 57 of 251
Case No. 21-00169-UT
Appendix A
Page 26 of 184
Case No. 21-00169-UT

က

Agenda for Future Technical Conferences

Future Technical Conferences will include the following topics:

1. Harrington Station


Tolk Analysis - Retirement dates and operating scenarios

3. Value of Tolk water rights

4. Modeling Parameters

Appendix H Page 58 of 251 Case No. 21-00169-UT

Appendix A Page 27 of 184 Case No. 21-00169-UT

Prior & Future Technical Conferences

- SPS held the first technical conference on June 18th 2020
- Agenda Items included:
- SPS's general approach to the Tolk Analysis
- Request for Proposal ("RFP") to acquire the services of an IE
- Draft Request for Information ("RFI") to obtain pricing of replacement resources
- Outline of the scenarios SPS is proposing to evaluate
- Originally planned to address all other outstanding requirements in this technical conference
- SPS is now proposing to schedule regular technical conferences to adequately address parties concerns, questions and comments

General Approach

- A Present Value Revenue Requirement ("PVRR") Analysis using the Encompass production cost modeling software
- Encompass will be discussed in detail later in this presentation
- Evaluate multiple retirement and operating scenarios
- Each scenario will include an optimized expansion and generator replacement
- Type, technical characteristics, and cost of replacement generators available will be the result of an RFI process
- An IE will oversee the RFI process and Tolk Analysis

Present preliminary results at PVRR analysis Incorporate results from RFI in Encompass Update the Encompass Model Issue RFI for Replacement Resources

rocess

Appendix H Page 62 of 251 Case No. 21-00169-UT

Appendix A Page 31 of 184 Case No. 21-00169-UT

Independent Evaluator

Actions taken during, or since, the previous technical conference:

- Solicitated feedback for draft RFP and associated questionnaire
- Issued the RFP to obtain the services of an Independent Evaluator
- Recommended selection of Guidehouse (f/k/a Navigant Consulting, Inc.)
- Appointed Guidehouse as the Independent Evaluator

Next Steps

None – Task Complete

10

Introduction to Guidehouse

- Expert-based, international consulting firm with diverse technical capabilities and a deep understanding of resource planning & procurement, interconnection studies, infrastructure planning and grid operations
- · Over a decade of experience conducting Independent Evaluation for resource procurement engagements
- Over 25 years of experience with supply resource solicitations & bid evaluations
- Comprehensive knowledge spans from RFP development, issuance & administration, to bid evaluation, PPA development & negotiation, regulatory support, and expert testimony
- Expertise in power resource procurement that spans more than three decades with a thorough understanding of industry practices across multiple jurisdictions
- Core Team's industry experience from 14 to over 35 years

Appendix H Page 65 of 251 Case No. 21-00169-UT

Appendix A Page 34 of 184 Case No. 21-00169-UT

Recap: RFI for Replacement Resources

- SPS will issue an all-source solicitation for replacement generating resources to provide capacity and associate energy
- purchased power agreements, build-own-transfers, and company self-built SPS will consider all ownership structures including, but not limited to, facilities
- Bidders will be required to provide information necessary to accurately model the proposed resources – including, but not limited to: pricing, project type &location, technical characteristics, generator output, commercial operation

Case No. 21-00169-UT

Request for Information

Actions taken during, or since, the previous technical conference:

- Solicitated feedback during first technical conference for draft RFI
- Provided draft RFI to Guidehouse for IE review

Next Steps

- Issue RFI within 5 business days
- Receive proposals within 60 days of issuance

Appendix H Page 68 of 251 Case No. 21-00169-UT

> Appendix A Page 37 of 184 Case No. 21-00169-UT

Southwestern Public Service Company Request for Information

Introduction:

This announcement constitutes a Request for Information ("RFI") notice soliciting current pricing, technical characteristics, and other relevant information for potential generating resources. This is not a Request for Proposals ("RFP") or solicitation for formal proposals. This RFI does not constitute a commitment, implied or otherwise, that SPS will take action in this matter. SPS will not be responsible for any costs incurred in furnishing SPS responsive information.

SPS is interested in understanding the current availabilities, flexibilities, and preferences of market participants interested in providing capacity and associated energy to SPS from all generating resource types, including energy storage, whether existing or yet-to-be constructed. SPS is considering the availability of capacity resources for possible future owned generation, build-own-transfers ("BOTs"), and purchased power agreements ("PPAs").

General Background:

- SPS is a New Mexico corporation and wholly-owned electric utility subsidiary of Xcel Energy.
- SPS's total company service territory encompasses a 52,000-square-mile area in eastern and southeastern New Mexico, the Texas Panhandle, and the Texas South Plains and its primary business is generating, transmitting, distributing, and selling electric energy.
- SPS has a long history of providing safe, reliable, value-added service to our customers
- SPS serves 394,220 electric retail customers in Texas and New Mexico.
- As prescribed in the Uncontested Comprehensive Stipulation ("Stipulation") filed at the New Mexico Public Regulation Commission on January 13, 2020 and approved by the New Mexico Public Regulation Commission ("NMPRC") in Case No. 19-00170-UT, the Stipulation requires SPS to submit a robust analysis of the possible abandonment of its Tolk Generating Station Units 1 and 2 (Tolk) and potential means of replacement of those resources (the "Tolk Analysis"). The Tolk Analysis shall include replacement resources priced based on an RFI solicitation. The Tolk Analysis will also consider a scenario in which all SPS's coal-burning units are retired or replaced before 2030.
- SPS will be evaluating multiple scenarios with various capacity replacement dates. The
 minimum net capacity need is approximately 500 MW beginning summer 2023. The
 maximum net capacity need is approximately 2,200 MW beginning summer 2025.

Appendix H Page 69 of 251 Case No. 21-00169-UT

> Appendix A Page 38 of 184 Case No. 21-00169-UT

Qualifications and Assumptions:

- Expressions of interest should be from existing or proposed generating facilities within the SPS zone or delivered to the SPS zone from existing or proposed sites within the Southwest Power Pool.
- Expressions of interest should include a proposed Commercial Operation Date ("COD") if the submission is a future resource.
- Expressions of interest should include all capacity, energy, environmental attributes such as Renewable Energy Credits (RECs), and other generation-related services.
- For purposes of this RFI, "renewable energy" refers to electrical power generated by solar, wind, biomass, or other commercially viable renewable energy technologies including energy storage.
- SPS is interested in the availability of capacity and associated energy resources for possible future owned generation, BOTs, and PPAs.
- PPA durations are recommended to be 25 and/or 30 years.
- Interested parties should respond to this RFI within 60 days of issuance.

Specific Information of Interest:

- Project type, including technical characteristics.
- Project site location for delivery within (or to) the SPS system.
- Proposed COD for resource facilities responsive to this RFI, including details on whether
 a delay in the proposed COD could impact the pricing and if so an estimate of the price
 of those impact(s).
- Pricing and quantity in megawatts. All pricing in respondent proposals should reflect costs (to the extent applicable) at the time of submittal and should include costs of interconnection to the transmission system if applicable.
- Statement on current interconnection status (if any), and anticipated extent of need for transmission system upgrades for the proposal.
- Proposals must demonstrate an anticipated ability to obtain all required state/local preconstruction approvals and any associated risks to meet the COD.

Content of Submissions:

- Appendix A includes a set of forms applicable to the resource type being submitted.
 - For dispatchable resources the submitter should complete Appendix A-PPA_DIS forms
 - For renewable generation resources the submitter should complete Appendix A-PPA RENEW forms
 - For Build-Own-Transfer or sale of an existing asset the submitter should complete Appendix A-BOT.
- Some information may be requested on more than one form. Although such requests
 may be redundant, submitters must provide the information requested on each
 applicable form.
- SPS will convene a Bidders Meeting for all interested parties to allow for clarifications and any questions that potential bidders may have. See meeting details below.

Appendix H Page 70 of 251 Case No. 21-00169-UT

Appendix A Page 39 of 184 Case No. 21-00169-UT

Bidders Meeting:

Date: September 21, 2020

Time: 1:00PM – 3:00 PM Mountain Daylight Time

Join Zoom Meeting:

https://xcelenergy.zoom.us/j/93175193060?pwd=cVpNeTZvTEkycURIMUhqMlZWL2 l4dz09

Meeting ID: 931 7519 3060

Passcode: 270511 One tap mobile

+17209289299,,93175193060#,,,,,0#,,270511# US (Denver)

+12133388477,,93175193060#,,,,,0#,,270511# US (Los Angeles)

Dial by your location

+1 720 928 9299 US (Denver)

+1 213 338 8477 US (Los Angeles)

+1 346 248 7799 US (Houston)

+1 206 337 9723 US (Seattle)

+1 312 626 6799 US (Chicago)

+1 646 518 9805 US (New York)

+1 651 372 8299 US (St. Paul)

+1 786 635 1003 US (Miami)

Meeting ID: 931 7519 3060

Passcode: 270511

Find your local number: https://xcelenergy.zoom.us/u/aLUXvN6pb

Proposal Submission Deadline:

Proposals will be accepted until 5:00 P.M. Central Time on **Friday**, **November 6**, **2020**. All Proposals must be transmitted by to the following email address:

SPSTolkAnalysis@xcelenergy.com

Proposals received later than the due date and time indicated will be rejected.

Follow-up Requests

To the extent SPS has questions or seeks clarification regarding a Proposal, SPS may pose follow-up questions. Submitters are not obligated to respond to such follow-up questions, but are advised that a failure to provide adequate information may lead to a Proposal or a portion of a Proposal being disregarded.

Confidentiality

SPS recognizes that certain information contained in a Proposal submitted may be deemed by the submitter to be confidential. To the extent a submitter believes portions of its Proposal (or any subsequent responses to follow-up questions) constitute confidential material, the submitter should clearly label such material as confidential ("Confidential Material"). SPS will not be should clearly label such material as confidential Material Material in SPS receives a request (that SPS reasonably deems to be a valid request) from a party in a regulatory or judicial proceeding to which request SPS determines Confidential Material is responsive, or if SPS receives a request (that SPS reasonably deems to be a valid SPS may provide the Confidential Material pursuant to a confidentiality or protective agreement or or order in such proceeding. To the extent Confidential Material is proposed to be disclosed or order in such proceeding. To the extent Confidential Material is proposed to be disclosed or order in such proceeding. To the extent Confidential Material is proposed to be disclosed publicly (i.e., not subject to a confidentiality or protective agreement), SPS will notify the submitter as soon as reasonably possible; it is the sole responsibility of the submitter to seek to protect the material subsequent to such notification. SPS may disclose non-Confidential protection without prior notice.

Appendix H Page 72 of 251 Case No. 21-00169-UT

Appendix A Page 41 of 184 Case No. 21-00169-UT

Impetus for Change

- Need for more detailed analyses around operational impact of plans; Increasing reliance on intermittent and storage resources
- Stakeholder requests for more detailed modeling in the complex and evolving resource environment
- Opportunity to improve visibility and transparency of modeling inputs/outputs
- Strategist is no longer a "supported" product by vendor, leading to potential future operational challenges

CONFIDENTIAL

Replacement Options, Identification and Evaluation

Developed and issued RFI on Aug 17, 2017 (Received responses from 12 vendors)

ABB (Capacity Expansion)

Energy Exemplar (Plexos) EPIS (Aurora)

Vibrant Clean Energy (WIS:dom)

Abacus Solutions(Saturn) PCI (GenTrader)

■EPRI (EGEAS)

Anchor Power (EnCompass)

NREL (RPM)

Ascend Analytics (PowerSimm)

E3 (RESOLVE)

Newton Energy (ENELYTX)

Evaluation team reviewed and scored vendor responses based on specific RFI criteria; selected 4 vendors to present in-person (presentations held Nov 13-14,2017

-ABB (Capacity Expansion) ■EPIS (Aurora)

Energy Exemplar (Plexos)

Anchor Power (EnCompass)

CONFIDENTIAL

Replacement Options, Identification and Evaluation (cont)

Selected two finalists based on detailed discussions with vendors and evaluation of materials presented; conducted in-house evaluation of finalist systems

■EPIS (Aurora)

Anchor Power (EnCompass)

- Xcel demos/training conducted Nov 2018
- Installed software in test environment
- 2-5 webex training sessions led by vendor
- 2 weeks (each) allocated to testing and gaining familiarity with models

Selected EnCompass as preferred alternative

Xcel Energy*

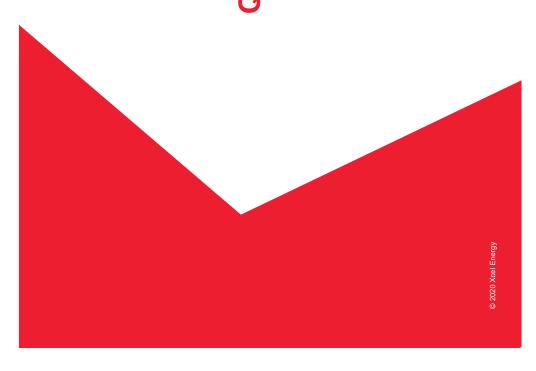
Model Features

	Encompass
Functionality	 Modern "solve anything" algorithm Hourly operation detail (accurately captures ramp rates, start ups, etc.) Enhanced storage logic and ancillary services Able to perform utility capital accounting (revenue requirements) National database, regional simulation capability
Ease of implementation	 Easily import existing data Data structure easy to understand/manage Similar source data requirements as existing processes
Transparency	 Regulatory license available at \$20k/yr All data inputs/outputs are easily shareable in Excel spreadsheets

W Xcel Energy*

Case No. 21-00169-UT

Key Stakeholder Issues Addressed


	Encompace Advantages over Strategist
Transparency / Access	 Fully functional low-cost license for regulators/stakeholders All inputs/outputs are readable in non-proprietary Excel
Storage Modeling	 Enhanced storage modeling with hourly detail Capable of sub hourly dispatch, wider array of ancillary services incorporated in model Sophisticated state-of-charge limit logic
Modeling of Renewables, DER, Markets	Hourly chronological dispatchAble to use less granularity for strategic evaluationsBroader market integration capability
Existing Unit Eval (EUE)	 Able to solve highly complex models
Model Environmental Impacts	 Enhanced capability of modeling and simultaneously optimizing all emissions costs / programs / caps
	✓ YCeI FUBLÖY.

Appendix H Page 78 of 251 Case No. 21-00169-UT Appendix A Page 47 of 184 Case No. 21-00169-UT

QUESTIONS & DISCUSSION

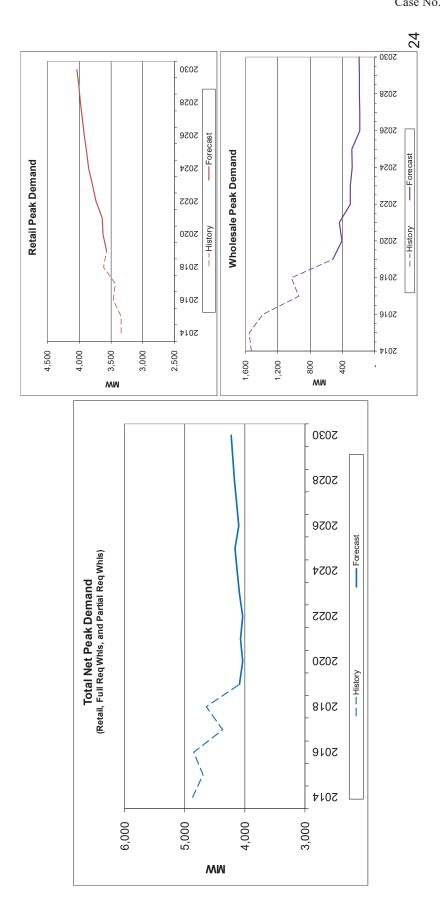
Appendix H Page 79 of 251 Case No. 21-00169-UT

Appendix A Page 48 of 184 Case No. 21-00169-UT



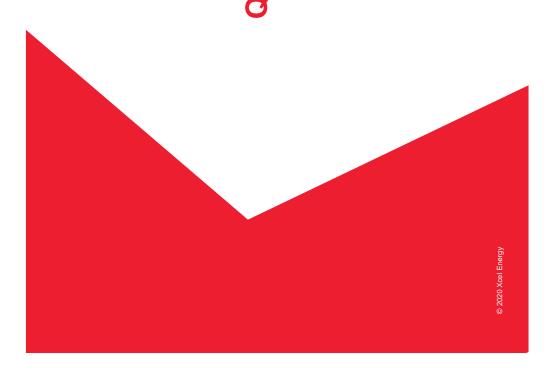
Page 49 of 184 Case No. 21-00169-UT

SPS Forecast Assumptions


- Current economic outlook shows significant COVID-19 impacts in 2020 with impacts moderating through 2024
- Most significant impact in Q2 2020
- Residential use per customer is higher than recent past and Small C/I use per customer is lower
- Both Residential and Small C/I use per customer return to long-term trends after 2020, but take several years to return to prior levels
- Assume loss of Small C/I customers due to business closures in "experience economy" sectors (Arts and Entertainment, Restaurants and Bars, Retail)
- Large C/I shows signs of recovery by end of 2020
- Slowdown in Oil and Gas extraction/drilling in Q2, Q3 2020
- Additional negative impacts in 2020 and into 2021 for other mining/manufacturing customers I
- Continued declines in Wholesale as contracts ramp down/expire

SPS Retail Sales

Appendix H
Page 82 of 251
Case No. 21-00169-UT
Appendix A
Page 51 of 184
Case No. 21-00169-UT



Appendix H
Page 83 of 251
Case No. 21-00169-UT
Appendix A
Page 52 of 184
Case No. 21-00169-UT

QUESTIONS & DISCUSSION

Appendix H Page 84 of 251 Case No. 21-00169-UT

Appendix A Page 53 of 184 Case No. 21-00169-UT

Appendix H Page 85 of 251 Case No. 21-00169-UT

Appendix A Page 54 of 184 Case No. 21-00169-UT

27

General Modeling Questions

- Market power, both firm and non-firm: Is Xcel modeling just resources from the RFP process, or is the Company also planning to model market power as an option to replace some generation and capacity? What cost and availability assumption is Xcel using for these potential purchases? ġ
- option to purchase up to 100MW of short-term capacity from SPP. SPS will utilize the most recent market SPS include the availability to purchase (sell) energy from the SPP Integrated Market. SPS include the price forecast. Ä
- When evaluating the least cost solution for Harrington, is SPS evaluating whether it actually has a comparing the cost of the plant on natural gas and coal to the cost of providing identical services need for the full capacity and services currently provided by Harrington, or is SPS simply from alternative resources? ġ
- retirement of all three Harrington units created a capacity shortage of 250MW in 2025. SPS's analysis SPS only evaluates system needs and not like-in-kind replacement of generators. For example, if the would only require 250MW of additional capacity in 2025, not the full capacity of Harrington. In this example, 250MW would be the minimum amount of capacity required, not the maximum. Ċ

Appendix A Page 55 of 184 Case No. 21-00169-UT

28

General Modeling Questions

- Reliability: How is Xcel planning to model the firm capacity contribution of solar and wind? Does Company planning to use resource blocks to reflect the changing contribution of each resource as the amount installed on the system increases? What about paired wind and solar resources? the Company plan to conduct reliability modeling to inform its ELCC assumptions? Is the ġ
- SPS will incorporate SPP's most recent ELCC calculations to assign accredited capacity to renewable resources. SPP's methodology includes resource blocks to reflect the changing contribution of each resource. SPP has not developed a methodology to determine paired wind and solar accreditation. Ċ
- What costs and assumptions for sustaining capital costs is SPS planning to use in its Harrington analysis? / Does Xcel has a schedule of sustaining capital costs that it plans to incorporate into Will the Company assume a reduction in spending in years directly prior to plant retirements? EnCompass? What is the assumed step-down in spending in years prior to retirement? ġ
- O&M budgets developed for Tolk and Harrington. SPS will include a managed decline of expenditure in SPS will incorporate the most recent capital budget in the analysis, with scenario specific capital and the years directly prior to plant retirements. Ċ

Appendix A Page 56 of 184 Case No. 21-00169-UT

29

General Modeling Questions

Xcel / EnCompass' selection of optimal retirement date. We believe that optimized retirement runs should be foundation of this analysis. However we would encourage Xcel to also think about hard understands and is transparent about which modeling results are significant and which are likely for example, the estimated sustaining capital cost assumptions? It is essential that the Company Optimized modeling vs scenario modeling: We would like to understand the main factors driving result of 2027 actually meaningful or is the difference between 2025 and 2027 just a reflection of, specific assumptions. For example, if an optimized run indicates that a 2027 retirement date for Tolk is least cost, but a hard coded retirement of 2025 is only a tiny bit more expensive, is the coding sensitivities based on optimized results to understand how sensitive the model is to ġ

SPS will evaluate whether alternative retirement dates could provide a preferable plan. However, parties economic attributes of each scenario. SPS will also consider system reliability, operational constraints, other scenarios will not meet SPS's goal of a fair and unbiased analysis. In addition to evaluating the assumptions. Cherry-picking uncertainties in one scenario, without exercising the same objectivity in must consider that all scenarios modeled will be subject to uncertainties in cost and operation and feasibility of acquiring new generation. Ċ

Appendix H Page 88 of 251 Case No. 21-00169-UT Appendix A

Page 57 of 184 Case No. 21-00169-UT

;

Does SPS plan to use the IRP process to make the final decision on whether to retire, repower on natural gas, or install scrubbers at Harrington? Or does the Company plan to make a decision prior to or outside the IRP process? Ġ

Harrington Station Questions

- anticipate there will be discussion of Harrington within the IRP process, including regarding the additional "The IRP process will not itself be used to make the decision on Harrington, though there is overlap. I'd questions you posed"1. Ä
- Harrington has to install scrubbers for SO2 NAAQS and/or regional haze compliance by 2024 Ġ.
- SPS has already evaluated installing scrubbers and DSI for SO2 NAAQS compliance and determined it to be uneconomical. Ä
- When evaluating Harrington, the Company should run at least one scenario requiring compliance with National Ambient Air Quality Standard for sulfur dioxide as expeditiously as practicable, 42 U.S.C. § 7502(c)(1), and no later than 2024 Ġ
- SPS has already evaluated an early conversion to gas (2022) and determined an early conversion provided no clear economical benefit. Ä

¹ Per the email response from Will DuBois, Lead Assistance Counsel, to the distribution list for the 2021 SPS NM IRP First Tolk-Related Technical Conference in response to the email from Joshua Smith from Sierra Club

© 2020 Xcel Energy

30

Appendix H Page 89 of 251 Case No. 21-00169-UT

Appendix A Page 58 of 184 Case No. 21-00169-UT

31

Harrington Station Questions

- Does SPS plan to model seasonal operation of Harrington when operating both on coal and natural gas in its analysis? ġ
- NAAQS. When operating on gas, Harrington will provide capacity, energy and reliability benefits all year No. When operating on coal, seasonal operations alone will not bring Harrington into compliance with round. Ä
- Will SPS model staggered retirement at Harrington when operating both on coal and natural gas Ġ.
- No. When operating on coal, a staggered early retirement alone will not bring Harrington into compliance with NAAQs. All units will need to be retired, converted to gas or environmental controls installed. SPS's analysis demonstrates that converting the units to gas is more economical than early retirement of the in its analysis? Ä

Appendix H
Page 90 of 251
Case No. 21-00169-UT
Appendix A
Page 59 of 184
Case No. 21-00169-UT

© 2020 Xcel Energy

NEXT MEETING

Date: Mid to Late October

Time: Mountain Time TBD

Location: Zoom Meeting

Appendix H Page 91 of 251 Case No. 21-00169-UT

Appendix A Page 60 of 184 Case No. 21-00169-UT

34

Case No. 21-00169-UT

Sierra Club June 26th Model Input Clarifications

Questions not yet answered will be addressed in future technical conferences

- Staggered Retirement scenarios: please confirm that both units will be economically committed and dispatched at all times, and that the no unit's retirement date would be later than 2032
- Sustaining Capital Costs: Does Xcel has a schedule of sustaining capital costs that it plans to incorporate into EnCompass? What is the assumed step-down in spending in years prior to retirement?
- Company also planning to model market power as an option to replace some generation and capacity? Market power, both firm and non-firm: Is Xcel modeling just resources from the RFP process, or is the What cost and availability assumption is Xcel using for these potential purchases?
- Environmental Compliance: What operational assumptions and compliance costs is Xcel planning to using to model Tolk and Harrington's likely environmental compliance obligations?
- Load and peak assumptions: What baseline load and peak levels is Xcel using, and what sensitivities does Xcel plan to use in the Tolk analysis, especially in light of COVID's impact on sales and economic •
- * Discussed above

Appendix A Page 62 of 184 Case No. 21-00169-UT

35

Sierra Club June 26th Model Input Clarifications

foundation of this analysis. However we would encourage Xcel to also think about hard coding sensitivities Optimized modeling vs scenario modeling: We would like to understand the main factors driving Xcel / example, if an optimized run indicates that a 2027 retirement date for Tolk is least cost, but a hard coded difference between 2025 and 2027 just a reflection of, for example, the estimated sustaining capital cost EnCompass' selection of optimal retirement date. We believe that optimized retirement runs should be retirement of 2025 is only a tiny bit more expensive, is the result of 2027 actually meaningful or is the assumptions? It is essential that the Company understands and is transparent about which modeling based on optimized results to understand how sensitive the model is to specific assumptions. For results are significant and which are likely not.*

Company plan to conduct reliability modeling to inform its ELCC assumptions? Is the Company planning to use resource blocks to reflect the changing contribution of each resource as the amount installed on the Reliability: How is Xcel planning to model the firm capacity contribution of solar and wind? Does the system increases? What about paired wind and solar resources? *

* Discussed above

36

Sierra Club June 26th Request for SPS Model Runs

- Tolk has to comply with Regional Haze regulations by installing dry scrubbers by 2024 (this is likely the earliest there would be any such requirement as it takes at least three years to install).
- Harrington has to install scrubbers for SO2 NAAQS and/or regional haze compliance by 2024 (same as above). * ď
- 3. Harrington operates seasonally *
- Staggered retirement of both Tolk and Harrington's units (starting as early as possible, likely 2023). 4.
- Staggered retirement AND seasonal operation of both Tolk and Harrington (seasonal operation stating this year, staggered retirement starting ASAP) 5.
- Load sensitivity, based in part on COVID impacts, assuming a slow-down in demand growth. 9
- * Discussed above

37

Case No. 21-00169-UT

Sierra Club August 20th Request for SPS Model Runs

- Does SPS plan to use the IRP process to make the final decision on whether to retire, repower on natural gas, or install scrubbers at Harrington? Or does the Company plan to make a decision prior to or outside the IRP process? *
- for the full capacity and services currently provided by Harrington, or is SPS simply comparing the cost of When evaluating the least cost solution for Harrington, is SPS evaluating whether it actually has a need the plant on natural gas and coal to the cost of providing identical services from alternative resources? ۲j
- What costs and assumptions for sustaining capital costs is SPS planning to use in its Harrington analysis? * ო
- Will the Company assume a reduction in spending in years directly prior to plant retirements? * 4.
- Does SPS plan to model seasonal operation of Harrington when operating both on coal and natural gas in its analysis? * 5.
- Will SPS model staggered retirement at Harrington when operating both on coal and natural gas in its analysis? 9
- * Discussed above

Page 65 of 184 Case No. 21-00169-UT

Sierra Club August 20th Request for SPS Model Runs

- Will the Company incorporate the results of its Tolk RFP into its modeling assumptions for Harrington's (including costs for solar, wind, and battery storage) to inform its cost assumptions for replacing or replacement costs? More specifically, we believe that the Company should use those RFP results retrofitting Harrington. 7
- When evaluating Harrington, the Company should run at least one scenario requiring compliance with National Ambient Air Quality Standard for sulfur dioxide as expeditiously as practicable, 42 U.S.C. 7502(c)(1), and no later than 2024. φ.
- We urge the Company to run at least one modeling scenario in which Tolk is required to retire, repower, or comply with Regional Haze regulations by installing dry scrubbers or dry sorbent injection by 2024. . ග

* Discussed above

Appendix H
Page 97 of 251
Case No. 21-00169-UT

Appendix A Page 66 of 184 Case No. 21-00169-UT

Appendix H Page 98 of 251 Case No. 21-00169-UT Appendix A

Appendix A Page 67 of 184 Case No. 21-00169-UT

Appendix H
Page 99 of 251
Case No. 21-00169-UT
Appendix A
Page 68 of 184
Case No. 21-00169-UT

0

Today's Meeting Agenda

- 1. Modeling parameters for Harrington Station
- A. Background & NAAQS compliance
- B. Harrington operating on gas
- C. Economic Analysis

Appendix H
Page 100 of 251
Case No. 21-00169-UT
Appendix A
Page 69 of 184
Case No. 21-00169-UT

0

Agenda for Future Technical Conferences

1. Tolk Analysis - Retirement dates and operating scenarios

2. Value of Tolk water rights

3. Modeling Parameters

Appendix H Page 101 of 251 Case No. 21-00169-UT Appendix A

Appendix A Page 70 of 184 Case No. 21-00169-UT

Background

- NM Rate Case Stipulation states "SPS also commits to running at least one scenario in which all of SPS's coal-burning units are retired or replaced before 2030"
- Harrington Station:
- ➤ Three coal-fired units: each ~340MW
- ➤ Located North of Amarillo, Texas
- ➤ Units 1 3 are scheduled to retire 2036, 2038 & 2040, respectively
- SPS intend to run every scenario in the Tolk Analysis in which all three Harrington units are converted to operate on natural gas by <u>2025</u>

Case No. 21-00169-UT

NAAQS

- The Clean Air Act requires the EPA to set National Ambient Air Quality Standards (including SO2)
- The TCEQ classified the area as Attainment/Unclassifiable due to a lack of monitoring data in the area
- In December 2016, TCEQ installed an SO2 monitor in the vicinity of Harrington Station to collect ambient air data
- Readings from the monitor exceed the standards
- Harrington emits ∼99% of the SO2 emissions in Potter County
- Emphasis will be on SPS to produce implementation plan
- Anticipated compliance date: By 2025
- Agreed Order October 2020

Appendix H
Page 104 of 251
Case No. 21-00169-UT
Appendix A
Page 73 of 184
Case No. 21-00169-UT

_

Compliance Solutions

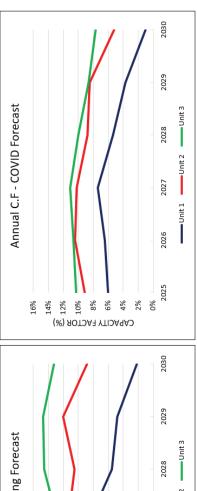
- Installation of environmental controls on three units*
- Early retirement of all three units (EOY 2024)
- Conversion of all three units to natural gas

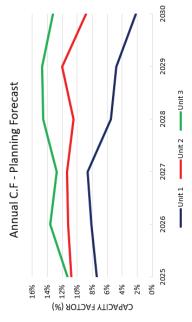
Combination of the above

previous technical conferences environmental controls will not be presented today *Installation of environmental controls is cost prohibitive. Based on feedback from

Appendix H
Page 105 of 251
Case No. 21-00169-UT

HARRINGTON OPERATING ON GAS **Xcel** Energy®

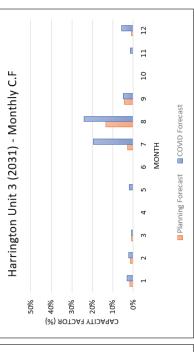

Harrington on Gas

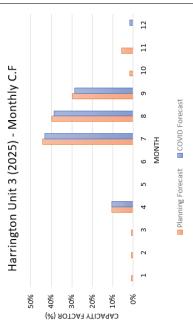

- Fuel change only
- Low cost solution to:
- Meet NAAQs compliance
- Continue to provide over 1,000MW of year-round capacity
- System reliability benefits
- After the conversion to gas, the Harrington units act as "peaking" generation
- Low capacity factors
- Provide energy during times of high demand or low renewable output

Appendix H
Page 107 of 251
Case No. 21-00169-UT
Appendix A
Page 76 of 184
Case No. 21-00169-UT

10

Low Annual Capacity Factors

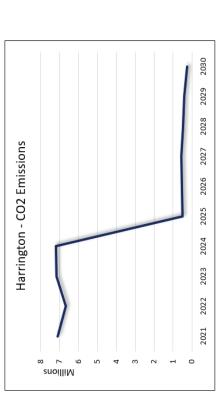


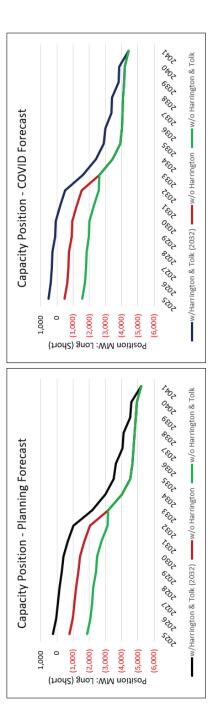

The Harrington Units will provide "peaking generation" with projected capacity factors <10 - 15% depending on load forecast

Appendix H
Page 108 of 251
Case No. 21-00169-UT
Appendix A
Page 77 of 184
Case No. 21-00169-UT

7

Capacity Factors by Month




Harrington will support the integration of new renewables by providing energy during hours of low renewable generation

Harrington Annual CO2 Emissions

Summer Capacity Position

Retiring Harrington EOY 2024 will create an immediate capacity need of between ~500MW and 800MW, rising to between ~1,000MW and 1,400MW by 2030

of between ~1,600MW and 1,900MW rising to between ~2,000MW and 2,400MW by Retiring both Tolk and Harrington EOY 2024 will create an immediate capacity need

Retiring Gas Generation

SPS's entire fleet of gas steam generation (1,624MW) is scheduled to retire by EOY

1,138MW is scheduled to retire by EOY 2030

Harrington Station provides 1,021MW of capacity

Tolk Station provides 1,069MW of capacity

Potentially 3,228MW of thermal generation could be retired by 2030

SPS owns 4,335MW of thermal generation

Retiring this amount of thermal generation will require new thermal generation

Appendix H Page 112 of 251 Case No. 21-00169-UT Appendix A

Appendix A Page 81 of 184 Case No. 21-00169-UT

Case No. 21-00169-UT

Economic Analysis

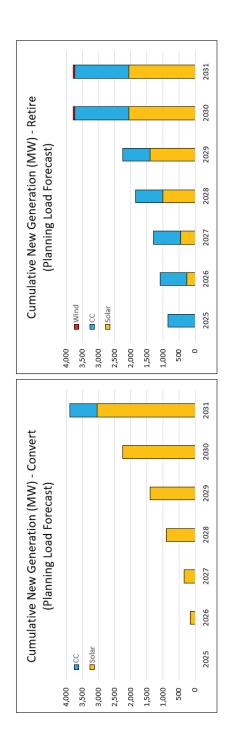
DRAFT

DRAFT

Planning Forecast	1	
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$16,045
Early Retirement (2024)	\$116	\$16,161

COVID Forecast		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	\$76	\$14,027

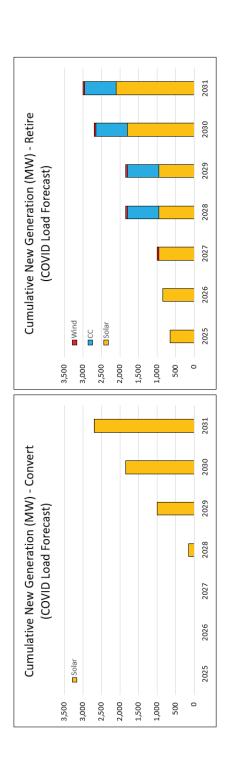
Converting the units to gas saves between \$76M - \$116M (PVRR) when compared to an early retirement


The Encompass model:

➤ Added more new renewable generation by 2031 when converting the units to gas

> Added an additional combined cycle unit when retiring Harrington EOY2024

17


DRAFT DRAFT Expansion Plans – Planning Forecast

- When converting to gas (left graph), the Encompass model added 3,050MW of new solar and a combined cycle by EOY 2031
- When retiring the Harrington Units (right graph), the Encompass model added 2,050MW of solar, 50MW of wind and two combined cycles by EOY 2031

DRAFT Expansion Plans – COVID Forecast

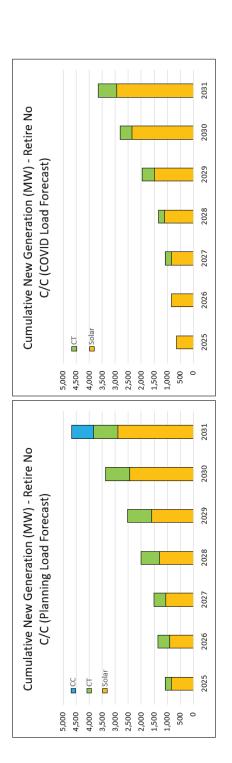
DRAFT

- When converting to gas (left graph), the Encompass model added 2,700MW of solar by EOY 2031
- When retiring the Harrington Units (right graph), the Encompass model added 2,100MW of solar, 50MW of wind and a combined cycle by EOY 2031

DRAFT

Economic Analysis (w/o CC)

DRAFT


Planning Forecast	t	
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$16,045
Early Retirement (2024)	\$116	\$16,161
Early Retirement (2024) - No CC	\$364	\$16,409

COVID FOIEGASI		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	9/\$	\$14,027
Early Retirement (2024) - No CC	\$206	\$14,157

• The economic analysis was recalculated restricting encompass from adding a	combined cycle before EOY 2030

Converting the units to gas saves between \$206M - \$364M (PVRR) when compared to an early retirement

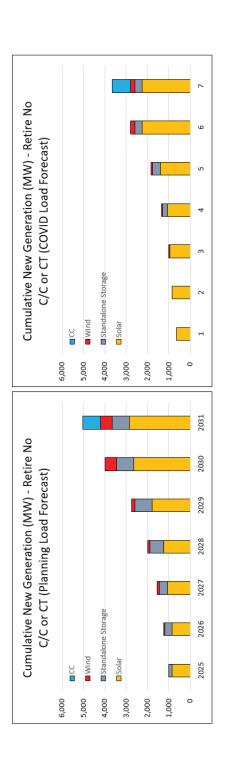
DRAFT Expansion Plan w/o CC before 2030

- Depending on the load forecast, when retiring Harrington and restricting the model from adding a CC before EOY 2030, it added between:
- 2,900MW of solar, 4 CTs and 1 combined cycle, and
- 2,950MW of solar and 3 CTs

DRAFT

Economic Analysis (w/o CC/CT)

DRAFT


Planning Forecast	;t		
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049	PVRR Pr
Convert Units to Gas	\$0	\$16,045	Convert Units to
Early Retirement (2024)	\$116	\$16,161	Early Retirement
Early Retirement (2024) - No CC	\$364	\$16,409	Early Retirement
Early Retirement (2024) - No CT/CC	\$1,345 \$17,390	\$17,390	Early Retirement

COVID Forecast	t	
PVRR Production Cost	Delta (\$M)	NPV (\$M) 2021- 2049
Convert Units to Gas	\$0	\$13,951
Early Retirement (2024)	\$76	\$14,027
Early Retirement (2024) - No CC	\$206	\$14,157
Early Retirement (2024) - No CT/CC	\$397	\$14,348

The economic analysis was once again re-run restricting encompass from selecting a combined cycle or combustion turbines before EOY 2030

Converting the units to gas saves between \$397M - \$1,345M (PVRR) when compared to an early retirement

DRAFT DRAFT Expansion Plan w/o CC/CT before 2030

- Depending on the load forecast, when retiring Harrington and restricting the model from adding a CC or CTs before EOY 2030, it added between:
- 800MW of storage, 550MW of wind, 2,850MW of solar, and a CC in 2031
- 350MW of storage, 200MW of wind, 2,250MW of solar, and a CC in 2031

Summary

- Converting the Harrington Units to operate on natural gas:
- ▶ Is a low cost and low risk solution for NAAQs compliance
- ➤ Is the lowest cost alternative compared to other compliance strategies
- Provides year-round capacity and generation, benefitting the integration of additional renewables onto the SPS system
- Carbon Emissions at Harrington Station are reduced by ∼95% over a 10-year period A

Appendix H
Page 121 of 251
Case No. 21-00169-UT
Appendix A

Appendix A Page 90 of 184 Case No. 21-00169-UT

Appendix A
Page 91 of 184
Case No. 21-00169-UT Tolk Analysis: Session 4 of the 1st Technical Conference 02/08/2021 Xcel Energy*

Appendix H
Page 122 of 251
Case No. 21-00169-UT
Appendix A
Page 91 of 184

Appendix H
Page 123 of 251
Case No. 21-00169-UT
Appendix A
Page 92 of 184
Case No. 21-00169-UT

0

Today's Agenda

- 1. Recap prior technical conferences
- Tolk Analysis Final proposed retirement dates and operating scenarios
- 3. Replacement Resources in the Encompass Model
- 4. Critical Modeling Parameters / Sensitivities
- 5. Value of Tolk water rights
- 6. Summary of 1st Technical Conference
- Final review of questions previously submitted by Sierra Club

Appendix H
Page 124 of 251
Case No. 21-00169-UT
Appendix A
Page 93 of 184
Case No. 21-00169-UT

RECAP OF PRIOR TECHNICAL CONFERENCES

Appendix H
Page 125 of 251
Case No. 21-00169-UT
Appendix A
Page 94 of 184
Case No. 21-00169-UT

Recap - Overview

Technical Conferences

basic parameters and approach of its analysis. The second technical conference will be "SPS shall hold two technical conferences located in either Santa Fe or Albuquerque, NM. The first technical conference will be for SPS to present and solicit feedback on the for SPS to provide and solicit feedback on the preliminary conclusions of its analysis"

Subsequent Changes

- COVID-19 required technical conferences to be held virtually
- SPS proposed splitting the first technical conference into multiple sessions with today being the fourth and final session of the 1st Technical Conference

Appendix H
Page 126 of 251
Case No. 21-00169-UT
Appendix A
Page 95 of 184
Case No. 21-00169-UT

Recap - 1st Session

- 1. General approach of the Tolk Analysis
- PVRR Analysis using the Encompass production cost modeling software
- Evaluate multiple retirement and operating scenarios each with an optimized expansion and generator replacement plan
- Type, technical characteristics, and cost of replacement generation will be the result of an RFI process
- An Independent Evaluator ("IE") will oversee the RFI process and Tolk Analysis
- 2. Request for Proposal ("RFP") to acquire the services of an IE
- *Guidehouse was subsequently appointed as IE
- 3. Draft Request for Information ("RFI") to obtain pricing of replacement resources
- *RFI was subsequently issued and proposals received on November 6th, 2020
- 4. Outline of the scenarios SPS is proposing to evaluate

Appendix H
Page 127 of 251
Case No. 21-00169-UT
Appendix A
Page 96 of 184
Case No. 21-00169-UT

9

Recap - 2nd Session

- 1. Prior and Future Technical Conferences
- 2. Updates from Prior Technical Conference
- A. Independent Evaluator
- B. Request for Information for generating resources
- 3. Encompass Production Cost Modeling Software
- A. SPS Load Forecast Update

Responses to Parties Comments and Questions

4.

Sierra Club Modeling Questions (outstanding questions to be addressed today) m.

Appendix H
Page 128 of 251
Case No. 21-00169-UT
Appendix A
Page 97 of 184
Case No. 21-00169-UT

_

Recap - 3rd Session

1. Modeling parameters for Harrington Station

A. Background & NAAQS compliance

B. Harrington operating on gas

C. Economic Analysis

Appendix H
Page 129 of 251
Case No. 21-00169-UT
Appendix A
Page 98 of 184
Case No. 21-00169-UT

TOLK ANALYSIS – RETIREMENT DATES AND OPERATING SCENARIOS

Xcel Energy®

Appendix H
Page 130 of 251
Case No. 21-00169-UT
Appendix A
Page 99 of 184
Case No. 21-00169-UT

Operating & Retirement Scenarios

After originally presenting the Operating & Retirement Scenarios in the 1st Session of the 1st Technical Conference, SPS has reviewed the feedback provided and propose the following operating and retirement scenarios:

- Scenario 1 Annual Economic Dispatch
- Summer only economic dispatch throughout 2021
- Annual economic dispatch thereafter

A

- Both units retire at end of economically available water (~2025 2026)
- Harrington converted to gas EOY2024
- Scenario 2 Summer Only Economic Dispatch
- Summer only economic dispatch 2021 and beyond
- Both units retire at end of economically available water (~2032) A
- Harrington converted to gas EOY2024

Operating & Retirement Scenarios

- Scenario 3 Earliest Retirement of Tolk Units (2023)
- Summer only economic dispatch 2021
- Annual economic dispatch thereafter (2022 & 2023)
- ➤ Harrington converted to gas EOY2024
- Scenario 4 Staggered Retirement of Tolk Units
- Unit 1 retires EOY 2023
- Unit 2 retires at end of economically available water (~2031)
- Summer only economic dispatch 2021
- Annual economic dispatch thereafter

A

Harrington converted to gas EOY2024

Appendix H
Page 132 of 251
Case No. 21-00169-UT
Appendix A
Page 101 of 184
Case No. 21-00169-UT

 $\stackrel{\leftarrow}{\vdash}$

Operating & Retirement Scenarios

Scenario 5 - Staggered Retirement of Tolk Units (2023) & Seasonal Operations

▶ Unit 1 retires EOY 2023

Unit 2 retires EOY 2032

Summer only economic dispatch

Harrington converted to gas EOY2024

Scenario 6 - Earliest Retirement of Tolk & Harrington Units

All Tolk and Harrington Units Retire EOY 2023

Tolk - Summer only economic dispatch 2021

A

Tolk - Annual economic dispatch thereafter

Harrington – Annual economic dispatch in all years

Sierra Club Requested Scenarios

(Staggered Retirements)

Staggered retirement of both Tolk and Harrington's units (starting as early as possible, likely

Scenario 4 incorporates a staggered retirement of the Tolk Units. As discussed in previous technical retirement of the Harrington Units would not meet NAAQS compliance. Scenario 6 incorporates an conferences, the Harrington Units are required to comply with NAAQS by EOY2024. A staggered early retirement of all Tolk and Harrington units. Staggered retirement AND seasonal operation of both Tolk and Harrington (seasonal operation starting this year, staggered retirement starting ASAP)

Added Scenario 5 to incorporate this request for the Tolk Units. However, as previously discussed, seasonal operations of the Harrington units will not meet NAAQS compliance. Staggered Retirement scenarios: please confirm that both units will be economically committed and dispatched at all times, and that the no unit's retirement date would be later than 2032

Confirmed, to the extent of this Tolk Analysis

C

Appendix H
Page 134 of 251
Case No. 21-00169-UT
Appendix A
Page 103 of 184
Case No. 21-00169-UT

Sierra Club Requested Scenarios (Environmental Controls)

likely the earliest there would be any such requirement as it takes at least three years to install) Tolk has to comply with Regional Haze regulations by installing dry scrubbers by 2024 (this is

installation of capital-intensive environmental controls is cost prohibitive for the Harrington Units. Based on current modeling inputs, the same conclusion can almost certainly be applied to the Tolk Units. If SPS has recently evaluated the installation of scrubbers and dry sorbent injection on the Harrington units to comply with NAAQS. As presented in the 3rd session of the 1st technical conference, the SPS is required to comply with Regional Haze regulations, or any other regulations that require environmental controls, SPS will reevaluate the retirement date(s) of the units at that time.

