

Recommissioning Workshop

September 30, 2013

Dave Moser, PE Senior Engineer PECI

Today's Agenda

Торіс	Start time
EBCx Overview	8:30
Planning Phase	
Develop current facility requirements	
Analyze energy data	
Develop EBCx Plan	
Break	10:00
Investigation Phase	10:15
Common findings	
Review documents, conduct interviews	
Evaluate facility performance	
Lunch	12:00
Investigation Phase, cont'd.	12:45
Evaluate facility performance	
Formulate measures	
Estimate energy savings	
Break	2:30
Implementation Phase	2:45
Hand-Off Phase	
Resources	
Class dismissed!	4:30

Learning Objectives

After this class, you'll be able to:

- 1. List activities included in each phase of the EBCx process.
- 2. Describe Xcel Energy's RCx program.
- 3. Develop current facility requirements.
- 4. Describe methods for testing and evaluating HVAC, lighting, and envelope systems and assemblies.
- 5. List common low-cost EBCx measures for commercial and institutional buildings.

Learning Objectives, cont'd.

- 6. Develop functional performance test forms.
- 7. Analyze trend data.
- 8. Investigate findings to formulate measures.
- 9. Develop and review energy savings calculations for EBCx measures.
- 10. Develop methods for maintaining the persistence of benefits realized from implementing the EBCx process.

Introductions

- What types of buildings are you involved with?
- What has been your experience with commissioning?
- What do you hope to learn today?

Xcel Energy's Definition of Recommissioning (RCx)

- Recommissioning is the process of <u>returning a building's</u> mechanical and lighting <u>systems</u>, along with the building controls, <u>to their peak performance</u>.
- This is <u>done through the investigation</u> of the existing system performance, the <u>adjustment</u> of the operating parameters and the <u>repair</u> of faulty equipment.
- Recommissioning is intended to <u>optimize the existing</u> <u>systems without having to add new components</u>, which typically exposes low cost measures with attractive paybacks.

RCx Program Features

Program available to all Xcel Energy electric and natural gas business customers in Colorado

Must be retail gas customer

Study funding

Up to 75% of the cost of the study, not to exceed \$25,000

Implementation rebates (max rebate is 60% of cost)

\$400/kW or \$0.08/kWh (whichever is higher) plus \$4/Dth

Rebates available for measures with paybacks between 1 – 15 years

Program covers both re- and retro-commissioning

Process Overview

- 1. Customer applies for study preapproval to determine funding
- 2. Study is completed and submitted to Xcel Energy for review
- 3. Study is approved
- 4. Study rebate is paid
- 5. Customer determines which measures they'd like to implement
- 6. Implementation is completed
- 7. Implementation rebate is paid and Xcel Energy claims the savings

Phase I: Preapproval

- Customer submits study preapproval application and recommissioning proposal
 - Proposal should contain:
 - Addendum A Required List of RCx Measures
 - Building and equipment description
 - Is there a control system? If so, provide information
 - What you will analyze
 - Preliminary observations for RCx opportunities
 - Identify what you already know is wrong with the building
 - Customer concerns
 - Proposed cost for the study
- If approved, we'll notify the customer, the provider and the account manager via email

Commonly Identified Findings

- AHU Air leak reduction
- AHU Coil cleaning
- AHU optimize economizer
- AHU outside air reduction
- AHU run time reduction
- AHU supply air static pressure adjustment / reset

- AHU supply air temperature reset
- AHU VAV minimum flow reduction
- Lighting and equipment run time reduction
- Unoccupied setback
- Exhaust system operation

Phase II: Investigation

- Complete study and send draft version to Xcel Energy engineer
- Once approved, notification will be sent to both customer and provider
- Present approved study to customer, invite Xcel Energy Account Manager to meeting
- Customer pays for study and submits rebate form and paid invoice to Xcel Energy Account Manager
- Xcel Energy issues study rebate

Calculation Tool

- Created RCx energy savings calculator tool for use with RCx studies in our territory
- Streamlines saving calculations for provider
- Contains 19 Energy Conservation Opportunities (ECOs)
- Reduces internal review time by engineer

Phase III: Implementation

- Customer determines which recommissioning measures to implement
- Customer signs rebate form and submits to Xcel Energy
 - For all recommissioning measures implemented
 - Need each line signed and dated
 - Provide costs for each individual recommissioning measure
 - Submit project invoice
- Rebate is processed and is sent to customer

Study Provider Approval Process

Investigator Application

- One lead investigator required per firm not a requirement to perform a study
- We need a point of contact for study clarification

Study Provider Training

- Two hour training conducted by Xcel Energy's RCx team
- Required for anyone who will be working on study and seeking access to our calculator tool
- Complete our license agreement and return to us

Study Provider List

Once you have a study approved in the Recommissioning program you will be added to our provider list on XcelEnergy.com. You do not need to be on the provider list to do a study.

EBCx Process

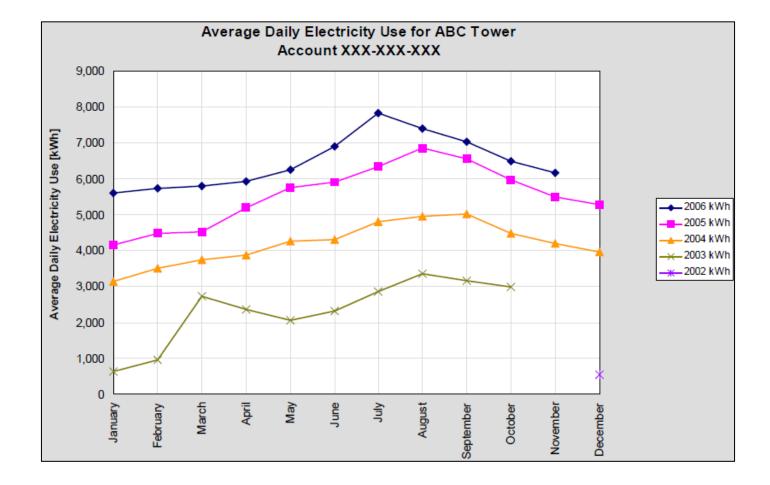
Planning Phase	 Select a building Define RCx objectives Assemble a team Develop a <i>Retrocommissioning Plan</i>
Investigation Phase	 Review facility documentation Perform diagnostic monitoring & testing Develop <i>Master List of Findings</i> Prioritize and select RCx improvements
Implementation Phase	 Develop Implementation Plan Implement selected operational improvements Verify results Develop Final Report
Hand-Off Phase	 Develop Recommissioning Plan & recommend persistence strategies Conduct staff training Hold close-out meeting
Post Retrocommissioning	Implement persistence strategies Source: EPA

Investigation

Implementation

Hand-Off

Post-RCx

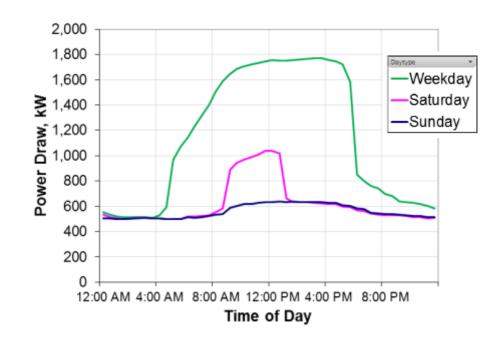

Planning Phase Summary

- Define EBCx goals
- Select building
- Form the EBCx team
- Analyze historic energy data
- Gather facility documentation
- Conduct building walk-through
- Develop current facility requirements
- Develop EBCx Plan

Planning Phase Summary

- Define EBCx goals
- Select building
- Form the EBCx team
- Analyze historic energy data
- Gather facility documentation
- Conduct building walk-through
- Develop current facility requirements
- Develop EBCx Plan

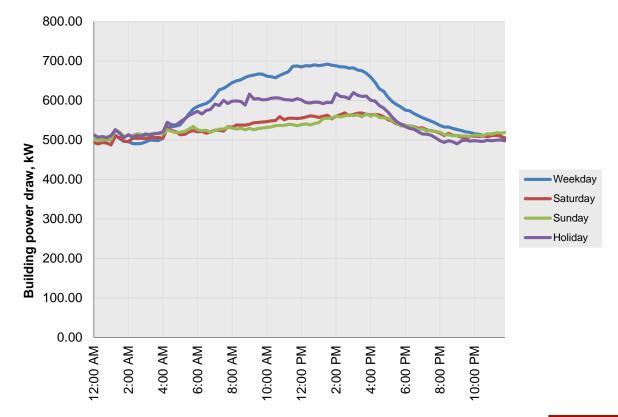
Analyze Monthly Utility Data



More Useful Utility Data

Interval utility data

- Identify base load during unoccupied periods
- Identify operational problems


'Good' office profile:

What does this chart tell us?

Office building, M-F 8a-5p occupancy

Planning

Gather Facility Documentation

Purpose:

- Increase understanding of building
- Determine what documentation is available

Useful Documentation

- Building plans and specifications
- O&M manuals
- Testing, adjusting and balancing reports

Planning

- Controls drawings
- Controls sequences of operations
- Maintenance documentation records
- Historical energy consumption and cost data
- Recent energy studies

Conduct Building Walk-Through

Purpose:

- Learn space types and occupancy levels
- Observe operation and condition of equipment
- Identify indicators of opportunity

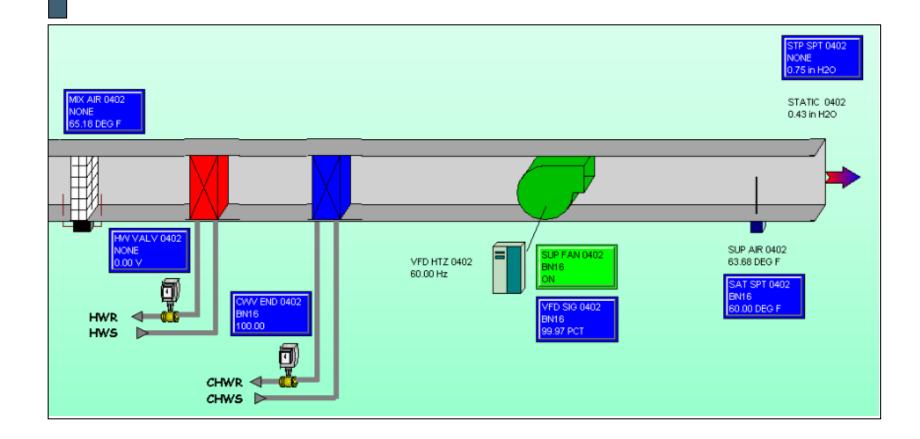
Conduct Building Walk-Through

Conduct it with a knowledgeable building staff member.