Run at least one modeling scenario in which Tolk is required to retire, repower, or comply with Regional Haze regulations by installing dry scrubbers or dry sorbent injection by 2024

See previous response.

Environmental Compliance: What operational assumptions and compliance costs is Xcel planning to use to model Tolk and Harrington's <u>likely</u> environmental compliance obligations?

See previous response.

Appendix H
Page 135 of 251
Case No. 21-00169-UT
Appendix A
Page 104 of 184
Case No. 21-00169-UT

REPLACEMENT RESOURCES

Xcel Energy®

Generator Replacement Resources

- The Encompass model will create an optimized expansion plan / generator replacement plan for each of the scenarios previously described
- Encompass (including selection solely for economic energy benefits), generally, this is Resources proposed in the RFI process will be available for optimized selection by through EOY 2025
- limited to, solar, wind, simple cycle combustion turbines, battery storage, and combined Thereafter 'generic-priced' resources will be available for selection, including but not cycle gas generation

Appendix H
Page 137 of 251
Case No. 21-00169-UT
Appendix A
Page 106 of 184
Case No. 21-00169-UT

_

RFI Replacement Resources

- SPS received information from nearly 20 different bidders
- Proposals included approximately 75 different pricing structures
- Majority of proposals were either solar, solar + storage or wind projects
- Other technology included: combined cycle generation with hydrogen production and storage, gravitational energy storage, compressed air storage
- Commercial operation dates generally ranged from 2022 to 2025
- Project output ranged from 25MW to 1,100MW+

Appendix H
Page 138 of 251
Case No. 21-00169-UT
Appendix A
Page 107 of 184
Case No. 21-00169-UT

MODELING PARAMETERS / SENSITIVITY ANALYSIS

Xcel Energy®

Appendix H
Page 139 of 251
Case No. 21-00169-UT
Appendix A
Page 108 of 184
Case No. 21-00169-UT

Gas Forecast Methodology

Gas Forecast

monthly delivered gas prices. As the foundation of the gas price forecast, Henry Hub natural gas prices fundamental price forecasts, based on multiple highly respected, industry leading sources, to calculate are developed using a blend of market information (New York Mercantile Exchange ("NYMEX") futures Global. The forecast is fully market-based for the first few years, then transitions into blending the four prices) and long-term fundamentally based forecasts from Wood Mackenzie, IHS Energy, and S&P sources to develop a composite forecast. The Henry Hub forecast is adjusted for regional basis The price of natural gas is a significant variable. SPS uses a combination of market prices and differentials and specific delivery costs for each generating unit to develop final model inputs.

SPS will use the company's 1H21 gas forecast in the Tolk Analysis. The 1H21 gas forecast is expected to be released in March 2021. 00

Appendix H
Page 140 of 251
Case No. 21-00169-UT
Appendix A
Page 109 of 184
Case No. 21-00169-UT

0

Gas Forecast Sensitivity

Gas Forecast Sensitivity

SPS will conduct low and high gas price forecast sensitivity analyses. For the low and high price cases, the base gas forecast for Henry Hub is adjusted down by 50% of the growth (escalation) in the base gas case to represent the low gas case, and adjusted up by 150% of the growth in the base gas to represent the high gas case.

Market Price Forecast Methodology

Market Price Forecast

repeated for all months, distinguishing between on and off-peak prices, through the end of the modeling SPS uses a simple average of long-term on-peak and off-peak implied heat rate forecasts provided by in addition to resources that exist within SPS's service territory, SPS has access to a regional market purchases, as well as the opportunity to sell from its generating sources to other market participants. located outside its service territory. SPS is a member of the SPP, which operates as a consolidated natural gas price forecast to convert the implied heat rate values into energy prices. This process is denominated in million British thermal units/megawatt-hour, are then multiplied by SPS's long-term balancing authority and dispatches all available generation resources within its boundaries. This consolidated dispatch allows SPS access to energy resources outside SPS's service territory for Wood Mackenzie, S&P Global and IHS Markit for SPP South Hub. The implied heat rates, period.

SPS will use the company's 1H21 market price forecast in the Tolk Analysis. The 1H21 market price forecast is expected to be released in March 2021.

Market Price Forecast Sensitivity

Market Price Forecast Sensitivities

SPS's market price forecast is dependent on the gas price forecast used. As such, the market price forecast will be adjusted with the low and high gas sensitivity analyses

depending on the optimized generation portfolio's reliance on purchases from, or sales to, the SPP As preliminary results become available, SPS may analyze additional market price sensitivities integrated market.

Demand and Energy Forecast Methodology

Demand and Energy Forecast

customer level of detail. SPS models its forecasts on a monthly basis and uses monthly historical data are an aggregation of the monthly energy sales estimates. Energy sales are forecasted at the delivery to develop the customer, energy sales, and coincident peak demand forecasts. Annual energy sales resource need assessment. SPS forecasts retail energy sales and customers by rate class for each Projections of future energy sales and coincident peak demand are fundamental inputs into SPS's jurisdiction. Retail coincident peak demand is forecasted in the aggregate at the total SPS level. wholesale energy sales and coincident peak demand forecasts are developed at the individual point and peak demand is forecasted at the generating source.

SPS will use the company's Spring 2021 sales and demand forecast in the Tolk Analysis.

Demand and Energy Forecast Sensitivity

Demand and Energy Forecast

demand forecasts with probabilistic inputs for the economic, energy, and weather drivers of the forecast an important aspect of the planning process. SPS will conduct sensitivity analyses using a high and low forecast. The high and low forecasts are based on a Monte Carlo simulation for energy sales and peak The low forecast scenario is the forecast level from the Monte Carlo simulation that represents a minus simulation that represents a plus one standard deviation confidence band from the base case forecast. Development and use of different energy sales and demand forecasts for planning future resources is models and for model error. The high forecast scenario is the forecast level from the Monte Carlo one standard deviation confidence band from the base case forecast.

Appendix H Page 145 of 251 Case No. 21-00169-UT Appendix A Page 114 of 184 Case No. 21-00169-UT

TOLK WELLFIELD WATER VALUATION RICHARD L. BELT, DIRECTOR – CHEMISTRY & WATER RESOURCES

Wcel Energy®

Appendix H Page 146 of 251 Case No. 21-00169-UT Appendix A Case No. 21-00169-UT

Tolk Overview and Water Transaction Background

- ~50,000 acres, entirely within Lamb County
- SPS does not own the surface estate, except at plant sites
- Saturated thickness from <30 ft to >70 ft (generally from west to east)
- Rule of capture entitled to groundwater under surface estate, not volume certain
- Groundwater right can be severed from surface estate
- Local groundwater districts establish production limits, spacing rules, reporting requirements
- Sold on per-acre basis vs. per-acre foot basis
- Value of any surface improvements conveyed with sale (i.e. wells)
- Water value = value of irrigated acreage minus value of dry acreage, adjusting for improvements or other considerations (TX/NM are non-disclosure states, a complication)
- Other adjustments needed?, i.e. groundwater depletion
- HPWD annual groundwater depreciation study © 2020 Xcel Energy

25

Critical Assumptions

Acres with <40 feet of saturated thickness should be excluded from valuation estimate

Need for conveyance system and details (deduction)

Municipal buyer may need to replace all wells not completed to TCEQ standard (deduction)

Prospective buyer pool limitation (negotiation limitation)

Lower water right valuation bound is \$0

Time to identify a buyer, close the transaction, and develop a conveyance system?

Per HPWD, Lamb County water valuation declined 40% from 2016 to 2020

Rate of future saturated thickness decline & growth of excluded acreage? Seasonal vs. year-round generation & impact on available water

Future site optionality may be highest/best value for ratepayers

Appendix H
Page 148 of 251
Case No. 21-00169-UT
Appendix A
Page 117 of 184
Case No. 21-00169-UT

Recommended Approach to Water Valuation

Adjust HPWD water valuation

Estimate wellfield acreage with depleted groundwater based on latest groundwater model

Establish Tolk operational assumptions during the preceeding period

Use HPWD water valuation with appropriate adjustment

Multiply by wellfield acreage as adjusted for depleted groundwater

Evaluate assumption sensitivities

Engage a local Realtor or general appraiser to assess comparable Lamb County irrigated and dryland acreage to establish water value, including infrastructure adjustment.

Multiply by wellfield acreage as adjusted for depleted groundwater

Evaluate assumption sensitivities

Appendix H
Page 149 of 251
Case No. 21-00169-UT
Appendix A
Page 118 of 184
Case No. 21-00169-UT

SUMMARY OF 1ST TECHNICAL CONFERENCE

Xcel Energy®

First Technical Conference Summary

The first technical conference will be for SPS to present and solicit feedback on the basic parameters and approach of its analysis

- Present Value Revenue Requirement (PVRR) analysis conducted in Encompass model
- Evaluate multiple operating parameters and retirement dates for the Tolk Units
- Model incorporates the technical characteristics, operating parameters, cost, retirement dates etc. of SPS's existing generation fleet
- Each scenario will incorporate an optimized generator expansion / replacement plan
- Generator expansion / replacement plan will be based on the proposals received in the RFI process
- Independent Evaluator will oversee the Tolk Analysis

•

First Technical Conference Summary

The first technical conference will be for SPS to present and solicit feedback on the basic parameters and approach of its analysis Critical inputs, such as gas prices, market prices, energy and demand forecasts will be evaluated using sensitivity analyses

Appendix H
Page 152 of 251
Case No. 21-00169-UT
Appendix A
Page 121 of 184
Case No. 21-00169-UT

FINAL REVIEW OF QUESTIONS PREVIOUSLY SUBMITTED BY SIERRA CLUB

W Xcel Energy®

Sierra Club June 26th Model Input Clarifications

- Staggered Retirement scenarios: please confirm that both units will be economically committed and dispatched at all times, and that the no unit's retirement date would be later than 2032**
- incorporate into EnCompass? What is the assumed step-down in spending in years prior to retirement? * Sustaining Capital Costs: Does Xcel have a schedule of sustaining capital costs that it plans to
- Market power, both firm and non-firm: Is Xcel modeling just resources from the RFP process, or is the Company also planning to model market power as an option to replace some generation and capacity? What cost and availability assumption is Xcel using for these potential purchases? *
- Environmental Compliance: What operational assumptions and compliance costs is Xcel planning to use to model Tolk and Harrington's likely environmental compliance obligations?**
- Load and peak assumptions: What baseline load and peak levels is Xcel using, and what sensitivities does Xcel plan to use in the Tolk analysis, especially in light of COVID's impact on sales and economic
- *Responses provided in prior technical conferences
- ** Responses provided in this technical conference

Sierra Club June 26th Model Input Clarifications

foundation of this analysis. However we would encourage Xcel to also think about hard coding sensitivities Optimized modeling vs scenario modeling: We would like to understand the main factors driving Xcel / example, if an optimized run indicates that a 2027 retirement date for Tolk is least cost, but a hard coded difference between 2025 and 2027 just a reflection of, for example, the estimated sustaining capital cost EnCompass' selection of optimal retirement date. We believe that optimized retirement runs should be retirement of 2025 is only a tiny bit more expensive, is the result of 2027 actually meaningful or is the assumptions? It is essential that the Company understands and is transparent about which modeling based on optimized results to understand how sensitive the model is to specific assumptions. For results are significant and which are likely not.*

Company plan to conduct reliability modeling to inform its ELCC assumptions? Is the Company planning to use resource blocks to reflect the changing contribution of each resource as the amount installed on the Reliability: How is Xcel planning to model the firm capacity contribution of solar and wind? Does the system increases? What about paired wind and solar resources? *

^{*} Responses provided in prior technical conferences

^{**} Responses provided in this technical conference

Sierra Club June 26th Request for SPS Model Runs

- Tolk has to comply with Regional Haze regulations by installing dry scrubbers by 2024 (this is likely the earliest there would be any such requirement as it takes at least three years to install).**
- Harrington has to install scrubbers for SO2 NAAQS and/or regional haze compliance by 2024 (same as above). * Si
- Harrington operates seasonally. *
- Staggered retirement of both Tolk and Harrington's units (starting as early as possible, likely 2023).** 4.
- Staggered retirement AND seasonal operation of both Tolk and Harrington (seasonal operation starting this year, staggered retirement starting ASAP).** 5.
- Load sensitivity, based in part on COVID impacts, assuming a slow-down in demand growth.** 9
- * Responses provided in prior technical conferences
- ** Responses provided in this technical conference

Sierra Club August 20th Request for SPS Model Runs

- Does SPS plan to use the IRP process to make the final decision on whether to retire, repower on natural gas, or install scrubbers at Harrington? Or does the Company plan to make a decision prior to or outside the IRP process? *
- When evaluating the least cost solution for Harrington, is SPS evaluating whether it actually has a need for the full capacity and services currently provided by Harrington, or is SPS simply comparing the cost of the plant on natural gas and coal to the cost of providing identical services from alternative resources? * α i
- What costs and assumptions for sustaining capital costs is SPS planning to use in its Harrington analysis? * ഗ.
- Will the Company assume a reduction in spending in years directly prior to plant retirements? 4.
- Does SPS plan to model seasonal operation of Harrington when operating both on coal and natural gas 5.
- * Responses provided in prior technical conferences
- ** Responses provided in this technical conference

Sierra Club August 20th Request for SPS Model Runs

- Will SPS model staggered retirement at Harrington when operating both on coal and natural gas in its analysis? * 6.
- Will the Company incorporate the results of its Tolk RFP into its modeling assumptions for Harrington's including costs for solar, wind, and battery storage) to inform its cost assumptions for replacing or replacement costs? More specifically, we believe that the Company should use those RFP results retrofitting Harrington.** 7
- When evaluating Harrington, the Company should run at least one scenario requiring compliance with National Ambient Air Quality Standard for sulfur dioxide as expeditiously as practicable, 42 U.S.C. § 7502(c)(1), and no later than 2024. ∞
- We urge the Company to run at least one modeling scenario in which Tolk is required to retire, repower, or comply with Regional Haze regulations by installing dry scrubbers or dry sorbent injection by 2024.** . ග
- * Responses provided in prior technical conferences
- ** Responses provided in this technical conference

Appendix H
Page 158 of 251
Case No. 21-00169-UT
Appendix A
Page 127 of 184
Case No. 21-00169-UT

Xcel Energy® © 2020 Xcel Energy

Appendix H Page 159 of 251 Case No. 21-00169-UT Appendix A Page 128 of 184 Case No. 21-00169-UT Tolk Analysis: 2nd Technigal Conference 04/19/2021 Xcel Energy®

Appendix H
Page 160 of 251
Case No. 21-00169-UT
Appendix A
Page 129 of 184
Case No. 21-00169-UT

2

Agenda 2nd Technical Conference

- 1. Introduction
- 2. Tolk Analysis Overview
- 3. SPS System Overview
- 4. Conclusion 1: Replacement Resources
- 5. Conclusion 2: Preliminary Results
- 6. Final Review

Appendix H
Page 161 of 251
Case No. 21-00169-UT
Appendix A
Page 130 of 184
Case No. 21-00169-UT

 $^{\circ}$

Preliminary Results Disclaimer

The results presented today are preliminary and are subject to change

Analysis. SPS will update the results preliminary results presented today to incorporate the new Xcel Energy / SPS will release a new natural gas forecast between now and filing the Tolk natural gas forecast in the final analysis

Appendix H
Page 162 of 251
Case No. 21-00169-UT
Appendix A
Page 131 of 184
Case No. 21-00169-UT

INTRODUCTION

Xcel Energy®

© 2020 Xcel Energy

Appendix H
Page 163 of 251
Case No. 21-00169-UT
Appendix A
Page 132 of 184
Case No. 21-00169-UT

2

Introduction Stipulation

to submit a robust analysis of Tolk abandonment and potential means of replacement by June 2021 ("The Tolk Analysis") The uncontested comprehensive stipulation in New Mexico Case No. 19-00170-UT requires SPS

- The Tolk Analysis will be incorporated into SPS's 2021 Integrated Resource Plan ("IRP") application
- The Tolk Analysis shall include:
- Two technical conferences
- A review by an independent evaluator ("IE")
- Replacement resources priced based on an RFP or RFI process

Appendix H
Page 164 of 251
Case No. 21-00169-UT
Appendix A
Page 133 of 184
Case No. 21-00169-UT

C

Introduction Technical Conferences

- First Technical Conference Present and solicit feedback on the basic parameters and approach of the Tolk analysis
- Completed four technical conferences between June 2020 and February 2021
- Second Technical Conference Provide and solicit feedback on the preliminary conclusions of the Tolk analysis

Appendix H
Page 165 of 251
Case No. 21-00169-UT
Appendix A
Page 134 of 184
Case No. 21-00169-UT

Introduction

Replacement resources priced based on an RFP or RFI process

- The intent of the 2020 request for information ("RFI") is to provide SPS with the type, technical characteristics, and cost of the resources needed or available to conduct the Tolk Analysis
- The expansion plans presented today are only intended to demonstrate how the Encompass model selected different portfolios of resources to potentially replace, or supplement, the capacity and energy provided by the Tolk Units
- As discussed during this presentation, the Tolk Analysis incorporates several critical variables and external drivers that impact the quantity and timing of potential additional resources
- If applicable, SPS will conduct a thorough and separate procurement process before acquiring any additional resources
- The selection of proposals in the Tolk Analysis will have no bearing on any possible future procurement process

Appendix H Page 166 of 251 Case No. 21-00169-UT Appendix A Page 135 of 184 Case No. 21-00169-UT

Introduction

Preliminary Conclusions

Conclusion 1 – Resources Submitted in the RFI Process

- The Tolk analysis provides indication that SPS should continue to explore the acquisition of economic energy resources
- Potential cost savings provided by new resources are highly dependent on critical variables and external drivers

Conclusion 2 – Retirement of the Tolk Units

- The preliminary results of the Tolk Analysis do not conclusively support an earlier retirement of the Tolk Units
- Without clear and obvious data to the contrary, SPS recommends continued operation of the Tolk units on a seasonal basis through end-of-year 2032

Note: The two conclusions are not mutually exclusive

© 2021 Xcel Energy

Appendix H
Page 167 of 251
Case No. 21-00169-UT
Appendix A
Page 136 of 184
Case No. 21-00169-UT

THE TOLK ANALYSIS OVERVIEW

2 Xcel Energy®

© 2020 Xcel Energy

Appendix H
Page 168 of 251
Case No. 21-00169-UT
Appendix A
Page 137 of 184
Case No. 21-00169-UT

10

Tolk Analysis Overview Tolk Station – Overview of Benefits & Costs

Benefits captured in Encompass

- Relatively low-cost, dispatchable energy
- Over 1GW of year-round capacity

Costs captured in Encompass (not exhaustive)

- Cost Recovery of Capital Investment
- Fixed Costs
- Operations and Maintenance (labor expenses, maintenance, coal handling etc.)
- Variable Costs
- Operations and Maintenance (chemicals, water)
- ▼ Fuel Costs

Appendix H Page 169 of 251 Case No. 21-00169-UT Appendix A Page 138 of 184 Case No. 21-00169-UT

Tolk Analysis Overview Objective

Establish the optimal operation and retirement dates of the Tolk Units, considering availability of economical water. The Tolk Analysis evaluates alternative benefits (and costs) provided by the Tolk Units:

. Maximize Energy Value

➤ Continue to operate the Tolk units year-round (economically) – at the expense of an earlier retirement date, or

2. Preserve Capacity Value

➤ Preserve Tolk's >1GW capacity – at the expense of deferred energy production, or

3. Is There a More Optimal Approach? (i.e Early Retirement)

- Retire the Tolk Units early regardless of the availability of economic water A
- Obtain capacity and energy from alternative resources

© 2021 Xcel Energy

Appendix H
Page 170 of 251
Case No. 21-00169-UT
Appendix A
Page 139 of 184
Case No. 21-00169-UT

Tolk Analysis Overview

Scenarios

Maximize Energy Value

- Scenario 1
- Operate the Tolk Units year-round (economically)
- ➤ Retire Tolk units EOY2025

Preserve Capacity Value

- Scenario 2
- Operate the Tolk Units seasonally (economically)
- ➤ Retire Tolk units EOY2032

Throughout todays presentation, Scenarios 2 & 3 will be used to demonstrate SPS's preliminary conclusions

Early Retirement

Scenario 3

- Operate the Tolk Units year-round (economically)
- ➤ Retire Tolk units EOY2023

· Scenario 6

- Operate the Tolk & Harrington Units yearround (economically)
- ➤ Retire all units EOY2023

Hybrid Approach

· Scenario 4

- > Operate the Tolk Units year-round (economically)
- ➤ Retire Tolk unit 2 EOY2031

➤ Retire Tolk unit 1 EOY2023

• **Scenario 5**

- Operate the Tolk Units seasonally (economically)
- ➤ Retire Tolk unit 1 EOY2023
- ➤ Retire Tolk unit 2 EOY2032

Appendix H
Page 171 of 251
Case No. 21-00169-UT
Appendix A
Page 140 of 184
Case No. 21-00169-UT

SPS SYSTEM OVERVIEW

Xcel Energy®

© 2020 Xcel Energy

Appendix H
Page 172 of 251
Case No. 21-00169-UT
Appendix A
Page 141 of 184
Case No. 21-00169-UT

SPS System Overview Capacity & Planning Reserve Margin

- To provide reliable service, all electric utilities must have more capacity available than the projected peak load
- The available capacity in excess of the projected peak load is referred to as the "planning reserve margin" ("PRM")
- SPS is a member of the Southwest Power Pool ("SPP")
- SPP requires each member to have a planning reserve margin of at least 12% of its peak demand forecast
- SPS's current Summer Peak demand is approximately 4,000MW
- Including the PRM, SPS are required to have a *minimum* of ~4,500MW of accredited capacity to meet Summer Peak Demand

4

Appendix H
Page 173 of 251
Case No. 21-00169-UT
Appendix A
Page 142 of 184
Case No. 21-00169-UT

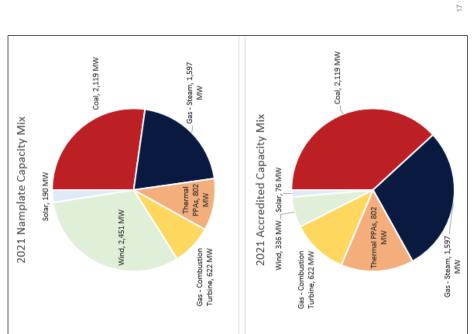
SPS System Overview Meeting the capacity need

- SPS currently has sufficient accredited capacity through the late 2020's to early 2030's
- The early retirement of the Tolk Units will create an immediate capacity need requiring SPS to acquire additional resources
- Renewable resources are treated as contributing towards SPS's projected peak load (although not 100% of the nameplate capacity), for example:
- Wind accredited capacity towards the Summer peak is ~20%
- Solar accredited capacity towards the Summer peak is ~55%
- SPS must be able to serve load in all hours, during variable weather conditions therefore, firm resources or long-duration energy storage will be required

Appendix H
Page 174 of 251
Case No. 21-00169-UT
Appendix A
Page 143 of 184
Case No. 21-00169-UT

16

SPS System Firm Resources / Fuel Diversity

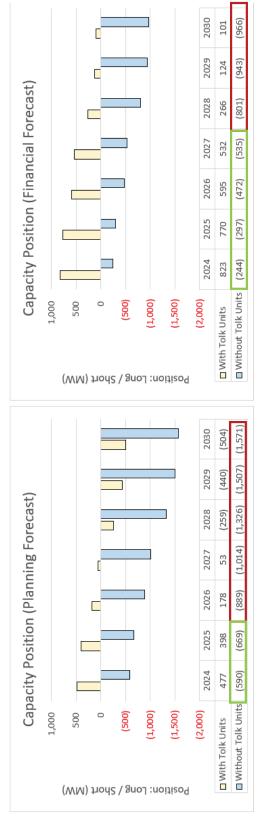

- For the purposes of the Encompass analysis, SPS utilize standard modeling inputs, such as weather-normalized load forecasts and average annual production profiles
- While extreme events like Winter Storm Uri are not fully captured in capacity/price modeling, this uncertainty is captured as part of our planning reserve
- During this cold-weather event, the Tolk and Harrington units were critical in serving SPS's customers and as a hedge against high energy prices
- Between 2/13/2021 and 2/19/2021 the Tolk and Harrington units produced ~270,000 MWh
- Cost of energy was between \$19.00 \$20.00 / MWh
- Without Tolk and/or Harrington SPS would have incurred much greater costs to dispatch other resources or purchase from the market

Appendix H Page 175 of 251 Case No. 21-00169-UT Appendix A Page 144 of 184 Case No. 21-00169-UT

SPS System Overview Existing System

SPS currently has:

- 7,781MW of generating resources
- 5,140MW of firm resources
- ▶ 2,641MW of wind and solar resources
- 5,548MW of accredited summer capacity
- 1,600MW of gas steam generation
- 1,100MW scheduled to retire by EOY 2030
- 1,350MW scheduled to retire by EOY 2032



© 2021 Xcel Energy

Appendix H
Page 176 of 251
Case No. 21-00169-UT
Appendix A
Page 145 of 184
Case No. 21-00169-UT

8

SPS System Capacity Position

As discussed in detail in the next section, all scenarios modeled add significant renewable generation between 2023 and 2025 Generally, the accredited capacity of the new renewable generation initially fulfills the lost capacity of the Tolk Units (green). However, the Encompass model then adds firm resources (combined cycles, combustion turbines, or energy storage) as this need increases (red)

© 2021 Xcel Energy

Appendix H Page 177 of 251 Case No. 21-00169-UT Appendix A Page 146 of 184 Case No. 21-00169-UT

CONCLUSION 1 – RESOURCES SUBMITTED IN THE RFI PROCESS

N Xcel Energy®

© 2020 Xcel Energy

Additional Resources

Overview

The Encompass production cost model will not necessarily replace the Tolk Units with like-in-kind generation. Instead, the model will optimally create an 'expansion plan' for each scenario based solar, wind, battery storage, combustion turbines etc. – all at different locations, with different inon the resource need, for example, replacing the Tolk Units could consist of a combination of service dates.

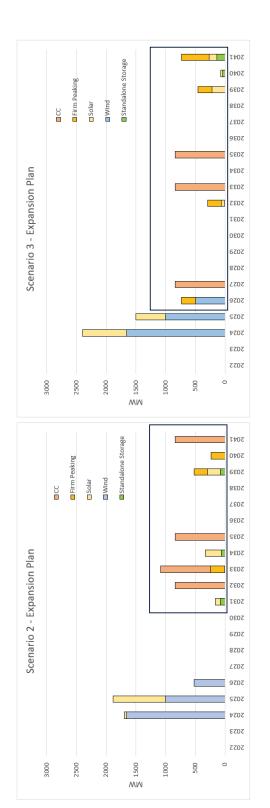
While the expansion plan must meet SPS's planning reserve margin, the model may also select additional resources to provide economical energy (i.e even when there is no resource need)

- Economically selected resources are not necessarily economical in all-years, nor are they necessarily lower cost than existing resources
- α Encompass's logic does not include a benefit-to-cost ratio threshold – for example, Encompass could select project that lowers the PVRR by a marginal amount, even if it requires a multi-year, multi-million-dollar A
- Encompass evaluates system-wide costs over a long-term planning horizon, not necessarily the immediate impact to SPS's ratepayers A

20

Appendix H
Page 179 of 251
Case No. 21-00169-UT
Appendix A
Page 148 of 184
Case No. 21-00169-UT

21


Replacement Resources

As the Encompass model must maintain SPS's planning reserve margin, the early retirement of expansion plan than the continued operation of Tolk Station (i.e there is a greater 'need' in one over 1GW of generation could be expected to produce a substantially different optimized scenario)

However, critical variables and external drivers fundamentally impact the optimized expansion plans for each scenario – this resulted in similar expansion plans between each retirement scenario

Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

Expansion Plan Sample Expansion Plan using Planning Load Forecast

Regardless of the retirement of the Tolk Units both Scenarios aggressively acquired the same amount of wind, and large quantities of solar generation between 2023 and 2025

Renewable resources initially met the capacity need if the Tolk Units were retired early, however, as this capacity need grew the model added firm generation (as discussed on slide 16) 22

Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

Expansion Plan Sample Expansion Plan using Financial Load Forecast

Lower load forecast provides similar results (Large-scale renewable build out, before firm generation resources are required

Appendix H
Page 182 of 251
Case No. 21-00169-UT
Appendix A
Page 151 of 184
Case No. 21-00169-UT

24

Expansion Plan Critical Variables & External Drivers

the model select such large quantities of renewables between EOY 2023 and EOY Questions: Why are the short-term expansion plans so similar between scenarios? Why does 2025?

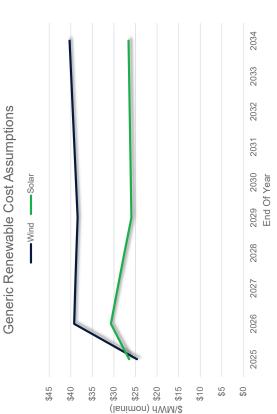
Critical variables and external drivers fundamentally impact the expansion plan. Answer:

They include:

. Expiring Renewable Tax Credits

. RFI proposals vs Generic Costs

3. Future cost of Generic Resources


4. Uncertainty in generator interconnection costs

25

Expiring Renewable Tax Credits

Impact to Replacement Generation

'Generic' Wind

- Increases from \$24.65/MWh to \$39.20/MWh after 60% PTC expires
- Relatively flat thereafter

'Generic' Solar

- Increases from \$26.46/MWh to \$30.68/MWh after 26% ITC steps down to 10%
- Pricing continues to decline until EOY 2029 relatively flat thereafter

*Prices stated exclude network upgrades costs

21 Xcel Energy

Appendix H Page 184 of 251 Case No. 21-00169-UT Appendix A Case No. 21-00169-UT

Expiring Renewable Tax Credits

Impact To Replacement Generation

Generic Wind

Without an extension of Production Tax Credits, wind generation will Driver:

permanently, and substantially, increase in cost EOY2025

Regardless of the retirement of Tolk Station, Encompass will add additional wind 'today', as it will be more expensive in the future - even if the wind Result:

generation operates 'at-a-loss' for several years

Generic Solar

Result:

Declining solar prices through EOY 2029 offset step-down of ITC Driver:

Without a capacity need, Encompass will add economic solar 'today', but

could acquire economically competitive solar in the future as costs

continue to fall

© 2021 Xcel Energy

RFI Proposals vs Generic Costs

Impact To Replacement Generation

- SPS used the approximate average cost of proposals received in the RFI process to baseline generic resource cost assumptions after 2025
- By default, multiple RFI proposals are lower cost than the generic resources available for selection in future years
- All-else-being-equal, expansion plans will favor selection of RFI proposals that are lower cost than the generic resources

Appendix H
Page 186 of 251
Case No. 21-00169-UT
Appendix A
Page 155 of 184
Case No. 21-00169-UT

28

Future cost of Generic Resources

Impact To Replacement Generation

- expensive after PTCs expire and technological / cost improvements do little to reduce The Tolk Analysis incorporates conservative assumptions about the future costs of renewable generation - particularly wind generation (i.e generic wind gets more future costs)
- The Encompass model may delay the acquisition of renewable resources if more lower future costs were anticpated

Generator Interconnection Costs

Impact to Replacement Generation

Generic Overnight Construction Costs (excluding network upgrades):

Wind: ~\$1,500/kW

- Solar: ~\$1,000/kW

Developers 'typically' include up to \$100k/W for network upgrades

Multiple proposals received in the RFI did not include network upgrade costs

DISIS 2017-01 PH1 study assigned average network upgrade costs of \$933/kW

Generator Interconnection Costs

2017-01 DISIS Study

New Mexico	Cost	\$ 5,266,054	\$ 5,266,054	
handle/	MM	3	4	
06 - South Texas Panhandle/New Mexico	Project	ASGI-2016-001	ASGI-2017-007	

																											ş
/ Mexico	Cost	5,266,054	5,266,054	85,519,389	92,570,250	114,066,484	182,258,203	74,054,920	180,145,565	345,638,774	132,909,887	39,499,129	278,096,169	155,964,413	230,851,902	63,082,485	156,198,900	6,234,077	31,295,541	47,661,051	620,624,115	187,034,112	74,161,043	149,778,167	24,655,395	260,003,531	3,542,835,609
		\$	\$	\$	\$	\$	\$	\$	\$	\$	Ş	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	ş
nandle/I	MW	3	4	112	54	108	100	64	231	298	202	33	235	200	200	90	200	4	300	50	525	300	89	128	26	240	3,795
Ub - South Texas Panhandle/New Mexico	Project	ASGI-2016-001	ASGI-2017-007	GEN-2016-039	GEN-2016-077	GEN-2016-078	GEN-2016-090	GEN-2016-171	GEN-2016-172	GEN-2017-007	GEN-2017-012	GEN-2017-016	GEN-2017-026	GEN-2017-033	GEN-2017-039	GEN-2017-059	GEN-2017-065	GEN-2017-069	GEN-2017-078	GEN-2017-079	GEN-2017-080	GEN-2017-081	GEN-2017-084	GEN-2017-087	GEN-2017-091	GEN-2017-104	

1st Phase Study

- 25 projects totaling 3,795MW
- \$3.5 Billion of network upgrades assigned
- Average \$933,522 / MW

933,522

Appendix H Page 189 of 251 Case No. 21-00169-UT Appendix A Page 158 of 184 Case No. 21-00169-UT

31

Generator Interconnection Costs

2017-01 DISIS Study

Mexico	
New	
1handle/	
Pan	
Texas	
- South	
90	

06 - South Texas Panhandle/New Mexico	handle/I	New	Mexico				
Project	MW		PH1 Cost		PH2 Cost		
ASGI-2016-001			5,266,054				
ASGI-2017-007		\$	5,266,054				
GEN-2016-039	112	\$	85,519,389	\$	79,247,305		
GEN-2016-077		\$	92,570,250				
GEN-2016-078		\$	114,066,484				
GEN-2016-090			182,258,203				
GEN-2016-171		\$	74,054,920				
GEN-2016-172	231	Ş	180,145,565	Ş	161,709,493		
GEN-2017-007	298	\$	345,638,774	\$	272,291,602		
GEN-2017-012			132,909,887				
GEN-2017-016	33	\$	39,499,129	\$	31,255,333		
GEN-2017-026	235	\$	278,096,169	\$	218,110,082		
GEN-2017-033	200	Ş	155,964,413	Ş	132,147,219		
GEN-2017-039	200	\$	230,851,902	\$	186,732,066		
GEN-2017-059	90	Ş	63,082,485	Ş	69,317,561		
GEN-2017-065	200	\$	156,198,900	\$	132,337,566		
GEN-2017-069	2	Ş	6,234,077	Ş	3,225,604		
GEN-2017-078	220	\$	31,295,541	\$	409,052,046		
GEN-2017-079		\$	47,661,051	\$			
GEN-2017-080	525	\$	620,624,115	\$	484,787,832		
GEN-2017-081			187,034,112				
GEN-2017-084			74,161,043				
GEN-2017-087	128	\$	149,778,167	\$	118,640,773		
GEN-2017-091			24,655,395				
GEN-2017-104	240	\$	260,003,531	\$	235,065,577		
	2,714	ş	3,542,835,609	s	2,533,920,059	ş	933,699

2nd Phase

- 11 projects totaling 1,000MW dropped out
- \$2.5 Billion of network upgrades still assigned
- Average \$933,648/ MW
- 20% of network upgrades costs due by Mid-May

© 2021 Xcel Energy

Generator Interconnection Costs

Impact to Replacement Generation

- SPS assigned various indicative network upgrade costs to all proposals that do not require a new GIA*
- Network upgrade costs assigned: \$200/kW, \$400/kW and \$600/kW
- The same costs were applied to all wind, solar and combined cycle resources in <u>all</u> **future** years (assumed there is no benefit in waiting to acquire resources)
- The greater the network upgrades assigned; the more expansion plans will favor proposals with fully costed or executed GIAs

*Proposals not assigned network upgrade costs: (1) Proposals with existing GIA's, (2) BOT proposals at existing SPS generator locations (surplus interconnection / generator replacement)

Appendix H
Page 191 of 251
Case No. 21-00169-UT
Appendix A
Page 160 of 184
Case No. 21-00169-UT

Replacement Resources

- Drivers and variables, such as expiring PTCs/ITCs, generic costs assumptions (both present and future) and the cost of network upgrades (both present and future), fundamentally impact when the expansion plans for each scenario
- This often results in the earlier selection of additional resource in the model
- While it is unlikely all these assumptions are correct, the Tolk Analysis is primarily a etirement analysis – not a thorough resource acquisition analysis
- generation on a possibly unrealistic timeline, allows SPS to stress-test the economic of As such, allowing the model to acquire potentially infeasible amounts of new continued operation of the Tolk Units •

33

Appendix H
Page 192 of 251
Case No. 21-00169-UT
Appendix A
Page 161 of 184
Case No. 21-00169-UT

34

CONCLUSION 2 – PRELIMINARY RESULTS

Xcel Energy®

© 2020 Xcel Energy

\$600/kW

Financial Forecast \$400/kW Low Gas / Base Gas / High Gas \$200/kW Tolk Analysis \$600/kW Planning Forecast \$400/kW Tolk Analysis Overview Sensitivities \$200/kW Network Upgrade Sensitivity Fuel Cost Sensitivity Load Sensitivity

© 2021 Xcel Energy

Appendix H
Page 194 of 251
Case No. 21-00169-UT
Appendix A
Page 163 of 184
Case No. 21-00169-UT

Tolk Analysis Overview

Scenarios

Maximize Energy Value

Scenario 1

- Operate the Tolk Units year-round
- ➤ Retire Tolk units EOY2025

Preserve Capacity Value

Scenario 2

- ➤ Operate the Tolk Units seasonally
- ➤ Retire Tolk units EOY2032

Throughout todays presentation, Scenarios 2 & 3 will be used to demonstrate SPS's preliminary conclusions

1121 XCel Energy

Early Retirement

Scenario 3

- ➤ Operate the Tolk Units year-round
- ➤ Retire Tolk units EOY2023

Scenario 6

- Operate the Tolk & Harrington Units yearround
- ➤ Retire all units EOY2023

Hybrid Approach

Scenario 4

- Operate the Tolk Units year-round
- P Retire Tolk unit 1 EOY2023 P Retire Tolk unit 2 EOY2031

Scenario 5

- Operate the Tolk Units seasonally
- ➤ Retire Tolk unit 1 EOY2023
- ➤ Retire Tolk unit 2 EOY2032

Appendix H
Page 195 of 251
Case No. 21-00169-UT
Appendix A
Page 164 of 184
Case No. 21-00169-UT

37

Preliminary PVRR Analysis Base Gas - \$400/kW Network Upgrades

IRP Action Period: Decision Period: 2022 - 2041

IRP Planning Period

		Planning Fo	recast - Base	Planning Forecast - Base Gas - \$400/kW	N			
		Action Period	Period	Decision	Decision Period	Planning Period	g Pei	iod
		Delta	PVRR	Delta	PVRR	Delta		PVRR
Scenario 1	Scenario 1 2025 Retirement	\$ 152	152 \$ 3,533 \$		\$ 256'2 \$ 998		\$	299 \$ 12,593
Scenario 2	Scenario 2 2032 Retirement	- \$	\$ 3,381	- \$	\$ 7,591	- \$	\$	12,294
Scenario 3	Scenario 3 2023 Retirement	\$ 88	\$ 3,469	\$ 203	\$ 7,794	\$ 152 \$	\$	12,446
Scenario 4	Staggered Retirement	\$ 42	\$ 3,423	\$ 110	\$ 7,701	\$	\$	41 \$ 12,335
Scenario 5	Scenario 5 Staggered Retirement \$	\$ 35	\$ 3,415 \$	\$ 25 \$	\$ 2,643	(6) \$	\$	12,285
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 258	\$ 3,639 \$	\$ 800 \$	\$ 8,391 \$		\$	933 \$ 13,227

		Financial Forecast - Base Gas - \$400/kW	ecast - Bası	e Gas - 🕽	3400/kW						
		Action Period	Period		Decision Period	ı Peri	po	Pla	Planning Period	Per	iod
		Delta	PVRR	O	Delta	Ь	PVRR	Delta	е		PVRR
Scenario 1	Scenario 1 2025 Retirement	\$ 148	148 \$ 3,252	\$	123 \$	\$	\$ 6,819 \$	\$	62	\$	62 \$ 10,629
Scenario 2	Scenario 2 2032 Retirement	- \$	\$ 3,104	\$ \$	-	\$	269'9	\$	1	\$	10,567
Scenario 3	Scenario 3 2023 Retirement	\$ 85	85 \$ 3,189	\$ 6	49	\$	49 \$ 6,746	\$	(7)	\$	10,560
Scenario 4	Scenario 4 Staggered Retirement	\$ 47	47 \$ 3,151	1 \$	100		6,797	\$	46 \$		10,613
Scenario 5	Scenario 5 Staggered Retirement	\$ 45	45 \$ 3,149	\$ 6	\$ 29		6,764 \$	\$	(6)	\$	10,558
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 250	250 \$ 3.354 \$	4 \$		Ş	5 7397 \$ 007		798	Ş	798 \$ 11.365

Appendix H Page 196 of 251 Case No. 21-00169-UT Appendix A
Page 165 of 184
Case No. 21-00169-UT

38

Preliminary PVRR Analysis Base Gas - \$200/kW Network Upgrades

IRP Action Period: Decision Period: IRP Planning Period

		Planning Fo	recast	- Base (Planning Forecast - Base Gas - \$200/kW	3					
		Action Period	Period		Decision Period	n Perio	po	Plann	ing P	Planning Period	
		Delta	۸d	PVRR	Delta	P\	PVRR	Delta		PVRR	
Scenario 1	Scenario 1 2025 Retirement	\$ 76	\$	\$ 3,448 \$		\$	92 \$ 7,565 \$		3 \$	133 \$ 12,000	000
Scenario 2	Scenario 2 2032 Retirement	- \$	\$	3,371	- \$	\$	7,473	\$	\$ -	11,	11,867
Scenario 3	Scenario 3 2023 Retirement	\$ 48 \$	\$	3,420	\$ 104	\$	7,577	\$ 138	8	12,	12,006
Scenario 4	Scenario 4 Staggered Retirement \$	\$ (27) \$	\$	3,344	\$ 5	\$	7,478	\$	22 \$		11,889
Scenario 5	Scenario 5 Staggered Retirement \$	\$ 6	\$	3,378	\$	19 \$	7,492		\$ 6	9 \$ 11,877	877
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 202	\$	\$ 87578 \$ 202	\$ 625 \$	\$	\$ 8,052 \$		5 \$	945 \$ 12,812	812

selling existing Water rights – Estimated at \$0 - \$20M (if sold TODAY!) Excludes potential revenue for

		Financial For	ecast - Ba	ase G	Financial Forecast - Base Gas - \$200/kW	>					
		Action Period	Period		Decision Period	n Pe	riod	Pla	Planning Period	g Per	riod
		Delta	PVRR	~	Delta		PVRR	Delta	3		PVRR
Scenario 1	2025 Retirement	\$ 92 \$		3,182	\$ (5)	Ş	6,704	\$	53 \$	Ş	10,360
Scenario 2	2032 Retirement	- \$	\$ 3,	060'	- \$	\$	6),	\$	-	\$	10,307
Scenario 3	2023 Retirement	\$ 53	\$ 3,	3,143	\$ (61) \$	\$	069'9	\$	(10)	\$	10,297
Scenario 4	Staggered Retirement	\$ 4	\$ 3,	3,094	\$ (38)	\$	6,671	\$	(28)	\$	10,279
Scenario 5	Staggered Retirement	\$ 2	\$ 3,	3,092	\$ (43)	Ş	6,665	\$	(42)	\$	10,265
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 229 \$		3,319	\$ 649 \$	\$	\$ 858'2		884	\$	11,191

Appendix H
Page 197 of 251
Case No. 21-00169-UT
Appendix A
Page 166 of 184
Case No. 21-00169-UT

39

Preliminary PVRR Analysis

IRP Action Period: Decision Period: IRP Planning Period

Financial Forecast - Base Gas vs Low Gas - \$400/kW Network Upgrades

richons -- 2 -- 6 -- richard

		Financial For	ecast - Base G	Financial Forecast - Base Gas - \$400/kW	,			
		Action Period	Period	Decision	Decision Period	Planning Period	g Peric	þ
		Delta	PVRR	Delta	PVRR	Delta	Ρ	PVRR
Scenario 1	Scenario 1 2025 Retirement	\$ 148 \$	\$ 3,252 \$		123 \$ 6,819	\$	\$	62 \$ 10,629
Scenario 2	Scenario 2 2032 Retirement	- \$	\$ 3,104	- \$	\$ 6,697	- \$	\$	10,567
Scenario 3	2023 Retirement	\$ 85	\$ 3,189	\$	\$ 6,746 \$	(7)	Ş	10,560
Scenario 4	Staggered Retirement	\$ 47	\$ 3,151	\$ 001 \$	\$ 6,797	\$ 46 \$		10,613
Scenario 5	Staggered Retirement	\$ 45	\$ 3,149	\$ 67	\$ 6,764	(6) \$	Ş	10,558
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 250 \$	\$ 3,354 \$		\$ 795,7 \$ 007	\$ 798 \$	\$	11,365

Excludes potential revenue for selling existing Water rights – Estimated at \$0 - \$20M (if sold TODAY!)

		Financial Fo	recast - Low	Financial Forecast - Low Gas - \$400/kW	۸				
		Action Period	Period	Decision	Decision Period		Planning Period	g Pe	riod
		Delta	PVRR	Delta	PVRR		Delta		PVRR
Scenario 1	2025 Retirement	\$ 176	\$ 3,235	\$ 215	\$	6'829	\$ 146	\$	10,515
Scenario 2	2032 Retirement	- \$	\$ 3,059	- \$	9 \$	5,644	- \$	\$	10,369
Scenario 3	2023 Retirement	\$ 103	\$ 3,162	\$ 94	.'9 \$	5,739	\$ 24	\$	10,393
Scenario 4	Staggered Retirement	\$ 61	\$ 3,120	\$ 105	.'9 \$	6,749	\$ 23	\$	10,422
Scenario 5	scenario 5 Staggered Retirement	\$ \$	\$ 3,119	\$ \$.'9 \$	5,711	\$ 15	\$	10,383
Scenario 6	Scenario 6 Tolk/Har 2023	\$ 245 \$	\$ 3,305 \$	\$ 733	\$	\$ 118'1	\$ 826 \$	\$	11,346

Appendix H
Page 198 of 251
Case No. 21-00169-UT
Appendix A
Page 167 of 184
Case No. 21-00169-UT

SAMPLE EXPANDED VIEW – PLANNING FORECAST

Xcel Energy®

© 2020 Xcel Energy

Appendix H Page 199 of 251 Case No. 21-00169-UT Appendix A Page 168 of 184 Case No. 21-00169-UT

4

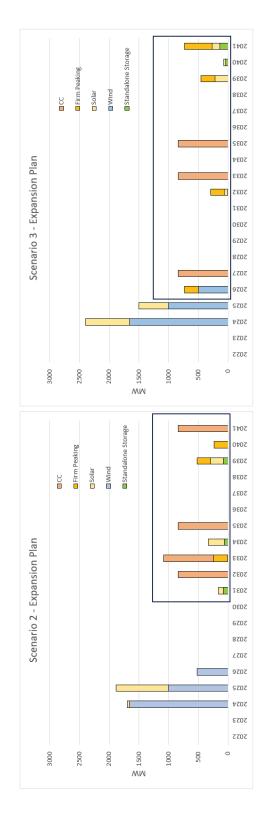
PVRR Analysis

Planning Load Forecast including \$400/kW network upgrades

		Planning Forecast - Base Gas - \$400/kW	cast - Base Ga	s - \$400/kW				
		Action Period	Period	Decision	Decision Period	Planning Period	g Peric	þ
Scenario	Description	Delta	PVRR	Delta	PVRR	Delta	١d	PVRR
Scenario 1	2025 Retirement	\$ 152 \$	\$ 3,533	\$ 998 \$	\$ 256'2 \$	\$ 299	\$	12,593
Scenario 2	2032 Retirement	- \$	\$ 3,381	- \$	\$ 7,591	- \$	\$	12,294
Scenario 3	2023 Retirement	\$ 88	\$ 3,469	\$ 203	\$ 7,794	\$ 152	\$	12,446
Scenario 4	Staggered Retirement	\$ 42	\$ 3,423	\$ 110	\$ 7,701	\$ 41	\$	12,335
Scenario 5	Scenario 5 Staggered Retirement	\$ 35	\$ 3,415	\$ 52	\$ 7,643	(6) \$	\$	12,285
Scenario 6	Scenario 6 Tolk/Har 2023 Retirement \$	\$ 258 \$	\$ 3,639	\$ 800 \$	\$ 8,391 \$	\$ 633		13,227

Scenario 2 (seasonal operation 2032) vs Scenario 3 (2023 retirement) Comparison

➤ Over the 4-year action period Scenario 3 is \$88M higher cost than Scenario 2 (PVRR)


Between 2022 and EOY 2032, Scenario 3 is \$203M higher cost than Scenario 2 (PVRR) A

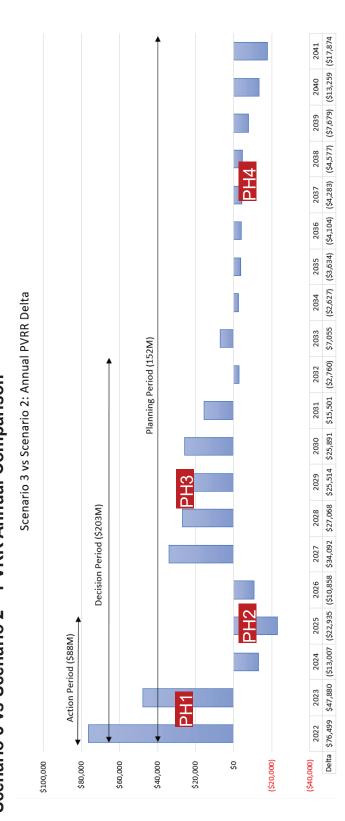
Over the 20-year planning period, Scenario 3 is \$152M higher cost than Scenario 2 (PVRR) A

42

Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

Expansion Plan Sample Expansion Plan using Planning Load Forecast

Regardless of the retirement of the Tolk Units both Scenarios aggressively acquired the same amount of wind, and large quantities of solar generation between 2023 and 2025

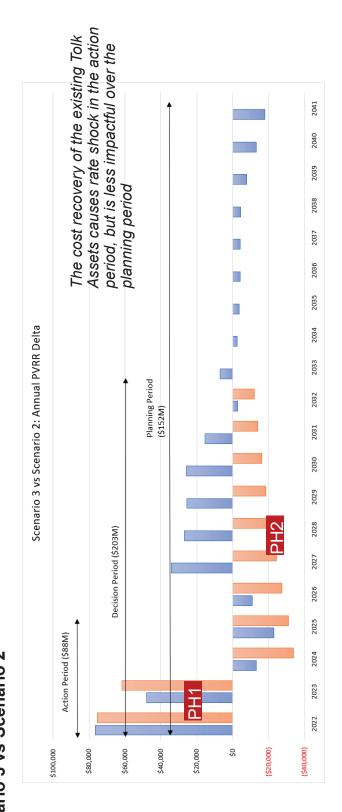

Renewable resources initially met the capacity need if the Tolk Units were retired early, however, as this capacity need grew the model added firm generation (as discussed on slide 16)

© 2021 Xcel Energy

43

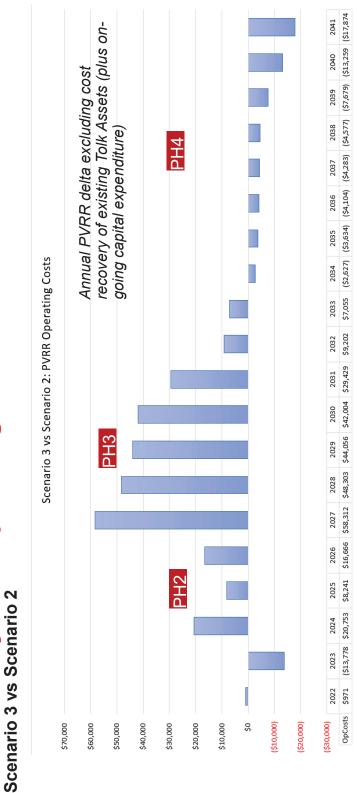
Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

PVRR Analysis Scenario 3 vs Scenario 2 – PVRR Annual Comparison

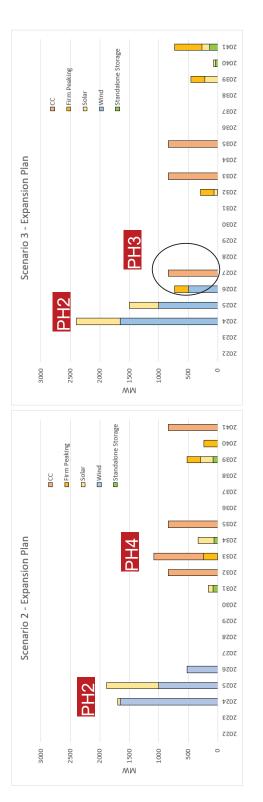

Ph1: Cost recovery of Tolk assets (Sc3), Ph2: Cost recovery of Tolk assets (Sc2) / Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

© 2021 Xcel Energy

Appendix H
Page 202 of 251
Case No. 21-00169-UT
Appendix A
Page 171 of 184
Case No. 21-00169-UT



Blue: Annual PVRR Deltas (same as previous slide), Orange: Cost Recovery of Tolk Assets


Ph1: Cost recovery of Tolk assets (Sc3), Ph2: Continued cost recovery of Tolk assets (Sc2)

PVRR Analysis - Operating Costs

Ph2: Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

PVRR Analysis – Operating Costs Scenario 3 vs Scenario 2

Ph2: Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

Appendix H
Page 205 of 251
Case No. 21-00169-UT
Appendix A
Page 174 of 184
Case No. 21-00169-UT

© 2020 Xcel Energy

SAMPLE EXPANDED VIEW FINANCIAL LOAD FORECAST

Wcel Energy®

Appendix H
Page 206 of 251
Case No. 21-00169-UT
Appendix A
Page 175 of 184
Case No. 21-00169-UT

48

Preliminary PVRR Analysis
Financial Load Forecast including \$400/kW network upgrades

IRP Action Period: Decision Period: IRP Planning Period

	9	Financial Forecast - Base Gas - \$400/kW	cast - Ba	ise Gas	- \$400/kW						
		Action	Action Period		Decision Period	n Peri	po	Plar	Planning Period	Per	iod
	Description	Delta	PVRR	3R	Delta	Ь	PVRR	Delta	_	_	PVRR
Scenario 1	2025 Retirement	\$ 148	\$	3,252	\$ 123	\$	6,819	\$	62	\$	62 \$ 10,629
Scenario 2	2032 Retirement	- \$	\$	3,104	- \$	\$	269'9	\$	1	\$	10,567
Scenario 3	2023 Retirement	\$ 85	\$	3,189	\$ 49 \$	\$	6,746	\$	(7)	\$	10,560
Scenario 4	Staggered Retirement	\$ 47	\$	3,151	\$ 100	\$	6,797	\$	46	\$	10,613
Scenario 5	Staggered Retirement	\$ 45	\$	3,149	\$ 67	\$	6,764	\$	(6)	\$	10,558
Scenario 6	Scenario 6 Tolk/Har 2023 Retirement	\$ 250 \$		3,354	\$ 002 \$	\$	\$ 166'1		\$ 862		11,365

Scenario 2 (continued operations) vs Scenario 3 (2023 retirement) Comparison

Over the 4-year action period Scenario 3 is \$85M higher cost than Scenario 2 (PVRR)

Between 2022 and EOY 2032, Scenario 3 is \$49M higher cost than Scenario 2 (PVRR) A

Over the 20-year planning period, Scenario 3 is \$7M lower cost than Scenario 2 (PVRR) A

49

Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

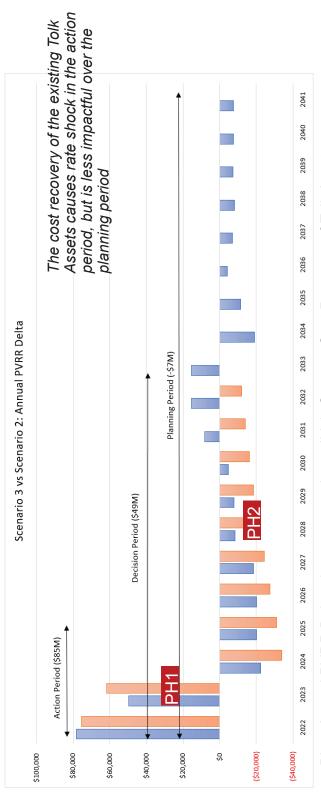
Expansion Plan
Sample Expansion Plan using Financial Load Forecast

Lower load forecast provides similar results (Large-scale renewable build out, before firm generation resources are required

20

Scenario 2: Seasonal operations, 2032 retirement Scenario 3: 2023 retirement

PVRR Analysis Scenario 3 vs Scenario 2 – PVRR Annual Comparison


Ph1: Cost recovery of Tolk assets (Sc3), Ph2: Cost recovery of Tolk assets (Sc2) / Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

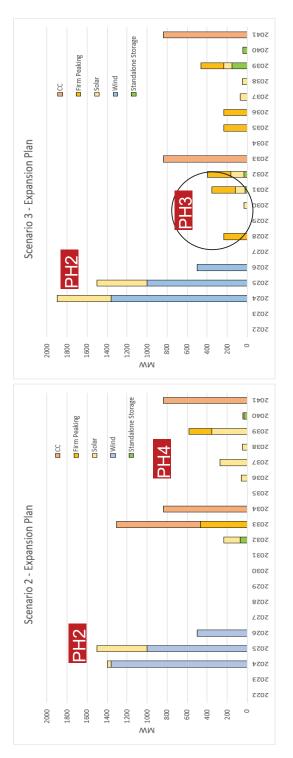
© 2021 Xcel Energy

Appendix H
Page 209 of 251
Case No. 21-00169-UT
Appendix A
Page 178 of 184
Case No. 21-00169-UT

PVRR Analysis – Cost Recovery of Tolk Asset Scenario 3 vs Scenario 2

Blue: Annual PVRR Deltas (same as previous slide), Orange: Cost Recovery of Tolk Assets

Ph1: Cost recovery of Tolk assets (Sc3), Ph2: Continued cost recovery of Tolk assets (Sc2)


PVRR Analysis - Operating Costs

Scenario 3 vs Scenario 2

Ph2: Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

PVRR Analysis – Operating Costs Scenario 3 vs Scenario 2

Ph2: Similar expansion plans capable of fulfilling capacity need, Ph3: Deferred generation (Sc2), Ph4: Additional generation (Sc2)

© 2021 Xcel Energy

Appendix H
Page 212 of 251
Case No. 21-00169-UT
Appendix A
Page 181 of 184
Case No. 21-00169-UT

FINAL REVIEW

Xcel Energy®

© 2020 Xcel Energy

Final Review Conclusion 1

- The acquisition of economic energy is not dependent on the retirement of the Tolk units
- Regardless of the operation and retirement dates of the Tolk units, the Tolk Analysis indicates there could be opportunities for SPS to acquire economic energy
- Large uncertainty with key drivers, such as the potential extension of renewable tax credits and the cost of interconnecting new generation

Appendix H
Page 214 of 251
Case No. 21-00169-UT
Appendix A
Page 183 of 184
Case No. 21-00169-UT

Final Review Conclusion 2

- Retirement of the Tolk Units creates an immediate resource need
- The acquisition of potentially economic renewable energy could theoretically fulfill a short-term capacity shortage
- However, load growth and/or plant retirements will require SPS to add firm resources and/or battery storage to meet load and capacity obligations
- The capacity cost of the Tolk units is relatively low cost when compared to the acquiring new generating resources (CT's, CC's or energy storage)
- The Tolk Analysis continues to support seasonal operations of the Tolk Units and a 2032 retirement
- The Tolk Analysis does not capture all benefits of the Tolk Units, as demonstrated during Winter Storm Uri

99

Appendix H
Page 215 of 251
Case No. 21-00169-UT
Appendix A
Page 184 of 184
Case No. 21-00169-UT

Weel Energy®

© 2020 Xcel Energy

Appendix H
Page 216 of 251
Case No. 21-00169-UT
Appendix B
Page 1 of 3
Case No. 21-00169-UT

Scope of Work Independent Evaluator

Executive Summary

Southwestern Public Service Company ("SPS") is planning to issue an all-source Request for Information ("RFI") to obtain current pricing, technical characteristics, and other relevant information for potential generating resources. The results from the RFI will be incorporated into an evaluation of the potential abandonment and replacement of SPS's Tolk Station, herein known as "the Tolk Analysis," which will include an analysis in which all coal-burning units are retired or replaced before 2030 as set forth in the recent New Mexico Public Regulation Commission final order adopting the stipulation in SPS's most recent rate case. SPS is seeking the services of an Independent Evaluator ("IE") to provide an independent review of the RFI process and Tolk Analysis to evaluate the fairness of SPS's bid solicitation and bid evaluation processes. Upon completion of the RFI solicitation and SPS's development of the Tolk Analysis, the IE will report its findings to the New Mexico Public Regulation Commission ("NMPRC") and SPS.

The primary objectives of the IE's independent review will be to:

- Assess whether that the RFI parameters are consistent with the objectives of the Tolk Analysis
- Assess whether the RFI documents including Standard Bidders Forms provide sufficient and consistent information for respondents to the RFI ("Bidders") to prepare proposals
- Identify any undue bias in the criteria used or as applied to evaluate bids
- Assess whether a consistent and fair methodology was used to screen and rank bids
- Assess whether the bids were fairly incorporated into the Tolk Analysis
- Provide an assessment of the Tolk Analysis including any deficiencies in the parameters or results of the analysis

Background

Tolk Station consists of two coal-powered steam turbine units, located in Lamb County, Texas. Each unit has a net capacity of approximately 540 MW, for a total net capacity of approximately 1,080 MW.

Tolk Station relies exclusively on groundwater from the Ogallala Aquifer for generation cooling, and the Ogallala Aquifer is in an irreversible decline. To conserve water, and the life of Tolk Station, SPS has implemented a plan to reduce the number of hours the Tolk units operate annually.

SPS is required to analyze a range of operating parameters and retirement dates for Tolk Station. The analysis will incorporate the pricing and technical characteristics obtained in the RFI process. The results of the analysis will be included in SPS's next Integrated Resource Plan ("IRP"), to be filed in July 2021.

¹ Uncontested Comprehensive Stipulation ("Stipulation") filed at the New Mexico Public Regulation Commission on January 13, 2020 and approved by the New Mexico Public Regulation Commission ("NMPRC") in Case No. 19-00170-UT.

Appendix H
Page 217 of 251
Case No. 21-00169-UT
Appendix B
Page 2 of 3
Case No. 21-00169-UT

As part of the Tolk Analysis, SPS will use the information obtained from this RFI to include an evaluation of the potential retirement and replacement of all of SPS's coal burning generation.

Timeline

SPS is required to complete the Tolk Analysis by June 2021, one month before the IRP. To meet the filing date, SPS anticipates issuing the RFI in the Summer of 2020. Bidders will then be given 60 days to submit their proposals. The evaluation process and Tolk Analysis is expected to take approximately six months from receipt of bids.

IE Responsibilities

To achieve the primary objectives, the IE will be provided immediate and continuing access to all documents and data reviewed, used, or produced by SPS in the preparation of the Tolk Analysis and in its bid solicitation, evaluation, and selection processes. SPS will provide to the IE bid evaluation results and modeling runs so that the IE can verify these results and can investigate options that SPS did not consider.

To conduct a thorough, independent, and unbiased review of the RFI process and Tolk Analysis, the IE will perform the following activities:

Meetings

The IE will attend an initial kickoff meeting prior to issuance of the RFI either via teleconference or in person at SPS's offices in Amarillo, Texas. The kickoff meeting will provide an opportunity to discuss the RFI parameters, specific items which may be required for the Tolk Analysis, and SPS's thoughts, goals and objectives regarding the RFI and Tolk Analysis. SPS will establish and explain confidentiality protection procedures regarding bid information and evaluation. Additional details regarding project administration and public communications will be discussed at the kickoff meeting as well.

The IE will conduct regular project status calls with SPS to discuss the project and identify and mitigate any issues that arise.

The IE will attend via teleconference at all future public technical conferences and other meetings as necessary to achieve the primary objectives.

Review and Finalize RFI Documents and Evaluation Process

The IE will critically review the draft RFI and any associated documents and notification communications with the objective of determining whether there are any undue biases presented to any category of potential Bidders as a result of the structure of the RFI requirements and make recommendations as needed. Additionally, the IE will review and evaluate the draft proposal submittal requirements and standard bidder forms and make recommendations as needed.

The IE understands that some recommendations may not be agreeable to SPS or possible for SPS to implement. If SPS chooses not to follow the IE's recommendations, SPS will provide a brief, written response to the IE explaining the choices made. SPS may or may not decide to follow the recommendations and guidance provided by the IE and these decisions will be documented as part of the Independent Evaluator Report ("IE Report").

Appendix H
Page 218 of 251
Case No. 21-00169-UT
Appendix B
Page 3 of 3
Case No. 21-00169-UT

Review Bidder Communications

Upon issuance of the RFI, the SPS staff directly involved with the RFI will adhere to strict communication protocols with Bidders. The IE will examine any communications between SPS and Bidders during the RFI review period, which will begin with the issuance of the RFI and end with filing of SPS's 2021 integrated resource plan in July 2021. The purpose of this examination will be to determine whether Bidders were treated fairly during the submittal and evaluation periods, and whether SPS was unduly biased toward a specific bid.

Evaluate the SPS Economic Modeling of Bids

The IE shall conduct a thorough and unbiased review of the due diligence activities performed by SPS for each prospective bid, as well as a review of the economic modeling of each bid to confirm the modeling was accurate and consistent across all bids.

In reviewing the due diligence activities, the IE will review each bid and associated Standard Bidding Forms, followed by a review of SPS's documented non-economic evaluation of all bids.

Evaluation of the Tolk Analysis

The IE shall conduct a thorough, and unbiased review of the Tolk Analysis parameters and results. The review should include, but not be limited to, consideration of potentially different retirement dates of the Tolk units, the feasibility of acquiring adequate replacement resources in the timeframe necessary, and availability of economic water in each of the scenarios modeled.

The IE will conduct a thorough review of key inputs and parameters to the Tolk Analysis including, but not limited, SPS's natural gas price forecasts and system load forecasts.

Prepare and Provide Independent Review Report

The IE will prepare an IE report of its findings and conclusions regarding the Tolk Analysis. Initial drafts of the report are anticipated to be reviewed internally by SPS and in collaboration with the IE for quality assurance. After incorporating any necessary revisions to the report that are identified as a result of the reviews, the IE will issue the final IE report redacted as necessary to ensure protection of confidential information; confidential information referenced should be made available only under appropriate protective order procedures.

Appendix H Page 219 of 251 Case No. 21-00169-UT

Appendix C Page 1 of 1 Case No. 21-00169-UT

BACKGROUND

As previously indicated, Xcel Energy maintains a list of pre-qualified bidders. SPS reached out to the parties in June to identify any potential additional bidders that could be solicited to be added to the pre-qualified list, but, did not identify any additional prospects outside of a consultant in the San Juan replacement proceeding and E3 (which had performed a study for EPE). E3 was already a pre-qualified bidder and was included in the request for proposals (RFP). SPS did not solicit the pre-qualification of the other consultant.

On July 6th, 2020, SPS issued an RFP to pre-qualified bidders for the services of an independent evaluator. SPS held a pre-meeting with the bidders on July 8th, 2020 to provide submittal instructions and answer questions from bidders. SPS received proposals from two bidders out of four pre-qualified parties, Guidehouse and Leidos, by the July 20th, 2020 deadline. The other two bidders were either unable to commit the resources necessary in the timeframe required or failed to submit a proposal.

On July 23rd, 2020, SPS held individual meetings with each bidder. Each bidder was then provided the opportunity to revise their proposals to ensure all proposals were aligned. Each bidder has extensive experience and expertise providing the services required to oversee a fair and robust analysis. Each bidder also proposed a highly experienced evaluation team, with many decades of relevant experience. After evaluating the proposals SPS was satisfied that either bidder could successfully fulfill the role of independent evaluator based on the submitted proposals. Each proposal included comparable billable rates. There is no material cost difference between each bidder.

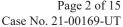
RECOMMENDATION

SPS recommends proceeding with Guidehouse as the independent evaluator. It is a close decision as (1) both bidders offer a wealth of experience and expertise and (2) there is not a material difference in price. As such, SPS' recommendation is based on the overall content and quality of the submission, and specifically the follow-up discussions with each bidder. While SPS is confident Leidos could successfully fulfill the role of independent evaluator, Guidehouse's submission was marginally superior.

Appendix H
Page 220 of 251
Case No. 21-00169-UT
Appendix D
Page 1 of 15
Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

Submitted by:


Guidehouse Inc. 1800 Tysons Boulevard, 7th Floor McLean, VA 22102-4257 (646) 227-4895 dkoujak@guidehouse.com

Reference No.: 214834 June 30, 2021

guidehouse.com

This deliverable was prepared by Guidehouse Inc. pursuant to a client relationship exclusively with Southwestern Public Service Company ("Client"). The work presented in this deliverable represents Guidehouse's professional judgement based on the information available at the time this report was prepared. Guidehouse disclaims any contractual or other responsibility to others based on their access to or use of the deliverable.

Appendix D Page 2 of 15

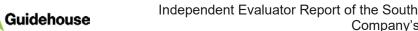

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

Table of Contents

1. Background	
2. Scope of Review	2
3. RFI Process	
3.1 Design	3
3.2 Process	4
3.3 Results	5
4. Summary of the Tolk Analysis	7
4.1 Assumptions	7
4.2 Scenarios	9
5. Results of the Tolk Analysis	11
6 Canalysians	13

Appendix H Page 222 of 251 Case No. 21-00169-UT

Appendix D Page 3 of 15 Case No. 21-00169-UT

1. Background

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

Guidehouse Inc. was selected as the independent evaluator (IE) to oversee the Southwestern Public Service Company (SPS) Tolk Analysis pursuant to the Uncontested Comprehensive Stipulation (the Stipulation) filed at the New Mexico Public Regulation Commission on January 13, 2020, and approved by the Commission in Case No. 19-00170-UT. Under the Stipulation, SPS is required to submit a robust analysis of both:

- Abandonment of its Tolk Generating Station Units 1 and 2
- Consideration of a scenario in which all SPS's coal-burning units are retired or replaced before 2030

The Tolk Station is a 1,067 MW generating station located in Lamb County, Texas. This station provides power to customers both in Texas and New Mexico. Retirement of the Tolk Station is being driven predominantly by water resource constraints and projected depletion in the vicinity of the plant. The Tolk Station currently operates to maintain reliability by provide needed generating capacity responsive to peak load conditions in the SPS service territory. Accordingly, in retiring the Tolk station, the load carrying capacity of the unit - which is the ability to dispatch up to 1,067 MW responding to customer demand, is the primary attribute that needs to be replaced through alternative resource options.

To inform SPS of the available alternative resource options that are available to replace Tolk, a request for information (RFI) process was initiated to provide SPS with information relating to availabilities, flexibilities, and preferences from the market participants in terms of providing capacity and associated energy from all available generating resource types. This information is key in determining whether there are feasible and economic opportunities to replace Tolk and all other coal-fired power plants. Contractual options to replace Tolk and other generating stations include build-own-transfers (BOTs) and power purchase agreements (PPAs), with pricing based on information obtained from the RFI process.

Appendix H Page 223 of 251 Case No. 21-00169-UT

Appendix D Page 4 of 15 Case No. 21-00169-UT

2. Scope of Review

Guidehouse's role as the IE was to effectively ensure the fairness, transparency, clarity, and prudence of the process undertaken to evaluate the options to replace the Tolk Generating Station. In this report, we review and discuss:

- Whether SPS conducted an evaluation of potential retirement dates.
- Whether SPS considered available replacement resources.
- Whether SPS used fair solicitation and evaluation processes.

To facilitate this review, SPS was stipulated to work cooperatively with Guidehouse as the IE and provide us access to all documents and information leveraged by the utility in the preparation of its plan and in its bid solicitation, evaluation, and selection processes. SPS also was required to provide the bid evaluation results and modeling runs so that we could verify the results and investigate options the utility did not consider.

In the following sections of this report, we outline our review of SPS's process to evaluate the options, starting with the RFI process.

Appendix H
Page 224 of 251
Case No. 21-00169-UT

Case No. 21-00169-UT Appendix D

Page 5 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

3. RFI Process

SPS released the 2020 Request for Information for Generating Resources (the RFI) on September 9, 2020. Under the RFI, SPS solicited interest from existing or proposed generating facilities within or delivered to the SPS zone. The RFI was open to generating facilities providing capacity and associated energy to SPS from all generating resource types, including energy storage, whether existing or yet-to-be constructed. Proposals were allowed to provide pricing options under the following arrangements: build-own-transfers (BOTs) and power purchase agreements (PPAs).

3.1 Design

The design of the RFI was relatively straightforward. SPS established basic qualifications to participate in the RFI, as follows:

- Expressions of interest should be from existing or proposed generating facilities within the SPS zone or delivered to the SPS zone from existing or proposed sites within the Southwest Power Pool (SPP) territory.
- Expressions of interest should include a proposed commercial operation date (COD) if the submission is a future resource.
- Expressions of interest should include all capacity, energy, environmental attributes such as renewable energy credits, and other generation-related services.
- For purposes of this RFI, renewable energy refers to electrical power generated by solar, wind, biomass, or other commercially viable renewable energy technologies including energy storage.
- SPS is interested in the availability of capacity and associated energy resources for possible future-owned generation, BOTs, and PPAs.
- PPA durations should be 25 and 30 years.
- Interested parties should respond to the RFI within 60 days of issuance.

To participate in the RFI, bidders were requested to submit a completed Excel template containing the information necessary for SPS to model and evaluate supply options. The template requested information on the following:

- Company proposing the resource
- Bidder contact information
- General information on the project and its location
- Contract options proposed
- Pricing
- Interconnection details and cost information
- Performance and related technical specifications

Appendix H Page 225 of 251 Case No. 21-00169-UT

Appendix D Page 6 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

In the RFI, SPS noted it would evaluate the following information:

- Project type, including technical characteristics.
- Project site location for delivery within (or to) the SPS system.
- Proposed COD for resource facilities responsive to this RFI; the impact a delay in the proposed COD would have on the pricing.
- Pricing and quantity in megawatts.
- Current interconnection status (if any) and anticipated extent of need for transmission system upgrades for the proposal.
- Impact of available tax credits on proposed projects.
- Proposals must demonstrate an anticipated ability to obtain all required state/local preconstruction approvals and any associated risks to meet the COD.

From our perspective, the primary objective of an RFI process is to solicit a response from market participants that responds to a specific need to the maximum extent possible. To achieve this result, an RFI should have:

- Eligibility requirements that are not unduly restrictive
- A relatively low burden to participate, limited only to information absolutely necessary for a utility to carry out its analysis

In the RFI's design, the eligibility to participate was open to both existing and future resources from all generating resource types. Forms provided to market participants were designed to elicit a response from thermal, renewable, and storage resources. Furthermore, the response forms, which encapsulate the entire information request, contain information that is required to conduct the analysis. We view the information request under the RFI to not carry a significant burden to market participants to propose a response.

3.2 Process

SPS posted the RFI and associated materials on its website, available at https://www.xcelenergy.com/working with us/tolk request for information. To introduce the RFI and answer questions from potential respondents, a bidders meeting was held by SPS on September 21, 2020. During the meeting, bidders were given an opportunity to address questions directly to SPS. Questions were also received from bidders directly via e-mail to the RFI inbox. During the pendency of the RFI up to the bid submission due date of 4:00 p.m. Mountain Daylight Time on Friday, November 6, 2020, SPS received and posted responses to questions both on its website and directly to the inquiring bidder.

Proposals were initially reviewed for completeness. SPS issued several rounds of clarifying questions to secure the information necessary to evaluate the options needed. With our concurrence and at our behest, to the extent that bidders did not include optimal COD dates or configurations that would better address SPS's needs, SPS issued additional clarifications requesting such options.

Certain projects were excluded from further analysis. They included projects that were voluntarily withdrawn by the proponents and in addition to those that proscribed a timeline for

Appendix H Page 226 of 251 Case No. 21-00169-UT

Appendix D

Page 7 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

selection within 2022 to be valid by the necessary COD dates. Exclusion of projects that require immediate contracting, where it is not feasible under the regulatorily established timeline, is appropriate and maintains fairness to all market participants. If SPS were to accelerate the timeline to accommodate a single project or set of projects, this would not be consistent with fairness.

From our perspective, the purpose of an RFI (and not an RFP) is to fully evaluate all potential available resource options. To the extent modifications to the COD dates and the project configuration better aligns the proposal to the underlying need, it better enables SPS to conduct a full and complete analysis of replacement options and resources. Based on industry practice, RFIs are intended to serve a discovery purpose and inform the development of future RFPs which would be subject to more rigid processes and rules. RFIs are intended to be flexible in design to facilitate the acquisition of the kind of information that the issuing utility seeks to better understand. In the context of the current solicitation, our expectation would be for SPS to explore each proposal and obtain the maximum amount of information possible. As the RFI was open-ended by design, some proposals are expected to miss the mark and need certain adjustments to adapt to SPS's system needs. Requesting additional pricing options and configurations would be the appropriate course of action for SPS to fully evaluate all options available. To that end, we observed SPS requesting additional pricing options from bidders to reflect different COD dates and interconnection assumptions. In doing so, the modeling reflected additional alternatives that may or may not have conferred economic benefits. Accordingly, we observed that SPS conducted the RFI process in a fair and complete fashion that is in-line with the intent of the solicitation and overall process.

3.3 Results

The RFI received the following response from the market:

- 18 companies participated.
- Eight key technologies proposed:
 - o Solar
 - Solar plus storage
 - Wind
 - Gravitational energy storage
 - Combined cycle plus hydrogen storage
 - Liquid air energy storage
 - Flow energy storage
 - Compressed air battery
- Project deployment in five key states, including Texas, New Mexico, Colorado, Kansas, and Oklahoma.

Table 1. Summary of Responses Received

Bidders	Technology	States
Respondent 1	Solar	Texas

Appendix D Page 8 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service
Company's Tolk Analysis and RFI

Bidders	Technology	States	
Respondent 2	Solar, solar plus storage	New Mexico	
Respondent 3	Wind	New Mexico	
Respondent 4	Solar plus storage	Texas	
Respondent 5	Gravitational energy storage	N/A	
Respondent 6	Wind	New Mexico, Colorado, Kansas	
Respondent 7	Combined cycle plus hydrogen storage	Texas	
Respondent 8	Wind	Texas	
Respondent 9	Liquid air energy storage	N/A	
Respondent 10	Solar	Texas	
Respondent 111	Wind	Texas	
Respondent 1	Combined cycle	New Mexico	
Respondent 12	Flow energy storage	N/A	
Respondent 13	Solar, solar plus storage	Texas	
Respondent 14	Wind, solar	New Mexico, Texas	
Respondent 15	Solar plus storage, wind	Texas	
Respondent 16	Technical Information on Resource Technology	N/A	
Respondent 17	Solar	Oklahoma	
Respondent 18	Compressed air battery	N/A	

Appendix H Page 228 of 251 Case No. 21-00169-UT

Appendix D
Page 9 of 15

Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

4. Summary of the Tolk Analysis

To effectively evaluate replacement options, SPS employs the use of a detailed modeling tool which leverages information obtained during the RFI process in conjunction with system information to evaluate the optimal paths forward from an economic merit perspective. For example, if a coal-fired resource is required to retire at a certain date, the model evaluates all replacement options and determines which of the options, as a portfolio or standalone resource, makes economic sense while maintaining adequate reliability in terms of preserving the required operating reserve margin.

SPS utilized EnCompass for the Tolk and Harrington analysis. EnCompass is a power supply planning software that performs the following computations:

- Production cost modeling that determines which electric system resources should be run
 on a least-cost basis, while respecting known constraints under a set of defined
 assumptions.
- Optimization of supply resources that, through permutative production cost analyses, identifies the supply portfolio that minimizes total cost while managing to reliability constraints.

A wide variety of tools are available in the marketplace to conduct the analysis. Based on a review of EnCompass' capabilities and the methodology it follows to perform the analysis, we agree with its use as part of the overall approach to optimize the solution. However, in large part, the modeling is sensitive to the following parameters which are input manually:

- Specific scenarios and constraints, around which the model must solve for.
- Input assumptions on which the model calculates the cost of electric production.

The results from the EnCompass software were tabulated on the basis of the Present Value of Revenue Requirements ("PVRR"). Adoption of the revenue requirements comparative perspective is widely adopted in the industry, as this vantage point seeks to evaluate the relative costs passed onto ratepayers. In addition, levelization of the revenue requirements on the basis of net present value normalizes the results to start of the study period (\$2022) to facilitate the comparison of options that may have greater short-term versus long-term cost implications. Levelization of revenue requirements is also consistent with industry practices to ensure that the time value of money is considered and captured.

Part of our role as IE is to ensure SPS evaluates all feasible and practical options to address the constraints and that the assumptions taken are reasonable and aligned with industry practice.

4.1 Assumptions

1. Fuel price forecasts: SPS inputs a natural gas forecast and coal price forecast into the EnCompass model. The approach to arriving at a consensus fuel price forecast generally entails the weighting or averaging of multiple leading price forecasts available in the market. The coal price forecast leverages specific price information associated with the power plants, which is reasonable given the impact of transportation-related costs, as well as the use of spot coal price forecasts developed by averaging market forecasts provided by industry-leading consulting firms. For natural gas, SPS adopts the

Appendix H Page 229 of 251 Case No. 21-00169-UT

Appendix D Page 10 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

short-term outlook from NYMEX (plus 2 years) and adopts the longer-term outlook from an average of four publications (NYMEX, IHS Energy, S&P Global, and Wood Mackenzie). Guidehouse's market modeling experts have reviewed this approach and confirm that it benchmarks well to our internal forecasts. On similar engagements, we have observed similar approaches used by other utilities. We conclude that the methodology used for the applicable fuel price forecasts is reasonable.

- 2. Market electricity prices: SPS is a member of SPP, which gives it access to a regional market for electricity purchases and sales. To estimate applicable electric prices at which SPS can economically transact, SPS leverages a straight average of long-term on-peak and off-peak implied heat rate forecasts provided by Wood Mackenzie, S&P Global, and IHS Markit for SPP South Hub. Implied heat rates are a gauge of electrical efficiency denominated in MMBtu of natural gas consumption per kilowatt-hour of generation that are equivalent to what would be the breakeven point for power supply. Implied heat rates are multiplied by the gas price forecast to produce an equivalent market energy price. The SPP South Hub is the applicable region at which SPS can conduct electricity transactions. Guidehouse's market modeling experts have reviewed this approach and confirm that it benchmarks well to our internal forecasts. On similar engagements, we have observed similar approaches used by utilities. We conclude that the methodology used for the applicable market electricity price forecast is reasonable.
- 3. Load and demand: To meet regional reliability criteria and to project the energy needs of the SPS service territory, a proper projection of future energy sales and the coincident peak demand is needed for modeling purposes. SPS's methodology entails a forecast of retail energy sales and customers by rate class. Coincident peak demand is forecast at the aggregate SPS level. For customers receiving wholesale service, energy sales and coincident peak demand forecasts are developed according to the individual customer. In large part, SPS used actual monthly historical data to derive all forecasts. As part of the process, two forecasts were derived to conduct sensitivity: the planning forecast based on an 85% probabilistic load forecasting level and a financial forecast, which reflects actual expected load. The purpose of a planning forecast is to ensure reliability even during the worst-case scenario. Planning to this level achieves, typically, a 1 day in 10-year loss of load expectation, which is the standard set by the North American Electric Reliability Corporation that SPS must follow. In addition, the financial forecast reflects what the utility, financially, would realize in a given year based on a median expectation of load conditions. We have reviewed SPS's actual load forecasts and have benchmarked it to our available and modeled forecasts. Based on the review, we conclude that the load and demand forecasts are reasonable and in line with industry practice.
- 4. Interconnection cost: How a resource is connected to the system can have significant bearing on the all-in cost of a generation resource. In addition to the physical connection of the resources, there may be additional costs related to reinforcing the network of the broader area to assure reliable delivery of electricity. For SPS, interconnection studies are conducted by SPP, which receives interconnection requests from resources, groups studies for processing, manages the order in which projects are studied, conducts technical analyses to assure reliable connection, and assigns costs of network infrastructure upgrades required to reliably deliver electricity from the projects. A full and complete study can take a significant amount of time—approximately 18 months for the technical analysis. Constructing the interconnection and identified infrastructure upgrades can take years, putting projects with existing interconnection requests at a significant timing advantage over ones that do not. SPS developed their cost adders

Appendix H Page 230 of 251 Case No. 21-00169-UT

Appendix D Page 11 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

based on upgrades identified for Zones 2 and 6, the relevant regions for SPS territory. By using the SPP estimates, SPS calculated the infrastructure cost adder to connect a resource as \$400/kW in its base case. In addition, SPS ran additional sensitivities of \$200 and \$600/kW to determine the impact of higher or lower than expected interconnection costs than anticipated. This is a reasonable approach and in line with standard industry practices.

4.2 Scenarios

Scenario modeling was conducted to evaluate the impact of changes in COD and operating profiles on the selected portfolio, and in turn, its impact on the Utility's revenue requirements. As the primary driver for Tolk retirement was water resource constraints, options that address this concern were considered in the scenarios, including reduced, seasonal operation, a staggered retirement approach, and an early retirement. To reduce water usage, operations at Tolk would either need to be minimized or eliminated entirely.

Accordingly, SPS defined the following scenarios for consideration:

Scenario 1 – Annual Economic Dispatch

- Summer only economic dispatch throughout 2021
- Annual economic dispatch thereafter
- Both Tolk units retire at end of economically available water EOY 2025
- Harrington converted to gas EOY 2024

Scenario 2 – Summer Only Economic Dispatch

- Summer only economic dispatch 2021 and beyond
- Both Tolk units retire at end of economically available water EOY 2032
- Harrington converted to gas EOY 2024

Scenario 3 – Earliest Retirement of Tolk Units

- Summer only economic dispatch 2021
- Annual economic dispatch thereafter
- Both Tolk units retire EOY 2023
- Harrington converted to gas EOY 2024

Scenario 4 – Staggered Retirement of Tolk Units

- Summer only economic dispatch 2021
- Annual economic dispatch thereafter
- Unit 1 retires EOY 2023
- Unit 2 retires at end of economically available water EOY 2031
- Harrington converted to gas EOY 2024

Scenario 5 – Staggered Retirement of Tolk Units & Seasonal Operations

- Summer only economic dispatch
- Unit 1 retires EOY 2023
- Unit 2 retires EOY 2032
- Harrington converted to gas EOY 2024

• Scenario 6 - Earliest Retirement of Tolk & Harrington Units

Tolk - Summer only economic dispatch 2021

Appendix H Page 231 of 251 Case No. 21-00169-UT

Appendix D Page 12 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

- Tolk Annual economic dispatch thereafter
- Harrington Annual economic dispatch in all years
- All Tolk and Harrington Units Retire EOY 2023

The above scenarios capture a range of retirement dates and reduced operational profiles to address water constraints. These include:

- 1. Retire at the point where water is no longer economically available both units operating and one unit operating.
- 2. Earliest retirement feasible for all units.
- 3. Seasonal operations to potentially minimize replacement capacity costs (assuming such costs exceed ongoing operations at Tolk).

It is noted that in most scenarios, it is assumed that Harrington is converted to gas in the End of Year 2024. Further options for Harrington are separately evaluated under the Harrington Analysis.

After review and discussion with SPS, we agreed that the scenarios presented above represent the spectrum of options available that was primarily driven by the water resource constraint. The options above are shaped by separate analyses conducted to remain within water resource parameters. Replacement options for Tolk are evaluated on an economic basis based on the response from the RFI for resource additions through 2025. For projects post-2025, which would reflect projects not yet in development, SPS used generic resource cost assumptions to meet capacity shortfalls as determined through the use of EnCompass. Generic resources included all thermal resource options, including combine cycle and simple cycle units, to meet capacity needs.