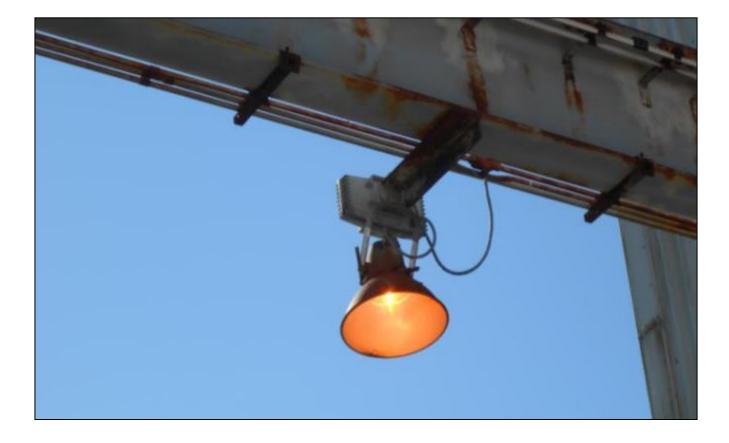
Conduct Building Walk-Through

Observe:

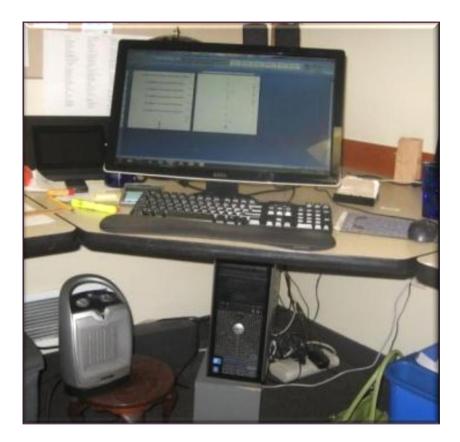
- Occupied and unoccupied areas
- HVAC, lighting, plug load, envelope, control systems
- Quality of maintenance


Look for optimization opportunities. Keep the EBCx goals in mind!

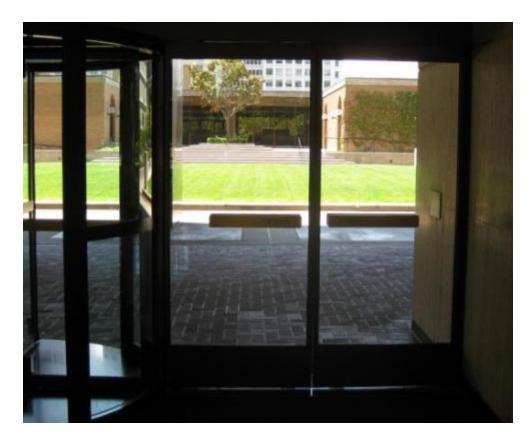
Building Walk-Through: HVAC



Building Walk-Through: BAS



Building Walk-Through: Lighting



Building Walk-Through: Plug Loads

Building Walk-Through: Envelope

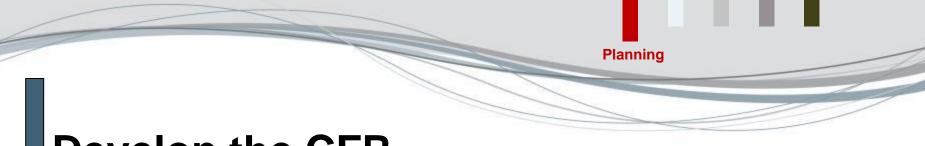
Findings to Look For

Resources / lists:

- Xcel Energy's Addendum A (handout)
- Listed in "Resources" table:
 - ASHRAE's Procedures for Commercial Building Energy Audits
 - Doty's Commercial Energy Auditing Reference Handbook
 - BetterBricks

CFR = <u>Current Facility Requirements</u>

- Defines the operational needs and requirements for the building
- Meeting the CFR is an inherent goal of EBCx



CFR typically includes:

- Temperature and humidity setpoints
- Equipment operating schedules
- Lighting levels
- Facility staff training
- Sustainability
- Other

Develop the CFR

Requirement	General Office	Conference Rooms	Customer Service	Data Center & LAN Rooms	Mail & Printing	Art Gallery	Shower Locker Rest Rooms	Parking Garage	Tenant Retail Space
Square Footage	316,056	Included in General Office	6,548	2,052	10,743	6,467	609	183,140	10,127
Temperature requirements for heating season	70-74 °F	70-74 °F	70-74 °F	68-77°F	68-72°F	70 °F +/- 4 °F	68-72°F	NA	NA
Temperature requirements for cooling season	74-78 °F	74-78 °F	74-78 °F	68-77°F	74-78 °F	70 °F +/- 4 °F	74-78 °F	NA	NA
Humidification requirements % RH	None	None	None	40-55 % RH	None	45 % RH +/- 8%	None	None	None
Dehumidification requirements	Less than 65% RH	Less than 65% RH	Less than 65% RH	40-55 % RH	Less than 65% RH	45 % RH +/- 8%	Less than 65% RH	None	Less than 65% RH
Pressure relationship requirements	Positive to Outside	Positive to Outside	Positive to Outside	Positive to Adjacent Spaces	Negative to Adjacent Spaces	Positive to Adjacent Spaces	Negative to Adjacent Spaces	Negative to Adjacent Spaces	Positive to Outside
Filtration Requirements	MERV 9 40 to 45%	MERV 9 40 to 45%	MERV 9 40 to 45%	MERV 13 80 to 90%	MERV 9 40 to 45%	MERV 13 80 to 90%	MERV 9 40 to 45%	NA	MERV 9 40 to 45%

Develop the CFR

What might be some CFR items for these:

System / Aspect	CFR Items
Lighting	
Occupant comfort	
Sustainability	

	la	n	n	2	~	
- 1	a				u	
				 	-	

Planning Phase Main Tasks

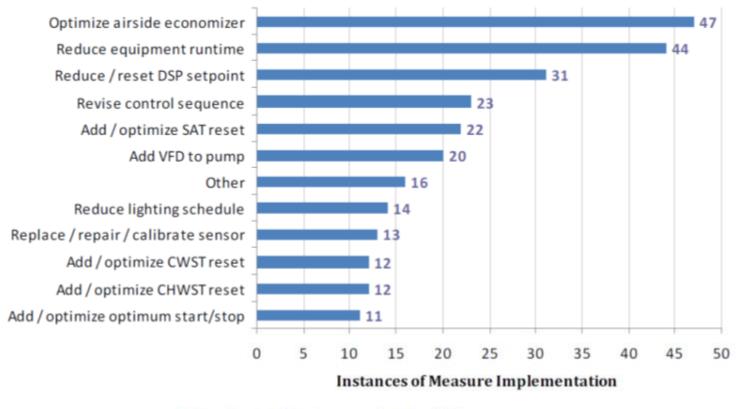
Your	Turn!

Planning

Investigation

Implementation

Hand-Off


Post-RCx

Investigation Phase Summary

- Conduct detailed document review
- Interview occupants and operating staff
- Evaluate facility performance
- Identify findings
- Formulate measures
- Analyze measures

EBCx Results from the Field

Frequency of Implementation (n=371)

122 EBCx projects, most in CA.

EBCx Results – Denver, CO

- Prevalent measures (five projects):
 - Revise control sequence
 - Add / optimize SAT reset
 - Reduce equipment runtime

Xcel Energy RCx Data

Measures in past Xcel RCx projects:

- AHU Air leak reduction
- AHU Coil cleaning
- AHU optimize economizer
- AHU outside air reduction
- AHU run time reduction
- AHU supply air static pressure adjustment / reset

- AHU supply air temperature reset
- AHU VAV minimum flow reduction
- Lighting and equipment run time reduction
- Unoccupied setback
- Exhaust system operation

Detailed Document Review

Review the documents gathered during the Planning Phase.

- Space types, configurations and layout
- System design concepts
- Equipment types, quantities, sizes, etc.
- Zoning configurations
- Maintenance procedures
- Operating schedules and sequences

Detailed Document Review -Example

Written sequences of operations.

SEQUENCE OF OPERATIONS:

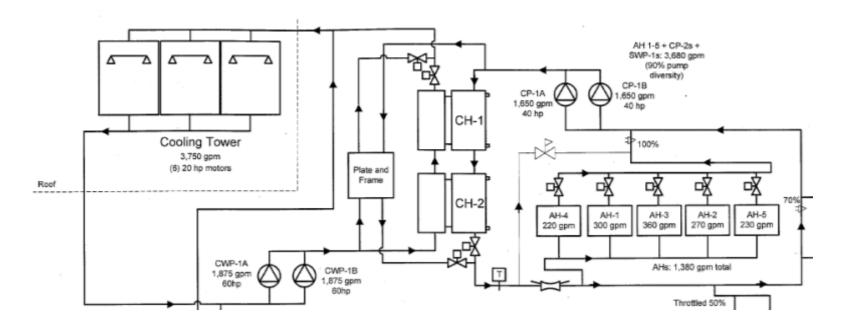
Heating Ventilating Unit HV-1 Associated Exhaust Fans E-1

Location: 3rd Floor MER Serving Area: Sub-cellar

Updated: 04.15.08

Unit Off

When the unit is off, the outside air damper, two discharged air dampers, two return air dampers, and the exhaust fan's discharge damper will be closed. The HV-1 supply fan remains off. The exhaust fans E-1 will be interlocked with the supply fan and remain off

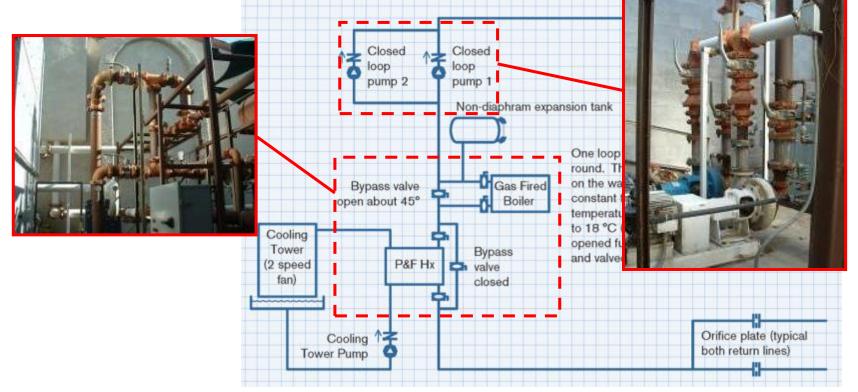

Unit On

The unit can be started locally, manually from the BMS, or from the smoke control panel.

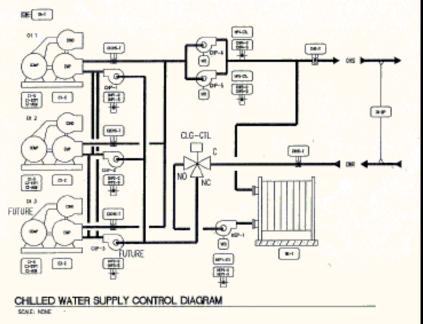
Assessing System Configuration

System diagrams

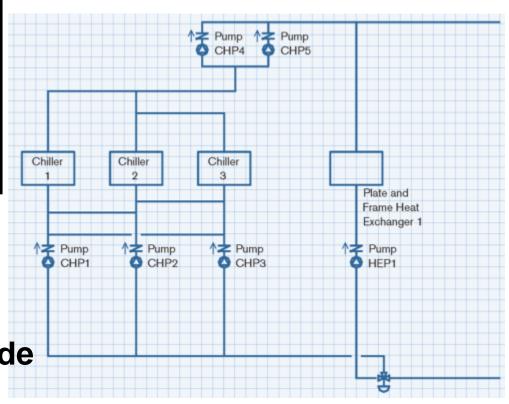
- See how it all fits together
- Identify optimization opportunities



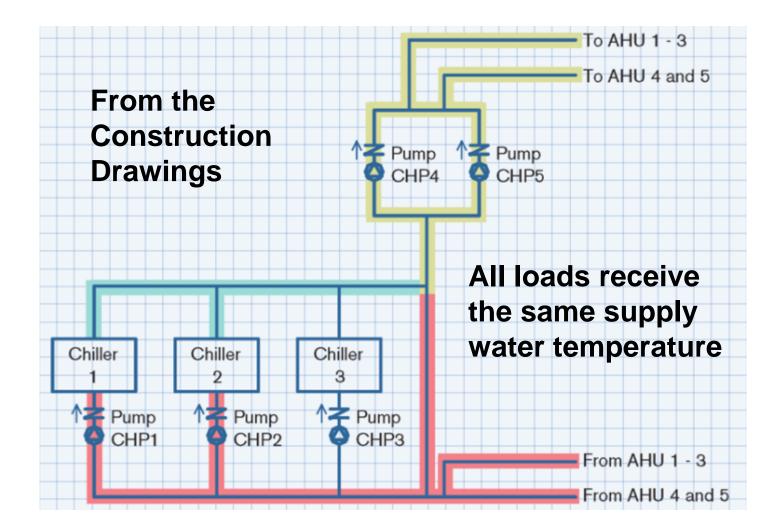
System Diagrams

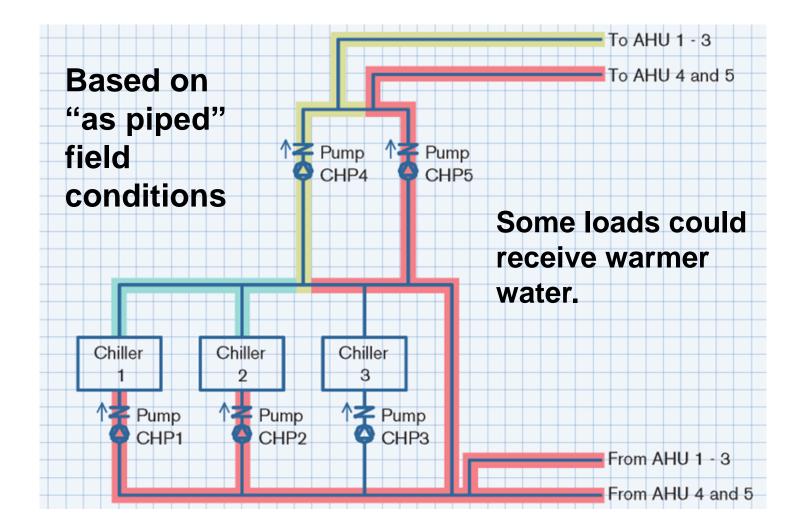

- Keep it simple (untangled)
- Include all components that can affect flow rate or path
- Pay attention to the order of connection

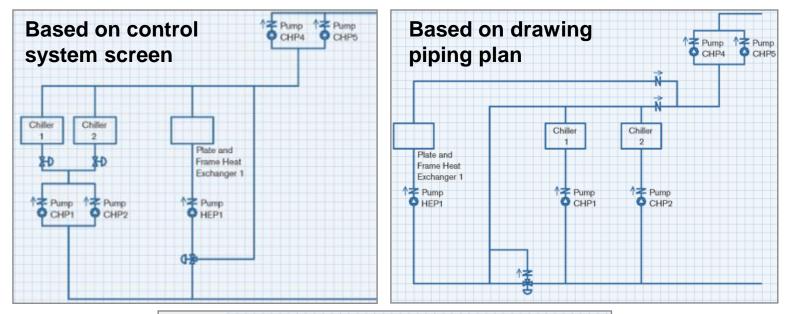
What appears complex ...

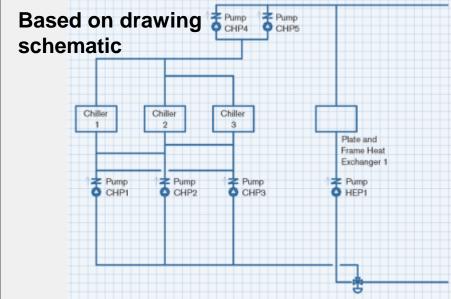

... may be schematically simple

Tangled Vs. Untangled

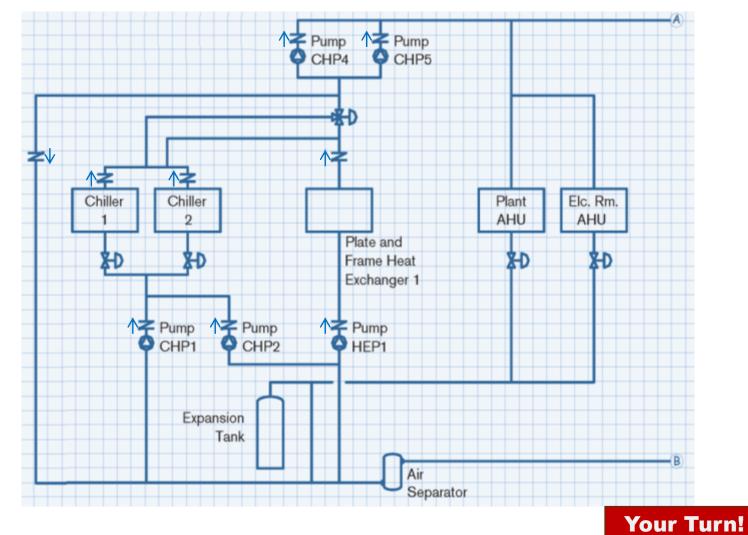

- Minimize line crossings
- Elbows don't matter
- Looks like ladder on its side



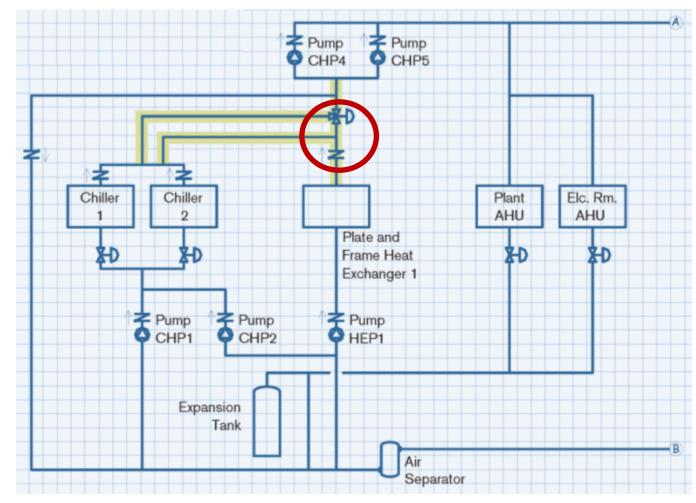

Order of Connection Matters



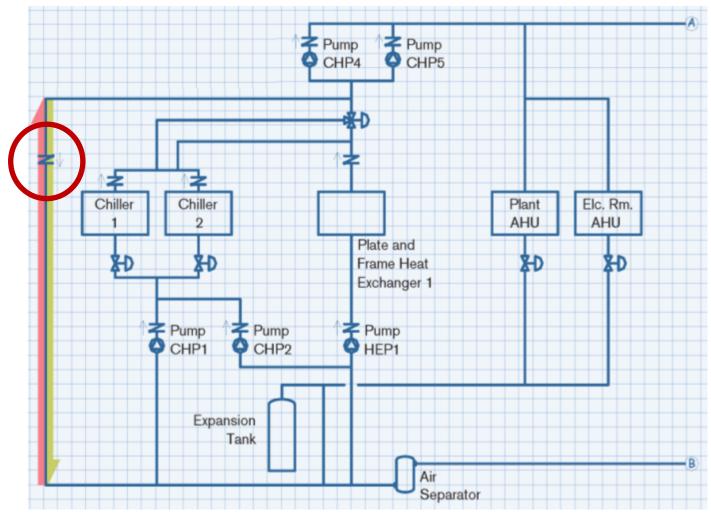
Order of Connection Matters



Same Project, Same System, Three Different Diagrams Which one represents what was actually installed?



None of Them! What are the findings?



Findings:

The three way valve does basically nothing

A check valve eliminates decoupling under some conditions.

Conduct Operator Interviews

Speak with operators

- Allow adequate time
- Be respectful they're the experts
- Ask open-ended questions
- Use a structured format
- Document the interview

Conduct Operator Interviews

Example operator interview form available at cacx.org

How is both the interior and exterior lighting controlled for your building (manual switches, lighting control system, time clocks etc.)?						
Interior:						
Exterior:						
Do you have any problems with the lighting controls? If yes, explain:	Yes	□ No				
Do you feel there are any areas in the building that are over-lit? If yes, explain	Yes	□ No				
Do you have a maintenance contract for your control system?	Yes	□ No				
If yes, generally, how often is the control system contractor reason(s)?	consulted, and	d for what				

Evaluate Facility Performance

Purpose:

- Determine if CFR are met
- Identify findings and determine measures

Methods:

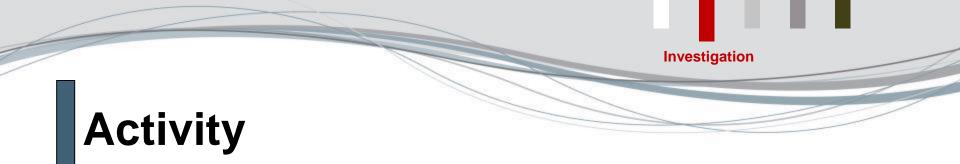
- Analyze energy usage
- Review interview results
- Review service requests and complaints
- Compare actual conditions to CFR
- Perform diagnostic monitoring
- Conduct site investigation and testing

Evaluate Facility Performance

Purpose:

- Determine if CFR are met
- Identify findings and determine measures

Methods:


- Analyze energy usage
- Review interview results
- Review service requests and complaints
- Compare actual conditions to CFR
- Perform diagnostic monitoring
- Conduct site investigation and testing

Compare Conditions to CFR

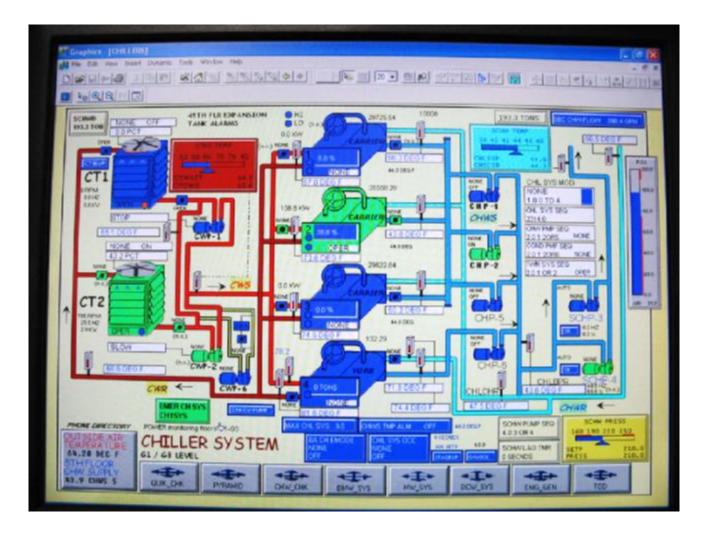
Summer Conditions	Acceptible Levels			Spot Measurements			Acceptible? Y/N		
Sample Building	CO2 Levels (PPM)	Temperature (°F)	Humidity (% Relative Humidity)	CO2 Levels (PPM)	Temperature (°F)	Humidity (% Relative Humidity)	CO2 Levels (PPM)	Temperature (°F)	Humidity (% Relative
Open Office 1	< 1100	72-78	20-60	670	68.0	50.5%	Y	Ν	Y
Open Office 2	< 1100	72-78	20-60	440	67.0	45.5%	Y	Ν	Y
Private Office 1	< 1100	72-78	20-60	540	68.0	47.0%	Y	Ν	Y
Private Office 2	< 1100	72-78	20-60	470	67.6	51.0%	Y	Ν	Y
Conference Room 1	< 1100	72-78	20-60	450	66.7	44.0%	Y	Ν	Y
Conference Room 2	< 1100	72-78	20-60	500	67.4	42.5%	Y	Ν	Y
Lobby	< 1100	72-78	20-60	610	69.0	48.2%	Y	Ν	Y

OVER COOLING

- Review the Sample CFR and Mechanical schedule.
- What are the findings?