Case No. 21-00169-UT Appendix D

Page 13 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

5. Results of the Tolk Analysis

The base case scenarios leverage the planning load forecast with the base case (median) gas price forecast. Table 2 presents the results of the base cases:

Table 2. Summary of PVRR Results, Base Case: Assumes Planning Load, \$400/kW Interconnection Cost, and Base Gas Forecast

PVRR Production Cost	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022-2032	Delta from Ref. Case (\$M)	NPV (\$M) 2022- 2041
Scenario 1	236	\$3,449	\$266	\$7,691	\$117	\$12,066
Scenario 2 (Ref. Case)	\$0	\$3,213	\$0	\$7,426	\$0	\$11,949
Scenario 3	\$235	\$3,448	\$271	\$7,696	\$118	\$12,067
Scenario 4	\$61	\$3,274	\$135	\$7,561	\$93	\$12,042
Scenario 5	\$30	\$3,243	\$87	\$7,513	\$33	\$11,982
Scenario 6	\$789	\$4,002	\$1,398	\$8,824	\$1,526	\$13,475

Guidehouse reviewed the model outputs from each of these scenarios, focusing on the key differences and their drivers among the cases to validate the analyses. We made the following observations:

Prudent utility practice would require the cases be tested under a variety of conditions to stress test the cases against changes in the assumptions. The two factors that have significant impact on modeling results are the load forecast, which sets the reliability margin/capacity need requirement, and the fuel price forecast, which may influence the relative economics of fossil units of varying efficiency against renewable resources. In addition, SPS tested varying assumptions regarding the cost of interconnection since accurate figures are not available until a full study is conducted. SPS conducted a sensitivity analysis of the six scenarios across three load forecasts, three interconnection cost assumptions and three fuel price forecasts for a total of 27 runs. The analysis of Harrington was conducted across three load forecasts (low, planning and financial) and three gas price forecasts (low, base, and high) for 9 total sensitivities for each scenario.

Table 3. Impact of Assumptions on Scenario Ranking

		_			
Run No.	Gas Forecast	Load Forecast	Interconnection Cost Assumption	Lowest PVRR Scenario	Next Lowest PVRR Scenario
1	Base	Financial	\$200/kW	Scenario 3	Scenario 5
2	Base	Financial	\$400/kW	Scenario 2	Scenario 5
3	Base	Financial	\$600/kW	Scenario 2	Scenario 5
4	Base	High	\$200/kW	Scenario 5	Scenario 2
5	Base	High	\$400/kW	Scenario 2	Scenario 5
6	Base	High	\$600/kW	Scenario 5	Scenario 2
7	Base	Low	\$200/kW	Scenario 2	Scenario 5
8	Base	Low	\$400/kW	Scenario 2	Scenario 5
9	Base	Low	\$600/kW	Scenario 2	Scenario 5

Appendix D Page 14 of 15 Case No. 21-00169-UT

M Guidehouse

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

10	High	Financial	\$200/kW	Scenario 3	Scenario 5
11	High	Financial	\$400/kW	Scenario 5	Scenario 2
12	High	Financial	\$600/kW	Scenario 3	Scenario 5
13	High	High	\$200/kW	Scenario 5	Scenario 4
14	High	High	\$400/kW	Scenario 5	Scenario 2
15	High	High	\$600/kW	Scenario 5	Scenario 4
16	High	Low	\$200/kW	Scenario 5	Scenario 2
17	High	Low	\$400/kW	Scenario 2	Scenario 5
18	High	Low	\$600/kW	Scenario 2	Scenario 5
19	Low	Financial	\$200/kW	Scenario 2	Scenario 5
20	Low	Financial	\$400/kW	Scenario 2	Scenario 5
21	Low	Financial	\$600/kW	Scenario 2	Scenario 5
22	Low	High	\$200/kW	Scenario 5	Scenario 2
23	Low	High	\$400/kW	Scenario 2	Scenario 5
24	Low	High	\$600/kW	Scenario 2	Scenario 5
25	Low	Low	\$200/kW	Scenario 2	Scenario 5
26	Low	Low	\$400/kW	Scenario 2	Scenario 5
27	Low	Low	\$600/kW	Scenario 2	Scenario 5

The highest ranking and most resilient scenario in all cases, as evident in the table above, is Scenario 2. When a particular case maintains a relative cost advantage despite changes in assumptions, it is an indication that the selected case is resilient to such changes and represents the "least regrets" planning scenario available.

The sensitivity analysis does reveal, however, that there are situations where Scenario 5, and to a lesser extent, Scenario 3, have a cost advantage under specified assumptions. There are five (5) total cases where Scenario 2 is not in either of the top two positions. In most cases, Scenario 5 is 2nd to Scenario 2. In virtually all such cases, the NPVRR gap differentiating the cases is relatively narrow (between \$0 to \$32M over 20 years). The differences between the cases is considered within the planning margin of error, therefore, decisions on the optimal scenario should be rendered from a qualitative risk perspective.

Appendix H Page 234 of 251 Case No. 21-00169-UT

Appendix D Page 15 of 15 Case No. 21-00169-UT

Independent Evaluator Report of the Southwestern Public Service Company's Tolk Analysis and RFI

6. Conclusions

We oversaw SPS throughout both the RFI process and the Tolk analysis. With regards to the RFI, the key objective from an IE's perspective was to ensure that all proposals were fully considered and that each respondent was given an equal and fair opportunity to submit additional information as needed to provide the utility with the most advantageous offer possible to the utility and its ratepayers, facilitating a viable economical option to replace the Tolk Generating Station. Based on our observations of the discussions between SPS and respondents, this standard has been met, and specifically for the RFI process, SPS used fair solicitation and evaluation processes. In our review, we observed SPS using a consistent methodology and approach to evaluate the options proposed.

Whether SPS considered available replacement resources was a function of both the responses to the RFI, reflecting projects already in development able to meet the need dates, and generic resource options that SPS has captured in its model as a backstop should there be a shortfall in future capacity needs. The projects received via the RFI were included in the detailed modeling. The generic resource inputs are also consistent with supply options typically considered and available to utilities seeking to address a capacity need. Aside from what was considered and evaluated by SPS, there are no other reasonable and viable options to our knowledge. Therefore, the replacement resources considered is reasonable and consistent with industry practices.

A series of potential Tolk retirement dates and scenarios, given the state of water availability, were considered. A variety of approaches, including early retirement, the latest date in which the Tolk Station could operate with economic water, and a staggered unit-by-unit approach to retirement, were modelled and considered. It is not possible to model every possible date, however, in our view SPS considered a substantial number of intervening dates and approaches driven by the circumstances. Accordingly, SPS considered a range of retirement dates and the scenarios chosen by SPS in our view are reasonable.

Appendix H
Page 235 of 251
Case No. 21-00169-UT
Appendix E
Page 1 of 6

Case No. 21-00169-UT

2020 Request for Information for Generating Resources

Southwestern Public Service Company
Released September 9, 2020

Appendix H
Page 236 of 251
Case No. 21-00169-UT
Appendix E
Page 2 of 6
Case No. 21-00169-UT

2

Xcel Energy

Southwestern Public Service Company Request for Information

Table of Contents

Introduction:	3
General Background:	3
Qualifications and Assumptions:	4
Specific Information of Interest:	4
Content of Submissions:	4
Bidders Meeting:	5
Proposal Submission Deadline:	5
Follow-up Requests	5
Confidentiality	6

Appendix H Page 237 of 251 Case No. 21-00169-UT

Appendix E Page 3 of 6 Case No. 21-00169-UT

Xcel Energy

Southwestern Public Service Company Request for Information

3

Introduction:

This announcement constitutes a Request for Information ("RFI") notice soliciting current pricing, technical characteristics, and other relevant information for potential generating resources. This is not a Request for Proposals ("RFP") or solicitation for formal proposals. This RFI does not constitute a commitment, implied or otherwise, that SPS will take action in this matter. SPS will not be responsible for any costs incurred in furnishing SPS responsive information.

SPS is interested in understanding the current availabilities, flexibilities, and preferences of market participants interested in providing capacity and associated energy to SPS from all generating resource types, including energy storage, whether existing or yet-to-be constructed. SPS is considering the availability of capacity resources for possible future owned generation, build-own-transfers ("BOTs"), and purchased power agreements ("PPAs").

General Background:

- SPS is a New Mexico corporation and wholly-owned electric utility subsidiary of Xcel Energy.
- SPS's total company service territory encompasses a 52,000-square-mile area in eastern and southeastern New Mexico, the Texas Panhandle, and the Texas South Plains and its primary business is generating, transmitting, distributing, and selling electric energy.
- SPS has a long history of providing safe, reliable, value-added service to our customers
- SPS serves 394,220 electric retail customers in Texas and New Mexico.
- As prescribed in the Uncontested Comprehensive Stipulation ("Stipulation") filed at the New Mexico Public Regulation Commission on January 13, 2020 and approved by the New Mexico Public Regulation Commission ("NMPRC") in Case No. 19-00170-UT, the Stipulation requires SPS to submit a robust analysis of the possible abandonment of its Tolk Generating Station Units 1 and 2 (Tolk) and potential means of replacement of those resources (the "Tolk Analysis"). The Tolk Analysis shall include replacement resources priced based on an RFI solicitation. The Tolk Analysis will also consider a scenario in which all SPS's coal-burning units are retired or replaced before 2030.
- SPS will be evaluating multiple scenarios with various capacity replacement dates. The
 minimum net capacity need is approximately 500 MW beginning summer 2023. The
 maximum net capacity need is approximately 2,200 MW beginning summer 2025.

Appendix H Page 238 of 251

Case No. 21-00169-UT

Appendix E Page 4 of 6 Case No. 21-00169-UT

Xcel Energy

Southwestern Public Service Company Request for Information

Qualifications and Assumptions:

- Expressions of interest should be from existing or proposed generating facilities within the SPS zone or delivered to the SPS zone from existing or proposed sites within the Southwest Power Pool.
- Expressions of interest should include a proposed Commercial Operation Date ("COD") if the submission is a future resource.
- Expressions of interest should include all capacity, energy, environmental attributes such as Renewable Energy Credits (RECs), and other generation-related services.
- For purposes of this RFI, "renewable energy" refers to electrical power generated by solar, wind, biomass, or other commercially viable renewable energy technologies including energy storage.
- SPS is interested in the availability of capacity and associated energy resources for possible future owned generation, BOTs, and PPAs.
- PPA durations are recommended to be 25 and/or 30 years.
- Interested parties should respond to this RFI within 60 days of issuance.

Specific Information of Interest:

- Project type, including technical characteristics.
- Project site location for delivery within (or to) the SPS system.
- Proposed COD for resource facilities responsive to this RFI, including details on whether a delay in the proposed COD could impact the pricing and if so an estimate of the price of those impact(s).
- Pricing and quantity in megawatts. All pricing in respondent proposals should reflect costs (to the extent applicable) at the time of submittal and should include costs of interconnection to the transmission system if applicable.
- Statement on current interconnection status (if any), and anticipated extent of need for transmission system upgrades for the proposal.
- Proposals must demonstrate an anticipated ability to obtain all required state/local preconstruction approvals and any associated risks to meet the COD.

Content of Submissions:

- Appendix A includes a set of forms applicable to the resource type being submitted.
 - o For dispatchable resources the submitter should complete Appendix A-PPA DIS forms
 - For renewable generation resources the submitter should complete Appendix A-PPA RENEW forms
 - o For Build-Own-Transfer or sale of an existing asset the submitter should complete Appendix A-BOT.
- Some information may be requested on more than one form. Although such requests may be redundant, submitters must provide the information requested on each applicable form.
- SPS will convene a Bidders Meeting for all interested parties to allow for clarifications and any questions that potential bidders may have. See meeting details below.

Case No. 21-00169-UT

Appendix E Page 5 of 6 Case No. 21-00169-UT

Xcel Energy

Southwestern Public Service Company Request for Information

5

Bidders Meeting:

Date: September 21, 2020

Time: 1:00PM – 3:00 PM Mountain Daylight Time

Join Zoom Meetina:

https://xcelenergy.zoom.us/j/93175193060?pwd=cVpNeTZvTEkycURIMUhqMIZWL2 14dz09

Meeting ID: 931 7519 3060

Passcode: 270511 One tap mobile

+17209289299,,93175193060#,,,,,0#,,270511# US (Denver)

+12133388477,,93175193060#,,,,,0#,,270511# US (Los Angeles)

Dial by your location

+1 720 928 9299 US (Denver)

+1 213 338 8477 US (Los Angeles)

+1 346 248 7799 US (Houston)

+1 206 337 9723 US (Seattle)

+1 312 626 6799 US (Chicago)

+1 646 518 9805 US (New York)

+1 651 372 8299 US (St. Paul)

+1 786 635 1003 US (Miami)

Meeting ID: 931 7519 3060

Passcode: 270511

Find your local number: https://xcelenergy.zoom.us/u/aLUXvN6pb

Proposal Submission Deadline:

Proposals will be accepted until 5:00 P.M. Central Time on Friday, November 6, 2020. All Proposals must be transmitted by to the following email address:

SPSTolkAnalysis@xcelenergy.com

Proposals received later than the due date and time indicated will be rejected.

Follow-up Requests

To the extent SPS has questions or seeks clarification regarding a Proposal, SPS may pose follow-up questions. Submitters are not obligated to respond to such follow-up questions, but, are advised that a failure to provide adequate information may lead to a Proposal or a portion of a Proposal being disregarded.

Appendix H
Page 240 of 251
Case No. 21-00169-UT
Appendix E
Page 6 of 6
Case No. 21-00169-UT

Xcel Energy

Southwestern Public Service Company Request for Information

6

Confidentiality

SPS recognizes that certain information contained in a Proposal submitted may be deemed by the submitter to be confidential. To the extent a submitter believes portions of its Proposal (or any subsequent responses to follow-up questions) constitute confidential material, the submitter should clearly label such material as confidential ("Confidential Material"). SPS will not be responsible for identifying any Confidential Material that has not been designated as such by the submitter. If SPS receives a request from a regulatory or judicial authority to which Confidential Material is responsive, or if SPS receives a request (that SPS reasonably deems to be a valid request) from a party in a regulatory or judicial proceeding to which request SPS determines Confidential Material in the Proposal is responsive, or to the extent otherwise required by law, SPS may provide the Confidential Material pursuant to a confidentiality or protective agreement or order in such proceeding. To the extent Confidential Material is proposed to be disclosed publicly (i.e., not subject to a confidentiality or protective agreement), SPS will notify the submitter as soon as reasonably possible; it is the sole responsibility of the submitter to seek to protect the material subsequent to such notification. SPS may disclose non-Confidential Material at its discretion without prior notice.

Appendix F Page 1 of 9 Case No. 21-00169-UT

Appendix F - PVRR Tables

Planning Load Forecast (Base Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,213	\$0	\$7,426	\$0	\$11,949
Scenario 1	\$236	\$3,449	\$266	\$7,691	\$117	\$12,066
Scenario 3	\$235	\$3,448	\$271	\$7,696	\$118	\$12,067
Scenario 4	\$61	\$3,274	\$135	\$7,561	\$93	\$12,042
Scenario 5	\$30	\$3,243	\$87	\$7,513	\$33	\$11,982
Scenario 6	\$789	\$4,002	\$1,398	\$8,824	\$1,526	\$13,475

Financial Load Forecast (Base Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,993	\$0	\$6,628	\$0	\$10,388
Scenario 1	\$146	\$3,140	\$165	\$6,792	\$128	\$10,516
Scenario 3	\$147	\$3,140	\$169	\$6,797	\$48	\$10,436
Scenario 4	\$38	\$3,031	\$88	\$6,716	\$75	\$10,462
Scenario 5	\$3	\$2,996	\$28	\$6,655	\$2	\$10,390
Scenario 6	\$548	\$3,541	\$796	\$7,424	\$755	\$11,142

Low Load Forecast (Base Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,809	\$0	\$5,969	\$0	\$9,013
Scenario 1	\$221	\$3,031	\$226	\$6,196	\$128	\$9,141
Scenario 3	\$150	\$2,959	\$162	\$6,131	\$62	\$9,075
Scenario 4	\$41	\$2,851	\$79	\$6,048	\$83	\$9,096
Scenario 5	\$4	\$2,813	\$16	\$5,986	\$9	\$9,022
Scenario 6	\$559	\$3,369	\$832	\$6,801	\$837	\$9,850

Appendix F Page 2 of 9 Case No. 21-00169-UT

Planning Load Forecast (Low Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,195	\$0	\$7,304	\$0	\$11,504
Scenario 1	\$143	\$3,338	\$173	\$7,477	\$134	\$11,637
Scenario 3	\$229	\$3,424	\$284	\$7,588	\$185	\$11,689
Scenario 4	\$107	\$3,302	\$198	\$7,502	\$100	\$11,604
Scenario 5	\$73	\$3,268	\$134	\$7,438	\$29	\$11,532
Scenario 6	\$691	\$3,887	\$1,248	\$8,552	\$1,472	\$12,976

Financial Load Forecast (Low Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,988	\$0	\$6,565	\$0	\$10,115
Scenario 1	\$151	\$3,139	\$178	\$6,743	\$128	\$10,243
Scenario 3	\$155	\$3,143	\$152	\$6,717	\$48	\$10,163
Scenario 4	\$39	\$3,027	\$116	\$6,681	\$97	\$10,212
Scenario 5	\$2	\$2,989	\$37	\$6,601	\$14	\$10,130
Scenario 6	\$554	\$3,541	\$863	\$7,428	\$935	\$11,050

Low Load Forecast (Low Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,809	\$0	\$5,940	\$0	\$8,955
Scenario 1	\$141	\$2,950	\$191	\$6,132	\$150	\$9,105
Scenario 3	\$158	\$2,967	\$181	\$6,121	\$85	\$9,040
Scenario 4	\$42	\$2,850	\$133	\$6,074	\$124	\$9,079
Scenario 5	\$3	\$2,811	\$39	\$5,979	\$23	\$8,978
Scenario 6	\$564	\$3,373	\$919	\$6,860	\$1,033	\$9,988

Appendix F Page 3 of 9 Case No. 21-00169-UT

Planning Load Forecast (High Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,276	\$0	\$7,597	\$0	\$12,398
Scenario 1	\$141	\$3,417	\$128	\$7,725	\$79	\$12,478
Scenario 3	\$209	\$3,485	\$241	\$7,839	\$67	\$12,466
Scenario 4	\$33	\$3,310	\$36	\$7,634	\$31	\$12,430
Scenario 5	\$4	\$3,280	\$16	\$7,613	(\$0)	\$12,398
Scenario 6	\$561	\$3,837	\$1,105	\$8,703	\$1,258	\$13,657

Financial Load Forecast (High Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,054	\$0	\$6,744	\$0	\$10,638
Scenario 1	\$146	\$3,200	\$113	\$6,857	\$71	\$10,710
Scenario 3	\$146	\$3,200	\$132	\$6,877	\$3	\$10,641
Scenario 4	\$50	\$3,104	\$80	\$6,824	\$50	\$10,688
Scenario 5	\$15	\$3,069	\$21	\$6,765	(\$3)	\$10,635
Scenario 6	\$487	\$3,541	\$678	\$7,422	\$631	\$11,269

Low Load Forecast (High Gas - \$400/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,811	\$0	\$5,939	\$0	\$9,025
Scenario 1	\$148	\$2,958	\$179	\$6,118	\$149	\$9,174
Scenario 3	\$150	\$2,960	\$181	\$6,120	\$71	\$9,096
Scenario 4	\$40	\$2,851	\$92	\$6,031	\$78	\$9,103
Scenario 5	\$6	\$2,816	\$33	\$5,972	\$27	\$9,052
Scenario 6	\$554	\$3,365	\$792	\$6,731	\$665	\$9,690

Appendix F Page 4 of 9 Case No. 21-00169-UT

Planning Load Forecast (Base Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,226	\$0	\$7,453	\$0	\$11,803
Scenario 1	\$130	\$3,356	\$56	\$7,509	\$26	\$11,830
Scenario 3	\$170	\$3,397	\$64	\$7,517	\$4	\$11,807
Scenario 4	\$36	\$3,262	\$12	\$7,465	\$26	\$11,830
Scenario 5	\$4	\$3,230	(\$26)	\$7,427	(\$23)	\$11,780
Scenario 6	\$616	\$3,842	\$826	\$8,279	\$890	\$12,694

Financial Load Forecast (Base Gas - \$200/kW network upgrades)

	Action	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041	
Scenario 2	\$0	\$3,012	\$0	\$6,678	\$0	\$10,258	
Scenario 1	\$145	\$3,157	\$41	\$6,719	\$30	\$10,289	
Scenario 3	\$102	\$3,114	\$10	\$6,688	(\$10)	\$10,248	
Scenario 4	\$39	\$3,051	\$9	\$6,687	\$13	\$10,272	
Scenario 5	\$10	\$3,022	(\$4)	\$6,674	(\$10)	\$10,248	
Scenario 6	\$503	\$3,515	\$633	\$7,311	\$675	\$10,933	

Low Load Forecast (Base Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,822	\$0	\$5,950	\$0	\$8,918
Scenario 1	\$141	\$2,964	\$100	\$6,050	\$66	\$8,984
Scenario 3	\$101	\$2,923	\$69	\$6,019	\$17	\$8,935
Scenario 4	\$37	\$2,859	\$72	\$6,022	\$65	\$8,983
Scenario 5	(\$1)	\$2,821	\$11	\$5,960	\$3	\$8,921
Scenario 6	\$520	\$3,342	\$749	\$6,698	\$743	\$9,661

Appendix F Page 5 of 9 Case No. 21-00169-UT

Planning Load Forecast (Low Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,208	\$0	\$7,308	\$0	\$11,398
Scenario 1	\$137	\$3,346	\$90	\$7,397	\$71	\$11,470
Scenario 3	\$167	\$3,375	\$204	\$7,511	\$130	\$11,528
Scenario 4	\$50	\$3,258	\$96	\$7,403	\$63	\$11,461
Scenario 5	\$15	\$3,224	\$25	\$7,333	(\$1)	\$11,398
Scenario 6	\$724	\$3,932	\$1,235	\$8,543	\$1,489	\$12,887

Financial Load Forecast (Low Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,988	\$0	\$6,565	\$0	\$10,023
Scenario 1	\$155	\$3,142	\$92	\$6,657	\$72	\$10,095
Scenario 3	\$124	\$3,112	\$82	\$6,647	\$18	\$10,042
Scenario 4	\$52	\$3,040	\$94	\$6,659	\$73	\$10,096
Scenario 5	\$14	\$3,002	\$26	\$6,591	\$2	\$10,025
Scenario 6	\$527	\$3,515	\$760	\$7,325	\$843	\$10,866

Low Load Forecast (Low Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,807	\$0	\$5,936	\$0	\$8,858
Scenario 1	\$152	\$2,959	\$128	\$6,064	\$110	\$8,968
Scenario 3	\$112	\$2,919	\$105	\$6,041	\$60	\$8,919
Scenario 4	\$52	\$2,859	\$112	\$6,048	\$99	\$8,958
Scenario 5	\$4	\$2,811	\$28	\$5,964	\$14	\$8,873
Scenario 6	\$539	\$3,346	\$822	\$6,758	\$947	\$9,806

Appendix F Page 6 of 9 Case No. 21-00169-UT

Planning Load Forecast (High Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M)	Delta (\$M)	NPV (\$M)	Delta (\$M)	NPV (\$M)
		2022-2025		2022 - 2032		2022 - 2041
Scenario 2	\$0	\$3,247	\$0	\$7,567	\$0	\$12,100
Scenario 1	\$126	\$3,374	\$24	\$7,591	\$22	\$12,122
Scenario 3	\$156	\$3,403	\$36	\$7,604	\$7	\$12,107
Scenario 4	\$34	\$3,282	(\$3)	\$7,565	(\$7)	\$12,093
Scenario 5	\$5	\$3,252	(\$25)	\$7,543	(\$12)	\$12,088
Scenario 6	\$593	\$3,840	\$776	\$8,344	\$763	\$12,863

Financial Load Forecast (High Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,021	\$0	\$6,765	\$0	\$10,493
Scenario 1	\$132	\$3,154	(\$10)	\$6,755	(\$29)	\$10,465
Scenario 3	\$114	\$3,135	(\$24)	\$6,741	(\$102)	\$10,391
Scenario 4	\$38	\$3,060	(\$12)	\$6,753	(\$16)	\$10,477
Scenario 5	\$3	\$3,025	(\$41)	\$6,724	(\$51)	\$10,442
Scenario 6	\$513	\$3,534	\$612	\$7,376	\$510	\$11,003

Low Load Forecast (High Gas - \$200/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,824	\$0	\$5,970	\$0	\$8,909
Scenario 1	\$142	\$2,966	\$67	\$6,037	\$46	\$8,955
Scenario 3	\$104	\$2,928	\$40	\$6,009	\$0	\$8,909
Scenario 4	\$39	\$2,863	\$22	\$5,992	\$29	\$8,939
Scenario 5	\$3	\$2,827	(\$15)	\$5,955	(\$12)	\$8,897
Scenario 6	\$514	\$3,338	\$657	\$6,626	\$596	\$9,505

Appendix F Page 7 of 9 Case No. 21-00169-UT

Planning Load Forecast (Base Gas - \$600/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,205	\$0	\$7,445	\$0	\$12,076
Scenario 1	\$241	\$3,446	\$238	\$7,684	\$78	\$12,153
Scenario 3	\$241	\$3,447	\$213	\$7,659	\$43	\$12,118
Scenario 4	\$103	\$3,309	\$149	\$7,595	\$43	\$12,119
Scenario 5	\$72	\$3,277	\$109	\$7,555	(\$15)	\$12,060
Scenario 6	\$747	\$3,952	\$1,217	\$8,663	\$1,170	\$13,245

Financial Load Forecast (Base Gas - \$600/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$2,993	\$0	\$6,628	\$0	\$10,467
Scenario 1	\$215	\$3,208	\$240	\$6,868	\$94	\$10,561
Scenario 3	\$154	\$3,148	\$161	\$6,789	\$21	\$10,489
Scenario 4	\$111	\$3,105	\$195	\$6,823	\$66	\$10,533
Scenario 5	\$75	\$3,068	\$136	\$6,764	\$7	\$10,474
Scenario 6	\$633	\$3,626	\$945	\$7,573	\$865	\$11,332

Low Load Forecast (Base Gas - \$600/kW network upgrades)

	Action	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041	
Scenario 2	\$0	\$2,809	\$0	\$5,941	\$0	\$9,077	
Scenario 1	\$221	\$3,031	\$272	\$6,213	\$112	\$9,189	
Scenario 3	\$157	\$2,967	\$185	\$6,126	\$44	\$9,121	
Scenario 4	\$117	\$2,926	\$241	\$6,182	\$96	\$9,173	
Scenario 5	\$78	\$2,888	\$155	\$6,096	\$15	\$9,091	
Scenario 6	\$643	\$3,452	\$1,006	\$6,947	\$973	\$10,050	

Appendix F Page 8 of 9 Case No. 21-00169-UT

Planning Load Forecast (Low Gas - \$600/kW network upgrades)

	Action Period		Decision Period		Planning Period	
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041
Scenario 2	\$0	\$3,195	\$0	\$7,305	\$0	\$11,575
Scenario 1	\$211	\$3,406	\$255	\$7,560	\$103	\$11,678
Scenario 3	\$245	\$3,440	\$253	\$7,558	\$123	\$11,698
Scenario 4	\$107	\$3,302	\$211	\$7,516	\$77	\$11,652
Scenario 5	\$73	\$3,268	\$137	\$7,442	\$5	\$11,580
Scenario 6	\$844	\$4,039	\$1,655	\$8,960	\$1,996	\$13,571

Financial Load Forecast (Low Gas - \$600/kW network upgrades)

	Action	Period	Decisio	n Period	Planning Period			
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041		
Scenario 2	\$0	\$2,988	\$0	\$6,592	\$0	\$10,167		
Scenario 1	\$219	\$3,207	\$215	\$6,807	\$86	\$10,254		
Scenario 3	\$155	\$3,143	\$128	\$6,720	\$15	\$10,182		
Scenario 4	\$114	\$3,102	\$202	\$6,794	\$98	\$10,265		
Scenario 5	\$75	\$3,063	\$113	\$6,706	\$3	\$10,170		
Scenario 6	\$580	\$3,568	\$923	\$7,515	\$1,035	\$11,202		

Low Load Forecast (Low Gas - \$600/kW network upgrades)

	Action	Period	Decisio	on Period	Planning Period			
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041		
Scenario 2	\$0	\$2,809	\$0	\$5,970	\$0	\$9,001		
Scenario 1	\$225	\$3,033	\$241	\$6,210	\$127	\$9,128		
Scenario 3	\$158	\$2,967	\$143	\$6,113	\$63	\$9,064		
Scenario 4	\$42	\$2,850	\$144	\$6,113	\$113	\$9,114		
Scenario 5	\$3	\$2,811	\$41	\$6,011	\$17	\$9,018		
Scenario 6	\$635	\$3,444	\$1,027	\$6,997	\$1,182	\$10,183		

Appendix F Page 9 of 9 Case No. 21-00169-UT

Planning Load Forecast (High Gas - \$600/kW network upgrades)

	Action	Period	Decisio	on Period	Planning Period			
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041		
Scenario 2	\$0	\$3,339	\$0	\$7,745	\$0	\$12,585		
Scenario 1	\$124	\$3,463	\$48	\$7,793	\$37	\$12,622		
Scenario 3	\$128	\$3,467	\$98	\$7,844	\$11	\$12,596		
Scenario 4	\$29	\$3,368	(\$22)	\$7,724	(\$18)	\$12,567		
Scenario 5	(\$2)	\$3,337	(\$39)	\$7,706	(\$41)	\$12,544		
Scenario 6	\$612	\$3,951	\$916	\$8,662	\$827	\$13,412		

Financial Load Forecast (High Gas - \$600/kW network upgrades)

	Action	Period	Decisio	on Period	Planning Period		
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041	
Scenario 2	\$0	\$3,031	\$0	\$6,710	\$0	\$10,768	
Scenario 1	\$213	\$3,244	\$210	\$6,920	\$67	\$10,835	
Scenario 3	\$146	\$3,177	\$153	\$6,863	(\$17)	\$10,752	
Scenario 4	\$108	\$3,139	\$171	\$6,882	\$52	\$10,821	
Scenario 5	\$73	\$3,104	\$126	\$6,836	(\$4)	\$10,764	
Scenario 6	\$594	\$3,625	\$880	\$7,590	\$718	\$11,486	

Low Load Forecast (High Gas - \$600/kW network upgrades)

	Action	Period	Decisio	on Period	Planning Period		
Scenario	Delta (\$M)	NPV (\$M) 2022-2025	Delta (\$M)	NPV (\$M) 2022 - 2032	Delta (\$M)	NPV (\$M) 2022 - 2041	
Scenario 2	\$0	\$2,811	\$0	\$5,939	\$0	\$9,119	
Scenario 1	\$217	\$3,028	\$259	\$6,198	\$106	\$9,225	
Scenario 3	\$157	\$2,968	\$187	\$6,126	\$46	\$9,164	
Scenario 4	\$114	\$2,925	\$202	\$6,141	\$78	\$9,197	
Scenario 5	\$78	\$2,888	\$148	\$6,086	\$10	\$9,129	
Scenario 6	\$639	\$3,449	\$944	\$6,883	\$789	\$9,907	

BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION

IN THE MATTER OF SOUTHWESTERN PUBLIC SERVICE COMPANY'S 2021))
INTEGRATED RESOURCE PLAN FOR)
NEW MEXICO,)
, and the second	CASE NO. 21-00169-UT
SOUTHWESTERN PUBLIC SERVICE)
COMPANY,	
APPLICANT.)))
)

CERTIFICATE OF SERVICE

I certify that true and correct copies of Southwestern Public Service Company's 2021 Tolk Analysis were electronically sent to each of the following on this 30th day of June 2021:

Randy Bartell

Sharon Shaheen

Steve W. Chris

Dana S. Hardy Sarah Merrick Will DuBois William Grant Mario A. Contreras Zoe E. Lees Mark A. Walker Phillip Oldham Katherine Coleman Michael McMillin TKLaw office Melissa Trevino Jeffrey Pollock Joan Drake Perry Robinson Michael P. Gorman Amanda Alderson William Templeman Michael J. Moffett Cholla Khoury Gideon Elliot Jennifer Van Wiel Andrea Crane Doug Gegax Jason Marks Lauren Hogrewe Joshua Smith Dru Spiller Matthew Miller Stephanie Dzur Don Hancock April Elliott Julia Broggi A.J. Gross aigross@hollandhart.com; Luke Tougas l.tougas@cleanenergyregresearch.com; Mike Gallager mgallagher@leacounty.net; Jane L. Yee

dhardy@hinklelawfirm.com; sarahmerrick@eversheds-sutherland.com; Will.w.dubois@xcelenergy.com; William.a.grant@xcelenergy.com; Mario.a.contreras@xcelenergy.com; Zoe.E.Lees@xcelenergy.com; Mark.A.Walker@xcelenergy.com; phillip.oldham@tklaw.com; katie.coleman@tklaw.com; Michael.mcmillin@tklaw.com; tk.eservice@tklaw.com; Melissa_Trevino@oxy.com; jcp@pollockinc.com; jdrake@modrall.com; Perry.Robinson@urenco.com; mgorman@consultbai.com; aalderson@consultbai.com; wtempleman@cmtisantafe.com; mmoffett@cmtisantafe.com; ckhoury@nmag.gov; gelliot@nmag.gov; ivanwiel@nmag.gov; ctcolumbia@aol.com; dgegax@nmsu.edu; lawoffice@jasonmarks.com; lauren.hogrewe@sierraclub.org; Joshua.smith@sierraclub.org; Dru.spiller@sierraclub.org; Matthew.miller@sierraclub.org; Stephanie@Dzur-Law.com; Sricdon@earthlink.net; ccae@elliottanalytics.com; jbroggi@hollandhart.com;

jyee@cabq.gov;

David Austin Rueschhoff Thorvald A. Nelson Nikolas Stoffel Adele Lee Gina Gargano-Amari B. Tyler Steven S. Michel Cydney Beadles April Elliott Pat O'Connell Maj Holly L. Buchanan Mr. Thomas Jernigan Capt Robert L. Friedman Mrs. Ebony M. Payton TSgt Arnold Braxton Steve Seelye Bradford Borman John Bogatko Milo Chavez Marc Tupler John Reynolds Judith Amer Jack Sidler Elisha Leyba-Tercero Gabriella Dasheno Georgette Ramie David Ault Peggy Martinez-Rael Elizabeth Ramirez Gilbert Fuentes Andrew Unsicker Thomas Domme Rebecca Carter Nicole V. Strauser

rbartell@montand.com; sshaheen@montand.com; Stephen.Chriss@walmart.com; darueschhoff@hollandhart.com; tnelson@hollandhart.com; nsstoffel@hollandhart.com; aclee@hollandhart.com; glgarganoamari@hollandhart.com; bltyler@hollandhart.com; smichel@westernresources.org; cydney.beadles@westernresources.org; april.elliott@westernresources.org; pat.oconnell@westernresources.org; Holly.buchanan.1@us.af.mil; Thomas.Jernigan.3@us.af.mil; Robert.Friedman.5@us.af.mil; Ebony.Payton.ctr@us.af.mil; Arnold.Braxton@us.af.mil; sseelye@theprimegroupllc.com; Bradford.Borman@state.nm.us; John.Bogatko@state.nm.us; Milo.Chavez@state.nm.us; Marc.Tupler@state.nm.us; john.reynolds@state.nm.us; Judith.Amer@state.nm.us; Jack.Sidler@state.nm.us; Elisha.Leyba-Tercero@state.nm.us; Gabriella.Dasheno@state.nm.us; Georgette.Ramie@state.nm.us; David.Ault@state.nm.us; Peggy.Martinez-Rael@state.nm.us; Elizabeth.Ramirez@state.mn.us; GilbertT.Fuentes@state.nm.us; andrew.unsicker@us.af.mil; tdomme@tecoenergy.com; racarter@tecoenergy.com;

nvstrauser@tecoenergy.com;

Linda L. Hudgins Nann M. Winter Adam Bickford Sally Wilhelms Rick Gilliam Kellie Barahona Matthew Marchant Antonio Sanchez Jr. Chuck Pinson Daniel A. Najjar Carla R. Najjar linda.l.hudgins@xcelenergy.com; nwinter@stelznerlaw.com; abickford@swenergy.org; swilhelms@consultbai.com; rick@votesolar.org; kellie.barahona@tklaw.com; matthew.marchant@hollyfrontier.com; sancheza@rcec.coop; cpinson@cvecoop.org; dnajjar@virtuelaw.com; csnajjar@virtuelaw.com; John Caldwell Ramona Blaber Brian J. Haverly Sara Gersen Randy Childress Randall Woolridge Peter Gould David Van Winkle Katelyn Hart Anthony J. Trujillo jcaldwell@leacounty.net; ramona.blaber@sierraclub.org bjh@keleher-law.com; sgersen@earthjustice.org; randy@childresslaw.com; jrwoolridge@gmail; pgouldlaw@aol.com; david@vw77.com; Katelyn.hart@gknet.com; ajt@gknet.com;

Judith Amer

Judith.Amer@state.nm.us;

Respectfully submitted,
/s/ Casey Settles
Casey Settles
Southwestern Public Service Company
790 S. Buchanan, 7th Floor
Amarillo, TX 79101
(806)378-2462
Casey.Settles@xcelenergy.com

Appendix I - Harrington PVRR Tables

Planning Load Forecast (Base Gas - \$400/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)	NPV (\$M) 2022 - 2031		Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,450	\$0	\$	6,861	\$0	\$	11,949
Scenario 1	\$168	\$	2,618	\$148	\$	7,009	\$123	\$	12,072
Scenario 3	(\$10)	\$	2,440	\$251	\$	7,112	\$439	\$	12,388
Scenario 4	(\$10)	\$	2,440	\$436	\$	7,297	\$695	\$	12,644
Scenario 5	\$92	\$	2,542	\$58	\$	6,919	\$62	\$	12,011
Scenario 6	\$39	\$	2,490	\$11	\$	6,872	(\$5)	\$	11,944

Financial Load Forecast (Base Gas - \$400/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M)	Delta (\$M)		PV (\$M) 22 - 2041
		202	22-2024		202	2 - 2031		202	.2 - 2041
Scenario 2	\$0	\$	2,295	\$0	\$	6,155	\$0	\$	10,388
Scenario 1	\$165	\$	2,460	\$82	\$	6,237	\$47	\$	10,435
Scenario 3	(\$10)	\$	2,284	\$257	\$	6,412	\$443	\$	10,831
Scenario 4	(\$10)	\$	2,284	\$444	\$	6,599	\$698	\$	11,085
Scenario 5	\$92	\$	2,386	\$32	\$	6,187	\$27	\$	10,415
Scenario 6	\$40	\$	2,334	(\$10)	\$	6,145	(\$29)	\$	10,358

Planning Load Forecast (Low Gas - \$400/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)	NPV (\$M) 2022 - 2031		Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,443	\$0	\$	6,747	\$0	\$	11,504
Scenario 1	\$165	\$	2,608	\$168	\$	6,914	\$181	\$	11,685
Scenario 3	(\$10)	\$	2,433	\$271	\$	7,018	\$485	\$	11,989
Scenario 4	(\$10)	\$	2,433	\$459	\$	7,206	\$754	\$	12,258
Scenario 5	\$92	\$	2,535	\$55	\$	6,802	\$71	\$	11,575
Scenario 6	\$39	\$	2,483	(\$15)	\$	6,731	(\$31)	\$	11,473

Financial Load Forecast (Low Gas - \$400/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M)	Delta (\$M)	NF	PV (\$M)	Delta (\$M)		PV (\$M)
		202	22-2024		202	22 - 2031		202	2 - 2041
Scenario 2	\$0	\$	2,294	\$0	\$	6,088	\$0	\$	10,115
Scenario 1	\$160	\$	2,453	\$93	\$	6,181	\$92	\$	10,207
Scenario 3	(\$10)	\$	2,283	\$278	\$	6,367	\$495	\$	10,610
Scenario 4	(\$10)	\$	2,283	\$469	\$	6,557	\$765	\$	10,880
Scenario 5	\$92	\$	2,385	\$1	\$	6,089	(\$5)	\$	10,111
Scenario 6	\$40	\$	2,333	(\$26)	\$	6,062	(\$29)	\$	10,086

Planning Load Forecast (High Gas - \$400/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)	NPV (\$M) 2022 - 2031		Delta (\$M)		V (\$M) 2 - 2041
Scenario 2	\$0	\$	2,479	\$0	\$	7,016	\$0	\$	12,398
Scenario 1	\$173	\$	2,653	\$115	\$	7,131	\$51	\$	12,449
Scenario 3	(\$10)	\$	2,469	\$235	\$	7,251	\$328	\$	12,726
Scenario 4	(\$10)	\$	2,469	\$420	\$	7,435	\$581	\$	12,979
Scenario 5	\$92	\$	2,571	\$24	\$	7,040	\$18	\$	12,416
Scenario 6	\$39	\$	2,519	(\$22)	\$	6,994	(\$24)	\$	12,375

Financial Load Forecast (High Gas - \$400/kW network upgrades)

	Action	Peri	lod	Decisio	Decision Period			Planning Period		
Scenario	Delta (\$M)	NPV (\$M) 2022-2024		Delta (\$M)	NPV (\$M) 2022 - 2031		Delta (\$M)		PV (\$M) 22 - 2041	
Scenario 2	\$0	\$	2,329	\$0	\$	6,266	\$0	\$	10,638	
Scenario 1	\$160	\$	2,489	\$47	\$	6,313	\$24	\$	10,662	
Scenario 3	(\$10)	\$	2,319	\$236	\$	6,503	\$352	\$	10,990	
Scenario 4	(\$10)	\$	2,319	\$422	\$	6,688	\$605	\$	11,243	
Scenario 5	\$92	\$	2,421	\$47	\$	6,313	\$17	\$	10,656	
Scenario 6	\$40	\$	2,369	(\$15)	\$	6,252	(\$28)	\$	10,611	

Planning Load Forecast (Base Gas - \$200/kW network upgrades)

	Action	Peri	Decisio	n Pe	riod	Planning Period			
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 2 - 2041
Scenario 2	\$0	\$	2,452	\$0	\$	6,886	\$0	\$	11,803
Scenario 1	\$160	\$	2,612	(\$59)	\$	6,826	\$67	\$	11,870
Scenario 3	(\$10)	\$	2,442	\$225	\$	7,110	\$418	\$	12,221
Scenario 4	(\$10)	\$	2,442	\$422	\$	7,307	\$675	\$	12,478
Scenario 5	\$92	\$	2,544	(\$8)	\$	6,878	(\$5)	\$	11,798
Scenario 6	\$39	\$	2,491	(\$31)	\$	6,854	(\$26)	\$	11,777

Financial Load Forecast (Base Gas - \$200/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		PV (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,302	\$0	\$	6,203	\$0	\$	10,258
Scenario 1	\$160	\$	2,462	\$3	\$	6,206	\$16	\$	10,275
Scenario 3	(\$10)	\$	2,292	\$271	\$	6,474	\$459	\$	10,718
Scenario 4	(\$10)	\$	2,292	\$415	\$	6,618	\$686	\$	10,944
Scenario 5	\$92	\$	2,394	(\$33)	\$	6,169	(\$18)	\$	10,240
Scenario 6	\$40	\$	2,342	(\$10)	\$	6,193	(\$18)	\$	10,240

Planning Load Forecast (Low Gas - \$200/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 2 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,448	\$0	\$	6,753	\$0	\$	11,398
Scenario 1	\$163	\$	2,610	\$74	\$	6,827	\$63	\$	11,462
Scenario 3	(\$8)	\$	2,440	\$284	\$	7,037	\$493	\$	11,892
Scenario 4	(\$13)	\$	2,435	\$452	\$	7,205	\$759	\$	12,157
Scenario 5	\$95	\$	2,542	\$23	\$	6,776	\$19	\$	11,418
Scenario 6	\$39	\$	2,487	\$3	\$	6,756	(\$19)	\$	11,379

Financial Load Forecast (Low Gas - \$200/kW network upgrades)

	Action	Peri	od	Decisio	n Pe	riod	Planning Period			
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 2 - 2041	
Scenario 2	\$0	\$	2,294	\$0	\$	6,088	\$0	\$	10,023	
Scenario 1	\$163	\$	2,456	\$23	\$	6,111	\$26	\$	10,049	
Scenario 3	(\$11)	\$	2,283	\$275	\$	6,363	\$495	\$	10,519	
Scenario 4	(\$11)	\$	2,283	\$465	\$	6,554	\$764	\$	10,788	
Scenario 5	\$92	\$	2,385	\$32	\$	6,120	\$27	\$	10,050	
Scenario 6	\$43	\$	2,336	(\$12)	\$	6,076	(\$36)	\$	9,988	

Planning Load Forecast (High Gas - \$200/kW network upgrades)

	Action	Peri	lod	Decision Period			Planning Period		
Scenario	Delta (\$M)		PV (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,462	\$0	\$	6,991	\$0	\$	12,100
Scenario 1	\$160	\$	2,622	\$1	\$	6,992	(\$1)	\$	12,099
Scenario 3	(\$10)	\$	2,452	\$235	\$	7,226	\$357	\$	12,457
Scenario 4	(\$10)	\$	2,452	\$420	\$	7,411	\$614	\$	12,714
Scenario 5	\$92	\$	2,554	(\$87)	\$	6,904	\$34	\$	12,134
Scenario 6	\$40	\$	2,502	(\$26)	\$	6,965	(\$20)	\$	12,080

Financial Load Forecast (High Gas - \$200/kW network upgrades)