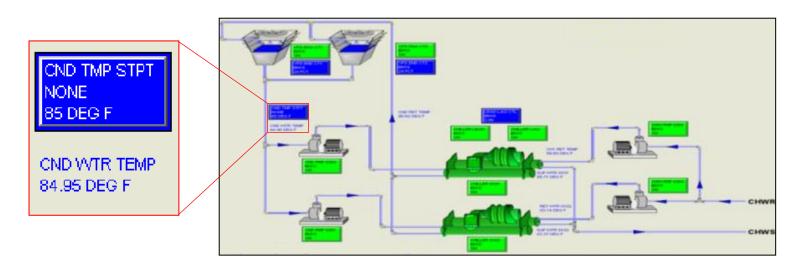
Activity

Findings


- Overventilation (1,500 cfm > 1,000 cfm)
- RTU-1 does not have an economizer section

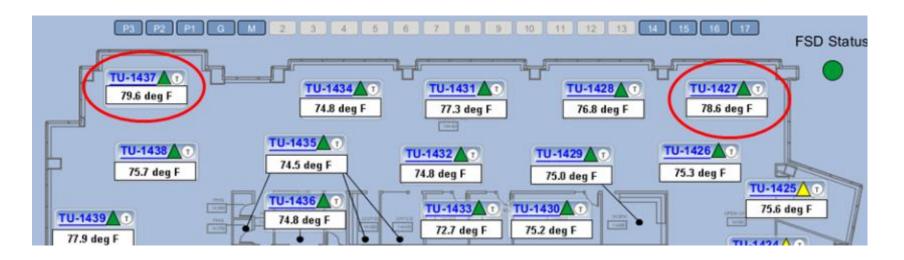
Investigation

- Economizer high limit is lower than required
- Thermostat h/c setpoints are swapped
- Thermostats only have one stage of cooling

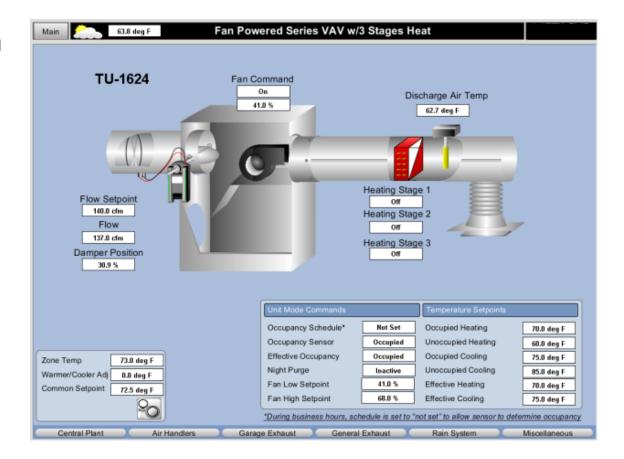

BAS GUI Review

Before Digging In ...

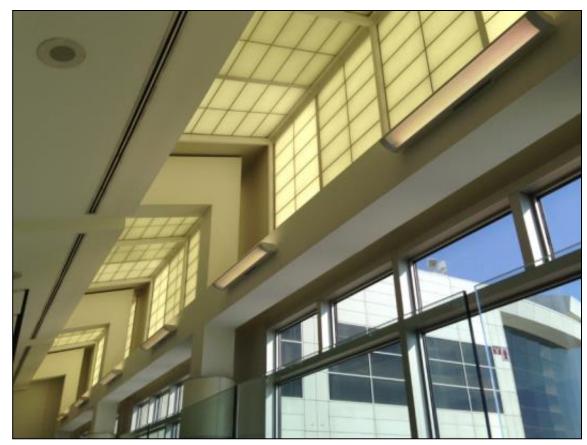
Verify the accuracy of the GUI


- Conduct point-to-point check
- Verify accuracy of system diagrams, equipment arrangements, and sensor locations on GUI
- Verify calibration of sensors

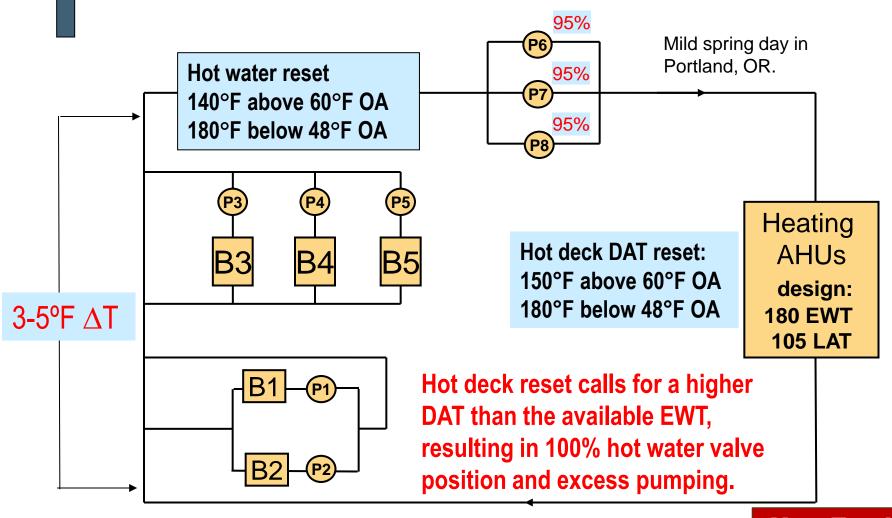
Review


BAS GUI Review

Spot check TUs, especially those with the greatest deviation from setpoint.

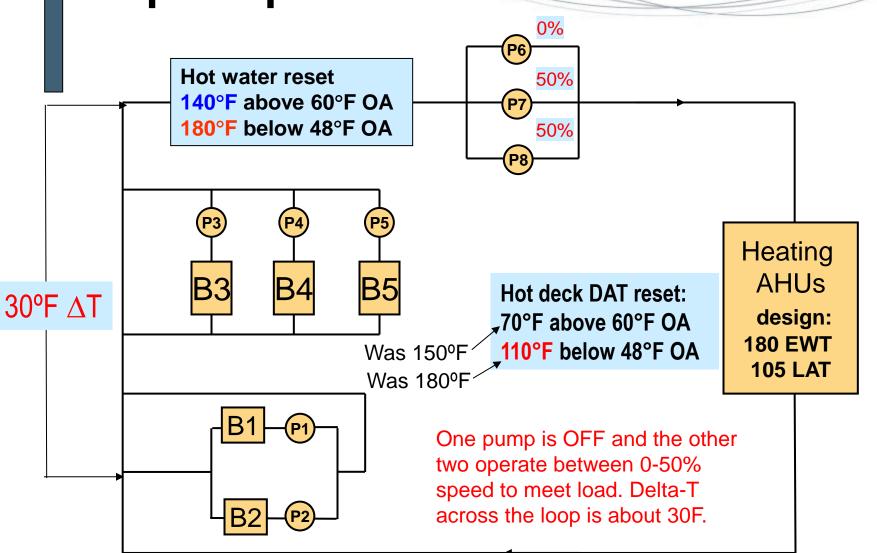

BAS GUI Review

Is the system operating as expected?



Investigate where operation doesn't make sense

4 pm, west facing, gobs of daylight coming in:



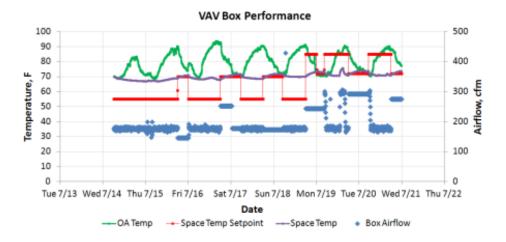
What is wrong with this picture?

67

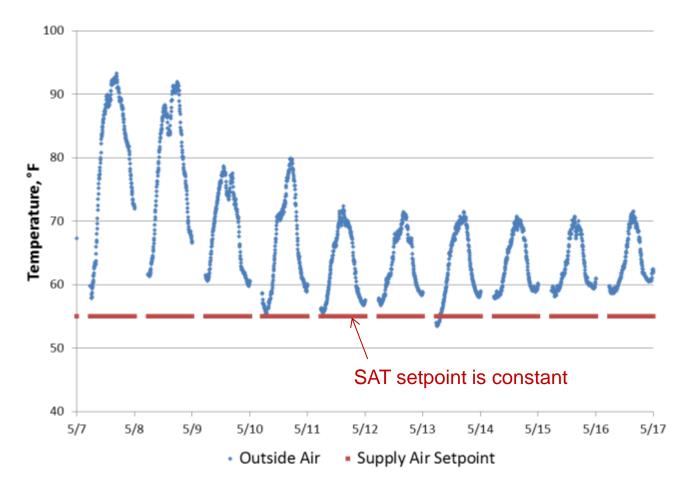
Proper Operation

Controls Reset Findings

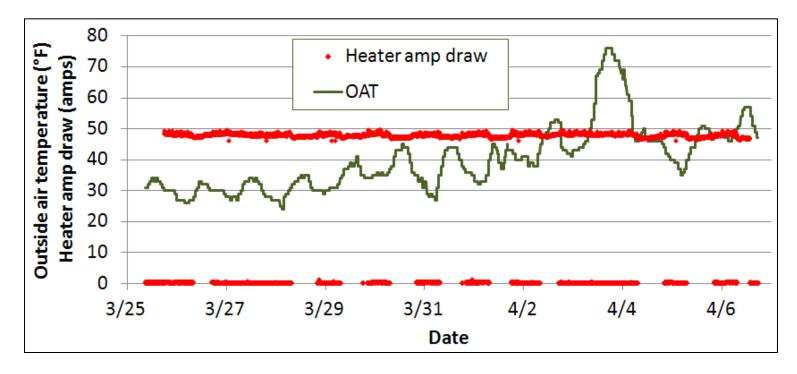
Multiple reset strategies counteracting each other


E.g., DSP reset and SAT reset

- Setpoints are manually reset in response to comfort complaints
- Variable volume systems acting more like constant volume systems
- Control instability present
- Things just don't make sense


Diagnostic Monitoring

Process:


- Collect relevant data
 - BAS trends
 - Portable data logger trends
 - Spot measurements
 - Energy data
 - Weather data
- Compile the data
- Analyze the data

Diagnostic Monitoring Using BAS trends to identify issues

Diagnostic Monitoring Using data loggers to identify issues

Heaters should be off at OATs above 40°F. How's that working?

Diagnostic Monitoring Portable data logging equipment

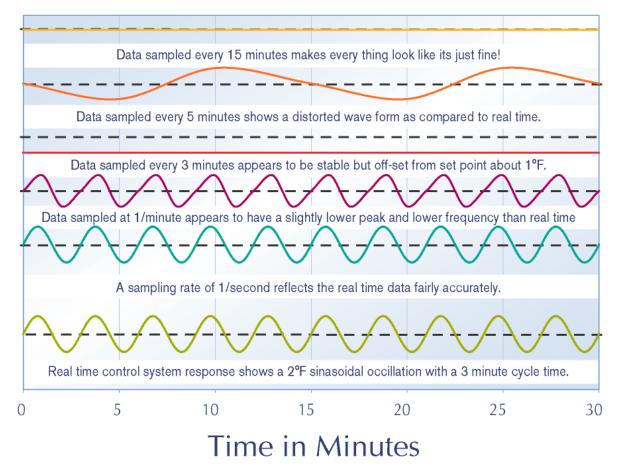
Light on/off, occupancy

Carbon monoxide

Amp draw

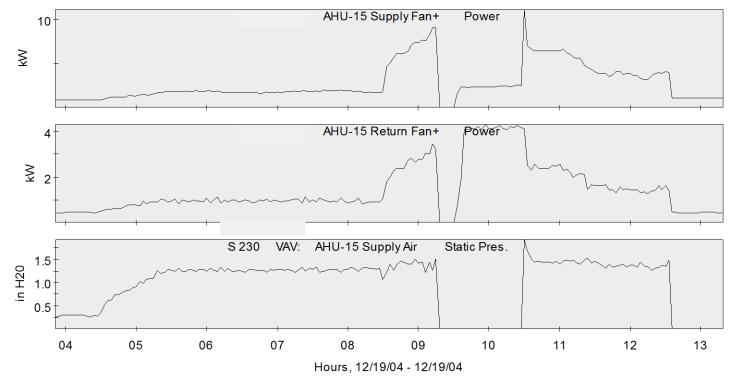
Carbon dioxide

Temperature


On/off w/ readout

Light on/off, motor on/off

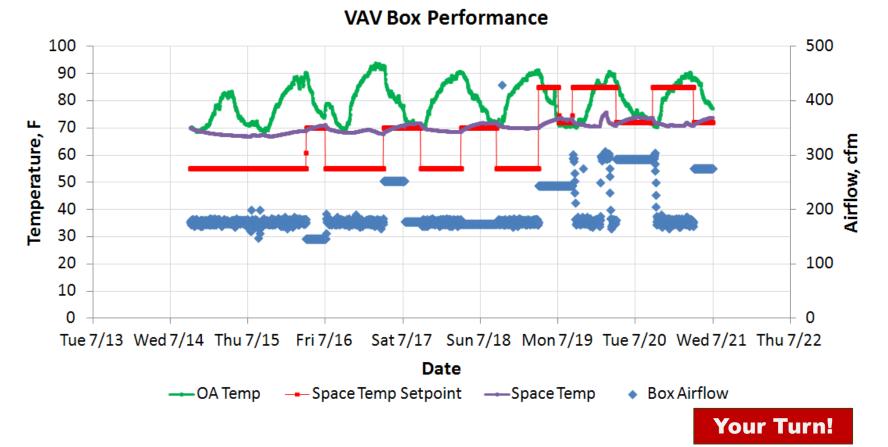
Diagnostic Monitoring


Choose an appropriate sampling rate

- Real time data
- 1 Second data sample rate
- 1 Minute data sample rate
- 3 Minute data sample rate
- 5 Minute data sample rate
- 15 Minute data sample rate

Diagnostic Monitoring

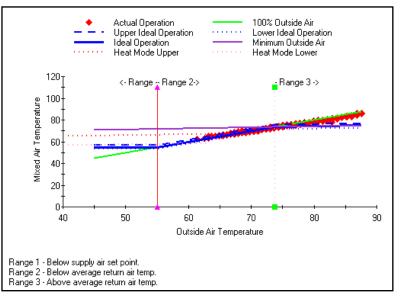
Supply fan should be tracking return fan. How's that working?



Your Turn!

Investigation

VAV box damper should be closed when unoccupied.



Universal Translator

Trend data management and analysis

- Combines different data sets
- Filters data
- Creates regressions and charts
- Analyzes data for certain systems:

Category	Result Score	Percent Of Time Over Sp	Percent Of Time Under Sp	Ave Temp Over Sp	Ave Temp Under Sp	Max Value	Min Value	Errors
5127	5.7	78.60%	17.50%	4.4	1.3	81.8	0	
5327	5.8	95.10%	3.90%	5.3	0.6	81.3	0	
5329	5.9	93.20%	5.80%	3.4	2.6	78.6	72	
5133	6.1	100.00%	0.00%	6.1	0	80.0	0	
5324	6.3	77.70%	21.40%	5.4	0.9	83.4	0	
5320	6.5	92.20%	2.90%	6.3	0.2	83.5	0	
5334	8.3	88.30%	10.70%	6,6	1.7	85.9	0	
5332	8.7	92.20%	4.90%	7.5	1.2	85.3	0	
5333	8.7	88.30%	8.70%	7.6	1.1	86.3	0	

Airside economizers

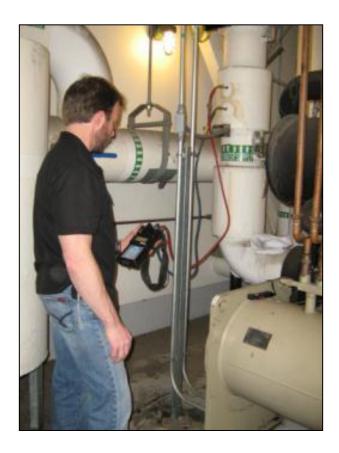
Functional Performance Testing

Process:

- Change parameters to simulate a condition O&M staff
- Observe and record resultsCxA
- Determine pass/fail CxA
- Identify findings CxA

FPT forms CxA

- Method
- Steps
- Prerequisites
- Acceptance


FPT forms and more information on FPT at www.ftguide.org

Functional Performance Testing

Specific process:

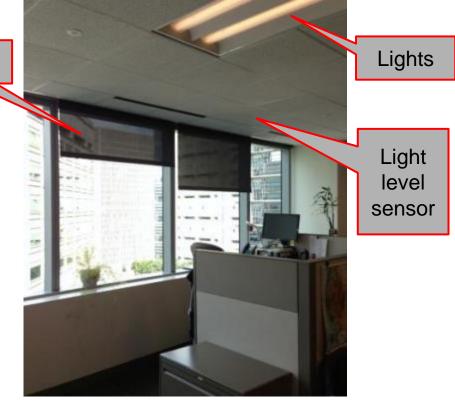
- Record pretest values
- Identify sensors, verify sensor calibration
- Check device calibration
- Implement FPT

Functional Performance Testing

Usually involves two people:

One to work with the BAS

One to observe and document the system response



Proced. No. & Spec. Seq. ID ¹	Req ID No. ²	Test Procedure ³ (including special conditions)	Expected and Actual Response ⁴ [Write ACTUAL response in brackets or circle]	Pass Y/N	Note #
CHILLER	SYSTE	M STARTUP AND STAGING			
1 Seq 1- 4, 16, 20-23, 32	Spec s 1568 2 3.3.; 1568 3 3.2	Startup Sequence. Lead = CH (This is not the initial startup by factory reps). With chiller system off, with schedule allowing chillers ON and OSAT >56F, turn chillers and pumps to auto. Turn on AHUs and cause a call for cooling sufficient to call for chillers (see manually open preheat coil valve, lower space temperature SPt, etc. A call for the chillers will be made when any AHU fan is ON and its CCV is => 15% open for 10minutes.	Observe that the lead primary CHW pump does not turn ON until a CCV on an ON AHU is => 15% [%] open for 10 min. []. Observe lead secondary CHW pump start when a CCV is 15% [] open for 10 [] minutes. Observe CHW primary and secondary pumps turning on, then the oil pump; then the CD pump (30-60s delay ea.) Observe that secondary pumps start at minimum RPM and slowly ramp up. Starting RPM = []. Observe the lead chiller starting. Observe that the vanes start closed and begin to open. (max spd = 0-full open in ~3 min. and closed in ~1 minute)		

FPT Activity

Shades

On page 3 of the Daylight Harvesting System FPT Form, fill in the No Daylight Simulation and Full Daylight Simulation procedures.

Diagnostic Monitoring and FPT

Diagnostic Monitoring

- A passive process (once logging equipment has been launched)
- Analyze system performance by trending normal operation over time

Functional Performance Testing

- An active, hands-on process
- Adjust inputs to see if systems respond as expected

Diagnostic monitoring, FPT, or both?

The space temperature for a lab needs to be maintained between 72 and 74 degrees continuously (24/7).

Lights in storage room should turn off five minutes after occupants leave room.

Emergency generator should turn on when utility power drops.

Evaluate HVAC Performance

Sei	ved By:	AC-05-1	Status:	
VAV	Room Temp	Setpoint	Damper	Airflow
00	73.75 DEG F	74.00 DEG F	50.40 PCT	27.25 PCT
01	76.00 DEG F	74.00 DEG F	26.00 PCT	127.25 PCT
02	75.75 DEG F	76.00 DEG F	33.20 PCT	0.00 PCT
03	75.00 DEG F	76.00 DEG F	29.20 PCT	20.00 PCT
04	73.50 DEG F	74.00 DEG F	51.60 PCT	63.25 PCT
05	74.25 DEG F	74.00 DEG F	28.00 PCT	53.50 PCT
06	74.00 DEG F	74.00 DEG F	27.60 PCT	32.00 PCT
07	74.50 DEG F	74.00 DEG F	34.80 PCT	78.50 PCT
08	75.50 DEG F	74.00 DEG F	18.80 PCT	46.75 PCT
09	76.25 DEG F	76.00 DEG F	18.00 PCT	32.50 PCT
10	73.25 DEG F	74.00 DEG F	24.00 PCT	20.50 PCT
11	74.00 DEG F	74.00 DEG F	40.80 PCT	96.50 PCT
12	73.25 DEG F	71.00 DEG F	37.20 PCT	107.00 PCT
13	73.75 DEG F	74.00 DEG F	31.60 PCT	25.00 PCT
14	73.25 DEG F	74.00 DEG F	27.20 PCT	34.50 PCT
15	72.25 DEG F	74.00 DEG F	27.20 PCT	34.50 PCT
16	74.25 DEG F	74.00 DEG F	37.20 PCT	31.00 PCT

Evaluate HVAC Setpoints

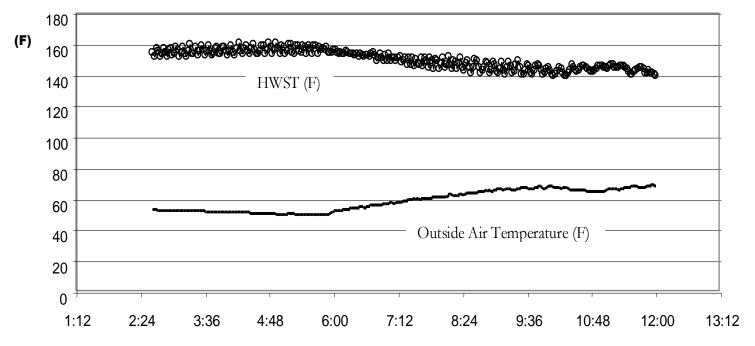
Setpoint issues

- Constant setpoint values
- Setpoints changed to address complaints
- Setpoints not right since construction

How to identify:

- Variable flow systems acting like constant flow systems
- Trend data analysis

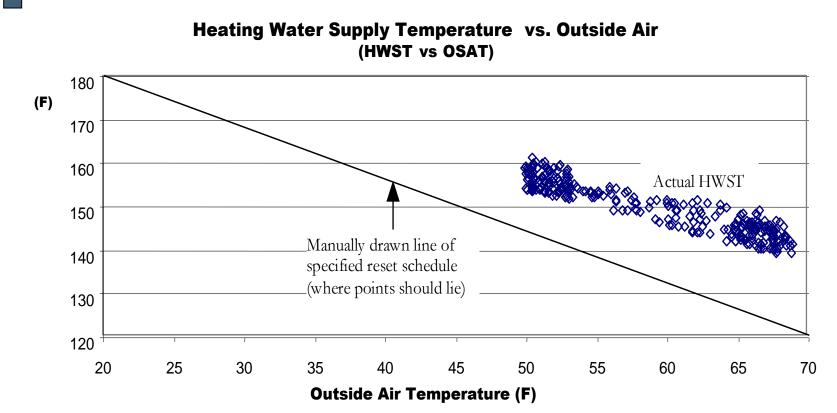
Evaluate HVAC Setpoints


Potential Setpoint Resets

- Chilled water supply temperature
- Condenser water supply temperature
- Heating water supply temperature
- Supply air temperature
- Duct static pressure
- Water loop differential pressure
 - Chilled water
 - Heating water

Evaluate Reset Strategies

Heating Water Supply Temperature vs. Outside Air


(Time Series)

Your Turn!