	Action	Action Period			n Pe	riod	Planning Period			
Scenario	Delta (\$M)		PV (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041	
Scenario 2	\$0	\$	2,302	\$0	\$	6,280	\$0	\$	10,493	
Scenario 1	\$168	\$	2,471	(\$69)	\$	6,211	(\$100)	\$	10,393	
Scenario 3	(\$10)	\$	2,292	\$221	\$	6,500	\$343	\$	10,837	
Scenario 4	(\$10)	\$	2,292	\$391	\$	6,671	\$591	\$	11,084	
Scenario 5	\$92	\$	2,394	(\$38)	\$	6,242	(\$40)	\$	10,453	
Scenario 6	\$40	\$	2,342	(\$45)	\$	6,234	(\$55)	\$	10,438	

Planning Load Forecast (Base Gas - \$600/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 2 - 2041
Scenario 2	\$0	\$	2,446	\$0	\$	6,873	\$0	\$	12,076
Scenario 1	\$160	\$	2,605	\$176	\$	7,049	\$175	\$	12,251
Scenario 3	(\$10)	\$	2,435	\$224	\$	7,097	\$417	\$	12,492
Scenario 4	(\$10)	\$	2,435	\$409	\$	7,282	\$665	\$	12,741
Scenario 5	\$92	\$	2,537	\$95	\$	6,968	\$87	\$	12,163
Scenario 6	\$39	\$	2,485	(\$13)	\$	6,860	(\$31)	\$	12,044

Financial Load Forecast (Base Gas - \$600/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		PV (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,295	\$0	\$	6,155	\$0	\$	10,467
Scenario 1	\$160	\$	2,454	\$106	\$	6,261	\$106	\$	10,573
Scenario 3	(\$10)	\$	2,284	\$257	\$	6,412	\$443	\$	10,911
Scenario 4	(\$10)	\$	2,284	\$444	\$	6,599	\$698	\$	11,165
Scenario 5	\$92	\$	2,387	\$2	\$	6,157	\$20	\$	10,487
Scenario 6	\$40	\$	2,334	(\$6)	\$	6,149	(\$31)	\$	10,437

Planning Load Forecast (Low Gas - \$600/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period			
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041	
Scenario 2	\$0	\$	2,443	\$0	\$	6,748	\$0	\$	11,575	
Scenario 1	\$160	\$	2,603	\$232	\$	6,979	\$266	\$	11,841	
Scenario 3	(\$10)	\$	2,433	\$276	\$	7,024	\$498	\$	12,073	
Scenario 4	(\$10)	\$	2,433	\$461	\$	7,209	\$765	\$	12,340	
Scenario 5	\$103	\$	2,546	\$105	\$	6,852	\$125	\$	11,700	
Scenario 6	\$40	\$	2,483	(\$0)	\$	6,747	(\$13)	\$	11,562	

Financial Load Forecast (Low Gas - \$600/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 2 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,294	\$0	\$	6,107	\$0	\$	10,167
Scenario 1	\$171	\$	2,465	\$111	\$	6,218	\$141	\$	10,308
Scenario 3	(\$10)	\$	2,283	\$260	\$	6,367	\$491	\$	10,658
Scenario 4	(\$10)	\$	2,283	\$450	\$	6,557	\$761	\$	10,928
Scenario 5	\$92	\$	2,385	(\$18)	\$	6,089	\$17	\$	10,185
Scenario 6	\$39	\$	2,333	(\$23)	\$	6,084	(\$16)	\$	10,151

Planning Load Forecast (High Gas - \$600/kW network upgrades)

	Action	Peri	lod	Decision Period			Planning Period		
Scenario	Delta (\$M)		PV (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 22 - 2041
Scenario 2	\$0	\$	2,520	\$0	\$	7,163	\$0	\$	12,585
Scenario 1	\$126	\$	2,646	\$40	\$	7,203	\$125	\$	12,710
Scenario 3	(\$56)	\$	2,464	\$44	\$	7,207	\$277	\$	12,862
Scenario 4	(\$44)	\$	2,476	\$279	\$	7,443	\$537	\$	13,122
Scenario 5	\$51	\$	2,570	(\$64)	\$	7,100	\$53	\$	12,638
Scenario 6	\$40	\$	2,559	(\$1)	\$	7,162	(\$14)	\$	12,571

Financial Load Forecast (High Gas - \$600/kW network upgrades)

	Action	Peri	od	Decision Period			Planning Period		
Scenario	Delta (\$M)		V (\$M) 22-2024	Delta (\$M)		PV (\$M) 22 - 2031	Delta (\$M)		PV (\$M) 2 - 2041
Scenario 2	\$0	\$	2,315	\$0	\$	6,231	\$0	\$	10,768
Scenario 1	\$160	\$	2,475	\$96	\$	6,327	\$86	\$	10,854
Scenario 3	(\$10)	\$	2,305	\$227	\$	6,458	\$346	\$	11,114
Scenario 4	(\$10)	\$	2,305	\$412	\$	6,643	\$598	\$	11,366
Scenario 5	\$92	\$	2,407	\$2	\$	6,233	\$16	\$	10,784
Scenario 6	\$40	\$	2,355	(\$6)	\$	6,225	(\$24)	\$	10,745

Scenario Expansion Plan - Base Gas / No Carbon

		Most Cost-Effective Resource Portfolio (Base Gas / Financial Load Forecast / \$400/kW)	Alternative Resource Portfolio (Base Gas / Low Load Forecast / \$400/kW)	Alternative Resource Portfolio (Base Gas / Planning Load Forecast / \$400/kW)
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Plant X1 - 39 MW			
	Plant X2 - 70 MW			
2022	Plant X3 - 0 MW			
	Cunningham 1 - 42 MW			
	Nichols 1 - 112 MW			
2023	Nichols 2 - 111 MW			
	BlackHawk 1 - 111.685 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW
	BlackHawk 2 - 111.685 MW	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI)	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI)	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI)
2024		WB_001a - 129 MW	WB_001a - 129 MW	WB_001a - 129 MW
2024		Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW
				Wind RFI W_006a - 150 MW
	CapRock Wind - 80 MW			
	Cunningham 2 - 183 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW
2025	Maddox 2 - 69 MW			
2025	Maddox 3 - 0 MW			
	San Juan Wind - 120 MW			
2026		Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW	Solar Generic - 40 MW
2020				Wind RFI W_001k - 500 MW
	Plant X 4 - 191 MW			
2027	Spinning Spur Wind - 161 MW			
	Wildorado Wind - 161 MW			
2028	Maddox 1 - 112 MW			CT F Generic - 233.3 MW
2029	IVIAGGOX I IIZ IVIVV			CT F Generic - 233.3 MW
	National Wind - 0.7 MW		CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
2030	Nichols 3 - 246 MW		2000	2000
	Jones 1 - 243 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
	SunEd 4 Solar - 10 MW			
	SunEd 3 Solar - 10 MW			
2031	SunEd 2 Solar - 10 MW			
	SunEd 1 Solar - 10 MW			
	SunEd 5 Solar - 10 MW			
	Tolk 1 - 532 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2032	Tolk 2 - 537 MW			
	Hobbs CC - 604 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2033	MesaLands Wind - 1.48 MW	Solar Generic - 410 MW	Solar Generic - 200 MW	Solar Generic - 430 MW
		Battery Generic - 110 MW		Battery Generic - 30 MW

Scenario Expansion Plan - Base Gas / No Carbon

		Most Cost-Effective Resource Portfolio (Base Gas / Financial Load Forecast / \$400/kW)	Alternative Resource Portfolio (Base Gas / Low Load Forecast / \$400/kW)	Alternative Resource Portfolio (Base Gas / Planning Load Forecast / \$400/kW)
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Jones 2 - 243 MW	CT F Generic - 466.6 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
2034	Quay County - 23 MW	Solar Generic - 740 MW	Solar Generic - 780 MW	Solar Generic - 930 MW
2034	Mammoth Wind - 200 MW			
	PaloDuro Wind - 250 MW			
2035	Roosevelt Wind - 250 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
2035		Solar Generic - 210 MW	Solar Generic - 180 MW	Solar Generic - 100 MW
2036	Harrington 1 - Gas - 340 MW	Solar Generic - 60 MW	Solar Generic - 100 MW	CT F Generic - 233.3 MW
2037		CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
2037		Solar Generic - 100 MW		
2038	Harrington 2 - Gas - 355 MW			
2000		CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2039				Solar Generic - 90 MW
	Harrington 3 - Gas - 355 MW	Solar Generic - 40 MW	Solar Generic - 60 MW	Solar Generic - 40 MW
2040	Cunningham 3 - 106 MW			
	Cunningham 4 - 101 MW			
	Rosewell Solar - 70 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2041	Chaves County Solar - 70 MW	Solar Generic - 220 MW	Solar Generic - 250 MW	Solar Generic - 250 MW
		Battery Generic - 70 MW	Battery Generic - 10 MW	Battery Generic - 30 MW

Scenario Expansion Plan - Low Gas / No Carbon

		Alternative Resource Portfolio (Low Gas / Financial Load Forecast / \$400/kW)	Alternative Resource Portfolio (Low Gas / Low Load Forecast / \$400/kW)	Alternative Resource Portfolio (Low Gas / Planning Load Forecast / \$400/kW)
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
2022	Plant X1 - 39 MW Plant X2 - 70 MW Plant X3 - 0 MW Cunningham 1 - 42 MW Nichols 1 - 112 MW			
2023	Nichols 2 - 111 MW			
2024	BlackHawk 1 - 111.685 MW BlackHawk 2 - 111.685 MW CapRock Wind - 80 MW	Solar RFI S_009c - 40 MW Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Solar RFI S_009c - 40 MW Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Solar RFI S_009c - 40 MW Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW
2025	Cunningham 2 - 183 MW Maddox 2 - 69 MW Maddox 3 - 0 MW San Juan Wind - 120 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW
2026				Solar Generic - 20 MW
2027	Plant X 4 - 191 MW Spinning Spur Wind - 161 MW Wildorado Wind - 161 MW			
2028	Maddox 1 - 112 MW			CT F Generic - 466.6 MW
2029				
2030	National Wind - 0.7 MW Nichols 3 - 246 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 466.6 MW
2031	Jones 1 - 243 MW SunEd 4 Solar - 10 MW SunEd 3 Solar - 10 MW SunEd 2 Solar - 10 MW SunEd 1 Solar - 10 MW SunEd 5 Solar - 10 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2032	Tolk 1 - 532 MW Tolk 2 - 537 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2033	Hobbs CC - 604 MW MesaLands Wind - 1.48 MW	CT F Generic - 466.6 MW Solar Generic - 370 MW	CT F Generic - 466.6 MW Solar Generic - 390 MW	CT F Generic - 466.6 MW Solar Generic - 380 MW

Scenario Expansion Plan - Low Gas / No Carbon

		Alternative Resource Portfolio (Low Gas / Financial Load Forecast / \$400/kW)	Alternative Resource Portfolio (Low Gas / Low Load Forecast / \$400/kW)	Alternative Resource Portfolio (Low Gas / Planning Load Forecast / \$400/kW)
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Jones 2 - 243 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2034	Quay County - 23 MW Mammoth Wind - 200 MW	Solar Generic - 400 MW	Solar Generic - 380 MW	Solar Generic - 470 MW
	PaloDuro Wind - 250 MW			
2035	Roosevelt Wind - 250 MW	CT F Generic - 233.3 MW	CT F Generic - 466.6 MW	CT F Generic - 233.3 MW
2033		Solar Generic - 180 MW		Solar Generic - 200 MW
2036	Harrington 1 - Gas - 340 MW	Solar Generic - 150 MW	CT F Generic - 233.3 MW	Solar Generic - 220 MW
2037		CT F Generic - 233.3 MW		CT F Generic - 233.3 MW
2037		Solar Generic - 140 MW		
2038	Harrington 2 - Gas - 355 MW			Solar Generic - 40 MW
		CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2039				Solar Generic - 60 MW
2040	Harrington 3 - Gas - 355 MW Cunningham 3 - 106 MW Cunningham 4 - 101 MW	Solar Generic - 50 MW		Solar Generic - 100 MW
	Rosewell Solar - 70 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2041	Chaves County Solar - 70 MW	Solar Generic - 140 MW	Solar Generic - 300 MW	Solar Generic - 350 MW
				Battery Generic - 10 MW

Scenario Expansion Plan - High Gas / No Carbon

		Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
		(High Gas / Financial Load	(High Gas / Low Load Forecast /	(High Gas / Planning Load
		Forecast / \$400/kW)	\$400/kW)	Forecast / \$400/kW)
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Plant X1 - 39 MW			
	Plant X2 - 70 MW			
2022	Plant X3 - 0 MW			
	Cunningham 1 - 42 MW			
	Nichols 1 - 112 MW			
2023	Nichols 2 - 111 MW			
	BlackHawk 1 - 111.685 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW
	BlackHawk 2 - 111.685 MW	Wind RFI W_004d - 509 MW	Wind RFI W_004d - 509 MW	Wind RFI W_004d - 509 MW
2024		Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_003d - 300 MW Wind RFI W_005a - 250 MW	Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_003d - 300 MW Wind RFI W_005a - 250 MW
	CapRock Wind - 80 MW	Wind RFI W 006a - 150 MW		Wind RFI W 006a - 150 MW
2025	Cunningham 2 - 183 MW Maddox 2 - 69 MW Maddox 3 - 0 MW San Juan Wind - 120 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW Solar RFI S_001a - 385 MW
2026		Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW
	Plant X 4 - 191 MW			
2027	Spinning Spur Wind - 161 MW Wildorado Wind - 161 MW			
2028	Maddox 1 - 112 MW			
2029				CT F Generic - 233.3 MW
2030	National Wind - 0.7 MW Nichols 3 - 246 MW	Solar Generic - 110 MW		CT F Generic - 466.6 MW
2031	Jones 1 - 243 MW SunEd 4 Solar - 10 MW SunEd 3 Solar - 10 MW SunEd 2 Solar - 10 MW SunEd 1 Solar - 10 MW SunEd 5 Solar - 10 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2032	Tolk 1 - 532 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2032	Tolk 2 - 537 MW			
	Hobbs CC - 604 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2033	MesaLands Wind - 1.48 MW	Solar Generic - 430 MW	Solar Generic - 360 MW	Solar Generic - 140 MW
		Battery Generic - 20 MW	Battery Generic - 110 MW	Battery Generic - 20 MW

Scenario Expansion Plan - High Gas / No Carbon

	Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
	(High Gas / Financial Load	(High Gas / Low Load Forecast /	(High Gas / Planning Load
	Forecast / \$400/kW)	\$400/kW)	Forecast / \$400/kW)
Retirements	Expansion Plan	Expansion Plan	Expansion Plan
Jones 2 - 243 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
Quay County - 23 MW	Solar Generic - 610 MW	Solar Generic - 760 MW	Solar Generic - 800 MW
Mammoth Wind - 200 MW			
PaloDuro Wind - 250 MW			
Roosevelt Wind - 250 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
	Solar Generic - 150 MW	Solar Generic - 200 MW	Solar Generic - 200 MW
Harrington 1 - Gas - 340 MW	Solar Generic - 120 MW	Solar Generic - 100 MW	Solar Generic - 120 MW
	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
	Solar Generic - 80 MW		Solar Generic - 30 MW
Harrington 2 - Gas - 355 MW	Solar Generic - 190 MW	Solar Generic - 40 MW	Solar Generic - 100 MW
	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
	Solar Generic - 100 MW		Solar Generic - 180 MW
	Battery Generic - 10 MW		
Harrington 3 - Gas - 355 MW	Solar Generic - 40 MW	Solar Generic - 80 MW	Solar Generic - 440 MW
Cunningham 3 - 106 MW			Battery Generic - 10 MW
Cunningham 4 - 101 MW			
Rosewell Solar - 70 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
Chaves County Solar - 70 MW	Solar Generic - 260 MW	Solar Generic - 300 MW	Solar Generic - 480 MW
	Battery Generic - 70 MW	Battery Generic - 70 MW	Battery Generic - 120 MW
	Jones 2 - 243 MW Quay County - 23 MW Mammoth Wind - 200 MW PaloDuro Wind - 250 MW Roosevelt Wind - 250 MW Harrington 1 - Gas - 340 MW Harrington 2 - Gas - 355 MW Cunningham 3 - 106 MW Cunningham 4 - 101 MW Rosewell Solar - 70 MW Chaves County Solar - 70	(High Gas / Financial Load Forecast / \$400/kW) Retirements Expansion Plan Jones 2 - 243 MW Quay County - 23 MW Mammoth Wind - 200 MW PaloDuro Wind - 250 MW Roosevelt Wind - 250 MW Harrington 1 - Gas - 340 MW Solar Generic - 150 MW CT F Generic - 233.3 MW Solar Generic - 120 MW CT F Generic - 233.3 MW Solar Generic - 190 MW CT F Generic - 100 MW Solar Generic - 100 MW Solar Generic - 100 MW Solar Generic - 100 MW Solar Generic - 100 MW Solar Generic - 100 MW Solar Generic - 100 MW CT F Generic - 466.6 MW Solar Generic - 100 MW Solar Generic - 100 MW Cunningham 3 - 106 MW Cunningham 4 - 101 MW Rosewell Solar - 70 MW CT F Generic - 466.6 MW Solar Generic - 260 MW Solar Generic - 260 MW	High Gas / Financial Load Forecast / \$400/kW) Retirements Expansion Plan Expansion Plan

Scenario Expansion Plan - Financial Load / Carbon

		(Base Gas / Financial Load Forecast / \$400/kW / \$8 Carbon	Alternative Resource Portfolio (Base Gas / Financial Load Forecast / \$400/kW / \$20 Carbon	Alternative Resource Portfolio (Base Gas / Financial Load Forecast / \$400/kW / \$40 Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
2022	Plant X1 - 39 MW Plant X2 - 70 MW Plant X3 - 0 MW Cunningham 1 - 42 MW Nichols 1 - 112 MW			
2023	Nichols 2 - 111 MW			
	BlackHawk 1 - 111.685 MW BlackHawk 2 - 111.685 MW	Solar RFI S_009c - 40 MW Solar (Solar + Battery RFI) S_004e - 500 MW Battery (Solar + Battery RFI) SB_003e-BTM/SYS - 200 MW	Solar RFI S_009c - 40 MW Solar (Solar + Battery RFI) S_004e - 500 MW Battery (Solar + Battery RFI) SB_003e-BTM/SYS - 200 MW	Solar RFI S_009c - 40 MW Solar (Solar + Battery RFI) S_004e - 500 MW Battery (Solar + Battery RFI) SB_003e-BTM/SYS - 200 MW
2024	CapRock Wind - 80 MW	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_005a - 250 MW	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_005a - 250 MW Wind RFI W_006a - 150 MW	Wind RFI W_004d - 509 MW Wind (Wind + Battery RFI) WB_001a - 129 MW Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_005a - 250 MW Wind RFI W_006a - 150 MW
2025	Cunningham 2 - 183 MW Maddox 2 - 69 MW Maddox 3 - 0 MW San Juan Wind - 120 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW Solar RFI S_001a - 385 MW	Wind RFI W_002b - 1000 MW Solar RFI S_001a - 385 MW Solar RFI S_007a - 500 MW
2026		Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW
2027	Plant X 4 - 191 MW Spinning Spur Wind - 161 MW Wildorado Wind - 161 MW Maddox 1 - 112 MW			
2029				
2030	National Wind - 0.7 MW Nichols 3 - 246 MW	Solar Generic - 10 MW	Solar Generic - 20 MW	
2031	Jones 1 - 243 MW SunEd 4 Solar - 10 MW SunEd 3 Solar - 10 MW SunEd 2 Solar - 10 MW SunEd 1 Solar - 10 MW SunEd 5 Solar - 10 MW	CT F Generic - 466.6 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW
2032	Tolk 1 - 532 MW Tolk 2 - 537 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2033	Hobbs CC - 604 MW MesaLands Wind - 1.48 MW	CT F Generic - 466.6 MW Solar Generic - 20 MW	CT F Generic - 466.6 MW Solar Generic - 60 MW Battery Generic - 60 MW	CT F Generic - 466.6 MW Battery Generic - 60 MW

Scenario Expansion Plan - Financial Load / Carbon

		Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
		(Base Gas / Financial Load	(Base Gas / Financial Load	(Base Gas / Financial Load
		Forecast / \$400/kW / \$8	Forecast / \$400/kW / \$20	Forecast / \$400/kW / \$40
		Carbon	Carbon	Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Jones 2 - 243 MW	Solar Generic - 760 MW	CT F Generic - 466.6 MW	Solar Generic - 140 MW
2034	Quay County - 23 MW		Solar Generic - 250 MW	Battery Generic - 200 MW
2034	Mammoth Wind - 200 MW			
	PaloDuro Wind - 250 MW			
2035	Roosevelt Wind - 250 MW	CT F Generic - 466.6 MW	Solar Generic - 180 MW	CT F Generic - 233.3 MW
2033				Solar Generic - 70 MW
2036	Harrington 1 - Gas - 340 MW		Solar Generic - 10 MW	CT F Generic - 233.3 MW
2036				Solar Generic - 90 MW
2037		CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	Solar Generic - 90 MW
2037			Solar Generic - 160 MW	
	Harrington 2 - Gas - 355 MW	Solar Generic - 10 MW		
2038				
		CT F Generic - 233.3 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2039		Solar Generic - 70 MW	Solar Generic - 60 MW	Solar Generic - 100 MW
		Battery Generic - 50 MW	Battery Generic - 10 MW	
	Harrington 3 - Gas - 355 MW	Solar Generic - 50 MW	Solar Generic - 80 MW	Solar Generic - 10 MW
2040	Cunningham 3 - 106 MW	Battery Generic - 10 MW		Battery Generic - 20 MW
	Cunningham 4 - 101 MW			
	Rosewell Solar - 70 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2041	Chaves County Solar - 70 MW	Solar Generic - 240 MW	Solar Generic - 90 MW	Solar Generic - 60 MW
		Battery Generic - 60 MW	Battery Generic - 20 MW	Battery Generic - 50 MW
	-	-	-	-

Scenario Expansion Plan - Low Load / Carbon

		Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
		(Base Gas / Low Load Forecast		· · · · · · · · · · · · · · · · · · ·
		/ \$400/kW / \$8 Carbon	/ \$400/kW / \$20 Carbon	/ \$400/kW / \$40 Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Plant X1 - 39 MW			
	Plant X2 - 70 MW			
2022	Plant X3 - 0 MW			
	Cunningham 1 - 42 MW			
	Nichols 1 - 112 MW			
2023	Nichols 2 - 111 MW			
	BlackHawk 1 - 111.685	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW
	MW			
	BlackHawk 2 - 111.685 MW	Wind RFI W_004d - 509 MW	Solar (Solar + Battery RFI) S 004e - 500 MW	Solar (Solar + Battery RFI) S 004e - 500 MW
	IVIVV	Wind (Wind + Battery RFI)	Battery (Solar + Battery RFI)	Battery (Solar + Battery RFI)
		WB_001a - 129 MW	SB_003e-BTM/SYS - 200 MW	SB_003e-BTM/SYS - 200 MW
2024		Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Wind RFI W_004d - 509 MW	Wind RFI W_004d - 509 MW
			Wind (Wind + Battery RFI)	Wind (Wind + Battery RFI)
			WB_001a - 129 MW Battery (Wind + Battery RFI)	WB_001a - 129 MW Battery (Wind + Battery RFI)
			WB_001a-SYS - 20 MW	WB_001a-SYS - 20 MW
	CapRock Wind - 80 MW		_	_
	Cunningham 2 - 183 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW
	Maddox 2 - 69 MW			Solar RFI S 001a - 385 MW
2025	Maddox 3 - 0 MW			301di 1(113_001d 3031VIVV
	San Juan Wind - 120 MW			
2026		Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW
	Plant X 4 - 191 MW			
2027	Spinning Spur Wind - 161			
2027	MW Wildorado Wind - 161 MW			
	Wildorado Willa - 101 WW			
2028	Maddox 1 - 112 MW			
2029				
2030	National Wind - 0.7 MW			Solar Generic - 30 MW
2030	Nichols 3 - 246 MW			
	Jones 1 - 243 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 233.3 MW
	SunEd 4 Solar - 10 MW		Solar Generic - 110 MW	Battery Generic - 20 MW
2031	SunEd 3 Solar - 10 MW			
	SunEd 2 Solar - 10 MW			
	SunEd 1 Solar - 10 MW			
	SunEd 5 Solar - 10 MW			

Scenario Expansion Plan - Low Load / Carbon

		Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
		(Base Gas / Low Load Forecast / \$400/kW / \$8 Carbon	(Base Gas / Low Load Forecast / \$400/kW / \$20 Carbon	(Base Gas / Low Load Forecast / \$400/kW / \$40 Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
2032	Tolk 1 - 532 MW Tolk 2 - 537 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW
2033	Hobbs CC - 604 MW MesaLands Wind - 1.48 MW	CT F Generic - 466.6 MW Solar Generic - 360 MW Battery Generic - 110 MW	CT F Generic - 466.6 MW Battery Generic - 10 MW	CT F Generic - 466.6 MW Battery Generic - 120 MW
2034	Jones 2 - 243 MW Quay County - 23 MW Mammoth Wind - 200 MW PaloDuro Wind - 250 MW	CT F Generic - 233.3 MW Solar Generic - 760 MW	Solar Generic - 660 MW	CT F Generic - 233.3 MW Solar Generic - 280 MW
2035	Roosevelt Wind - 250 MW	CT F Generic - 233.3 MW Solar Generic - 180 MW	CT F Generic - 466.6 MW	CT F Generic - 233.3 MW Solar Generic - 160 MW
2036	Harrington 1 - Gas - 340 MW	Solar Generic - 140 MW		Solar Generic - 10 MW
2037		CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW Solar Generic - 110 MW
2038	Harrington 2 - Gas - 355 MW			
2039		CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW Solar Generic - 30 MW
2040	Harrington 3 - Gas - 355 MW Cunningham 3 - 106 MW Cunningham 4 - 101 MW	Solar Generic - 60 MW	Solar Generic - 30 MW	Solar Generic - 60 MW
2041	Rosewell Solar - 70 MW Chaves County Solar - 70 MW	CT F Generic - 466.6 MW Solar Generic - 200 MW Battery Generic - 30 MW	CT F Generic - 466.6 MW Solar Generic - 220 MW Battery Generic - 30 MW	CT F Generic - 466.6 MW Solar Generic - 80 MW Battery Generic - 30 MW

Scenario Expansion Plan - Planning Load / Carbon

		Alternative Resource Portfolio	Alternative Resource Portfolio	Alternative Resource Portfolio
		(Base Gas / Planning Load	(Base Gas / Planning Load	(Base Gas / Planning Load
		Forecast / \$400/kW / \$8 Carbon	Forecast / \$400/kW / \$20 Carbon	Forecast / \$400/kW / \$40 Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
	Plant X1 - 39 MW			
	Plant X2 - 70 MW			
2022	Plant X3 - 0 MW			
2022	Cunningham 1 - 42 MW			
	Nichols 1 - 112 MW			
2022	Nichols 2 - 111 MW			
2023		Color DELC 0000 40 MW	Color DELC 0000 40 MM	Color DELC 0000 40 MW
	BlackHawk 1 - 111.685 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW	Solar RFI S_009c - 40 MW
	BlackHawk 2 - 111.685 MW	Solar (Solar + Battery RFI) S_004e - 500 MW	Solar (Solar + Battery RFI) S_004e - 500 MW	Solar (Solar + Battery RFI) S_004e - 500 MW
		Battery (Solar + Battery RFI)	Battery (Solar + Battery RFI)	Battery (Solar + Battery RFI)
		SB_003e-BTM/SYS - 200 MW	SB_003e-BTM/SYS - 200 MW	SB_003e-BTM/SYS - 200 MW
		Wind RFI W_004d - 509 MW	Wind RFI W_003d - 300 MW	Solar (Solar + Battery RFI) S_002d - 250 MW
		Wind (Wind + Battery RFI)	Wind RFI W_004d - 509 MW	Battery (Solar + Battery RFI)
		WB_001a - 129 MW	Mind (Mind - Datton - DEI)	SB_001d-BTM/SYS - 125 MW
2024		Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Wind (Wind + Battery RFI) WB_001a - 129 MW	Wind RFI W_003d - 300 MW
	CapRock Wind - 80 MW	Wind RFI W_005a - 250 MW	Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW	Wind RFI W_004d - 509 MW
		Wind RFI W_006a - 150 MW	Wind RFI W_005a - 250 MW	Wind (Wind + Battery RFI) WB_001a - 129 MW
			Wind RFI W_006a - 150 MW	Battery (Wind + Battery RFI) WB_001a-SYS - 20 MW Wind RFI W_005a - 250 MW
				Wind RFI W 006a - 150 MW
	Cunningham 2 - 183 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW	Wind RFI W_002b - 1000 MW
	Maddox 2 - 69 MW	Solar RFI S_007a - 500 MW	Solar RFI S_001a - 385 MW	Solar RFI S_001a - 385 MW
2025	Maddox 3 - 0 MW	_	Solar RFI S_007a - 500 MW	Solar RFI S_007a - 500 MW
	San Juan Wind - 120 MW		_	
2026		Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW	Wind RFI W_001k - 500 MW
	Plant X 4 - 191 MW			
2027	Spinning Spur Wind - 161 MW			
	Wildorado Wind - 161 MW			
2028	Maddox 1 - 112 MW			
2029		CT F Generic - 233.3 MW		
2020	National Wind - 0.7 MW	CT F Generic - 233.3 MW	CT F Generic - 233.3 MW	Solar Generic - 250 MW
2030	Nichols 3 - 246 MW		Solar Generic - 20 MW	

Scenario Expansion Plan - Planning Load / Carbon

		Alternative Resource Portfolio (Base Gas / Planning Load Forecast / \$400/kW / \$8 Carbon	Alternative Resource Portfolio (Base Gas / Planning Load Forecast / \$400/kW / \$20 Carbon	Alternative Resource Portfolio (Base Gas / Planning Load Forecast / \$400/kW / \$40 Carbon
Year	Retirements	Expansion Plan	Expansion Plan	Expansion Plan
2031	Jones 1 - 243 MW SunEd 4 Solar - 10 MW SunEd 3 Solar - 10 MW SunEd 2 Solar - 10 MW SunEd 1 Solar - 10 MW SunEd 5 Solar - 10 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW Solar Generic - 10 MW
2032	Tolk 1 - 532 MW Tolk 2 - 537 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW Solar Generic - 80 MW
2033	Hobbs CC - 604 MW MesaLands Wind - 1.48 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW Solar Generic - 150 MW Battery Generic - 150 MW	CT F Generic - 466.6 MW Solar Generic - 70 MW Battery Generic - 300 MW
2034	Jones 2 - 243 MW Quay County - 23 MW Mammoth Wind - 200 MW PaloDuro Wind - 250 MW	CT F Generic - 233.3 MW Solar Generic - 540 MW	CT F Generic - 233.3 MW Solar Generic - 120 MW	CT F Generic - 233.3 MW Solar Generic - 300 MW
2035	Roosevelt Wind - 250 MW	CT F Generic - 466.6 MW	CT F Generic - 466.6 MW Solar Generic - 20 MW	CT F Generic - 466.6 MW
2036	Harrington 1 - Gas - 340 MW	Solar Generic - 130 MW	Solar Generic - 110 MW	Solar Generic - 220 MW
2037		CT F Generic - 233.3 MW Solar Generic - 20 MW	CT F Generic - 233.3 MW Solar Generic - 140 MW	Solar Generic - 160 MW Battery Generic - 20 MW
2038	Harrington 2 - Gas - 355 MW	Solar Generic - 30 MW	Solar Generic - 140 MW	CT F Generic - 233.3 MW Solar Generic - 60 MW Battery Generic - 20 MW
2039		CT F Generic - 466.6 MW Solar Generic - 130 MW	CT F Generic - 466.6 MW Solar Generic - 150 MW	CT F Generic - 466.6 MW Solar Generic - 100 MW
2040	Harrington 3 - Gas - 355 MW Cunningham 3 - 106 MW Cunningham 4 - 101 MW	Solar Generic - 90 MW	Solar Generic - 120 MW	Solar Generic - 90 MW
2041	Rosewell Solar - 70 MW Chaves County Solar - 70 MW	CT F Generic - 466.6 MW Solar Generic - 150 MW Battery Generic - 120 MW	CT F Generic - 466.6 MW Solar Generic - 30 MW Battery Generic - 80 MW	CT F Generic - 466.6 MW Solar Generic - 120 MW Battery Generic - 120 MW

Existing and Anticipated Environmental Laws and Regulations

This appendix summarizes the current status and remaining unknowns about each environmental regulation, along with the potential impacts on SPS's generation resources.

A. Greenhouse Gas ("GHG") Emissions from New and Existing Power Plants

The landscape for Federal carbon dioxide ("CO₂") regulation is highly uncertain at this time. The major greenhouse gas regulations that were put into place under the Obama administration, including the Clean Power Plan and the emission standards for new power plants, were repealed and replaced under the Trump administration with the Affordable Clean Energy ("ACE") rule. Subsequently, the ACE rule was vacated by the U.S. Court of Appeals for the D.C. Circuit in a January 19, 2021 decision. This decision, as modified by a subsequent clarification by the court, would have the effect of invalidating the ACE rule and allowing the Environmental Protection Agency ("EPA") to proceed with a new approach to regulating Green House Gas ("GHG") emissions from the power sector. At this point, the timing or nature of any such rules is unclear. The significant uncertainty in Federal climate policy makes decades long resource planning a challenge. SPS will continue to monitor these developments, maintain its leadership on clean energy, and keep bills low for its customers.

B. Particulate Matter, Nitrogen Oxides, Sulfur Dioxide, and Mercury Emissions

Particulate matter ("PM") (including "fine" PM under 2.5 micrometers in diameter), nitrogen dioxide ("NO₂"), and sulfur dioxide ("SO₂") are three of the primary pollutants regulated by the EPA under the Clean Air Act ("CAA"). These pollutants are regulated under three main programs: National Ambient Air Quality Standards ("NAAQS"), CAA programs that address interstate transport of air pollution, and the Regional Haze program, which addresses visibility

impairment in national parks and wilderness areas. Mercury emissions from coal-fired power plants are regulated under the Mercury and Air Toxics Rule ("MATS"). Each of these requirements is addressed in this section.

National Ambient Air Quality Standards

The CAA requires the EPA to set NAAQS to protect public health and the environment. NAAQS include both: (1) primary standards to protect public health, including the health of sensitive populations, such as asthmatics, children, and the elderly; and (2) secondary standards to protect public welfare, including protection against damages to animals, crops, and buildings. The EPA has established NAAQS for six criteria pollutants: PM, NO₂, SO₂, ozone, carbon monoxide, and lead. The NAAQS program has been in place since the early 1970s.

Once the EPA adopts or revises a NAAQS, states have two years to monitor their air, analyze the data, and submit to the EPA their classification of the state into Attainment Areas (areas having monitored ambient air quality concentrations below the NAAQS), Nonattainment Areas (areas having monitored ambient air quality concentrations above the NAAQS), and unclassifiable areas. The EPA reviews the state's submittal and determines the final area designations a year later.

When the EPA designates an area as Nonattainment, the state is generally given three years to develop a new State Implementation Plan ("SIP") which identifies actions to be taken to bring the area back into Attainment. A nonattainment SIP must include emission reduction requirements needed to demonstrate that air quality will attain the NAAQS in the timelines required by the CAA – usually within two to seven years after the SIP is submitted to the EPA for approval.

The NAAQS are periodically reviewed and, if appropriate, individually revised for each pollutant. The following table shows Texas' and New Mexico's status under the current NAAQS in areas where SPS operates power plants:

NAAQS for New Mexico and Texas

NAAQS	Precursor Emissions Regulated*	Last Revised or Reviewed	New Mexico Status at SPS Plant Locations	Texas Status at SPS Plant Locations
Particles	NOx, SO ₂ , PM	2012	Attainment	Attainment
Ozone	NOx	2008	Attainment	Attainment
Ozone	NOx	2015	Attainment	Attainment
Sulfur Dioxide		2010	Attainment	Attainment, except Potter County is Unclassifiable
Nitrogen Dioxide		2010	Attainment	Attainment
Carbon Monoxide		2011	Attainment	Attainment
Lead		2016	Attainment	Attainment

^{*} Precursor emissions contribute to formation of the NAAQS-regulated pollutants ozone and particles after being released to the atmosphere from a source.

In June 2016, the EPA issued final SO₂ designations which found the area near the Harrington Plant in Potter County, Texas was "unclassifiable." The area near the Harrington Plant was then monitored to gather additional data to support a further attainment/nonattainment decision. If the area near the Harrington Plant had been designated nonattainment, the Texas Commission on Environmental Quality ("TCEQ") would have developed a SIP, which would have been due by 2022, designed to achieve the SO₂ NAAQS by early 2026. The TCEQ could have required additional SO₂ controls at Harrington as part of such a plan.

The monitoring completed in 2020 showed an exceedance of the SO₂ NAAQS in the area of the Harrington Plant. Rather than proceed with a nonattainment designation, SPS negotiated an

order with the TCEQ providing for the end of coal combustion and the conversion of the Harrington plant to a natural gas fueled facility by Jan. 1, 2025. This will allow the area to meet the SO₂ NAAQS. The area will remain designated as unclassifiable in the interim.

If an area attains a NAAQS, no further emission reduction plan is required. Every five years, the EPA reviews the scientific data on health effects and decides whether any revision to the NAAQS is needed. If areas were to be designated as nonattainment at some point in the future under a revised NAAQS, this could require emission reductions from SPS's thermal generation units. It is not known what adjustments to the NAAQS, if any, the EPA may make in future reviews.

Interstate Transport of Air Pollution

The CAA also requires that NAAQS SIPs include provisions that prevent sources within a state "from emitting any air pollutant in amounts which will ... contribute significantly to nonattainment in, or interfere with maintenance by, any other State with respect to any" NAAQS.

The EPA has developed programs for the Eastern United States that would reduce interstate transport of pollutants that are precursors to ozone and fine particles. Nitrous Oxide ("NO_X") is a precursor to ozone and fine particle formation, and SO₂ is a precursor to fine particle formation. For the utility industry, the current program is the Cross-State Air Pollution Rule ("CSAPR"). CSAPR was adopted to address upwind states' emissions that impact downwind states' attainment of the ozone and particulate NAAQS. As the EPA revises NAAQS in the future, it will consider whether to make any further reductions to CSAPR emission budgets and whether to change which states are included in the emissions trading program.

¹ CAA, 42 U.S.C. section 7410(a)(2)(D)(i)(I).

CSAPR was designed as a "cap-and-trade" program that reduces overall emissions from electric generating units ("EGUs"). This means that total emissions from EGUs in a state or region are limited (the cap), and each ton of emissions allowed is represented by an emission allowance that can be transferred among EGUs (the trade). A cap-and-trade program thus reduces total emissions to the capped amount but, provides flexibility for EGUs to meet their individual emission reduction requirements through installation of control equipment, purchase of emission allowances from other EGUs, or a combination of both. Depending on the EPA's analysis of an upwind state's contribution to nonattainment in downwind states, CSAPR imposes one or both of the following emission limitations: (1) summer season NOx emissions (to address ozone), and/or (2) annual NOx and SO₂ emissions (to address fine particles).

In September 2017, the EPA adopted a final rule that withdrew Texas from the CSAPR particle program and determined that further emission reductions in Texas are not needed to address interstate particle transport. Texas is no longer subject to the annual SO₂ and NOx emission budgets (for particles) under CSAPR. Texas remains subject to the summertime NOx emission budgets under the CSAPR ozone program.

There has been considerable judicial and regulatory activity since that time, but it appears that for the existing ozone standards, Texas (and therefore SPS) is unlikely to face additional NOx restrictions. Thus, SPS currently forecasts compliance with the CSAPR emission limits, without installation of additional controls, through the purchase of NOx allowances as needed.

Visibility Impairment in National Parks and Wilderness Areas (Regional Haze)

Visibility impairment is caused when sunlight encounters pollution particles in the air. Some light is absorbed, and other light is scattered before it reaches an observer, reducing the clarity and color of what the observer sees. The CAA established a national goal of remedying existing and preventing future visibility impairment from man-made air pollution in specified "Class I" areas – national parks and wilderness areas throughout the United States, including New Mexico and Texas.

In 1999, the EPA adopted the current Regional Haze Rule ("RHR") to address widespread, regionally homogeneous haze that results from emissions from a multitude of sources. The Best Available Retrofit Technology ("BART") requirements of the EPA's RHR require emission controls to be determined in the first planning period for industrial facilities put into operation between 1962 and 1977 that emit air pollutants that cause or contribute to visibility impairment in national parks and wilderness areas. Under BART, regional haze plans identify facilities that will have to reduce SO₂, NO_X, and PM emissions and set emission limits for those facilities. BART requirements can also be met through participation in interstate emission trading programs such as the Clean Air Interstate Rule ("CAIR") and its successor, CSAPR. SIPs also must include reasonable progress goals and periodic evaluation/revision cycles designed to make appropriate progress toward the national goal of no man-made visibility impairment in Class I areas by 2064.

The New Mexico Regional Haze SIP for the first planning period did not affect any SPS New Mexico facilities. That plan covers reductions for the 2008-2018 planning period.

The Texas Regional Haze SIP for the first planning period was subject to a lengthy EPA review. Texas developed a SIP in 2009 that found the CAIR equal to BART for EGUs. As a result, no additional controls beyond CAIR compliance would have been required. In 2014, the EPA proposed to approve the BART portion of the SIP, with substitution of CSAPR compliance for Texas' reliance on CAIR. In January 2016, the EPA adopted a final rule that deferred its approval of CSAPR compliance as BART until the EPA considered further adjustments to CSAPR emission budgets under the D.C. Circuit Court's remand of the Texas SO₂ emission budgets.

The EPA then published a proposed rule in January 2017 that, if adopted as proposed, would have required the installation of dry scrubbers to reduce SO₂ emissions at Harrington Units 1 and 2. Investment costs associated with dry scrubbers for Harrington Units 1 and 2 are approximately \$400 million. In October 2017, the EPA issued a final rule adopting a Texas only SO₂ trading program as a BART alternative. The program allocated SO₂ allowances to EGUs in Texas, including all three Harrington units and both Tolk units, consistent with their allocation under CSAPR, resulting in an emissions budget for Texas that is consistent with the EPA's 2012 rule that found CSAPR emission reductions approvable under the RHR as "Better than BART." SPS expects the allowance allocations to be sufficient for SO₂ emissions from Harrington and Tolk units in 2019 and future years. Similarly, EPA found that the CSAPR ozone program that regulates summertime NO_X emissions satisfies BART for NO_X for EGUs.

In December 2017, the National Parks Conservation Association, Sierra Club, and Environmental Defense Fund appealed the EPA's October 2017 final BART rule to the Fifth Circuit and, filed a petition for administrative reconsideration of the final rule with the EPA. In January 2018, the court granted SPS's motion to intervene in the Fifth Circuit litigation in support of the EPA's final rule. The litigation was being held in abeyance pending EPA's decision whether to administratively reconsider the rule.² EPA has now completed its reconsideration and, in September 2020 issued a final rule approving a Texas SO₂ trading program consistent with the 2017 rule (with minor modifications). SPS expects to be able to meet the allowance allocations of the rule.

² Several parties also challenged whether the final rule issued by the EPA should be considered to have met the requirements imposed in a Consent Decree lodged with the United States District Court for the District of Columbia that established deadlines for the EPA to take final action on state regional haze plan submissions. The litigation is being held in abeyance pending EPA's decision whether to administratively reconsider the rule.

In addition to making BART determinations, the RHR requires states to consider whether further emission reductions need to be imposed to achieve reasonable progress toward the long-term national visibility goal. The Texas SIP evaluated this issue and did not impose additional emission reduction requirements for reasonable progress in the first planning period. In January 2016, the EPA disapproved the Texas SIP on this issue and adopted a final rule establishing a federal implementation plan for the state of Texas, which imposed SO₂ emission limitations that require the installation of dry scrubbers on Tolk Units 1 and 2, with compliance required by February 2021. Investment costs associated with dry scrubbers could be approximately \$600 million. SPS appealed the EPA's decision and requested a stay of the final rule, which the Fifth Circuit granted.

In March 2017, the Fifth Circuit remanded the rule to the EPA for reconsideration, while leaving the stay in effect. The Fifth Circuit is now holding the case in abeyance until the EPA completes its reconsideration of the rule. In the final BART rule that affects Tolk and Harrington described above, the EPA noted that it will address the remanded rule in a future action. Such a rule will address whether further SO₂ emission reductions are needed at Tolk to address the reasonable progress requirements of the RHR. The EPA has not announced a schedule for acting on the remanded rule, but the issue has not formally been resolved. As indicated below, neither Tolk nor Harrington are proposed by Texas for additional controls in the next round of regional haze planning, but those plans also will be subject to review by EPA. This issue may get rolled into the next review. The next planning cycle for the regional haze program requires the states to evaluate progress in their Class I areas and design emission reduction programs to continue reasonable progress toward the national visibility goal. The SIPs, including those for New Mexico and Texas, are due in 2021 and will then be subject to EPA review. At this point, although it could

still change with EPA review (as noted above), the states of Texas and New Mexico are not currently proposing any additional regulation of SPS sources in this next planning cycle. Assuming a SIP is adopted in 2021 by a state and reviewed by EPA by 2023, any control equipment that may be required in the RHR's second planning period would need to be installed by approximately 2028.

Mercury and Air Toxics Rule

EPA adopted the MATS in 2012 to reduce emissions of mercury, acid gases, and other non-mercury metals from coal-fired power plants. SPS has installed the activated carbon injection control systems needed to meet the mercury limits and complies with the acid gas and non-mercury metals emission limits imposed by the MATS using existing controls installed at Harrington and Tolk.

C. Regulation of Coal Combustion Residuals (Ash)

Coal Combustion Residuals ("CCR"), often referred to as coal ash, are regulated as non-hazardous wastes under the federal Resource Conservation and Recovery Act ("RCRA") and are also regulated under state regulatory programs. Coal ash is residue from the combustion of coal in power plants. Generally, CCRs are captured by pollution control equipment and either recycled for beneficial reuse or disposed of appropriately. Environmental issues involving coal ash derive primarily from concerns regarding structural failure of large surface impoundments (e.g., the 2008 Tennessee Valley Authority Kingston ash pond failure, and more recent incidents at Duke Energy power plants in the southeast U.S.), and the potential for releases from unlined ash impoundments and landfills to impact groundwater.

Currently, the CCRs that result from the combustion of coal at SPS units are 100% beneficially used in dry form and marketed by an onsite marketing facility for use. There are no wet operations for ash management in SPS.

SPS's operations are subject to federal and state laws that impose requirements for handling, storage, treatment, and disposal of wastes. On December 19, 2014, the EPA signed a final rule establishing national standards for the management and disposal of CCRs ("CCR Rule").³ The rule, as subsequently modified by litigation and rule amendment, regulates this material as a non-hazardous waste under Subtitle D of the RCRA. The rule establishes minimum design and operating requirements for CCR landfills and surface impoundments that are comparable to SPS's current requirements under State enforceable, site-specific permits, and operating plans. SPS has evaluated the rule, and, determined the rule will have minimal direct impact on SPS's current operations or costs. As long as ash remains viable to the industry and control technologies that may be required under other air regulations do not chemically or physically change the ash, 100% beneficial use of ash will be maintained. In the event the installation of controls through other regulations renders the ash unusable for market purposes, SPS will be required to follow the CCR Rule for disposal, potentially requiring the installation, maintenance, and monitoring of ash landfills.

D. Water Quality Regulation

Cooling Water Intake Structures

Section 316(b) of the federal Clean Water Act ("CWA") requires the EPA to develop regulations governing the design, maintenance, and operation of cooling water intake structures to assure that these structures reflect the best technology available for minimizing adverse impacts to

³ Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities. Final Rule, December 19, 2014. See http://www2.epa.gov/coalash/coal-ash-rule.

aquatic species. The regulations must address both impingement (the trapping of aquatic biota against plant intake screens) and entrainment (the protection of small aquatic organisms that pass through the intake screens into the plant cooling systems).

SPS's New Mexico and Texas facilities are not affected by this rule because no SPS facilities withdraw surface water for cooling purposes. In addition, SPS does not operate any cooling ponds.

Thermal Discharge

The EPA regulates the impacts of heated cooling water discharge from power plants under CWA Section 316(a). States with authority to implement and enforce CWA programs have state-specific water quality criteria including thermal discharge temperature parameters to protect aquatic biota. Plants must operate in compliance with the thermal discharge temperature parameters. SPS facilities are not subject to this rule because they do not discharge any heated cooling water from power plants to surface waters.

Effluent Limitation Guidelines

As part of the National Pollutant Discharge Elimination System ("NPDES") process, the EPA identifies technology-based contaminant reduction requirements called Effluent Limitation Guidelines ("ELG"). The ELGs are used by permit writers as the maximum amount of a pollutant that may be discharged to a water body. ELGs are periodically updated to reflect improvements in pollution control and reduction technologies.

In 2015, the EPA issued a final ELG rule for power plants that use coal, natural gas, oil, or nuclear materials as fuel and discharge treated effluent to surface waters as well as utility-owned landfills that receive coal combustion residuals. In October 2020, EPA revised the ELG rule for

Appendix K Page 12 of 12 Case No. 21-00169-UT

certain waste streams and postponed compliance requirements for units retiring by 2028. SPS facilities are not subject to the ELG rule because they do not discharge to surface waters.

Appendix L Page 1 of 12 Case No. 21-00169-UT

790 S. Buchanan St. Amarillo, TX 79101

April 8, 2020

Ms. Melanie Sandoval New Mexico Public Regulation Commission 1120 Paseo De Peralta Santa Fe, NM 87501

RE: Southwestern Public Service Company ("SPS") Integrated Resource Plan ("IRP") – Public Advisory Invitation

Dear Ms. Sandoval:

In compliance with the requirements of 17.7.3 NMAC (Integrated Resource Plans for Electric Utilities), and more specifically section 17.7.3.9(H) NMAC (Public Advisory Process) of that rule, SPS invites the Commission, intervenors in its most recent general electric rate case, parties in its most recent electric energy efficiency and renewable energy cases, and its customers to participate in SPS's IRP Public Advisory Process. The purpose of the Public Advisory Process in this matter is to provide information to, and receive and consider input from, the public regarding the development of SPS's IRP. Topics for the IRP include the load forecast; evaluation of existing supply- and demand-side resources; assessment of need for additional resources; identification of resource options; modeling; and development of the most cost-effective resource portfolio for the IRP. SPS is also providing notice to its customers in their bills and publishing a similar invitation in the newspapers of general circulation in every county that SPS serves in New Mexico. The first of a series of workshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. MT in the 5th floor CYFD conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 1120 Paseo de Peralta, Santa Fe, NM.

Attendance via WEBINAR is also available with the following login information: Call in number: 1-866-672-3839 Passcode: 6877906 https://avayaconference.xcelenergy.com/6877906

If an in-person meeting is not possible on May 21 due to Coronavirus concerns, SPS plans to proceed with a WEBINAR-only meeting.

SPS will provide the date and time of each subsequent workshop at the conclusion of the prior workshop. Any person interested in participating in SPS's IRP Public Advisory Process should contact us at 1-806-378-2709, 1-806-378-2115, Linda.L.Hudgins@xcelenergy.com, or Mario.A.Contreras@xcelenergy.com. A similar notice, information about future workshops, and other information can be found under "Rates & Regulations" at www.xcelenergy.com. SPS will file its IRP at the New Mexico Public Regulation Commission by July 16, 2021.

Appendix L Page 2 of 12 Case No. 21-00169-UT

Please do not hesitate to contact me with any questions you may have regarding this invitation or the pending meeting.

Sincerely,

/S/ Mario Contreras
Mario Contreras
Rate Case Manager
Southwestern Public Service Company

cc: Certificate of Service – Combined lists of NMPRC Case No. 19-00170-UT (Rate Case), 19-00140-UT (Energy Efficiency), 19-00134-UT (Renewable Portfolio Standard) and 18-00215-UT (IRP)

BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION

IN THE MATTER OF SOUTHWESTERN)
PUBLIC SERVICE COMPANY'S)
2021 INTEGRATED RESOURCE PLAN)
FOR NEW MEXICO,)
SOUTHWESTERN PUBLIC SERVICE COMPANY,)
APPLICANT.)

CERTIFICATE OF SERVICE

I certify that a true and correct copy of *Southwestern Public Service Company's 2021 Integrated Resource Plan – Public Advisory Invitation* was electronically served, as indicated below, to each of the following on this 8th day of April, 2020:

VIA E-MAIL:

Will DuBois, Esq.	will.w.dubois@xcelenergy.com	Dana S. Hardy, Esq.	dhardy@hinklelawfirm.com
Mario A. Contreras	mario.a.contreras@xcelenergy.com	Jack Sidler	Jack.Sidler@state.nm.us
William A. Grant	william.a.grant@xcelenergy.com	Stephanie Dzur	Stephanie@Dzur-Law.com
Phillip Oldham	phillip.oldham@tklaw.com	Jeffry Pollock	jcp@jpollockinc.com
Katherine Coleman	katie.coleman@tklaw.com	Joshua Smith	joshua.smith@sierraclub.org
Melissa Trevino	melissa_trevino@oxy.com	Nikolas Stoffel	nsstoffel@hollandhart.com
Joan E. Drake	jdrake@modrall.com	Thorvald A. Nelson	tnelson@hollandhart.com
Andrea Crane	ctcolumbia@aol.com	Austin Rueschhoff	darueschhoff@hollandhart.com
Michael P. Gorman	mgorman@consultbai.com	Maj. Scott Kirk	Scott.kirk.2@us.af.mil
Doug Gegax	dgegax@nmsu.edu	Pat O'Connell	Pat.oconnell@westernresources.org
Linda Hudgins	Linda.l.hudgins@xcelenergy.com	Ben Phillips, Esq	ben.phillips@pnmresources.com
Evan D. Evans	Evan.d.evans@xcelenergy.com	David Van Winkle	david@vw77.com
John Degnan	John.degnan@us.af.mil	Amy Shelhamer	ashelhamer@courtneylawfirm.com
Sonya Mares	smares@hinklelawfirm.com	Sally Wilhelms	swilhelms@consultbai.com
Ron H. Moss	rhmoss@winstead.com	Sarah Gersen	sgersen@eathjustice.org
G. Meyer	gmeyer@consultbai.com	Megan A. O'Reilly	arcresearchandanalysis@gmail.com
Randall Childress	randy@childresslaw.com	Toribio Garcia	Toribio.garcia@us.af.mil
Zoe E. Lees	Zoe.E.Lees@xcelenergy.com	Thomas M. Domme	Tdomme@tecoenergy.com
Randall Woolridge	jrwoolridge@gmail	Rick Gilliam	rick@votesolar.org
Adam Bickford	abickford@swenergy.org	Susan Brymer	Susan.l.brymer@xcelenergy.com
Glenda Murphy	gmurphy@westernresources.org	Ruth Sakya	Ruth.sakya@xcelenergy.com
David G Pitts	davidgpitts@gmail.com	Jeff Comer	Jeffrey.l.comer@xcelenergy.com
Jill Tauber	jtauber@earthjustice.org	Nann M. Winter, Esq	nwinter@stelznerlaw.com
Anthony J. Trujillo	ajt@gknet.com	Anthony Sisneros	Anthony.sisneros@state.nm.us
T.K. E-service	Tk.eservice@tklaw.com	Mark A. Walker	Mark.a.walker@xcelenergy.com
Luke Tougas	l.tougas@cleanenergyresearch.com	Jason Marks	lawoffice@jasonmarks.com
Elaine Heltman	eheltman@nmag.gov	TK Law Office	Tk.eservice@tklaw.com
Don Hancock	sricdon@earthlink.com	Barbara Hart-Hope	bhart@hollandhart.com
Ramona Blaber	ramona.blaber@sierraclub.org	Amanda Alderson	aalderson@consultbai.com
Ebony Payton	ebony.payton.ctr@us.af.mil	Perry Robinson	perry.robinson@urenco.com

Jeff Wernert	jwernert@theprimegroupllc.com	Brian J. Haverly, Esq.	bjh@keleher-law.com
Chuck Pinson	cpinson@cvecoop.org	Nicole V. Strauser, Esq.	nvstrauser@tecoenergy.com
Carla R. Najjar	csnajjar@virtuelaw.com	Rebecca A. Carter	Rebecca.carter@nmgco.com
Steve Seelye	sseelye@theprimegroupllc.com	Antonio Sanchez Jr.	sancheza@rcec.coop
Adele Lee	ACLee@hollandhart.com	Steven Cordova	Steven.cordova@nmgco.com
Matthew Dunne	Mdunne337@gmail.com	Matthew Miller	Matthew.miller@sierraclub.org
Maureen Reno	Mreno@reno-energy.com	April Elliot	April.elliott@westernresources.org
Julianna Hopper	jth@keleher-law.com	Robert L. Friedman	Robert.friedman.5@us.af.mil
Holland Hart	glgarganoamari@hollandhart.com	Arnold Braxton	Arnold.braxton@us.af.mil
Michael McMillin	michael.mcmillin@tklaw.com	Judith Amer	judith.amer@state.nm.us
Cholla Khoury	ckhoury@nmag.gov	Charles F. Noble	noble.ccae@gmail.com
Robert F. Lundin	rlundin@nmag.gov	Bradford Borman	Bradford.Borman@state.nm.us
Gideon Elliot	gelliot@nmag.gov	John Reynolds	John.reynolds@state.nm.us
Michael J. Moffett	mmoffett@cmtisantafe.com	William P. Templeman	wtempleman@cmtisantafe.com
Elisha Leyba-	elisha.lebya-tercero@state.nm.us	Thomas Jernigan	Thomas.jernigan.3@us.af.mil
Tercero			
Milo Chavez	milo.chavez@state.nm.us	Daniel A. Najjar	dnajjar@virtuelaw.com
Steven S. Michel	smichel@westernresources.org	Julia Broggi	jbroggi@hollandhart.com
John Bogtko	john.bogatko@state.nm.us	Marc Tupler	Marc.Tupler@state.nm.us
Gabriella Dasheno	gabriella.dasheno@state.nm.us	Lauren Hogrewe	lauren.hogrewe@sierraclub.org
Kellie Barahona	kellie.barahona@tklaw.com	Matthew Marchant	matthew.marchant@hollyfrontier.com
Peter Gould	pgouldlaw@gmail.com	Katelyn Hart	khart@redskylawnm.com
John Caldwell	jcaldwell@leacounty.net	Randy Bartell	rbartell@montand.com
Casey Settles	Casey.settles@xcelenergy.com	John Wolfram	johnwolf@catalystell.com

Respectfully submitted,

/S/ Casey Settles

Casey Settles
790 S. Buchanan Street
Amarillo, TX 79101
806.378.2424
Casey.settles@xcelenergy.com

SOUTHWESTERN PUBLIC SERVICE COMPANY

SERVICE ADDRESS	ACCOUNT N	ACCOUNT NUMBER	
			04/22/2020
HOBBS, NM 88242-0814	STATEMENT NUMBER	STATEMENT DATE	AMOUNT DUE
		04/02/2020	\$167.37

YOUR MONTHLY ELECTRICITY USAGE

DAILY AVERAGES	Last Year	This Year
Temperature	53° F	58° F
Electricity kWh	76.9	56.9

QUESTIONS ABOUT YOUR BILL?

See our website: xcelenergy.com

Email us at: Customerservice@xcelenergy.com

Call Mon - Fri 7 a.m.-7 p.m. or Sat 9 a.m.-5 p.m.

Please Call: 1-800-895-4999
Hearing Impaired: 1-800-895-4949
Español: 1-800-687-8778
Or write us at: XCEL ENERGY

PO BOX 8

EAU CLAIRE WI 54702-0008

Like us on Facebook

SUMMARY OF CURRENT CHARGES (detailed charges begin on page 2)

Current Charges			\$167.37
Other Recurring Charges			\$33.67
Electricity Service	03/04/20 - 04/02/20	1650 kWh	\$133.70

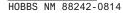
ACCOUNT BALANCE (Balance de su cuenta)

	· · · · · · · · · · · · · · · · · · ·	,		
Previous Ba	lance	As of 03/04	\$527.13	
Payment Re	ceived	Phone Pay 03/13	-\$527.13	CR
Balance For	ward		\$0.00	
Current Cha	rges		\$167.37	
Amount Du	ie (Cantidad a pagar)		\$167.37	

INFORMATION ABOUT YOUR BILL

Your safety and the safety of our employees will always be our top priority. We are prepared and are taking steps to ensure we'll continue to be there for you to meet your energy needs as COVID-19 affects a growing number of people in our communities. We know this is a challenging time for many families, and we are here to help. Please reach out to our customer care representatives if you have questions about your bill, and learn more at xcelenergy.com/covid-19_response.

RETURN BOTTOM PORTION WITH YOUR PAYMENT • PLEASE DO NOT USE STAPLES, TAPE OR PAPER CLIPS



ACCOUNT NUMBER	DUE DATE	AMOUNT DUE	AMOUNT ENCLOSED
	04/22/2020	\$167.37	
Places remit to the	APRIL		

Please remit to the address below by the Due Date to avoid late payment fees.

Make your check payable to XCEL ENERGY

12 13 14 15 16 17 18 19 20 21 22 23 24 25 29 27 28 26 30

Page 2 of 4

SERVICE ADDRESS	ACCOUNT NUMBER		DUE DATE
			04/22/2020
HOBBS, NM 88242-0814	STATEMENT NUMBER	STATEMENT DATE	AMOUNT DUE
		04/02/2020	\$167.37

INFORMATION ABOUT YOUR BILL

We invite you to participate in our Electric Service Integrated Resource Planning (IRP) Public Advisory process. IRP examines the types of resources to be included in Xcel Energy's resource portfolio, the amounts that must be added, and the timing of those additions. An IRP provides a strategic outline for future resource decisions by Xcel Energy.

The first of a series of workshops will be held May 21, 2020, from 1:30 p.m. to 4 p.m. MT in the 5th floor Children, Youth & Families Department conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 1120 Paseo de Peralta, Santa Fe, NM. Attendance via webinar is also available: For audio dial 1-866-672-3839 using passcode: 6877906. Follow the presentation online at: https://avayaconference.xcelenergy.com/6877906

Xcel Energy will provide the date and time of each subsequent workshop at the conclusion of the prior workshop.

If you are interested in participating in our IRP Public Advisory process, please contact us at 1-806-378-2709, 1-806-378-2115, Linda.L.Hudgins@xcelenergy.com, or Mario.A.Contreras@xcelenergy.com. This notice, future workshops and other information can be found under Rates & Regulations at www.xcelenergy.com. We will file our IRP at the New Mexico Public Regulation Commission by July 16, 2021.

Thank you for your payment.

APPLY THE 10-FOOT RULE.

Power lines are just what they sound like — powerful. When you're cleaning out gutters, stay safe by keeping yourself, ladder and tools at least 10 feet from overhead power lines.

ELECTRICITY SERVICE DETAILS

05/04/20

SERVICE ADDRESS: NEXT READ DATE:

PREMISES NUMBER: **INVOICE NUMBER:**

METER READING INFORMATION Read Dates: 03/04/20 - 04/02/20 (29 Days) DESCRIPTION **CURRENT READING** PREVIOUS READING USAGE Total Energy 89884 Actual 88234 Actual 1650 kWh

ELECTRICITY CHARGES RATE: RHS Res Htg Svc DESCRIPTION **USAGE UNITS** CHARGE Svc Availability \$8.75 1650 kWh Res Htg Svc \$0.048258 \$79.63 **Fuel Cost Factor** 1536.21 kWh \$0.017037 \$26.17 **Fuel Cost Factor** 113.79 kWh \$0.015594 \$1.77 Energy Efficiency Rdr \$4.00 **RPS Cost Rider** 1650 kWh \$0.003888 \$6.42 Subtotal \$126.74 Sales Tax \$6.96 Total \$133.70

DON'T GET SCAMMED.

Scammers can spoof phone numbers to look like the call is coming from us. If someone calls and threatens to turn off your power if you don't pay immediately, or asks for your account number to refund an overpayment, hang up and check your account status using My Account, our Xcel Energy mobile app, or call us at 800.895.4999.

OTHER RECURRING CHARGES DETAILS

INVOICE NUMBER: ADDRESS:				
ADDITEOU.	HOBBS, NM 88242-0814			
		UNIT		
DESCRIPTION	USAGE UNITS	CHARGE	QTY	CHARGE
Install Number				
03/04/20 to 04/01/20				
1000 WATT HPS - RAL				
Area Light	328 kWh	\$24.04	1	\$24.04
Fuel Cost Factor				\$5.58
RPS Cost Rider				\$1.28
Energy Efficiency Rdr				\$1.02
Subtotal				\$31.92
Sales Tax				\$1.75
Total				\$33.67

INFORMATION ABOUT YOUR BILL

This month, an additional kWh used would have cost 7.57 ¢/kWh.

6B ■ WEDNESDAY, APRIL 8, 2020 ■ CARLSBAD CURRENT-ARGUS

Southwestern Public Service Company ("SPS") invites the public to participate in its electric service Integrated Resource Planning ("IRP") Public Advisory Process. An IRP examines the types of resources to be included in the utility's resource portfolio, the amounts that must be added, and the timing for those additions. In effect, an IRP provides a strategic plan for future resource decisions by the utility.

The purpose of SPS's Public Advisory Process is to provide information to, and receive and consider input from the public regarding the development of the IRP. Topics for the IRP include the load forecast; evaluation of existing supply- and demand-side resources; assessment of need for additional resources; identification of resource options; modeling; and development of the most cost-effective resource portfolio for the IRP. The first of a series of workshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. MT in the 5th floor CYFD conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 1120 Paseo de Peralta, Santa Fe, NM.

Attendance via WEBINAR is also available with the following login information:

Call in number: 1-866-672-3839 Passcode: 6877906 https://avayaconference.xcelenergy.com/6877906

If an in-person meeting is not possible on May 21 due to Coronavirus concerns, SPS plans to proceed with a WEBINAR-only meeting.

SPS will provide the date and time of each subsequent

workshop at the conclusion of the prior workshop.

Any person interested in participating in SPS's Electric IRP Public Advisory Process should contact SPS at 1-806-378-2709, 1-806-378-2115, Linda,L,Hudgins@xcelenergy.com, or Mario,A,Contreras@xcelenergy.com. This notice, information about future workshops, and other information can be found under "Rates & Regulations" at www.xcelenergy.com. SPS will file its IRP at the New Mexico Public Regulation Commission by July 16, 2021.

April 8, 2020

AFFIDAVIT OF LEGAL PUBLICATION

Legal 8618

STATE OF NEW MEXICO COUNTIES OF CURRY AND ROOSEVELT:

The undersigned, being dully sworn, says:
That she is a Legal Clerk of
The Eastern New Mexico News
Newspaper of general circulation,
Published in English at Clovis and Portales,
said counties and state, and that the
hereto attached

2021 New Mexico IRP Legal 8618

was published in The Eastern New Mexico News a daily newspaper duly qualified for that purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for 1 Days/weeks on the same days as follows:

First Publication

April 8, 2020

Second Publication Third Publication Fourth Publication

Legal Clerk

Subscribed and sworn to before me,

April 8, 2020

Notary Public

My commission expires on April 3, 2022

Legal 8618 April 8, 2020

SOUTHWESTERN PUBLIC SERVICE Company ("SPS") invites the public to participate in its electric service Integrated Resource Planning ("IRP") Public Advisory Process. An IRP examines the types of resources to be included in the utility's resource portfolio, the amounts that must be added, and the timing for those additions. In effect, an IRP provides a strategic plan for future resource decisions by the utility.

The purpose of SPS's Public Advisory Process is to provide information to, and receive and consider input from the public regarding the development of the IRP. Topics for the IRP include the load forecast,

evaluation of existing supply- and demand-side resources; assessment of need for additional resources; identification of resource options; modeling; and development of the most cost-effective resource portfolio for the IRP. The first of a series of workshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. MT in the 5th floor CYFD conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, Paseo de Peralta, Santa Fe.

Attendance via WEBINAR is also available with the following login information:
Call in number: 1-866-672-3839 Passcode: 6877906 https://avayaconference.xcelenergy.com/6877906

If an in-person meeting is not possible on May 21 due to Coronavirus concerns, SPS plans to proceed with a WEBINAR-only meeting.

SPS will provide the date and time of each subsequent workshop at the conclusion of the prior workshop.

Any person interested in participating in SPS's Electric IRP Public Advisory Process should contact SPS at 1-806-378-2709, 1-806-378-2115, Linda.L.Hudgins@xcelener-

gy.com, or Mario.A.Contreras@xcelenergy.com. This notice, information about future workshops, and other information can be found under "Rates & Regulations" at www.xce-

lenergy.com. SPS will file its IRP at the New Mexico Public Regulation of experience options; modeling; evelopment of the set-effective resource for the IRP. The first less of workshops will

AFFIDAVIT OF LEGAL PUBLICATION

Copy of Publication

Legal 8619

STATE OF NEW MEXICO COUNTIES OF QUAY:

The undersigned, being dully sworn, says:
That she is a Legal Clerk of
The QUAY COUNTY SUN, a weekly
Newspaper of general circulation,
Published in English at Tucumcari,
said county and state, and that the
hereto attached

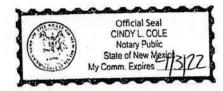
2021 New Mexico IRP Legal 8619

was published in The QUAY COUNTY SUN a weekly newspaper duly qualified for that purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for 1 Days on the same days as follows:

First Publication:

April 8, 2020

Second Publication: Third Publication Fourth Publication:


Legal Clerk

Subscribed and sworn to before me,

April 8, 2020

Notary Public

My Commission Expires: April 3, 2022

Legal 8619 April 8, 2020

SOUTHWESTERN PUBLIC SERVICE Company ("SPS") invites the public to participate in its electric service Integrated Resource Planning ("IRP") Public Advisory Process. An IRP examines the types of resources to be included in the utility's resource portfolio, the amounts that must be added, and the timing for those additions. effect, an IRP provides a strategic plan for future resource decisions by the utility.

The purpose of SPS's Public Advisory Process is to provide information to, and receive and consider input from the public regarding the development of the IRP.
Topics for the IRP
include the load forecast; evaluation of existing supply- and demand-side resources; assessment of need for additional resources; identification of resource options; modeling; and development of the most cost-effective resource portfolio for the IRP. The first of a series of workshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. MT in the 5th floor CYFD conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 1120 Paseo de Peralta, Santa Fe, NM.

Attendance via WEBI-NAR is also available with the following login information:
Call in number: 1-866-672-3839 Passcode: 6877906 https://avaya-conference.xcel energy.com/6877906

If an in-person meeting is not possible on May 21 due to Coronavirus concerns, SPS plans to proceed with a WEBI-NAR-only meeting.

SPS will provide the date and time of each subsequent workshop at the conclusion of the prior workshop. Any person interested in participating in SPS's Electric IRP Public Advisory Process should contact SPS at 1-806-378-2709, 1-806-378-2115. Linda.L.Hudgins@xcelenergy.com, Mario.A.Contreras@xcelenergy.com. This notice, information about future workshops, and other information can be found under "Rates & Regulations" www.xcelenergy.com. SPS will file its IRP at

the New Mexico Public Regulation Commission by July 16, 2021.

Affidavit of Publication

STATE OF NEW MEXICO COUNTY OF LEA

I, Daniel Russell, Publisher of the Hobbs News-Sun, a newspaper published at Hobbs, New Mexico, solemnly swear that the clipping attached hereto was published in the regular and entire issue of said newspaper, and not a supplement thereof for a period of 1 issue(s).

> Beginning with the issue dated April 08, 2020 and ending with the issue dated April 08, 2020.

Publisher

Sworn and subscribed to before me this 8th day of April 2020.

Me son

Business Manager

My commission expires

January 29, 2023

OFFICIAL SEAL

GUSSIE BLACK

Notary Public

State of New Mexico

My Commission Expires

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937 and payment of fees for said

LEGAL

LEGAL

LEGAL NOTICE APRIL 8, 2020

Southwestern Public Service Company ("SPS") invites the public to participate in its electric service Integrated Resource Planning ("IRP") Public Advisory Process. An IRP examines the types of resources to be included in the utility's resource portfolio, the amounts that must be added, and the timing for those additions. In effect, an IRP provides a strategic plan for future resource decisions by the utility.

The purpose of SPS's Public Advisory Process is to provide information to, and receive and consider input from the public regarding the development of the IRP. Topics for the IRP include the load forecast; evaluation of existing supply- and demand-side resources; assessment of need for additional resources; identification of resource options; modeling; and development of the most cost effective resource portfolio for the IRP. The first of a series of workshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. MT in the 5th floor CYFD conference room 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 1120 Paseo de Peralta, Santa Fe, NM.

Attendance via WEBINAR is also available with the following login information: Call in number: 1-866-672-3839 Passcode: 6877906 https://avayaconference.xcelenergy.com/6877906

If an in-person meeting is not possible on May 21 due to Coronavirus concerns, SPS plans to proceed with a WEBINAR-only meeting.

SPS will provide the date and time of each subsequent workshop at the conclusion of the prior workshop.

Any person interested in participating in SPS's Electric IRP Public Advisory Process should contact SPS at 1-806-378-2709, 1-806-378-2115, Linda. L. Hudgins@xcelenergy.com, or Mario. A. Contreras@xcelenergy.com. This notice, information about future workshops, and other information can be found under "Rates & Regulations" at www.xcelenergy.com. SPS will file its IRP at the New Mexico Public Regulation Commission by July 16, 2021. #35358

67103518

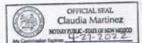
00241003

Attn: CINDY BAEZA XCEL ENERGY/AMARILLO 790 S BUCHANAN ST AMARILLO, TX 79101-2522 AFFIDAVIT OF PUBLICATION STATE OF NEW MEXICO

I, Noely Martinez Legals Clerk

Of the Roswell Daily Record, a daily newspaper published at Roswell, New Mexico do solemnly swear that the clipping hereto attached was published in the regular and entire issue of said paper and not in a supplement there of for a period of:

One time with the issue dated April 8th, 2020


Legals Clerk

Ar

Sworn and subscribed to before me

this 12th day of July, 2021

Notary Public

SPS Legal Notice...

Publish April 8, 2020

Southwestern Public Service Company ("SPS") invites the public to participate in its electric service integrated Resource Planning ("IRP") Public Advisory Process. An IRP examines the types of resources to be included in the utility's resource portfolio, the amounts that must be added, and the timing for those additions. In effect, an IRP provides a strategic plan for future resource decisions by the utility.

The purpose of SPS's Public Advisory Process is to provide information to, and receive and consider input from the public regarding the development of the SRP. Topics for the IRP Include the load forecast, evaluation of esisting supply, and demand-side resources, assessment of need for additional historices; identification of resource options; modeling, and development of the most cost-effective resource portfolio for the IRP. The first of a series of worshops will be held May 21, 2020 from 1:30 p.m. to 4 p.m. NT in the 5th Neor CYPD conference once 565 of the New Mexico Public Regulation Commission offices in the P.E.R.A. Building, 11:20 Pased de Peratia, Santa Fe, NM.

Abandance via WEBINAR is also available with the following login information: Cas in number: 1-866-872-3839 Passocot: 8677906 https://evaysconference.xcelenergy.com/5877905

If an in-person meeting is not possible on May 21 due to Coronevirus concerns, SPS plans to proceed with a WEBINAR-only meeting.

SPS will provide the date and time of each sub-sequent workshop at the conclusion of the prior work-shop.

Any person interested in participating in SPS's Electric IHP Public Advisory Process should contact SPS at 1-806-378-2709, 1-806-378-2715. Linda L. Hudgins & xcelenergy.com. Of Mario A Conterns Socienergy.com. This notice, information about future workshops, and other information can be found under "Rates & Regulations" at www.xcelenergy.com. SPS will file its IHP at the New Maxico Public Regulation Commission by July 16, 2021.

Appendix L Page 12 of 12 Case No. 21-00169-UT

Appendix M Page 1 of 161 Case No. 21-00169-UT 2021 SPS New Mexico Integrated Resource Plan: 1st Public Advisory Kick-off Meeting **O Xcel** Energy*

2

Topics for Discussion

Xcel Energy and SPS Overview

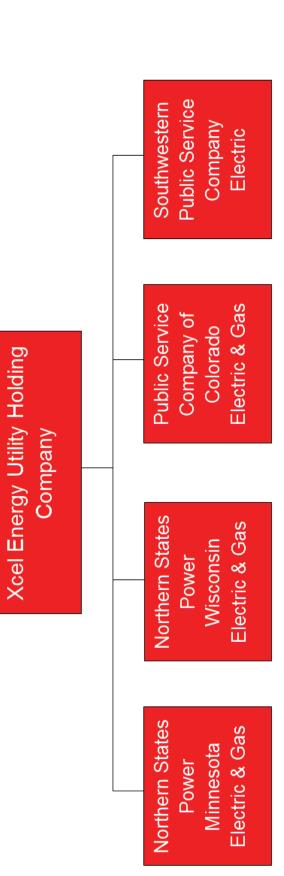
Resource Planning Overview

Factors that have impacted Resource Planning since the 2018 New Mexico IRP

· Factors that will likely influence Resource Planning in the action plan period

SPS's new renewable wind facilities

Future meeting topics

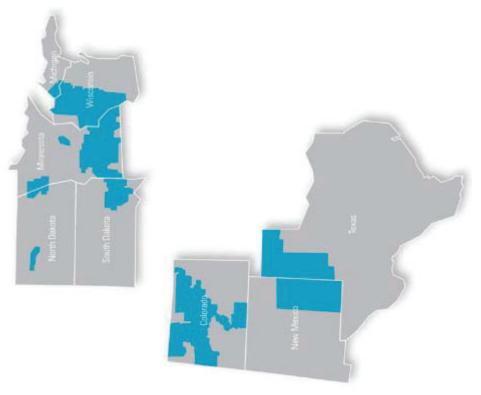

Next meeting

2 Xcel Energy®

Ben Elsey | Resource Planning Analyst

5/21/2020

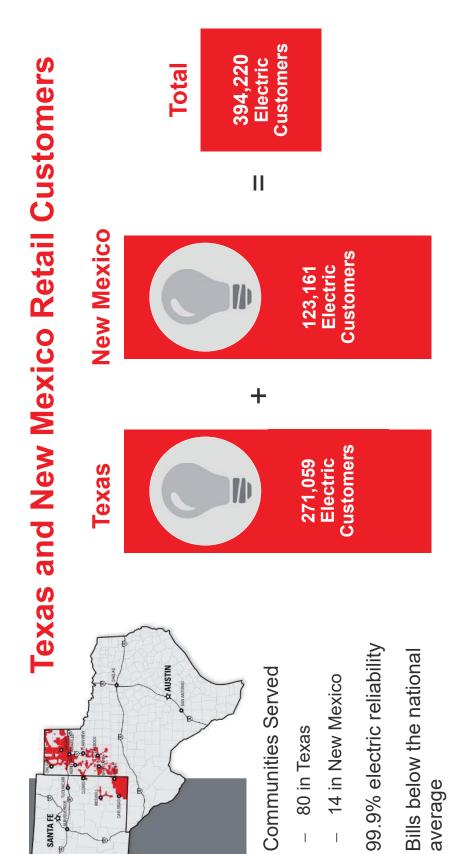
Corporate Structure


About Xcel Energy

Serving eight states

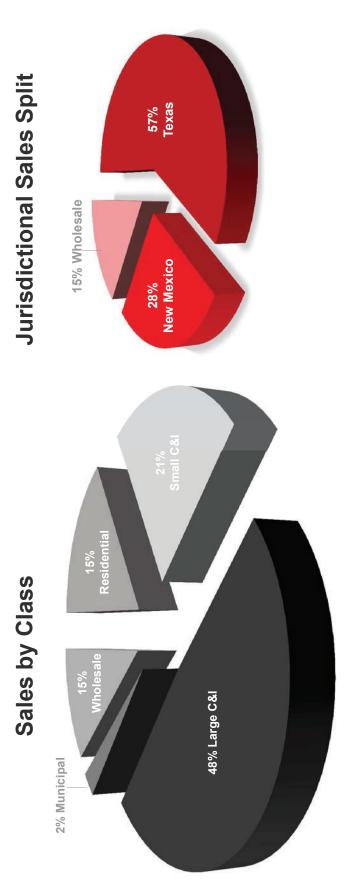
- 3.6 million electricity customers
- 2 million natural gas customers

Nationally recognized leader


- Wind energy
- Energy efficiency
- Carbon emissions reductions
- Innovative technology

9

SPS Overview


- Southwestern Public Service Company ("SPS") is a New Mexico corporation and wholly-owned electric utility subsidiary of Xcel Energy.
- eastern and southeastern New Mexico, the Texas Panhandle, and the Texas South SPS's total company service territory encompasses a 52,000-square-mile area in
- SPS's primary business is generating, transmitting, distributing, and selling electric energy
- SPS has a long history of providing safe, reliable, value-added service to our customers

SANTAFE

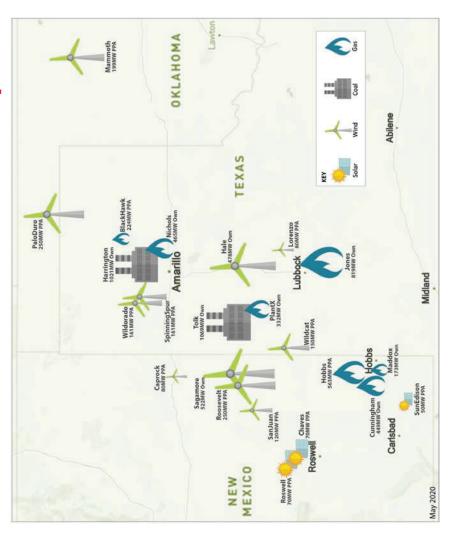
average

SPS Customers

* SPS operates its production and transmission system as an integrated whole

Note: Data as represented is between February 1, 2019 through January 31, 2020

Resource Planning

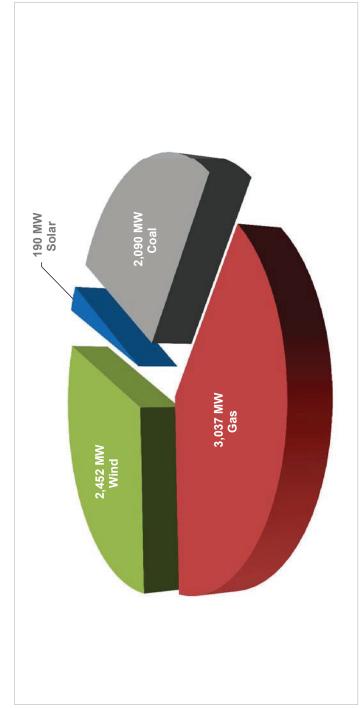

 Determines the appropriate sources of electric supply to meet customer demand and energy requirements in a cost-effective and reliable fashion Compare existing firm generating resources, including owned generating capacity and firm purchased power, to its projected annual peak firm load obligation over the planning period

· Maintains capacity required to meet projected peak load and planning reserve obligations SPS is a member of the Southwest Power Pool ("SPP"), which requires each member to have a planning reserve margin of 12% of its peak demand forecast

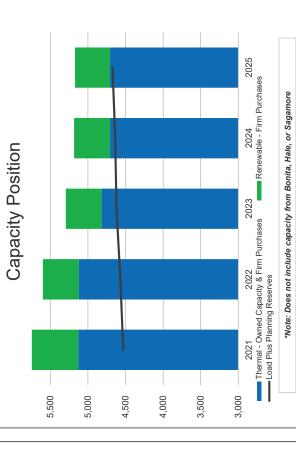
SPS's firm load obligation is approximately 4,000 MW, and with the planning reserve margin the capacity need is approximately 4,500 MW

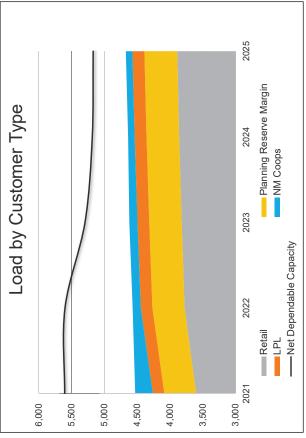
© 2020 Xcel Energy

Generation Resource Map



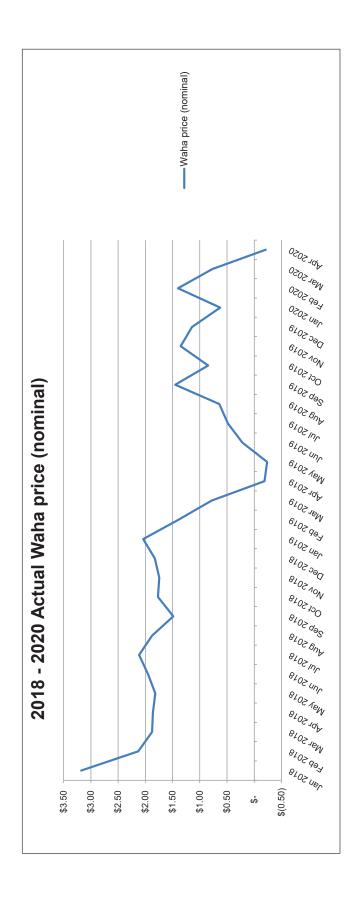
Current SPS Loads and Resources Table


SPS Load and Resources	2020	2021	2022	2023	2024	2025
EXISTING RESOURCES						
TOTAL ACCREDITED CAPACITY (MW)	5,605	5,605	2,600	5,295	5,184	5,171
LOAD						
FIRM LOAD OBLIGATION	4,014	4,057	4,112	4,177	4,214	4,265
RES ERVES						
TOTAL PLANNING RESERVE MARGIN	482	487	493	501	909	512
CAPACITY NEED	4,496	4,544	4,606	4,679	4,720	4,777
CAPACITY POSITION	1,109	1,061	994	616	889	618
TOTAL SALES / (PURCHAS ES) (MW)	531	0	0	0	0	0
POSITION						
RESOURCE POSITION (MW): LONG/(SHORT)	278	1,061	994	616	889	618


Capacity Mix

* The above chart represents the maximum output of each facility

Action Plan - SPS Loads and Resources


QUESTIONS AND DISCUSSION

Appendix M Page 15 of 161 Case No. 21-00169-UT nning Since Factors Impacting Resource Plaintenance Plai Xcel Energy®

Recent Impacts

- Depressed gas prices
- Increased load growth in southeast New Mexico
- New renewable resources

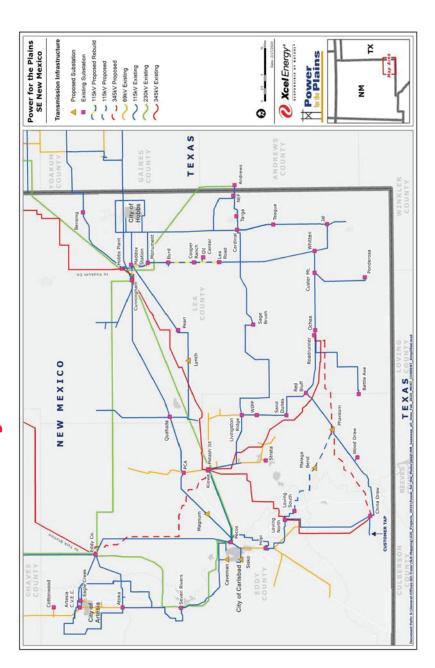
Gas Prices from 2018 - 2020

 $\overset{\leftarrow}{\circ}$

SPS's Aging Generation Fleet

- SPS has approximately 1,231 MW of natural gas-fired generation that is between 50 67 years old
- Plant X1 and Plant X2
- Gas-fired steam turbines located in Lamb County, TX
- Commercial operation date ("COD") of 1952 and 1953 respectively
- Cunningham 1
- Gas-fired steam turbine located in Lea County, NM
- COD of 1957
- These natural gas fired-units were originally scheduled to retire in 2019 & 2020 but have been kept online due to anomalously low natural gas prices in SPS's service area

19


SPS's New Wind Facilities

- Hale Wind (Owned) Hale County, TX
- 478 MW COD of 6/2019
- Approximately \$700 million dollars of investment
- Sagamore Wind (Owned) Roosevelt County, NM
- 522 MW planned COD of 12/2020
- Approximately \$900 million dollars of investment
- Lorenzo and Wildcat Purchased Power Agreements ("PPA") Crosby & Cochran County, TX
- Formally known as Bonita I & II
- Wildcat 150 MW COD of 12/2018 Crosby County, TX
- Lorenzo 80 MW COD of 12/2018 Cochran County, TX
- SPS acquired the three wind facilities to provide economic energy and lower customer bills

Oil & Gas Growth in Southeast New Mexico

Transmission Projects - Southeast New Mexico

Completed Transmission Projects SE NM

2015 - 2019

• 520 miles of new transmission line

• 500 miles of new distribution line

SPS has built enough new transmission line that it could almost span diagonally across the entire state of NM

SPS has invested approximately \$626 million dollars on transmission infrastructure

Planned Transmission Projects SE NM

2020 - 2021

115 kV – 21 miles

345 kV – 180 miles

SPS is planning to invest an additional \$170 million on transmission infrastructure

 SPS expects to continue to invest significant capital in its service area in NM as the electrical loads continue to grow

2019 – 2020 Completed Transmission Projects in SE NM

NEF to Targa 115 kV rebuild (In-Service Date ("ISD"): March 2019)

Potash Junction – Livingston Ridge 115 kV rebuild (ISD: April 2019)

Hobbs Plant – Yoakum 345 kV (ISD: May 2019)

Roadrunner Distribution Substation addition (ISD: August 2019) • China Draw - Customer Tap 115 kV (ISD: May 2019)

Eddy Co 230 kV double breaker double bus (ISD: November 2019)

North Loving – Loving South 115 kV (ISD: December 2019)

New Loving South Substation (ISD: December 2019)

Cunningham - Monument Tap 115 kV rebuild (ISD: December 2019)

Red Bluff to Phantom 115 kV rebuild (ISD: March 2020)

2020 - 2021 Planned Transmission Projects in SE NM

TUCO – Yoakum 345 kV (ISD: June 2020)

• Medanos Distribution Substation (ISD: October 2020)

Eddy County – Kiowa 345 kV (ISD: November 2020)

Loving South – Malaga Bend - Phantom 115 kV (ISD: November 2020)

Malaga Bend Distribution Substation (ISD: November 2020)

Phantom 115kV Substation (ISD: November 2020)

• China Draw - Phantom - Roadrunner 345 kV (ISD: November 2021)

Power for the Plains: Transmission Expansion Plan for Texas and southeast New Mexico

For Details Visit: www.powerfortheplains.com/

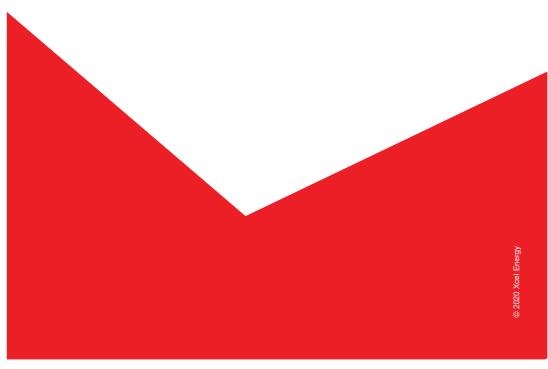
QUESTIONS & DISCUSSION

Future Impacts on Resource Planning

designated as either meeting the standard or nonattainment. Texas plan will be due Area near Harrington Station is being monitored for NAAQS compliance and will be beginning of 2026

Ongoing Tolk Station depleting groundwater and end-of-year 2032 retirement

SPS's aging generation fleet


SPP Interconnect queue

· Energy Storage / Emerging Technologies

QUESTIONS & DISCUSSION

Xcel Energy®

Hale and Sagamore Wind Facilities

Brian Hudson | Energy Supply Project Manager

5/21/2020

Hale Wind Project

Hale: 478 MW

Hale County, Texas Location:

478 MWs (~170,000 homes)

Size:

Vestas 80m HH V110 / 80m HH V116 / 94m HH V116 Turbines:

~65,000 acres Boundary:

Start Construction: June 2018 ~14 miles Generator T-Line:

June 2019 COD:

TUCO Substation Interconnection:

~54.0% Capacity Factor:

Vestas

Xcel Energy

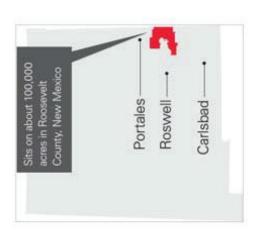
Sagamore Wind Project

Roosevelt County, New Mexico Location:

522 MWs

Size:

240 (Vestas 80m HH V110 / Vestas 80m HH V120) Turbines:


~100,000 acres Boundary: ~14 miles Generation T-Line: Start Construction: November 2019

December 2020 Completion: Interconnection: Crossroads Substation

Capacity Factor: ~53.0%

Vestas

P

in state and local benefits over life of project* \$131.5 million

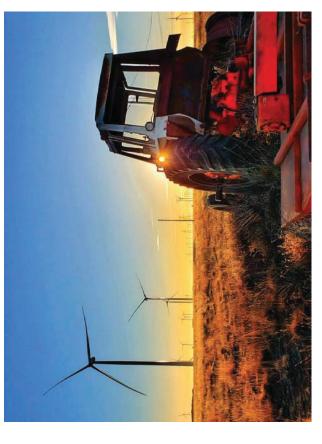
© 2020 Xcel Energy

Wind Turbine Construction - Foundations

- One foundation 350 yards of concrete
- Hale (239 turbines) 85,000 yards
- Sagamore (240 turbines) 86,000 yards
- Enough concrete at Hale and Sagamore to build a sidewalk from Amarillo, TX to Los Angeles, CA

34

Wind Turbine Construction - Electrical



- Hale 3 million feet of underground conductor. 1 million feet of ground wire. 1 million feet of fiber optic cable.
- Sagamore 3 million feet of underground conductor. 1 million feet of ground wire. 1 million feet of fiber optic cable.
- Hale/Sagamore have enough underground cable to stretch from Mexico to Canada borders.