OAT-based HWST reset. How's it working?

OAT-based HWST reset. How's it working?

Your Turn!

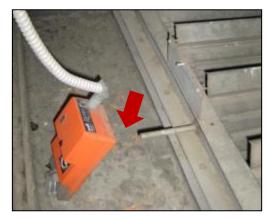
Evaluate Airside Economizers

Airside economizers

- 64%-75% of RTUs have inoperable economizers
- Economizer failure is the most common EBCx finding

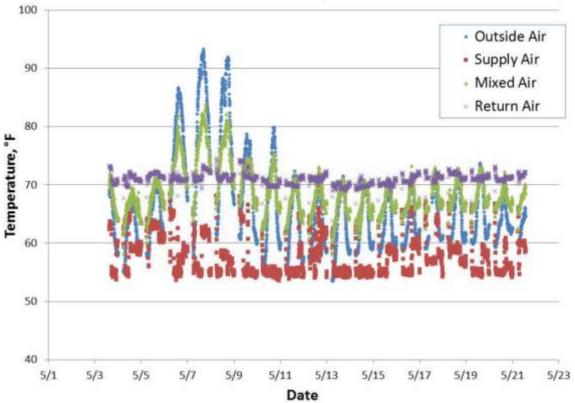
Common issues

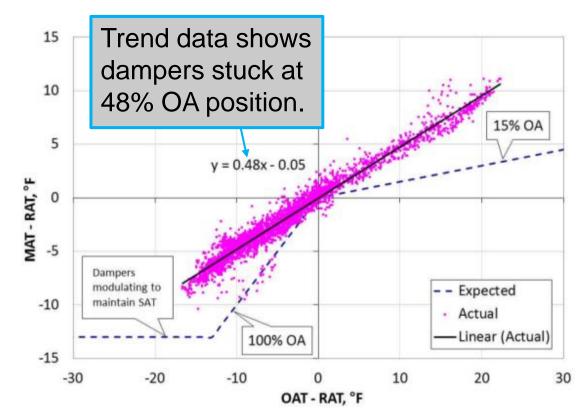
- Damper system design
- Controls sequences
- Maintenance



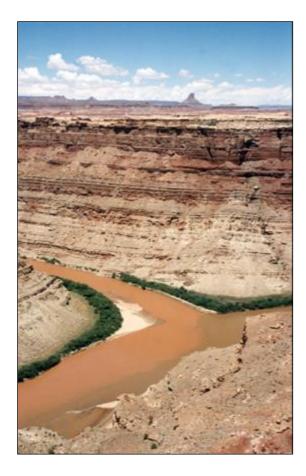
Evaluate Airside Economizers

Inspect economizer maintenance

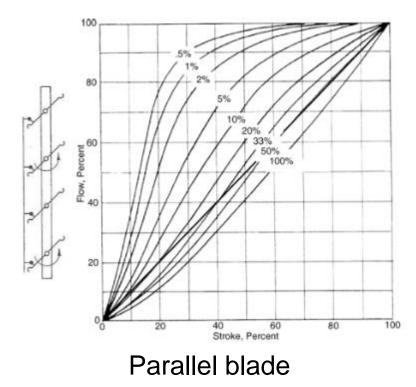

- Blade and jamb seals installed, in good condition?
- Actuators adjusted for full closure?
- Actuators connected to dampers?

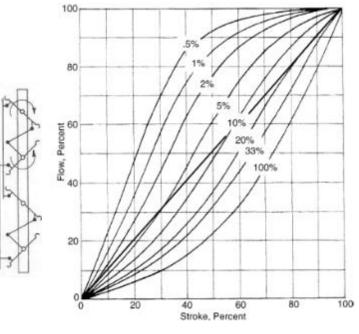

Evaluate Airside Economizers

Time-series charts can be tough to read:



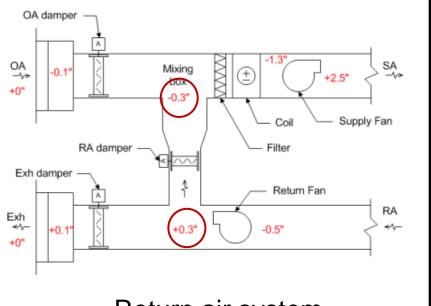
X-Y scatter charts can be more useful. Plot expected and actual.

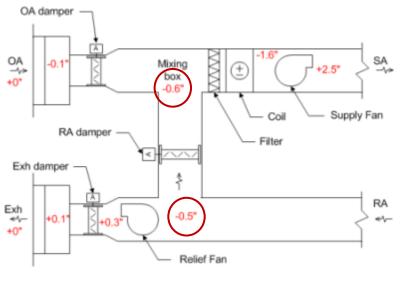

Good Economizer Damper Design


- OA & RA dampers sized and arranged to promote linearity
 - Sized for proper authority
 - Rule of thumb: >=1,500 fpm velocity across open damper
 - Lower velocity = lower ΔP and lower fan energy, but poor control
- Damper rotation promotes mixing
- Sufficient distance to mix

Investigation Damper Characteristics

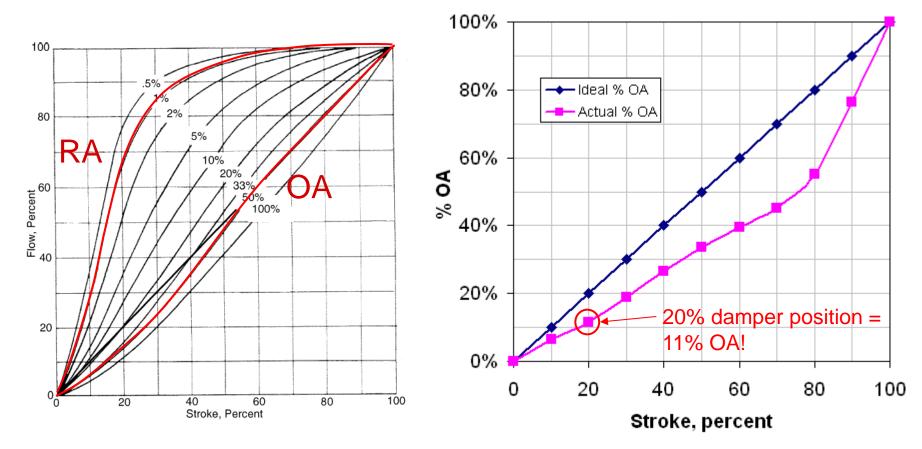
Dependent on damper type and damper authority (damper ΔP divided by section ΔP)




Opposed blade

Damper sizes depend on system arrangement and design pressures

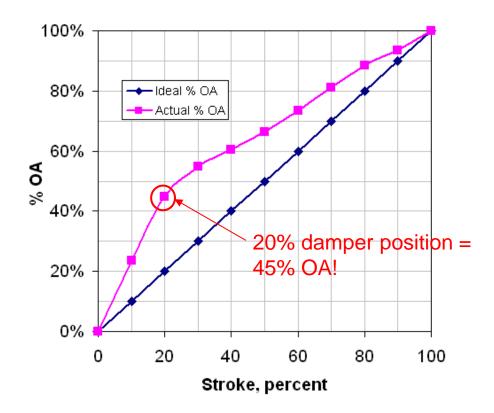
Return air system RA damper $\Delta P = 0.6$ "



Relief air system RA damper $\Delta P = 0.1$ "

Über non-linear

Return fan system, oversized parallel blade return dampers:


Investigation

Another non-linear example

Investigation

Oversized OA dampers can mean too much OA

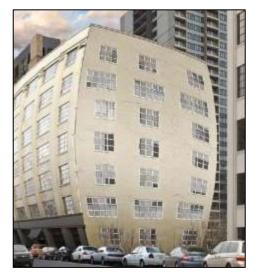
Damper Sizing and VAV System Economizer Performance

- Systems can perform poorly at low flow rates
 - Turn-down creates the same effects as poorly sized damper sections
 - Turn-down can aggravate sensing problems
- Flow variations can change the mixed air plenum pressure relative to ambient
 - Plenum to OA pressure drives outdoor air flow
 - System flow variations may produce minimum outdoor air flow variations

Dark, Windy, and Variable

What are the implications?