Wind Turbine Construction - Turbines

- Hale 478 MW. 239 turbines. 2,078 individual truck loads of components. 499 feet tall.
- Sagamore 522 MW. 240 turbines. 1,920 individual truck loads of components. 470 feet tall.
- Hale/Sagamore can power 350,000 homes.

Xcel Energy*

QUESTIONS & DISCUSSION

Topics for Future Meetings

- Environmental Updates
- Sales and Load Forecasting
- Gas & Power Markets
- Coal Supply
- Demand-side Management and Energy Efficiency
- Energy Storage

NM IRP Details

Web Page -

https://www.xcelenergy.com/company/rates and regulations/resource plans/2022 new mexico integrated resource plan

* Note: In the upper-left hand corner of the webpage there is a drop-down, select "New Mexico". For the Service Area, click on New Mexico. At the bottom of the page click on the Public Advisory Meeting tab, then click on the date for the first public meeting

Resource Planning Contacts –

- Bennie Weeks | Manager of Resource Planning & Bidding | Bennie.Weeks@xcelenergy.com
- Ben Elsey | Resource Planning Analyst | <u>Ben.R.Elsey@xcelenergy.com</u>
- Ashley Gibbons | Resource Planning Analyst | Ashley. Gibbons@xcelenergy.com

Regulatory Contacts –

- Linda Hudgins | Case Specialist II | Linda.L. Hudgins@xcelenergy.com
- Mario Contreras | Rate Case Manager | Mario.A. Contreras@xcelenergy.com

Next Meeting

Date: August 20, 2020

Time: 10:00 AM Mountain Time

Location: Webinar

Note: The 1st Technical Conference will be held shortly after the final order for the Tolk Analysis pursuant to the Stipulation in Case No. 19-00170-UT

Appendix M Page 40 of 161 Case No. 21-00169-UT

Xcel Energy®

Appendix M Page 41 of 161 Case No. 21-00169-UT 2021 SPS New Mexico Integrated Resource Plan: 2nd Public Advisory Meeting 8/20/2020 Xcel Energy® © 2020 Xcel Energy

TOPICS FOR DISCUSSION

Emerging Environmental Impacts for SPS

Harrington National Ambient Air Quality Standards (NAAQS) Compliance

Questions and Discussion

Future Meeting Topics

Next Meeting

ENVIRONMENTAL IMPACTS FOR SPS

Dean Metcalf | Manager of Environmental Services

P: 806-378-2194 | C: 720-480-5632

8/20/2020

Cross-State Air Pollution Rule (CSAPR)

- Environmental Protection Agency (EPA) adopted in 2011 (Xcel Energy (SPS) made comments and sued EPA)
- Two Main Issues Texas' Inclusion and EPA Disapproval of Texas State Plan
- DC Circuit Court Stayed CSAPR December 30, 2011
- Litigation went from DC Circuit Court to Supreme Court and back
- CSAPR largely upheld, but Texas emission budgets were found to over-control and were remanded to EPA

Cross-State Air Pollution Rule (CSAPR) continued...

- CSAPR program took effect January 1, 2015
- EPA made summer nitrogen oxides (NOx) budget tighter, and removed Texas from CSAPR limits for annual NOx and sulfur dioxide (SO $_{
 m 2}$) in 2016-17
- Changes in SPS since 2011 (added wind and transmission)
- Compliance Strategy dispatch and allowance purchase
- As of now, no additional controls required

EGU MACT - MATS Rule Regulates

Mercury (Hg)

Particulate Matter (PM) - surrogate for toxic non-mercury metals

Hydrogen Chloride (HCI) – surrogate for all toxic acid gases

Compliance Strategy – Activated carbon injection (ACI) and PM Averaging Plan for Harrington 1, Harrington 2, & Harrington 3.

2015 Compliance (Tolk and Harrington)

Coal Combustion Residuals (CCR) Rules

- Regulation of coal ash as nonhazardous
- Increased landfill construction & monitoring requirements once our ash becomes non-saleable
- Potential to affect ash sales 100% beneficial use

Affordable Clean Energy Rule (ACE)

- 2018 ACE Rule replaces EPA's Clean Power Plan
- Seeks carbon dioxide (CO₂) reduction through the implementation of Heat Rate Improvement (HRI)
- · Impacts Harrington and Tolk in SPS (combustion turbine sources not impacted by ACE)
- Prescriptive list of 7 "candidate technologies" for HRI
- Tasks states with defining unit level plan for compliance
- Compliance 2024

Affordable Clean Energy Rule (ACE) continued...

- Compliance demonstrated by proposing heat rate improvement that translates to a CO₂ reduction as measured by Continuous Emission Monitoring System (CEMS) (CO₂ lb/net or gross MW basis)
- Baseline CO₂ established from historical data
- Compliance demonstrated by reduction of "X%" from baseline
- States may consider remaining useful life in establishing standard of performance

Affordable Clean Energy Rule (ACE) continued...

- information request for impacted sources seeking baseline CO₂ and heat rate Texas Commission on Environmental Quality (TCEQ) has issued preliminary information
- Due back October 30th, 2020
- Harrington units will no longer be subject to following fuel switching to gas
- Currently compiling information for Tolk 1 and 2

Threatened and Endangered Species

- Sand Dune Lizard
- Lesser Prairie Chicken

Avian Protection Plan

• APP

REGULATIONS NOT IMPACTING SPS

- CCR Coal Combustion Residual rule or Ash Rule
- 316(b) Water Intake Structure Rule

WOTUS - Waters of the United States

© 2020 Xcel Energy

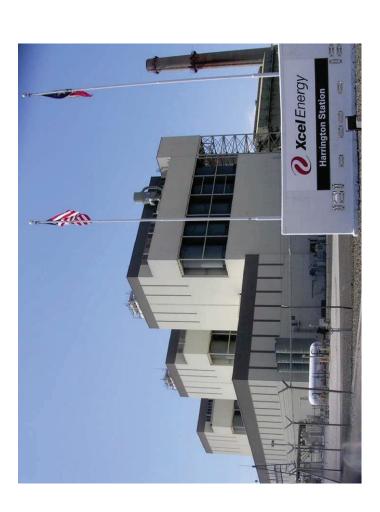
RECENT PERMITTING ACTIONS IN SPS

- Tolk Permit Reissuance
- Will likely result in carbon monoxide (CO) continuous monitoring
- Additional volatile organic compounds (VOC) stack testing
- City of Amarillo and Nichols/Harrington Wastewater Permit
- Sagamore
- Hale
- Potential for additional renewables

Appendix M Page 54 of 161 Case No. 21-00169-UT

4

HARRINGTON NAAQS COMPLIANCE


Xcel Energy®

8/20/2020

© 2020 Xcel Energy

HARRINGTON STATION – NAAQS COMPLIANCE

- Thunder Basin (WY) low-sulfur coal
- Unit 1 347 MW 1976 [45]
- Unit 2 347 MW 1978 [43]
- Unit 3 347 MW 1980 [41]
- 1,041 MW net capability
- Amarillo City effluent cooling water source

BACKGROUND

- The Clean Air Act requires the EPA to set NAAQS (including SO_2)
- In December 2016, TCEQ installed an SO_2 monitor in the vicinity of Harrington Station to collect ambient air data
- Readings from the monitor exceed the standards
- Harrington emits ~99% of the SO₂ emissions in Potter County
- Emphasis will be on SPS to produce implementation plan
- Anticipated compliance date: By 2025

HARRINGTON STATION – NAAQS COMPLIANCE

- None of the three coal units at Harrington have SO₂ scrubbers
- There has not been a question on SO_2 emission compliance in the past
- In June 2016, the federal EPA deemed Potter County as 'unclassifiable' for ${\rm SO}_2$ emissions under the NAAQS
- TCEQ installed an air monitor near Harrington Station in December 2016
- Under NAAQS, TCEQ must get a three-year average of SO₂ emissions to determine if sources in the area exceed the NAAQS standard
- the NAAQS requirements and referral to enforcement. [115 parts per billion vs 75 ppb In March 2020, the TCEQ provided SPS information indicating an alleged violation of NAAQS standard


HARRINGTON STATION - NAAQS COMPLIANCE

- We believe NAAQS SO_2 emissions compliance will need to be achieved by $2025-\mathrm{TCEQ}$ has authority to force changes at Harrington to achieve the NAAQS
- Options to achieve compliance are:
- Install scrubbers
- Retire units (lose 1100 MW capacity)
- Convert to natural gas-fueled boilers
- Scrubbers on each unit would cost about \$180 million each
- The Harrington units have less than 11 to 15 years life at the year 2025
- Least-cost plan is to retro-fit boilers to burn natural gas
- SPS will build a 20-mile approximately \$45 million pipeline to bring more gas supply
- Boiler burner retro-fits investment is approximately \$10 million

QUESTIONS & DISCUSSION

TOPICS FOR FUTURE MEETINGS

Sales and Load Forecasting

• Gas & Power Markets

Coal Supply

Demand-side Management and Energy Efficiency

Energy Storage

NM IRP DETAILS

Web Page -

https://www.xcelenergy.com/company/rates and regulations/resource plans/2022 new mexico integrated resource plan * Note: For the Service Area, click on New Mexico. At the bottom of the page click on the Public Advisory Meeting tab, then click on the date for the first public meeting

Resource Planning Contacts –

- Bennie Weeks | Manager of Resource Planning & Bidding | Bennie. Weeks@xcelenergy.com
- Ben Elsey | Resource Planning Analyst | Ben.R.Elsey@xcelenergy.com
- Ashley Gibbons | Resource Planning Analyst | Ashley. Gibbons@xcelenergy.com

Regulatory Contacts –

- Linda Hudgins | Case Specialist II | Linda.L.Hudgins@xcelenergy.com
- Mario Contreras | Rate Case Manager | Mario. A. Contreras@xcelenergy.com

NEXT MEETING

Date: January 12, 2021

Time: 10:00 a.m. Mountain Time

Location: Zoom Meeting

Appendix M Page 63 of 161 Case No. 21-00169-UT

23

Xcel Energy®

© 2020 Xcel Energy

Topics For Discussion

Introduction to the New Mexico Integrated Resource Plan

New Mexico Energy Efficiency and Load Management Programs

Sales and Load Forecasting

Questions and Discussion

Future Meeting Topics

Next IRP Public Meeting

Introduction To The New Mexico Integrated Resource Plan

- subject to the NM Public Regulatory Commission's jurisdiction over integrated Scope – Effective April 16, 2007, the NM IRP applies to all electric utilities resource planning
- requirements for the preparation, filing, review and acceptance of integrated resource plans by public utilities supplying electric service in New Mexico in order to identify the most cost-effective portfolio of resources to supply the Objective – The purpose of the IRP is to set forth the Commission's energy needs of customers.
- Task Public utilities supplying electric service to customers shall file an IRP, along with an action plan, with the commission every 3 years

Introduction To The NM IRP Continued...

Contents of the IRP

- 1) Description of existing electric supply-side and demand-side resources
- 2) Current load forecast as described in this rule
- 3) Load and resources table
- 4) Identification of resource options
- 5) Description of the resource and fuel diversity
- Identification of critical facilities susceptible to supply-source or other failures (9
- 7) Determination of the most cost-effective resource portfolio and alternative portfolios
- 8) Description of public advisory process
- 9) Action plan, and
- 10) Other information that the utility finds may aid the commission in reviewing the utility's planning processes

A copy of the current IRP rule can be found at the following link:

http://164.64.110.239/nmac/parts/title17/17.007.0003.htm

Appendix M Page 68 of 161 Case No. 21-00169-UT

Xcel Energy[®]

SPS NM ENERGY EFFICIENCY AND LOAD MANAGEMENT PROGRAMS

Jeremy Lovelady | Senior Regulatory Analyst

January 12, 2021

OVERVIEW

Efficient Use of Energy Act (EUEA) Updates

Recent EE/LM Plan Filing & Outcome

2020-2022 Approved Program Forecasts

Upcoming Plan Filings

EFFICIENT USE OF ENERGY ACT (EUEA) HISTORY

- than 8% of 2005 total retail kWh to New Mexico customers in 2020 as a result of energy efficiency and load management programs 2007 Legislation - SPS is required to achieve savings of no less implemented starting in 2007
- SPS met the requirement following the 2018 savings evaluation (8.06%)
- SPS also met the requirement following the 2019 savings evaluation (8.54%)
- 2019 Legislation SPS is required to achieve savings of no less than 5% of 2020 total retail kWh sales to New Mexico customer classes that have the opportunity to participate in calendar year 2025 as a result of energy efficiency and load management programs implemented in years 2021 through 2025

RECENT EE/LM PLAN FILINGS

- NMPRC Rule Change in 2017
- Required Utilities to file Triennial Plan Filings- Staggered
- SPS filed May 15, 2019
- Covered Plan Years 2020-2022
- Removal of LM offerings
- Saver's Switch, Thermostats, ICO
- Addition of Heat Pump Water Heaters
- Settlement- Final Order on Feb 19, 2020
- Small program changes
- Additional Market Research funding for Potential Study

2020 APPROVED PROGRAM FORECAST

		Net	Net
	Electric	Customer	Customer
2020	Budget	kW	kWh
Residential Segment			
Energy Feedback	\$143,485	998	4,720,924
Heat Pump Water Heaters	\$44,500	25	185,716
Home Energy Services: Residential and Low Income	\$2,193,861	904	8,963,155
Home Lighting & Recycling	\$1,199,817	973	5,642,488
Residential Cooling	\$43,040	39	125,177
School Education Kits	\$145,417	10	376,378
Smart Thermostats	\$142,500	0	825,149
Residential Segment Total	\$3,912,620	2,785	20,853,234
Business Segment			
Business Comprehensive	\$4,798,684	2,263	15,985,365
Business Segment Total	\$4,798,684	2,263	15,985,365
Planning and Research Segment			
Consumer Education	\$200,000	0	0
Market Research	\$110,000	0	0
Measurement & Verification	\$15,000	0	0
Planning & Administration	\$285,000	0	0
Product Development	\$190,000	0	0
Planning & Research Segment Total	\$800,000	0	0
PORTFOLIO TOTAL	\$9,511,304	4,985	36,885,682

2021 APPROVED PROGRAM FORECAST

		Net	Net
2021	Electric	Customer	Customer
Modified by Settlement	Budget	kW	kWh
Residential Segment			
Energy Feedback	\$143,485	278	4,291,520
Heat Pump Water Heaters	\$78,500	45	337,666
Home Energy Services: Residential and Low Income	\$2,213,861	904	8,963,155
Home Lighting & Recycling	\$1,169,217	951	5,514,523
Residential Cooling	\$43,040	39	125,177
School Education Kits	\$145,917	10	376,378
Smart Thermostats	\$122,500	0	698,746
Residential Segment Total	\$3,916,520	2,733	20,320,915
Business Segment			
Business Comprehensive	\$5,682,482	2,764	19,763,161
Business Segment Total	\$5,682,482	2,764	19,763,161
Planning and Research Segment			
Consumer Education	\$200,000	0	0
Market Research	\$360,000	0	0
Measurement & Verification	\$15,000	0	0
Planning & Administration	\$290,000	0	0
Product Development	\$190,000	0	0
Planning & Research Segment Total	\$1,055,000	0	0
PORTFOLIO TOTAL	\$10,654,002	5,425	40,134,737

2022 APPROVED PROGRAM FORECAST

		Net	Net
2022	Electric	Customer	Customer
Modified by Settlement	Budget	kW	kWh
Residential Segment			
Energy Feedback	\$144,485	208	3,947,163
Heat Pump Water Heaters	\$68,500	57	422,082
Home Energy Services: Residential and Low Income	\$2,163,861	904	8,963,155
Home Lighting & Recycling	\$1,158,151	914	5,300,679
Residential Cooling	\$68,540	39	125,177
School Education Kits	\$166,417	10	376,378
Smart Thermostats	\$82,500	0	742,417
Residential Segment Total	\$3,852,454	2,637	19,890,259
Business Segment			
Business Comprehensive	\$5,741,548	2,797	20,111,128
Business Segment Total	\$5,741,548	2,797	20,111,128
Planning and Research Segment			
Consumer Education	\$200,000	0	0
Market Research	\$360,000	0	0
Measurement & Verification	\$15,000	0	0
Planning & Administration	\$295,000	0	0
Product Development	\$190,000	0	0
Planning & Research Segment Total	\$1,060,000	0	0
PORTFOLIO TOTAL	\$10,654,002	5,363	40,052,074

Appendix M Page 75 of 161 Case No. 21-00169-UT

UPCOMING PLAN FILINGS

- 2021 Limited Filing
- Filing of SPS's proposed EUEA goal based on 2020 Sales
- Present Potential Study
- Update PY 2022 program offerings and goals
- SPS 2022 Triennial Plan Filing
- · Covering PY 2023-2025
- Program updates/inclusions based on Potential Study recommendations.

CONTACT INFORMATION

Jeremy Lovelady: 303-294-2201

Jeremy.m.lovelady@xcelenergy.com

Southwestern Public Service Company Sales and Load Forecasting

New Mexico Resource Plan Public Advisory Meeting

January 12, 2021

Agenda

- Energy and peak demand forecasting process
- Forecast assumptions
- Energy and peak demand forecast results

FORECASTING PROCESS

- Develop 30-year forecasts of monthly customers, sales, and peak demand.
- Regression analysis, trend analysis, input from Account Management, contract terms, and load factor analysis.
- Includes adjustments for demand-side management, electric vehicles, individual large customer information.
- Retail sales are forecast by major class and by state.
- Retail peak demand is forecast at the aggregated company level.
- Wholesale sales and peak demand are forecast by individual customer.

REGRESSION ANALYSIS

economics, weather, customers, and price of electricity. The regression analysis result is an equation that weights the explanatory variables. A statistical process for estimating the relationship between monthly sales (or customers or demand) and explanatory variables such as

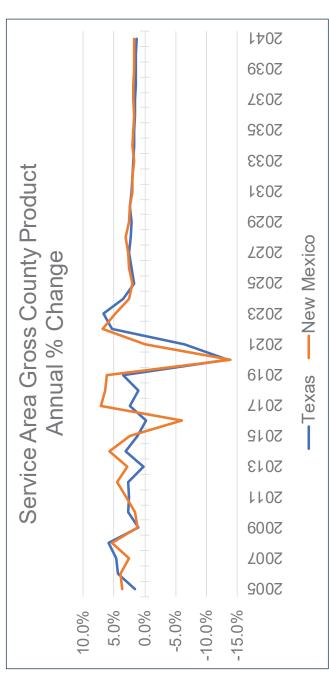
For example: Residential Sales = $(C_1 \times Personal \, Income \, per \, Household) + (C_2$ x heating weather) + $(C_3 \times cooling \text{ weather})$

Once a statistical relationship is established from historical data, the relationship is applied to the forecast of the explanatory variables to derive a forecast. Strengths: industry standard, robust, test results, defines relationships, adaptable/flexible.

Weaknesses: historical relationships can change, limited by available data, extremes can create challenges.

Appendix M Page 81 of 161 Case No. 21-00169-UT

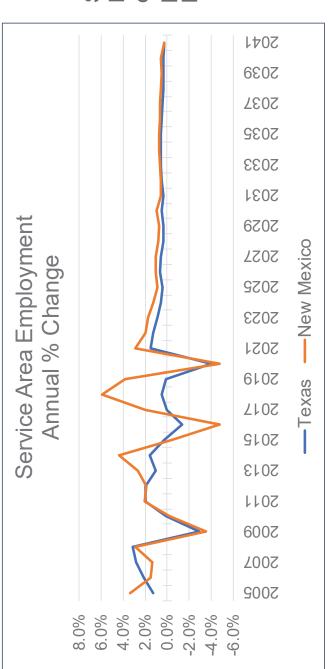
Assumptions


Economic and Demographic Assumptions

historical and forecast) for U.S., state and counties. County level Economic and demographic data obtained from IHS Markit (both data is aggregated to service territory.

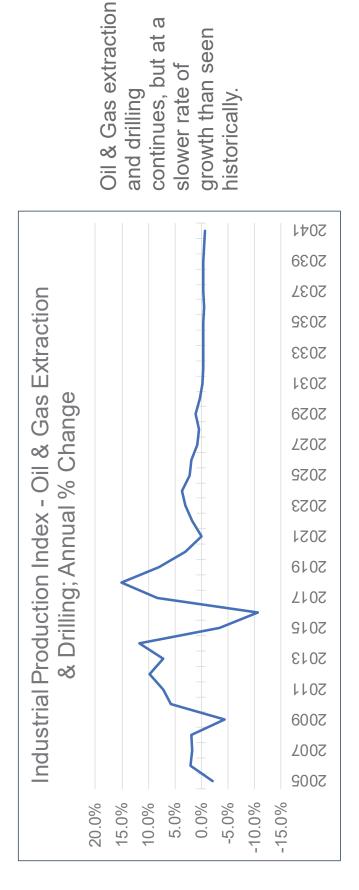
service area employment, households, personal income, population, and Gross County Product; U.S. Gross Domestic Product, and oil Economic and demographic variables used in modeling include and gas extraction and drilling index.

Current economic outlook shows significant COVID-19 impacts in 2020 with impacts moderating through 2024/2025.


Texas and New Mexico Service Area Gross County Product Growth

Service Area Gross
County Product is
expected to return to
pre-pandemic levels
by late 2023 (NM)
and in 2025 (TX).

Source: IHS Markit


Texas and New Mexico Job Growth

Service Area
Employment is
expected to return to
pre-pandemic levels
by mid-2022.

Source: IHS Markit

Oil and Gas Extraction and Drilling

Source: IHS Markit

Weather Assumptions

Weather data is collected from NOAA for Amarillo, Lubbock, and Roswell.

Forecast assumes normal weather defined as 30-year rolling average.

- Includes temperature, Heating Degree Days (HDD), Cooling Degree Days (CDD), and precipitation.
- Historical sales and peak demand are weather normalized for variance analysis.

Electric Vehicle Forecast Process

- Adoption scenarios through 2035 developed using several different modeling techniques (Bass Diffusion and Econometric models).
- Models based on annual data through 2019.
- COVID and Recession reduces the new EV sales as well as the average miles
- Forecast includes light, medium and heavy-duty vehicles.
- Peak demand impact is based on hourly charging curve.
- Charging profile switches from Unmanaged to Managed in 2022.

Electric Vehicle Sales and Loads

	tail																	
Peak Demand	% of Retail Peak	%0.0	%0.0	%0.0	%0.0	%0.0	0.1%	0.1%	0.2%	0.2%	0.3%	0.4%	%9.0	0.8%	1.1%	1.5%	1.9%	2.4%
Pea	MM	0	0	0	_	_	က	4	9	o	13	18	25	34	46	61	79	100
Cumulative # of EV Sales Consumption (MWh)	% of Retail Sales	%0.0	%0.0	%0.0	%0.0	0.1%	0.1%	0.2%	0.2%	0.4%	0.5%	%2.0	1.0%	1.3%	1.7%	2.2%	2.7%	3.3%
	Total	1,963	2,556	3,851	6,136	12,210	22,911	37,059	56,932	85,657	125,259	176,416	241,768	322,841	421,813	542,648	687,173	848,330
	ADV	65	268	642	1,224	2,665	5,816	11,229	20,228	34,135	53,525	77,164	105,092	136,707	171,354	208,830	249,084	292,442
	MDV	0	_	2	7	309	1,298	3,182	6,118	10,233	15,317	21,149	28,062	35,900	44,541	53,982	64,237	75,328
	ΓDΛ	1,897	2,287	3,206	4,905	9,236	15,797	22,649	30,586	41,288	56,417	78,103	108,615	150,234	205,919	279,836	373,852	480,561
	Total	526	652	892	1,472	3,000	4,712	6,463	8,804	12,013	16,603	23,053	31,991	43,889	29,668	80,403	105,915	132,838
	HDV	_	7	2	6	22	47	88	156	257	393	551	746	996	1,215	1,492	1,799	2,133
	MDV	0	0	0	0	18	62	137	247	396	268	763	1,001	1,266	1,559	1,879	2,228	2,606
	ΓDΛ	525	650	887	1,463	2,960	4,603	6,239	8,402	11,360	15,642	21,739	30,244	41,656	56,894	77,031	101,887	128,099
		2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035

DEMAND-SIDE MANAGEMENT

Sales and peak demand forecasts are adjusted to account for expected incremental DSM savings. Incremental DSM is projected DSM savings less the amount of historical DSM savings embedded in sales and peak demand.

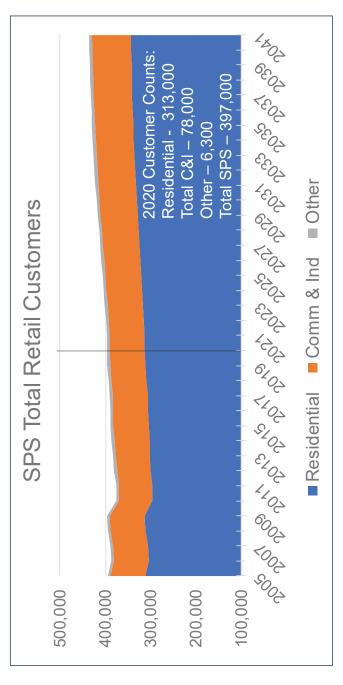
DSM savings are based on approved DSM filings.

Residential programs: residential lighting (LEDs), weatherization, school kits, and smart thermostats.

C&I programs: motor replacement, custom projects, business lighting, and cooling.

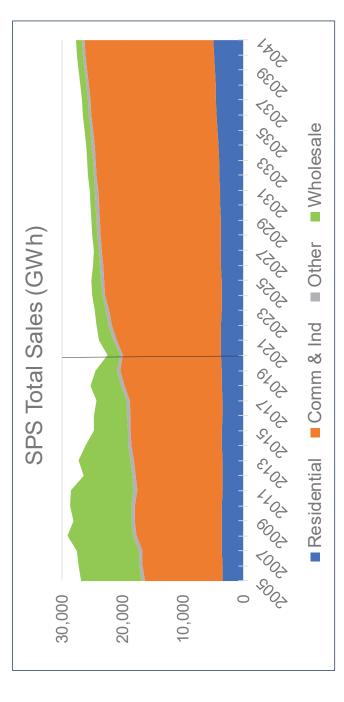
SPS New O&G Load

- SPS Key Account Managers provide potential new load that has been identified through conversations with the customer.
- No new O&G load in TX.
- Total potential new load adjusted for actual achievement and timing risks.
- Only highly probable loads are included (>=80% probability)
- Probability of achieving highly probable loads declines over time.
- Assumed to be online the quarter after service is requested.
- Ramps up to full requested capacity over 3 quarters.
- Load factor applied to derive energy impacts.

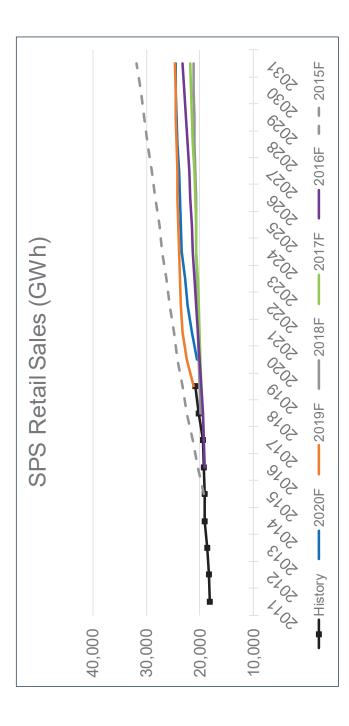

Appendix M Page 91 of 161 Case No. 21-00169-UT

Forecast Results

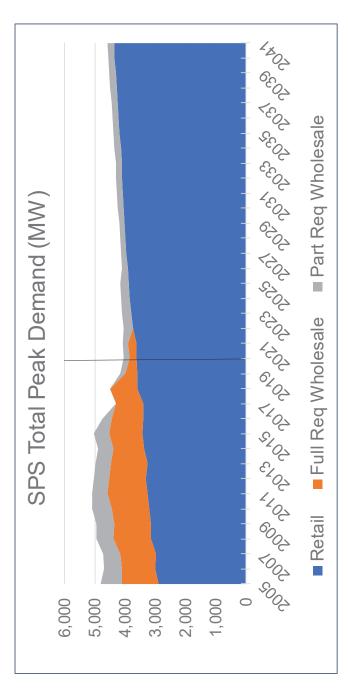
SPS Forecast Key Take-Aways


- Near-term Residential use per customer is higher than recent past and Small C/I use per customer is lower.
- Both Residential and Small C/I use per customer begin to return to long-term trends after 2020 but take several years to return to prior levels.
- Assume losses in Small C/I sector due to business closures in "experience economy" sectors (Arts and Entertainment, Restaurants and Bars, Retail).
- Large C/I gradually recovers.
- Slowdown in Oil and Gas extraction/drilling in 2020.
- Additional negative impacts in 2020 and into 2021 for other mining/manufacturing customers.
- Continued declines in Wholesale as contracts ramp down/expire.

CUSTOMER FORECAST


2021 - 2041 = 0.4%2011-2020 = 0.6%Retail Avg. Annual % Ch.:

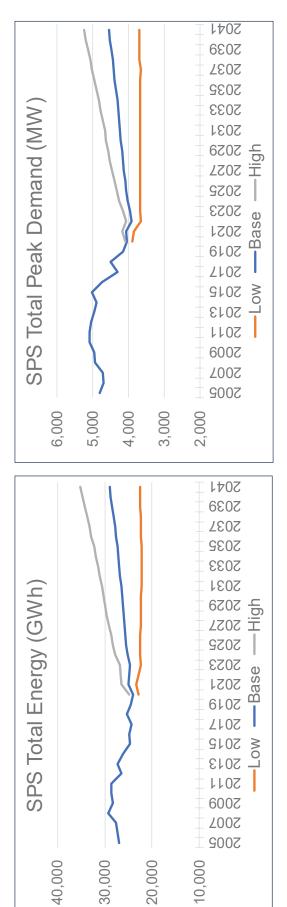
SALES FORECAST



2021 - 2041 = 1.3%2021-2041 = 1.0%SPS Total Avg. Annual % Ch.: 2011-2020 = -2.4% 2011-2020 = 1.0%Retail Avg. Annual % Ch.:

SALES FORECAST COMPARISONS

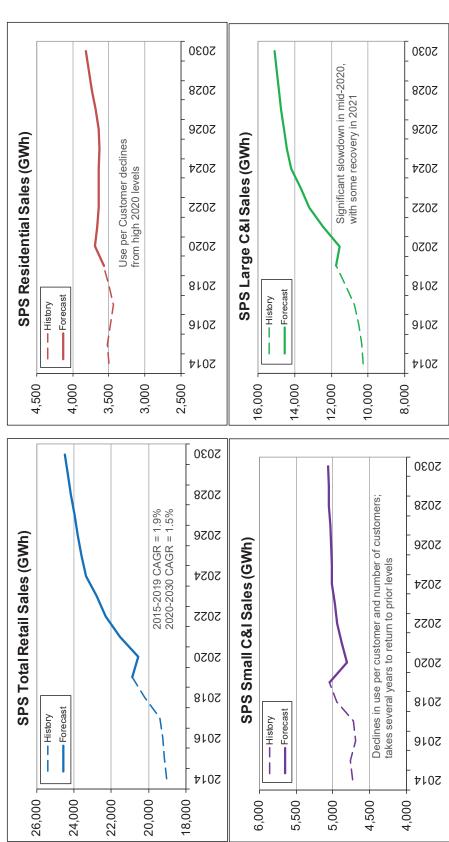
PEAK DEMAND FORECAST

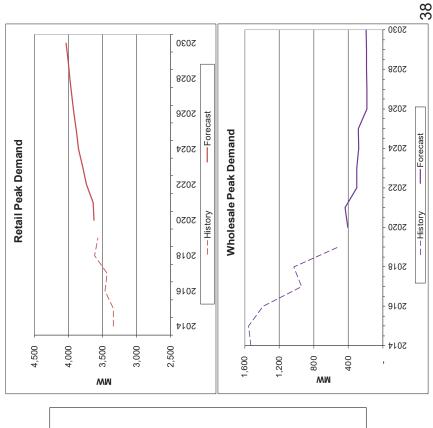


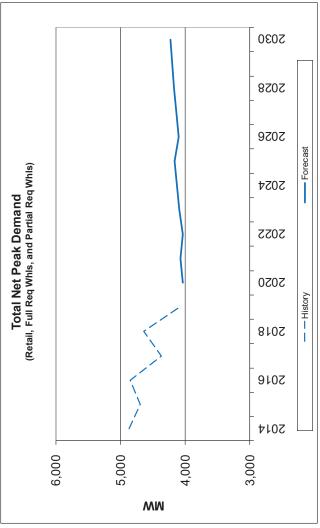
2021 - 2041 = 0.9%2021-2041 = 0.6%SPS Total Avg. Annual % Ch.: 2011-2020 = -2.3% 2011-2020 = 1.2%Retail Avg. Annual % Ch.:

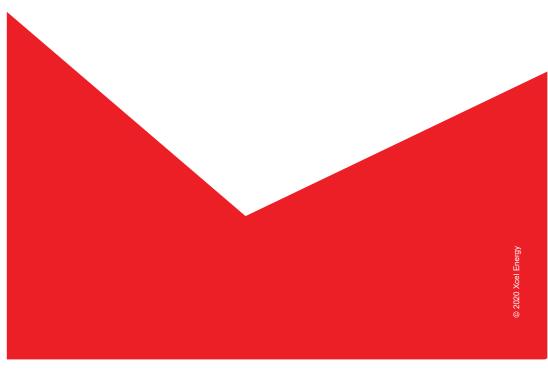
Forecast Scenarios

Probability distributions are developed by conducting Monte Carlo simulations on the main drivers of energy and peak demand forecasts (e.g., weather and economics). Low-growth scenario is equivalent to the 15th percentile probability distribution. High-growth scenario is equivalent to the 85th percentile probability distribution.


FORECAST SCENARIOS


Appendix M Page 99 of 161 Case No. 21-00169-UT


Appendix



QUESTIONS & DISCUSSION

TOPICS FOR FUTURE MEETINGS

- Gas & Power Markets
- Coal Supply
- Energy Storage

NM IRP DETAILS

Web Page -

https://www.xcelenergy.com/company/rates and regulations/resource plans/2022 new mexico integrated resource plan * Note: For the Service Area, click on New Mexico. At the bottom of the page click on the Public Advisory Meeting tab, then click on the date for the first public meeting

Resource Planning Contacts –

- Bennie Weeks | Manager of Resource Planning & Bidding | Bennie.Weeks@xcelenergy.com
- Ben Elsey | Resource Planning Analyst | Ben.R.Elsey@xcelenergy.com
- Ashley Gibbons | Resource Planning Analyst | Ashley. Gibbons@xcelenergy.com

Regulatory Contacts –

- Linda Hudgins | Case Specialist II | Linda.L.Hudgins@xcelenergy.com
- Mario Contreras | Rate Case Manager | Mario. A. Contreras@xcelenergy.com

Xcel Energy*

SPS New Mexico 4th IRP Public Meeting

Date: March 23, 2021

Time: 10:00 AM - 12:00 PM Mountain Time

Location: Zoom Meeting

Appendix M Page 106 of 161 Case No. 21-00169-UT

43

Xcel Energy®

© 2020 Xcel Energy

Appendix M Page 107 of 161 Case No. 21-00169-UT

Topics For Discussion

- Coal Supply
- Tolk Station Water Supply
- Gas & Power Market Price Forecasting
- Questions and Discussion
- Next Meeting Topics
- Final Public IRP Meeting

COAL SUPPLY PRESENTATION Manager, Fuel Supply Operations Dana Echter March 23, 2021 Xcel Energy® © 2021 Xcel Energy

ς+

Location: near Amarillo, Texas

Three coal-fired units: ~1,050 net MW

Coal sources

Low-sulfur Powder River Basin ("PRB") coal mines - North Antelope Rochelle, Antelope and Black Thunder

Rail Transportation: Burlington Northern Santa Fe (BNSF)

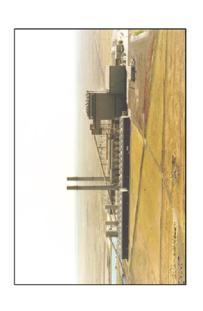
Trestle unloading system

2020 consumption: ~2.1 million tons

All three units will be converted to gas no later than January 1,

TOLK STATION

Two coal-fired units: ~1,082 net MW


Coal sources

Low-sulfur Powder River Basin ("PRB") coal mines - North Antelope Rochelle, Antelope and Black Thunder

Rail Transportation: Burlington Northern Santa Fe (BNSF)

Rotary unloading system

• 2020 consumption: ~1.1 million tons

SPS CONTRACT INFORMATION

TUCO, Inc.

- contracts with coal suppliers, rail transportation and coal TUCO is a third-party supplier responsible for managing handling.
- SPS purchases coal from TUCO at the plant bunkers
- Xcel Energy's Fuel Supply Operations manages the TUCO contract
- The TUCO contracts expire on Dec 31, 2022. These may be extended to coincide with the conversion of Harrington to natural gas.

TUCO COAL CONTRACT INFORMATION

Coal suppliers are Peabody Energy (North Antelope Rochelle), Cloud Peak Energy (Antelope) and Arch Coal (Black Thunder)

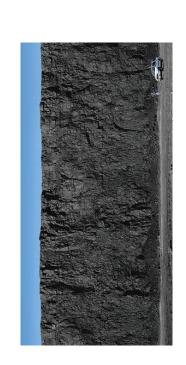
Coal contracts are fixed price, term and quantity

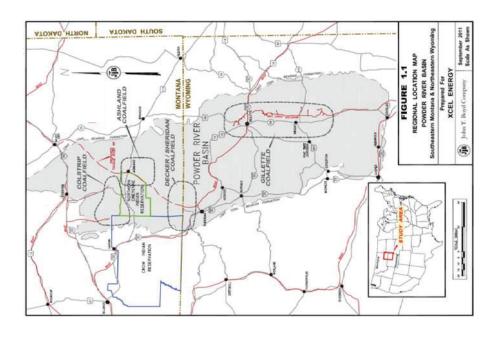
Coal supply agreements are short term and expire before the TUCO agreements

TUCO TRANSPORTATION CONTRACT INFORMATION

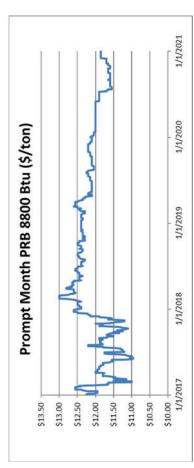
Transportation

- Tolk and Harrington served by BNSF Railway
- The Harrington rail agreement expires in Dec 2022
- The Tolk rail agreement expires in Dec 2022
 - Include Mileage Based Fuel Surcharges




Railcars are provided by long-term lease held by TUCO and expire concurrently with the TUCO Coal Supply Agreements

POWDER RIVER BASIN


- Roughly 300mi x 100 mi
- USGS
- 140 billion tons of resources in areas of most interest
- 77 billion tons in Gillette Coalfield alone

PURCHASE STRATEGY

Current market is approximately \$11.90/ton for 8,800 Btu/lb PRB coal FOB

- Keep relatively large open position to be able to react to changes in system operations
- Target is by December, purchase ~60% of upcoming year requirements, ~30% for 2^{nd} year and ~15% for 3^{rd} year.

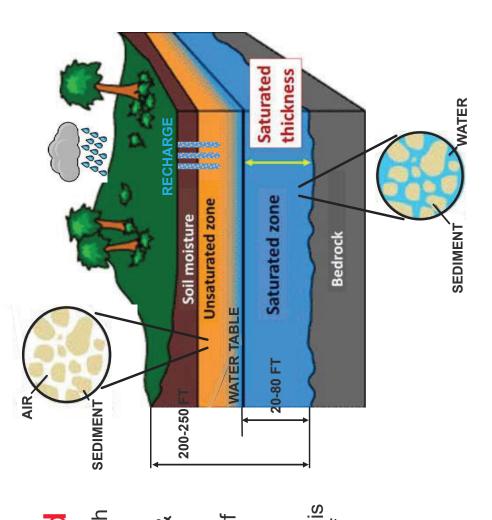
Xcel Energy®

TOLK STATION WATER SUPPLY

Richard L. Belt, P.E., P.H. - Director, Chemistry & Water Resources

March 23, 2021

Definitions & Background


An **aquifer** is a geologic formation which is saturated with water.

The **water table** divides the saturated & unsaturated zones.

Saturated thickness is the thickness of the aquifer from bedrock to water table.

Recharge is excess water which may percolate to the saturated zone. There is very little aquifer recharge in this part of the Ogallala Aquifer.

High Plains Underground Water District No. 1 is abbreviated as HPWD, throughout.

© 2021 Xcel Energy

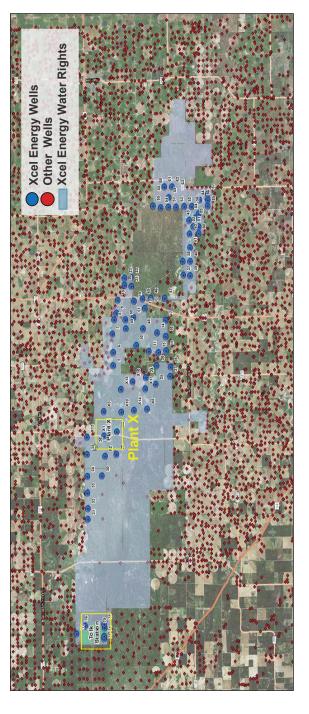
Ogallala Aquifer Overview

The **Ogallala Aquifer** is one of the largest freshwater aquifers in the world, formed 2M to 6M years ago.

Water filled the aquifer following the most recent ice age and probably earlier.

The Ogallala underlies 8 states and 27% of irrigated land in the U.S.

The aquifer supplies more than 80% of the potable water for 2.3M people residing and working in the lands overlying it.


McGuire, V.L., 2017, Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15: U.S. Geological Survey Scientific Investigations Report 2017–5040, 14 p., https://doi.org/10.3133/ sir20175040.

© 2021 Xcel Energy

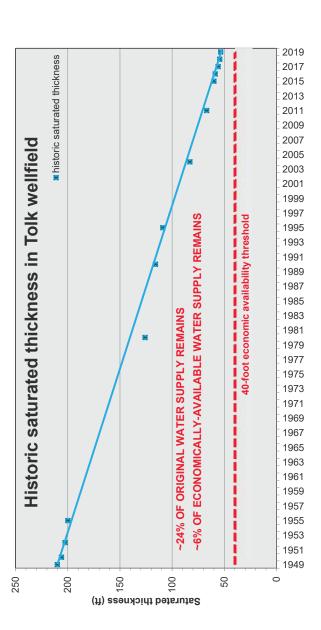
Competition for Water

Wellfield overview:

- 50K ac wellfield
- 89 production wells
- ~30 miles from furthest well to Tolk Station

High Plains Underground Water District No. 1 (HPWD) groundwater production rules limit all users to 18-inches per acre per year.

Tolk water use in 2020 equal to approximately 1.29 inches per acre.


Tolk Wellfield History

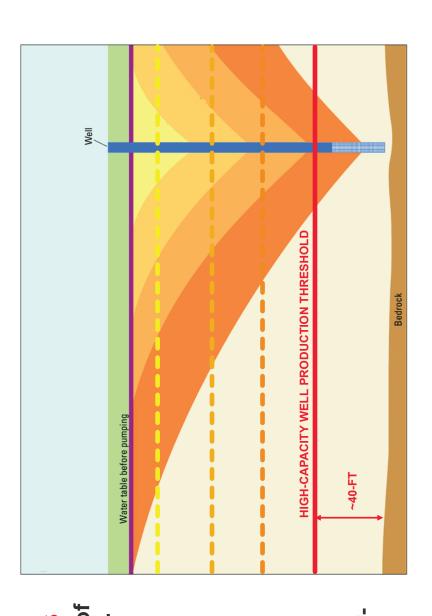
In Lamb County (HPWD, 2020):

- 50-ft average saturated thickness
- 13.7-ft average decline since 2010

Texas Water Development Board Region O planning area:

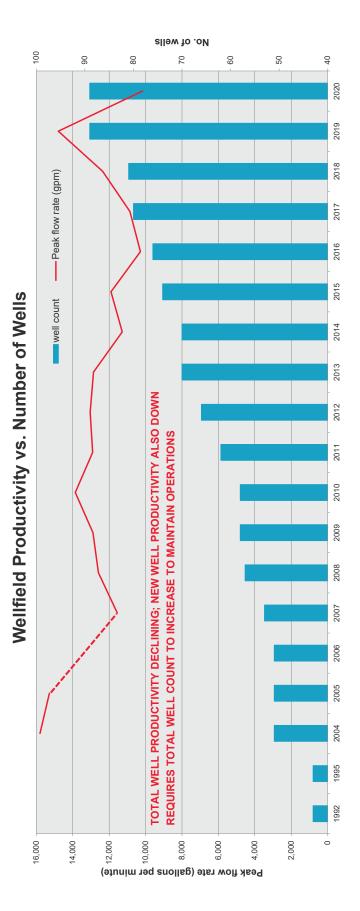
- 1.7 million acre-foot annual shortage by 2020
- 2.1 million acre-foot annual shortage by 2070

Production Issues Groundwater


Each well creates a cone of depression when pumped.

Over time, the cone gets deeper until the well is inoperable.

nearby create overlapping cones, drawing down the regional water table. **Multiple wells operating**


ineffective => multiple lowcapacity wells needed to capacity wells become At about 40-ft, highreplace

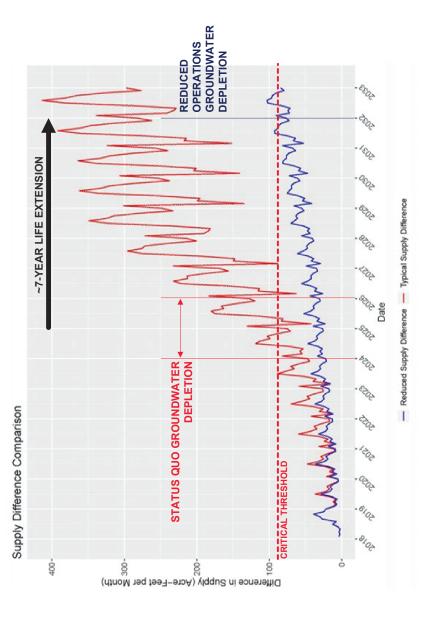
Milkshake analogy.

17

© 2021 Xcel Energy

Tolk Station Plan

SPS implemented seasonal generation operations in 2019 to extend plant life to ~2032.


Synchronous condensers installed in 2020.

Annual groundwater model update to monitor impact of Tolk actions & 3rd party water users.

Remaining model uncertainty:

- Water use by 3rd parties (agriculture)
- Future weather (drought)
- Future electric system requirements

(2) Xcel Energy®

GAS AND POWER MARKET PRICE FORECASTING

March 23, 2021

Natural Gas Forecasting Methodology

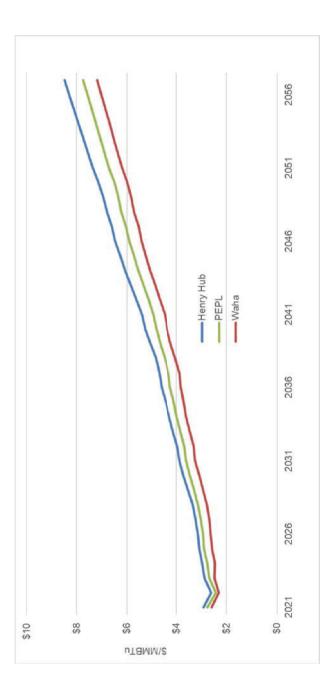
Xcel Energy derives the forecast of natural gas prices semi-annually in spring/fall

Henry Hub Forecast is an average of three consultants' long-term forecasts and the current NYMEX strip

The forecast is fully market based for the first few years, then it transitions into blending NYMEX with the consultants' long-term forecasts as follows:

Period	NYMEX	HS	S&P Global	Wood Mackenzie
Balance of the year + 2 years	100%	%0	%0	%0
Years 3 and Beyond	25%	25%	25%	25%
		10 yr t	10 yr trendline extension	u

Consultants' Modeling and Assumptions Differ

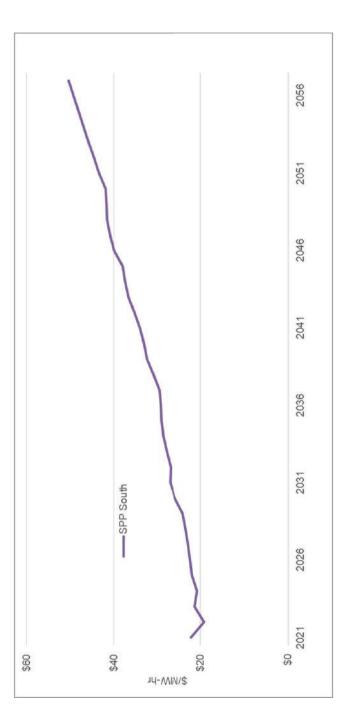

- Natural gas supply and demand
- Coal retirements
- Renewable penetration
- Technology improvements
- LNG exports
- Gas pipelines

Natural Gas Delivered Price

Basis differential is the difference in the gas price at a given hub compared to a benchmark location (Henry Hub) Henry Hub is adjusted for regional basis differentials and specific delivery costs for each generating unit to develop model inputs

· Data source for basis: IHS Markit, S&P Global and Wood Mackenzie

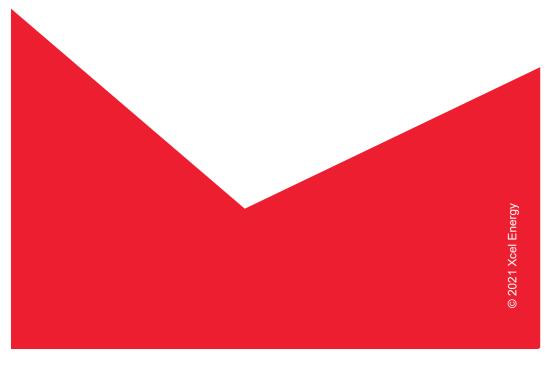
Recent Natural Gas Price Forecasts (Fall 2020)


Electricity Market Prices

To derive the forecast of monthly on and off-peak prices, the company uses a simple average of long-term implied heat rate forecasts provided by:

• IHS, S&P Global and Wood Mackenzie

The implied heat rates are multiplied by the gas price at a near location to determine the on and off-peak prices (\$/MWh)


Recent Electricity Forecast (Fall 2020)

QUESTIONS & DISCUSSION

TOPICS FOR THE FINAL MEETING

Accreditation of Energy Storage

Energy Storage

GIA Issues

NM IRP DETAILS

Web Page -

https://www.xcelenergy.com/company/rates and regulations/resource plans/2022 new mexico plan integrated resource

* Note: For the Service Area, click on New Mexico. At the bottom of the page click on the Public Advisory Meeting tab, then click on the date for the first public meeting

Resource Planning Contacts –

- Bennie Weeks | Manager of Resource Planning & Bidding | Bennie.Weeks@xcelenergy.com
- Ben Elsey | Resource Planning Analyst | <u>Ben.R.Elsey@xcelenergy.com</u>
- Ashley Gibbons | Resource Planning Analyst | Ashley. Gibbons @xcelenergy.com

Regulatory Contacts –

- Linda Hudgins | Case Specialist II | Linda.L.Hudgins@xcelenergy.com
- Mario Contreras | Rate Case Manager | Mario.A.Contreras@xcelenergy.com

Xcel Energy®

SPS New Mexico 5th IRP Public Meeting

Date: May 13, 2021

Time: 10:00 AM - 12:00 PM Mountain Time

Location: Zoom Meeting

Appendix M Page 136 of 161 Case No. 21-00169-UT

Appendix M Page 137 of 161 Case No. 21-00169-UT

Topics For Discussion

- Energy Storage
- Generator Interconnection Agreement Issues
- Questions and Discussion

Energy Storage Overview

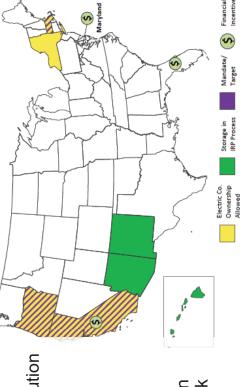
SPS New Mexico IRP Public Advisory Meeting

May 13, 2021

National Storage Policy Trends

Legislative:

- Climate Change Mandates/Target
- Tax Credits/Incentives
- Study/Investigative Proceeding
- Ownership Rules
- Clean Peak Standards

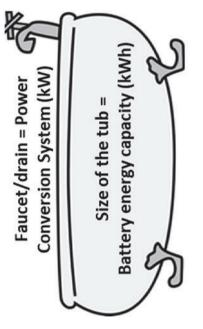

Regulatory/Rate Design:

- Resource Planning/Procurement Requirement
- Grid Modernization/Distribution Planning Proceeding
 - Interconnection Rules
- Value of Storage/DER
 - Demand Charges

Force

• National Stakeholders: Energy Storage Association, Interstate Renewable Energy Council (IREC), Advanced Energy Economy, Energy Freedom Coalition of America (EFCA)

Source: Edison Electric Institute



What's Changed Since 2018?

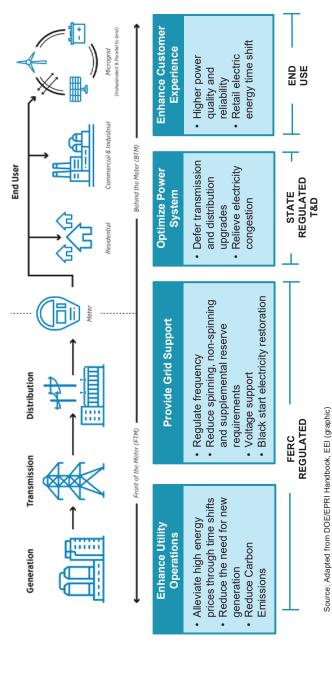
- There are technologies that are not commercially feasible today that are needed to achieve a carbon-free generation fleet by 2045 (pursuant to Energy Transition Act)
- Degree to which storage can contribute to decarbonization is weighted on par with the economic and reliability benefit to the grid system
- Storage will be able to capture more carbon-free electricity that would otherwise be curtailed to support grid balancing
- renewable energy More storage with >10 hours and up to seasonal scale (>100 hours Longer duration storage will be needed to enable greater penetrations of variable
- Shorter duration storage is still needed for faster grid response applications
- Several new advanced storage technologies are becoming commercially available in the near to mid-term

Energy Storage as a Bathtub

- The size of the tub (or reservoir in the case of a pumped hydro facility), and therefore how much water or energy it can store, determines the **kWh** (energy storage capacity)
 - The Power Conversion System works like the faucet/drain in the tub. It determines how quickly the tub will drain and then refill, and therefore determines the kW (power) metric
 - The cost of the tub as a resource can be described in terms of \$/kW-month (system capacity cost)
- Duration is one of the most important drivers of the value of a particular storage system (hours)

Fixed Cost of the Bathtub, levelized over the life = System Capacity Cost (\$/kW-month)

Stored Energy (kWh) = Power (kW) * Discharge time (hrs)


Ш

Xcel Energy*

Why Energy Storage?

Energy storage can be deployed in all parts of the grid, and has applications in all parts of the value chain.

What is Energy Storage?

🕢 Xcel Energy*

Definition

- generated electric energy and releasing it at a Technology capable of storing previously later time.
- Can occur as potential, kinetic, chemical, or
- Release of energy can be in forms that include electricity, gas, thermal energy and other thermal energy.
- Can be deployed in all parts of the grid helps more reliable energy grid for all customers. to enable a smarter, stronger, cleaner, and energy carriers.

Asset Categories

Uses

- Electric generation asset
- Transmission asset

Reliability/resiliency

 Flexibility Capacity

- Distribution asset
- DSM asset

community projects

Microgrids and

sulfur, lead acid, lithium ion, metal air, solid state, etc.

Electrochemical Storage: Includes advanced

Technologies

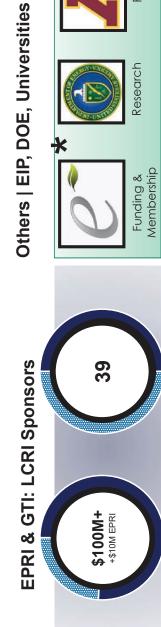
chemistry batteries and capacitators - sodium

solution for longer life cycle and quick response Flow batteries: Energy is stored in electrolyte

compressed or stored as liquids to provide long Hydrogen: Hydrogen or hydrogen carriers are duration energy reserves, carbon-free fuels, and/or feedstocks for other industries

Compressed air energy storage:

Compressed air is used to create a potent energy reserve Thermal: Heat and cold are captured to create energy on demand Pumped hydro power: Large scale reservoirs of energy are created with water


Storage Technologies

2 Xcel Energy*

)	
Technology	Benefits	Challenges	Applications
Lithium-lon Battery	Energy densityPower density	Cycle life constraintsSafety concerns	Peak shaving, T&D investment deferral, renewable integration, ancillary services
Lead Acid Battery	• Familiar • Inexpensive	 Relatively low energy & power density Poor cycle life Often requires maintenance Environmental impacts 	Best suited for relatively limited-cycle applications requiring shallow depth of discharge such as backup power and limited peak shaving.
Sodium Sulfur Battery	 High energy density 	 High temps required Limited power capabilities 	Peak shaving, T&D investment deferral, renewable integration
Flow Batteries	Decouple power (reactor size) from energy (tank size) Improved cycle life	 Low energy density Added components with pumping 	Peak shaving, T&D investment deferral, renewable integration, ancillary services
Flywheels	Fast ResponseHigh Power	 Low Energy/duration High self discharge rates 	Power quality, frequency regulation, wind generation stabilization
Compressed Air Energy Storage (CAES)	• Reliable bulk storage	• Geologically limited	Capacity/energy services, ancillary services, renewable integration
Pumped hydro	Reliable Bulk Storage	Geographical limitsCapital intensive	Capacity/energy services, ancillary services, renewable integration

Carbon-Free Innovations Further Enabled through External Engagements

Energy Impact Partners (EIP) – Summary of Funds Managed

Research

EIP Energy Impact Fund (EIF):

*

entrepreneurs and the world's most forward-looking utilities and operating companies to advance innovation. With over \$1.5 billion in Energy Impact Partners (EIP) is a global investment platform leading the transition to a sustainable energy future. EIP brings together assets under management, EIP invests globally across venture, growth, credit and infrastructure – and has a team of more than 50 professionals based in its worldwide offices.

EIP Deep Decarbonization Frontier Fund (Frontier Fund):

Leveraging the industry and investing experience of the EIF, the Frontier Fund focuses on revolutionary technologies driving to net-zero emissions and mitigating climate change. This fund's target sectors include: zero carbon generation, carbon capture, hydrogen, energy storage, materials and industry, and transportation electrification.

EIP Elevate Diversity Impact Fund (Elevate Fund):

The Elevate Fund aims to increase diversity in the energy industry by investing in innovative companies founded or run by under-represented talent (e.g., black, latinx, women, LGQBT+, etc.). Elevate will help equalize the typically disproportional access to the venture capital ecosystem, as well as offer opportunities to positively affect disadvantaged communities.

Why is This Important in the Future?

Grid needs

Market and policy drivers

Carbon-free generation resources

Policy changes

Technology advances

free resources

Integration of

Cost declines

Where We Are Going

Primary use for grid stability and resiliency

 Rate management Other options:

Commercial DR

 Voluntary solar time shifting

Backup

 Interconnection options

Backup only

Primary use shared decarbonization customer and between grid, objectives

with other technology Integrated, optimized

Grid Examples:

 Capture of carbonfree energy

 Demand response Renewable

 Distribution deferral integration

Ancillary services

Customer examples:

 Rate management Backup

FUTURE

TODAY Pre-2017

Lithium Ion BESS Installed Cost Projections

Lithium ion installed costs are projected to decrease by over 40% by 2030. The top figure illustrates projected installed cost for a 100 MW system with upper and lower bounds based on the longer duration systems have a larger range due to the cost potential differences in costs captured in the bottom figure. sensitivities of the battery portion which makes up a larger percentage of the installed cost.

1613

200 \$∕kw

1000

200

2500

2000

880 525

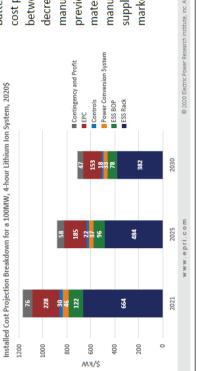
cost for a 100MW, 4hr system through 2030. Cost reductions will The bottom figure illustrates an example breakdown of installed likely be accomplished across all major cost categories.

> 2030 2029

2028

2027

2026


2023

2022

2021 2020

2024 2025

between electric vehicle packs and stationary racks is assumed to previous EPRI estimates which included some uncertainty around manufacturers have adjusted their formulas and managed their material prices. However, in the last two to three years battery Battery cost declines are based on electric vehicle battery pack cost projections with adjustments for stationary racks. The gap manufacturing scale. Battery cost projections are lower than supply chains to minimize impact of changes in the metals decrease over time as stationary energy storage grows in

ELECTRIC POWER RESEARCH INSTITUTE

Xcel Energy®

ACCREDITATION OF ENERGY STORAGE IN THE SOUTHWEST POWER POOL

Ashley Gibbons | Resource Planning Analyst

May 13, 2021

15

SPP PROPOSED ACCREDITATION OF STANDALONE ENERGY STORAGE RESOURCES (ESRs)

Beginning 2023

- SPP will implement the Effective Load Carrying Capability ("ELCC") methodology for determining accredited capacity for standalone ESRs
- Batteries with a 4-hour or greater duration will initially qualify for 100% accredited capacity
- The amount of accredited capacity for energy storage resources will decrease as the penetration of energy storage increases across the SPP footprint (e.g. accredited capacity is reduced to 73% at 8,000MW of ESR)

Capacity value evaluated

Nameplate Battery Capacity (MW)

Nameplate Battery

Duration

ery Size neplate

-hour)

for ELCC Study (MW)

30MW

60MW

2 -hour

MW-hour

30MW

30MW

4-hour

MW-hour

20MW

20MW

6-hour

MW-hour

15MW

15MW

8-hour

MW-hour

SPP will update ELCC study every two years

Nam. Batte (MW/	120 1
	0000'6
X 60 /	1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 Battery Capacity (MW)
opo /	7,000
Meth	6,000 W
25 /	5,000 ity (MN
ё В — — — — — — — — — — — — — — — — — — —	Do 3,000 4,000 5,000 6,C
ry Us	3,000 ttery (
3atte	2,000 Ba
4-Hour Battery Using ELCC Methodology	1,000
000% 95% 90% 88% 80% 75%	65% 60% 55% 0
lit (% of Nameplate)	

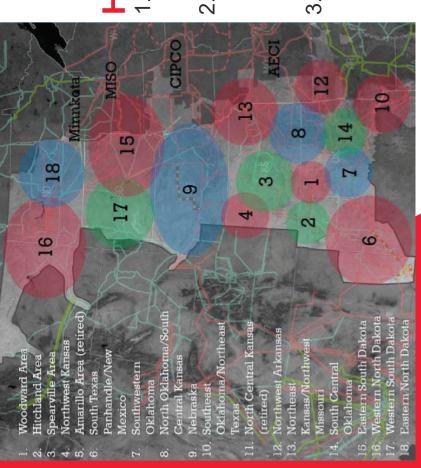
Weel Energy®

QUEUED UP? CLEARING THE SPP DISIS BACKLOG

Kevin Pera, P.E. | Transmission Analyst

May 13, 2021

Xcel Energy®


MOVING THROUGH THE QUEUE

Plenty of headroom in SPS territory

Past:

Present: Clearing out the MW

Future (??): Changing study structures

HOW DID WE GET HERE?

- 1.Old way—individual requests, studied in queue order
- 2.DISIS (2009-pres.)—clusters of requests

Same cluster—equally-queued

←Studied in Groups

3. Each group exports all generation

Xcel Energy*

© 2020 Xcel Energy

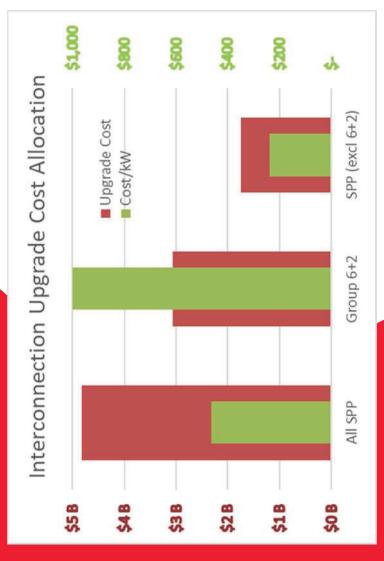
SPP Southwest

SPP Southeast

17-2 GROUP REDUCTION

SPP North Central

SPP North


SPP Central

UPGRADES—THE MAIN ISSUE

- 1.All active requests and those with a GIA remain in future studies
- 2.Too many megawatts—too many upgrades
- 3.MW expire—SPP reconsiders their upgrades

© 2020 Xcel Energy

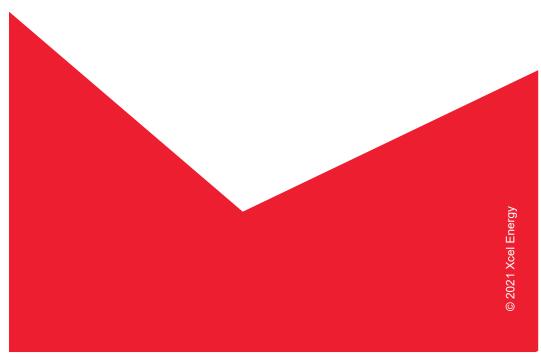
Xcel Energy*

WHERE ARE WE NOW? 1. GENERAL

SPP working on 17-1, just announced 16-2 restudy

2.SPECIFIC

Decision Point 2 (DP2)


\$930 million in at-risk deposits due today (May 13th)

\$500 million in Group 6, to cover \$2.5 billion in upgrades

QUESTIONS & DISCUSSION

NM IRP DETAILS

Web Page -

https://www.xcelenergy.com/company/rates and regulations/resource plans/2022 new mexico plan integrated resource

* Note: For the Service Area, click on New Mexico. At the bottom of the page click on the Public Advisory Meeting tab, then click on the date for the first public meeting

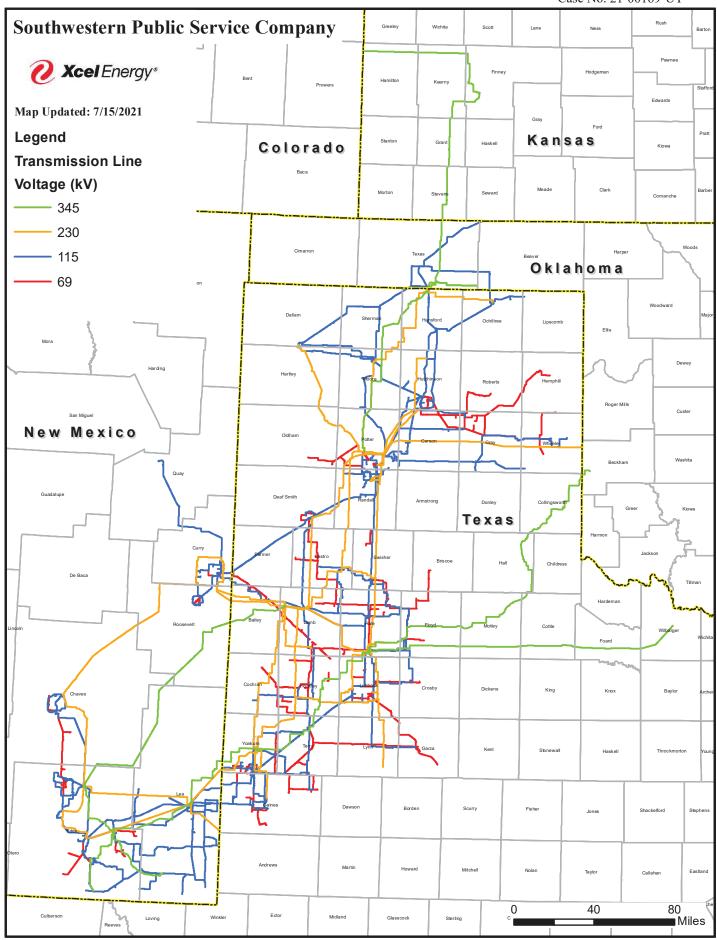
Resource Planning Contacts –

- Bennie Weeks | Manager of Resource Planning & Bidding | Bennie.Weeks@xcelenergy.com
- Ben Elsey | Resource Planning Analyst | <u>Ben.R.Elsey@xcelenergy.com</u>
- Ashley Gibbons | Resource Planning Analyst | Ashley. Gibbons @xcelenergy.com

Regulatory Contacts –

- Linda Hudgins | Case Specialist II | Linda.L.Hudgins@xcelenergy.com
- Mario Contreras | Rate Case Manager | Mario.A.Contreras@xcelenergy.com

Appendix M Page 161 of 161 Case No. 21-00169-UT



	i e e e e e e e e e e e e e e e e e e e
INTEGRATED RESOURCE PLANS FOR ELECTRIC UTILITIES	
Initial filings. Utilities with greater than 200,000 New Mexico retail customers shall file 15 months after the effective date of this rule. Utilities with less than 200,000 New Mexico retail customers shall file 27 months after the effective date of this rule. An original and fourteen copies of the IRP shall be filed with the commission.	IRP filed on July 16, 2021
Contents of IRP for electric utilities. The IRP submitted by an electric utility shall contain the utility's New Mexico jurisdictional:	
	Section 3
	Section 4
/	Section 5
	Section 6
description of the resource and fuel diversity;	Section 7
	Section 3
	Section 7 Section 8
	Section 9
	Section 7
planning processes.	
serve its jurisdictional retail load at the time the IRP is filed shall include:	
name(s) and location(s) of utility-owned generation facilities;	Table 3-1
rated capacity of utility-owned generation facilities;	Table 3-1
	Table 3-1 (also included in
	Encompass files provided under Protective Order)
cost information, including capital costs, fixed and variable operating and maintenance costs, fuel costs, and purchased power costs;	Table 3-1; Appendix A
existing generation facilities' expected retirement dates;	Table 3-1
amount of capacity obtained or to be obtained through existing purchased power contracts or agreements relied upon by the utility, including the fuel type, if known, and contract duration:	Section 3; Table 3-2
estimated in-service dates for utility-owned generation facilities for which a certificate of	Section 3
amount of capacity and, if applicable, energy, provided annually to the utility pursuant to	Section 3
	Section 3
	Section 3
demand-side resources approved by the commission, but not yet deployed at the time the IRP is filed; information provided concerning existing demand-side resources shall include, at a minimum, the expected remaining useful life of each demand-side resource and the energy savings and reductions in peak demand, as appropriate, made by the demand-side resource;	Section 3
the expected remaining useful life of the resource, its maximum capacity and dispatch characteristics, and operating costs;	Section 3
reserve margin and reserve reliability requirements (<i>e.g.</i> FERC, power pool, etc.) with which the utility must comply, and the methodology used to calculate its reserve margin;	Section 3
existing transmission capabilities:	
the utility shall report its existing, and under-construction, transmission facilities of 115 kV and above, including associated switching stations and terminal facilities; the utility shall specifically identify the location and extent of transfer capability limitations on its transmission network that may affect the future siting of supply-side resources;	Section 3; Appendix B; Appendix C
the utility shall describe all transmission planning or coordination groups to which it is a party, including state and regional transmission groups, transmission companies, and coordinating councils with which the utility may be associated;	Section 3
	E: 2F2
the utility shall provide the percentage of kilowatt-hours generated by each fuel used by the utility on its existing system, for the latest year for which such information is available;	Figure 3F.3
to the extent feasible, for each existing supply-side resource on its system, the utility shall	Table 3-8
	months after the effective date of this rule. Utilities with less than 200,000 New Mexico retail customers shall file 27 months after the effective date of this rule. An original and fourteen copies of the IRP shall be filed with the commission. Contents of IRP for electric utilities. The IRP submitted by an electric utility shall contain the utility's New Mexico jurisdictional: description of existing electric supply-side and demand-side resources; current load forecast as described in this rule; load and resources table; identification of resources options; description of the resource and fuel diversity; identification of critical facilities susceptible to supply-source or other failures; determination of the most cost-effective resource portfolio and alternative portfolios; description of public advisory process; action plan; and other information that the utility finds may aid the commission in reviewing the utility's planning processes. Description of existing resources. The utility's description of its existing resources used to serve its jurisdictional retail load at the time the IRP is filed shall include: name(s) and location(s) of utility-owned generation facilities; rated capacity of utility-owned generation facilities; rated capacity of utility-owned generation facilities; rated capacity of utility-owned generation facilities; cost information, including capital costs, fixed and variable operating and maintenance costs, fuel costs, and purchased power costs; existing generation facilities' expected retirement dates; amount of capacity obtained or to be obtained through existing purchased power contracts or agreements relied upon by the utility, including the fuel type, if known, and contract duration; estimated in-service dates for utility-owned generation facilities for which a certificate of public convenience and necessity (CCON) has been granted but which are not in-service; amount of capacity and, if applicable, energy, provided annually to the utility pursuant to wheeling agreements and the

NMAC	Requirement	Where Addressed
c.	to the extent feasible, for each existing supply-side resource on its system, the utility shall present the water consumption rate.	Table 3-8
14. D.	a summary of back-up fuel capabilities and options. Current load forecast.	Section 3
1.	The utility shall provide a load forecast for each year of the planning period; the load forecast shall incorporate the following information and projections:	Section 4; Appendices D, E, & F
a.	annual sales of energy and coincident peak demand on a system-wide basis, by customer class, and disaggregated among commission jurisdictional sales, FERC jurisdictional sales, and sales subject to the jurisdiction of other states;	Section 4; Appendix D
b.	annual coincident peak system losses and the allocation of such losses to the transmission and distribution components of the system;	Section 4; Appendix D
c.	weather normalization adjustments;	Section 4; Appendix D
d.	assumptions for economic and demographic factors relied on in load forecasting;	Section 4; Appendix D
e.	expected capacity and energy impacts of existing and proposed demand-side resources; and	Section 4; Appendix D
f.	typical historic day or week load patterns on a system-wide basis for each major customer class.	Section 4; Appendix E
3.	The utility shall develop base-case, high-growth and low-growth forecasts, or an alternative forecast that provides an assessment of uncertainty (<i>e.g.</i> , probabilistic techniques). Required detail.	Section 4; Appendix D
a.	The utility shall explain how the demand-side savings attributable to actions other than the utility-sponsored demand-side resources for each major customer class are accounted for in the utility's load forecast and the effect, as appropriate, on its load forecast of the utility-sponsored demand-side resources on each major customer class.	Section 4; Appendix D
b.	The utility shall compare the annual forecast of coincident peak demand and energy sales made by the utility to the actual coincident peak demand and energy sales experienced by the utility for the four years preceding the year in which the plan under consideration is filed. In addition, the utility shall compare the annual forecast in its most recently filed resource plan to the annual forecast in the current resource plan. In its initial IRP filing, the utility shall provide information demonstrating how well its forecasts during the preceding four years predicted demand.	Section 4; Appendix D
c.	The utility shall explain and document the assumptions, methodologies, and any other inputs upon which it relied to develop its load forecast.	Section 4; Appendices D, E, & F
E.	Load and resources table. The utility shall provide a load and resources table of its existing loads and resources at the time of its IRP filing. The load and resources table, to the extent practical, shall contain the appropriate components from the load forecast. Resources shall include:	Section 5 (Overall discussion in text; L&R table provided in Tables 5-1, 5-2, 5-3, & 5-4)
1.	utility-owned generation;	Section 5
2.	energy storage resources;	N/A
3.	existing and future contracted-for purchased power including qualifying facility purchases;	Section 5
4.	purchases through net metering programs, as appropriate;	Section 5
5.	demand-side resources, as appropriate; and	Section 5
6.	other resources relied upon by the utility, such as pooling, wheeling, or coordination agreements effective at the time the plan is filed.	Section 5
F. 1.	Identification of resource options. In identifying additional resource options, the utility shall consider all feasible supply-side, energy storage, and demand-side resources. The utility shall describe in its plan those resources it evaluated for selection to its portfolio and the assumptions and methodologies used in evaluating its resource options, including, as applicable: life expectancy of the resources, the recognition of whether the resource is replacing/adding capacity or energy, dispatchability, lead-time requirements, flexibility and efficiency of the resource.	Section 6; Appendix G
2.	For supply-side resource options, the utility shall identify the assumptions actually used for capital costs, fixed and variable operating and maintenance costs, fuel costs forecast by year, and purchased power demand and energy charges forecast by year, fuel type, heat rates, annual capacity factors, availability factors and, to the extent feasible, emission rates (expressed in pounds emitted per kilowatt-hour generated) of criteria pollutants as well as carbon dioxide and mercury.	Section 6; Appendix G
3.	The utility shall describe its existing rates and tariffs that incorporate load management or load shifting concepts. The utility shall also describe how changes in rate design might assist in meeting, delaying or avoiding the need for new capacity.	Section 6
G.	Determination of the most cost-effective resource portfolio and alternative portfolios.	

NMAC	Requirement	Where Addressed
1.	To identify the most cost-effective resource portfolio, utilities shall evaluate all feasible supply, energy storage, and demand-side resource options on a consistent and comparable basis, and take into consideration risk and uncertainty (including but not limited to financial, competitive, reliability, operational, fuel supply, price volatility and anticipated environmental regulation). The utility shall evaluate the cost of each resource through its projected life with a life-cycle or similar analysis. The utility shall also consider and describe ways to mitigate ratepayer risk.	Section 7; Appendix J
2.	Each electric utility shall provide a summary of how the following factors were considered in, or affected, the development of resource portfolios:	
a.	load management and energy efficiency requirements;	Section 7
b.	renewable energy portfolio requirements;	Section 7
c.	existing and anticipated environmental laws and regulations, and, if determined by the commission, the standardized cost of carbon emissions;	Section 7
d.	fuel diversity;	Section 7
e.	susceptibility to fuel interdependencies;	Section 7
f.	transmission constraints; and	Section 7
g. 3.	system reliability and planning reserve margin requirements. Alternative portfolios. In addition to the detailed description of what the utility determines to	Section 7 Section 7; Appendix J;
	be the most cost-effective resource portfolio, the utility shall develop a reasonable number of alternative portfolios by altering risk assumptions and other parameters developed by the utility and the public advisory process.	Appendix H; Appendix I
Н.	Public advisory process. Public input is critical to the development and implementation of integrated resource planning in New Mexico. A utility shall incorporate a public advisory process in the development of its IRP. At least one year prior to the filing date of its IRP, a utility shall initiate a public advisory process to develop its IRP. The purpose of this process shall be to receive public input, solicit public commentary concerning resource planning and related resource acquisition issues. This process shall be administered as follows.	Section 8; Appendix L
1.	The utility shall initiate the process by providing notice at least 30 days prior to the first scheduled meeting to the commission, interveners in its most recent general rate case, and participants in its most recent renewable energy, energy efficiency and IRP proceedings; the utility shall at the same time, also publish this notice in a newspaper of general circulation in every county which it serves and in the utility's billing inserts; this notice shall consist of:	Section 8; Appendix L; Appendix M
a.	a brief description of the IRP process;	Appendix L
b.	time, date and location of the first meeting;	Appendix L
c.	a statement that interested individuals should notify the utility of their interest in participating in the process; and	Appendix L
d.	utility contact information.	Appendix L
2.	Upon receipt of the initial notice, the commission may designate a facilitator to assist the participants with dispute resolution.	N/A (No facilitator designated)
3.	The utility or its designee shall chair the public participation process, schedule meetings, and develop agendas for these meetings. With adequate notice to the utility, participants shall be allowed to place items on the agenda of public participation process meetings.	Section 8; Appendix L
4.	Meetings held as part of the public participation process shall be noticed and scheduled on a regular basis and shall be open to members of the public who shall be heard and their input considered as part of the public participation process. Upon request, the utility shall provide an executive summary containing a non-technical description of its most recent IRP.	Section 8; Appendix M
5.	The purposes of the public participation process are for the utility to provide information to, and receive and consider input from, the public regarding the development of its IRP. Topics to be discussed as part of the public participation process include, but are not limited to, the utility's load forecast; evaluation of existing supply- and demand-side resources; the assessment of need for additional resources; identification of resource options; modeling and risk assumptions and the cost and general attributes of potential additional resources; and development of the most cost-effective portfolio of resources for the utility's IRP.	Section 8; Appendix M
6.	In its initial IRP advisory process, the utility and participants shall explore a procedure to coordinate the IRP process with renewable energy procurement plans and energy efficiency and load management program proposals. Any proposed procedure shall be designed to conserve commission, participant and utility resources and shall indicate what, if any, variances may be needed to effectuate the proposed procedure.	N/A
I.	Action plan.	

NMAC	Requirement	Where Addressed
1.	The utility's action plan shall detail the specific actions the utility will take to implement the integrated resource plan spanning a four-year period following the filing of the utility's IRP. The action plan will include a status report of the specific actions contained in the previous action plan.	Section 9
2.	An action plan does not replace or supplant any requirements for applications for approval of resource additions set forth in New Mexico law or commission regulations.	Section 9

BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION

IN THE MATTER OF SOUTHWESTERN)	
PUBLIC SERVICE COMPANY'S 2021)	
INTEGRATED RESOURCE PLAN FOR)	
NEW MEXICO,)	
) CASE NO. 21-00169-UT	
SOUTHWESTERN PUBLIC SERVICE)	
COMPANY,)	
)	
APPLICANT.)	
)	
)	
CERTIFICATE OF SERVICE		

I certify that true and correct copies of Southwestern Public Service Company's 2021 Integrated Resource Plan were electronically sent to each of the following on this 16th day of July 2021:

Randy Bartell

Dana S. Hardy dhardy@hinklelawfirm.com; Sarah Merrick sarahmerrick@eversheds-sutherland.com; Will DuBois Will.w.dubois@xcelenergy.com; William Grant William.a.grant@xcelenergy.com; Mario A. Contreras Mario.a.contreras@xcelenergy.com; Zoe E. Lees Zoe.E.Lees@xcelenergy.com; Mark A. Walker Mark.A.Walker@xcelenergy.com; Phillip Oldham phillip.oldham@tklaw.com; Katherine Coleman katie.coleman@tklaw.com; Michael McMillin Michael.mcmillin@tklaw.com; TKLaw office tk.eservice@tklaw.com; Melissa Trevino Melissa Trevino@oxy.com; Jeffrey Pollock jcp@pollockinc.com; Joan Drake jdrake@modrall.com; Perry Robinson Perry.Robinson@urenco.com; Michael P. Gorman mgorman@consultbai.com; Amanda Alderson aalderson@consultbai.com; William Templeman wtempleman@cmtisantafe.com; Michael J. Moffett mmoffett@cmtisantafe.com; Cholla Khoury ckhoury@nmag.gov; Gideon Elliot gelliot@nmag.gov; Jennifer Van Wiel jvanwiel@nmag.gov; Andrea Crane ctcolumbia@aol.com; Doug Gegax dgegax@nmsu.edu; Jason Marks lawoffice@jasonmarks.com; Lauren Hogrewe lauren.hogrewe@sierraclub.org; Joshua Smith Joshua.smith@sierraclub.org; Dru Spiller Dru.spiller@sierraclub.org; Matthew Miller Matthew.miller@sierraclub.org; Stephanie Dzur Stephanie@Dzur-Law.com; Don Hancock Sricdon@earthlink.net; April Elliott ccae@elliottanalytics.com; Julia Broggi jbroggi@hollandhart.com; A.J. Gross aigross@hollandhart.com; Luke Tougas 1.tougas@cleanenergyregresearch.com; Mike Gallager mgallagher@leacounty.net;

Sharon Shaheen Steve W. Chris David Austin Rueschhoff Thorvald A. Nelson Nikolas Stoffel Adele Lee Gina Gargano-Amari B. Tyler Steven S. Michel Cydney Beadles April Elliott Pat O'Connell Maj Holly L. Buchanan Mr. Thomas Jernigan Capt Robert L. Friedman Mrs. Ebony M. Payton TSgt Arnold Braxton Steve Seelye Bradford Borman John Bogatko Milo Chavez Marc Tupler John Reynolds Judith Amer Jack Sidler Elisha Leyba-Tercero Gabriella Dasheno Georgette Ramie David Ault Peggy Martinez-Rael Elizabeth Ramirez Gilbert Fuentes Andrew Unsicker Thomas Domme Rebecca Carter

rbartell@montand.com; sshaheen@montand.com; Stephen.Chriss@walmart.com; darueschhoff@hollandhart.com; tnelson@hollandhart.com: nsstoffel@hollandhart.com; aclee@hollandhart.com; glgarganoamari@hollandhart.com; bltyler@hollandhart.com; smichel@westernresources.org; cydney.beadles@westernresources.org; april.elliott@westernresources.org; pat.oconnell@westernresources.org; Holly.buchanan.1@us.af.mil; Thomas.Jernigan.3@us.af.mil; Robert.Friedman.5@us.af.mil; Ebony.Payton.ctr@us.af.mil; Arnold.Braxton@us.af.mil; sseelye@theprimegroupllc.com; Bradford.Borman@state.nm.us; John.Bogatko@state.nm.us; Milo.Chavez@state.nm.us; Marc.Tupler@state.nm.us; john.reynolds@state.nm.us; Judith.Amer@state.nm.us; Jack.Sidler@state.nm.us; Elisha.Leyba-Tercero@state.nm.us; Gabriella.Dasheno@state.nm.us; Georgette.Ramie@state.nm.us; David.Ault@state.nm.us; Peggy.Martinez-Rael@state.nm.us; Elizabeth.Ramirez@state.mn.us; GilbertT.Fuentes@state.nm.us; andrew.unsicker@us.af.mil; tdomme@tecoenergy.com;

racarter@tecoenergy.com;

Jane L. Yee
Linda L. Hudgins
Nann M. Winter
Adam Bickford
Sally Wilhelms
Rick Gilliam
Kellie Barahona
Matthew Marchant
Antonio Sanchez Jr.
Chuck Pinson
Daniel A. Najjar
Carla R. Najjar

jyee@cabq.gov; linda.l.hudgins@xcelenergy.com; nwinter@stelznerlaw.com; abickford@swenergy.org; swilhelms@consultbai.com; rick@votesolar.org; kellie.barahona@tklaw.com; matthew.marchant@hollyfrontier.com; sancheza@rcec.coop; cpinson@cvecoop.org; dnajjar@virtuelaw.com; csnajjar@virtuelaw.com; Nicole V. Strauser John Caldwell Ramona Blaber Brian J. Haverly Sara Gersen Randy Childress Randall Woolridge Peter Gould David Van Winkle Katelyn Hart Anthony J. Trujillo nvstrauser@tecoenergy.com; jcaldwell@leacounty.net; ramona.blaber@sierraclub.org bjh@keleher-law.com; sgersen@earthjustice.org; randy@childresslaw.com; jrwoolridge@gmail; pgouldlaw@aol.com; david@vw77.com; Katelyn.hart@gknet.com; ajt@gknet.com;

Judith Amer

Judith.Amer@state.nm.us;

Respectfully submitted,
/s/ Casey Settles
Casey Settles
Southwestern Public Service Company
790 S. Buchanan, 7th Floor
Amarillo, TX 79101
(806)378-2462
Casey.Settles@xcelenergy.com