52°F OAT, 65-70°F RAT

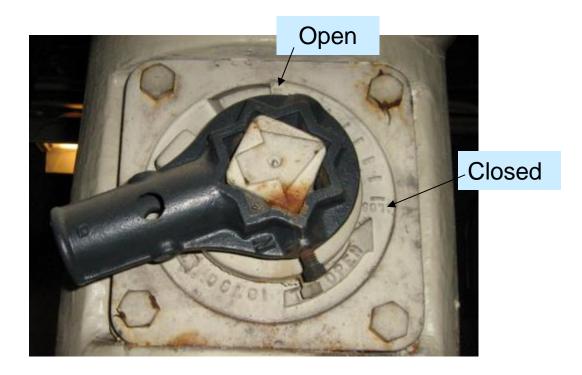

8% OA (ave. 64.3°F MAT)								31% OA (ave. 64.3°F MAT)								83% OA (ave. 55.1°F MAT)							
	20	20	20	20	20	20	20		20	20	20	20	20	20	20		20	20	20	20	20	20	20
20	62.5	63.8	63.1	63.3	64.2	64.5	64.5	20	60.9	60.8	63.5	64.7	64.9	65.4	66.9	20	57.5	57.3	57.0	55.4	53.9	52.7	52.5
20	64.0	62.3	63.5	64.2	64.7	65.3	64.9	20	60.2	61.8	63.3	64.7	64.4	65.9	66.5	20	57.5	57.9	57.0	55.9	53.9	52.7	52,1
20	62.2	62.4	63.8	65.1	64.9	65.0	66.0	20	60.8	61.5	64.0	65.1	69.9	66.3	66.5	20	58.4	58.1	57.0	57.9	54.1	52.5	52.5
20	63.3	65.7	63.3	64.0	65.3	66.8	66.2	20	60.0	60.9	64.0	64.9	66.2	66.7	66.7	20	58.8	57.9	58.1	55.4	53.7	52.5	51.8
20	64.7	64.5	64.2	64.4	65.6	66.3	66.3	20	60.0	61.7	64.4	65.4	66.7	67.1	67.1	20	59.3	57.3	55.7	54.3	52.7	52.3	52.8
Co	Coldest Hottest Minimum Maximum																						
	20	20	20	20	20	20	20		20	20	20	20	20	20	20		20	20	20	20	20	20	20
20	526	506	604	564	623	604	447	20	584	409	584	584	623	526	506	20	331	350	272	643	779	643	632
20	604	681	604	663	663	506	526	20	623	567	604	564	584	650	526	20	350	292	370	741	945	799	653
20	721	447	272	252	447	409	429	20	604	584	506	389	506	584	701	20	800	604	429	760	858	643	701
20	584	487	546	526	447	623	526	20	564	564	564	564	370	584	564	20	681	487	604	663	741	663	604
20	429	389	405	405	546	350	447	20	429	350	467	487	584	564	487	20	467	487	623	389	447	487	623
S	owest						Fastest		Ninim	um	Ma	ximun	n										

Data courtesy of David Sellers

Economizers and Building Pressure

- Make sure the relief air system operates correctly at 100% OA.
 - E.g., no exterior doors standing open.

Courtesy of BetterBricks

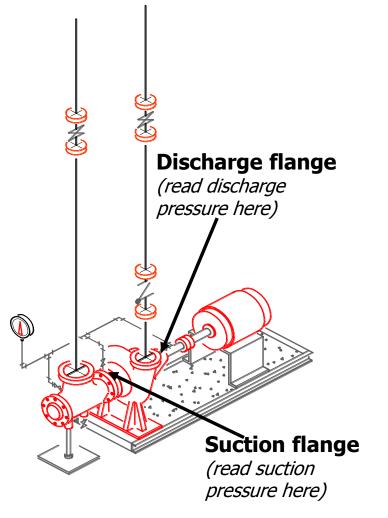

Evaluate HVAC Pumps

- **Pumping Opportunities**
- Many pumps are oversized
- How to identify:
 - Throttled discharge valve
 - Both parallel pumps running
 - Low temperature differential across loop

Evaluate HVAC Pumps

Sometimes it's easy to spot a throttled discharge valve ...

Investigation


Evaluate HVAC Pumps

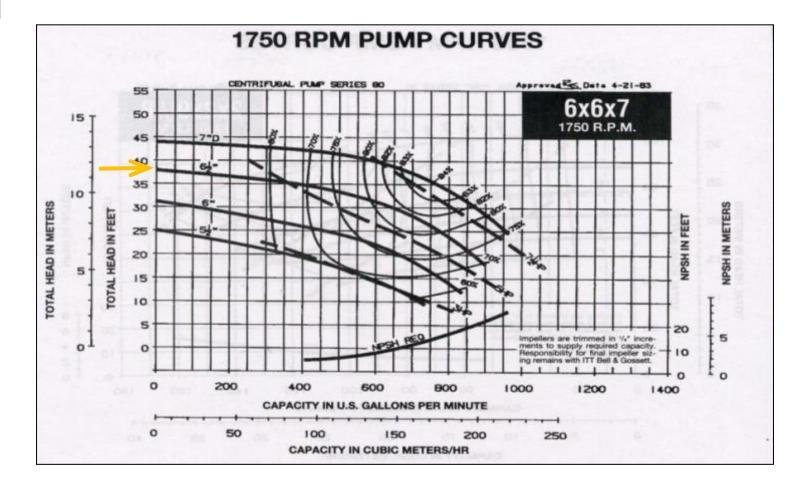
... other times, not so much.

Performing a Pump Test

- Pump curves are certified performance
 - Flow vs. head for various impeller sizes
- Measure pressures at flanges

As Found Conditions

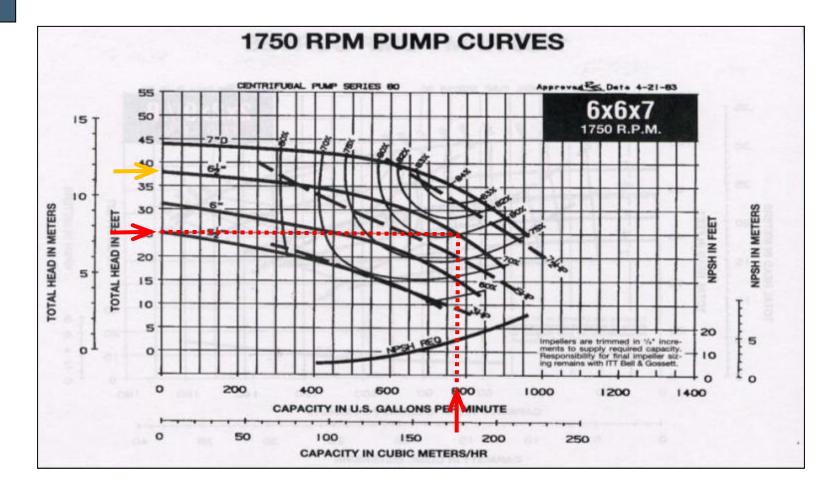
Record the current operating conditions

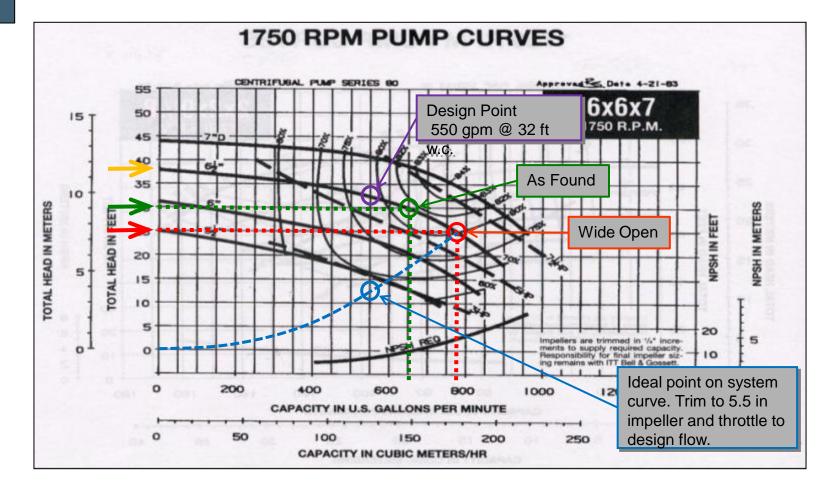

Record suction and discharge pressures

Mark current position of throttling valve so that the system can be returned to the as-found state once the test is complete

No Flow Test

- Verify impeller size
 - Turn off the pump.
 - Close the throttling valve completely and turn the motor back on.
 - Record suction and discharge pressure.
 - Plot the point on the pump curve, determine impeller size.


No Flow Test Results


Wide Open Test

- Throttling valve completely open.
 - Open the throttling valve completely.
 - Ensure that all control valves in the loop are open.
 - Record suction and discharge pressure.
 - Plot the point on the pump curve.

Wide Open Test Results

Plotting the Results

Pump Affinity Laws

Predict performance on the system curve
 Generate new impeller curves

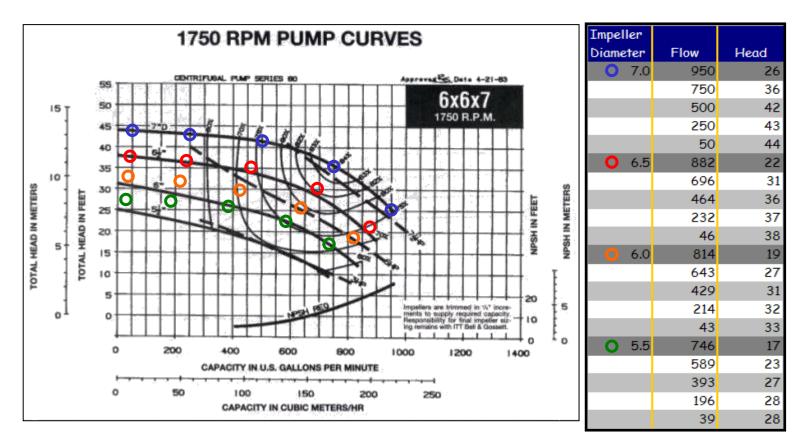
Useful derived relationships :

$$Q_2 = Q_1 \left(\frac{D_2}{D_1}\right), H_2 = H_1 \left(\frac{Q_2}{Q_1}\right)^2$$
, and $BHP_2 = BHP_1 \left(\frac{Q_2}{Q_1}\right)^3$

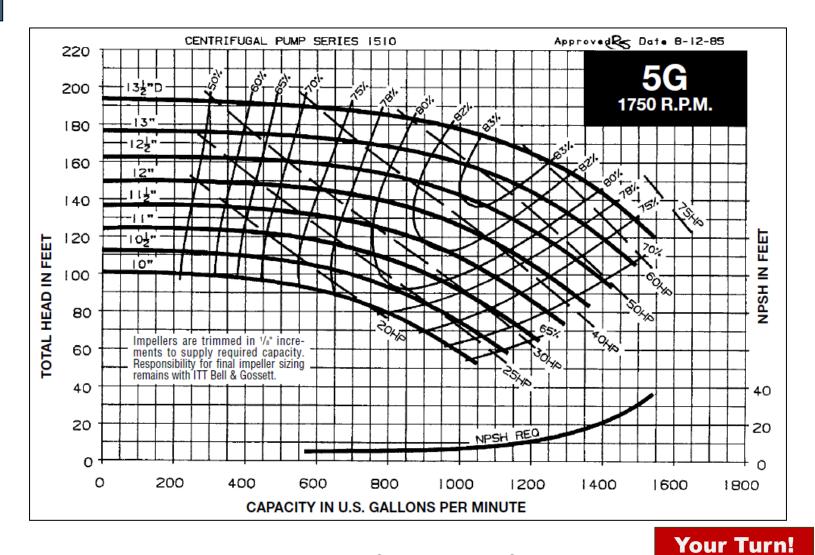
Where:

Q = Flow

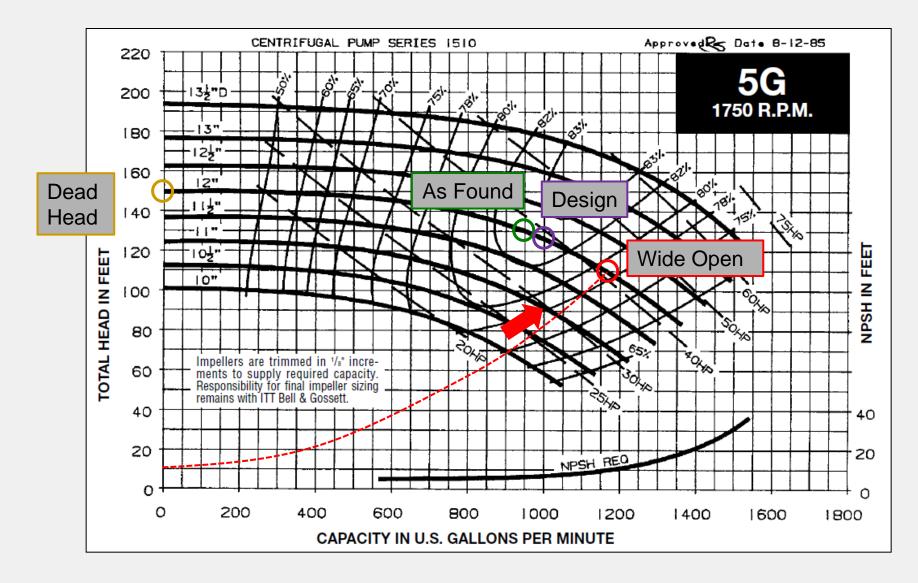
D = Impeller diameter


H = Head

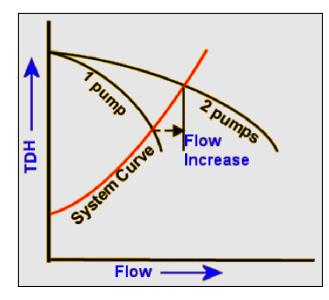
BHP = Shaft horsepower

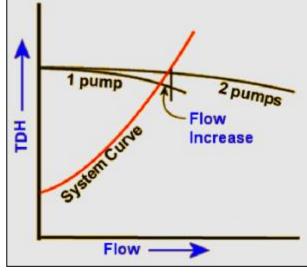

Use the Laws With Care

Affinity laws do not account for leakage and hydraulic losses. Predicted performance may not match actual.


Pump Analysis Activity

Credit: Bell and Gossett catalog.


Pump Analysis Activity


Investigation

Evaluate HVAC Pumps

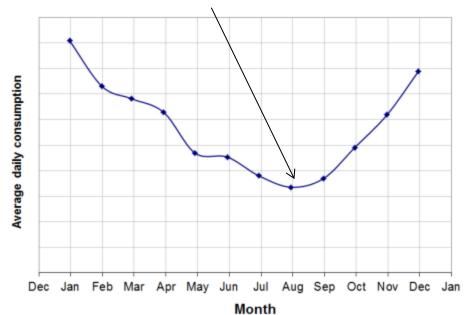
- Parallel pumps shut one off?
- Level of savings depends on pump curve.

Shallow curve - less flow increase

Evaluate Ventilation

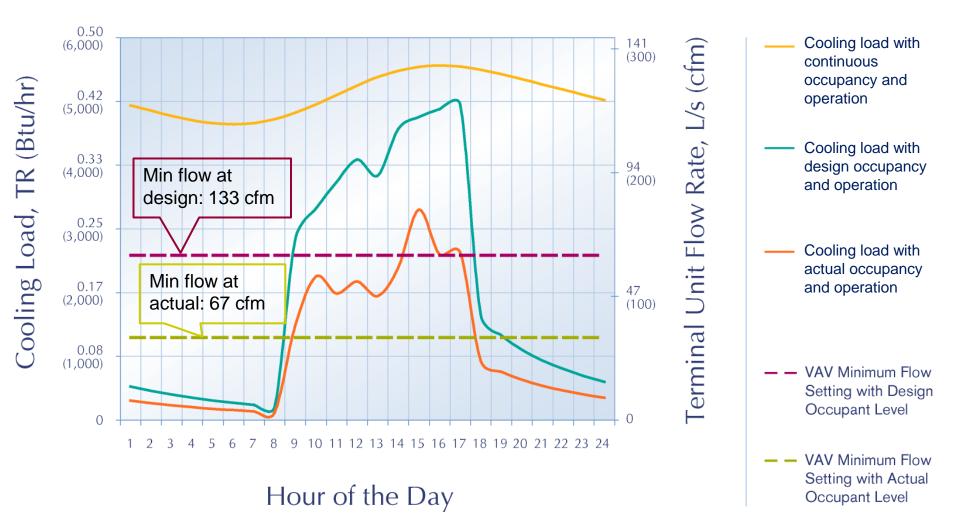
Ventilation control – typical issues:

- Actual occupant load less than design
- Space usage changed


Common opportunities:

- Add demand-controlled ventilation (DCV)
- Reduce minimum OA flow rate
- Reduce VAV box min flow rates
- Reset VAV box min flow rates

Evaluate Ventilation


Clues to identify ventilation issues:

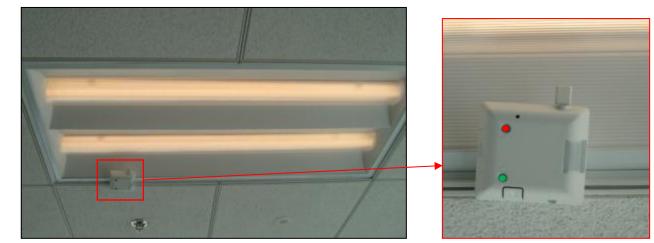
- Cold complaints in zones with no reheat
- Low measured CO₂ values
- High summertime boiler usage

VAV? Or mostly CAV?

Typical Interior Office Cooling Loads

Ventilation Activity

When evaluating reduced minimum ventilation rates or reduced VAV box minimum flow setpoints, list some considerations related to:


- Measuring CO₂
- Code-required ventilation rates
- VAV box airflow measurement rings
- Electric reheat at VAV boxes
- Supply air turn-down capability of the AHU
- Integration with lighting occupancy sensors
- Capabilities of the control system
- Other considerations?

Measure lighting levels, compare to CFR

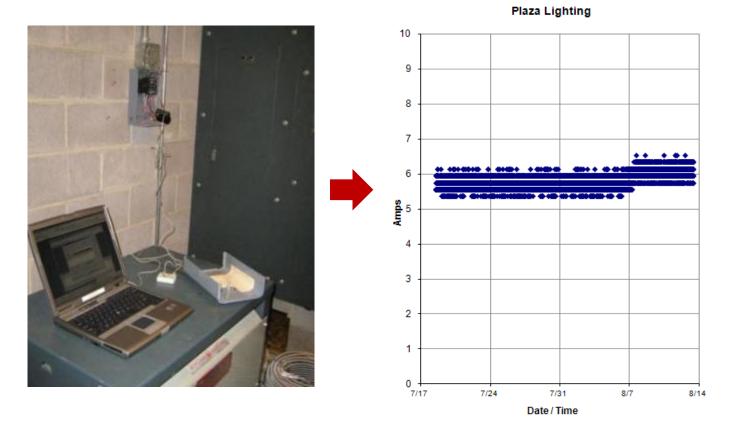
Location	Acceptable Illuminance Level Range (FC)	Measured Illuminance Level (FC)	Acceptable?
1 st floor open office	20-50	107	Ν
1 st floor conf room	20-70	54	Y
1 st floor lobby	10-30	59	Ν
1 st floor enclosed office	20-50	27	Y
1 st floor corridor	10-30	12	Y
2 nd floor open office	20-50	21	Y
2 nd floor storage	10-30	22	Y

Lighting controls. Example types:

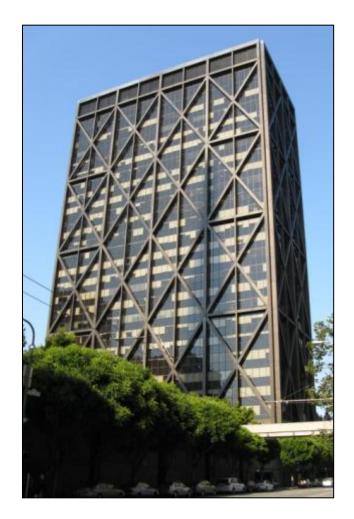
- Scheduled
- Photocell-controlled
- Daylight harvesting
- Occupancy sensor-controlled

Lighting controls case study

Issue:

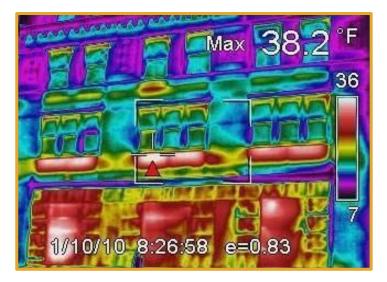

- Plaza lights on during day.
- Identified during walkthrough

How could this issue be investigated? What methods could be used?


Verify suspicions

Evaluate Envelope Performance

General considerations


- Maintenance
- Air sealing / infiltration
- Operable components
- Known issues

Evaluate Envelope Performance

Check air leakage

- Gaps around windows and doors
- Operable windows and doors
- Use thermal imaging camera or smoke pen

Evaluate Envelope Performance

Stack effect

- Common in high rise buildings
- Symptoms: drafts on lower floors, overheating on upper floors
- After hours infiltration
- Conduct a night walk
- BetterBricks <u>Building</u> <u>Night Walk Video Series</u>

Evaluate Plug Loads

Items and areas to investigate

- Computer power management
- Space heaters
- Projectors
- Data centers

Look for scheduling opportunities. Diagnostic monitoring can be used.

Turning Findings into Measures

Work with operating staff to develop appropriate measures to correct the identified findings.

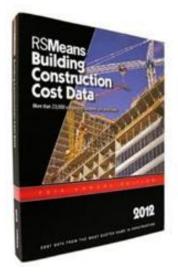
Turning Findings into Measures

Measure types

- Those that repair / restore operation
- Those that add enhancements / technology (e.g., advanced control sequences, VFDs)
 - With this type, consider the availability and capability of the building operating staff.

Analyze Measures

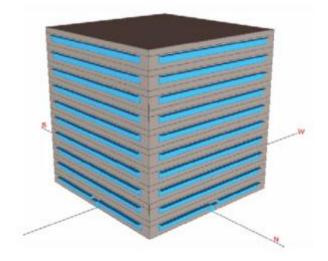
Estimate:


- Implementation cost
- Benefits (e.g., energy savings)
- Financial metrics

								Exist	ing Chill	er Plant (Operatio	on							
						Bldg			Air Cooled Reciprocating Electric Chillers										
Ar	nnual B	in Totais		Operating		Load	CHWS	Chi	ller (1) 360	ton	Chil	ler (2) 360) ton	P-1A	P-2A				
BIN-	-DEG	F	Hours	Hours	AVE WB	Tons Temp		tons	ons kW/ton		tons	kW/ton	kW/ton kW		KW				
						а	b	с	d	e	f	g	h	i	i				
100 T	.o	105	1	1	78	550	44	270	1.32	356.4	280	1.32	369.6	6.4	(
95 T	o	100	6	6	77	550	44	270	1.32	356.4	280	1.32	369.6	6.4	(
90 T	0	95	62	62	76	450	44	270	1.32	356.4	180	1.32	237.6	6.4	(
85 T	0	90	155	155	74	400	44	270	1.32	356.4	130	1.32	171.6	6.4	(
80 T	0	85	337	337	72	350	44	270	1.32	356.4	80	1.32	105.6	6.4	(
75 T	0	80	449	449	68	300	44	240	1.32	316.8	60	1.32	79.2	6.4	(
70 T	0	75	502	502	64	120	44	120	1.40	168.0	0	0.00	0.0	6.4	(
65 T	0	70	706	353	61	90	44	90	1.45	130.5	0	0.00	0.0	6.4	(
60 T	0	65	934	374	57	50	44	50	1.45	72.5	0	0.00	0.0	6.4	(
55 T	0	60	766	191.5	53	30	44	30	1.50	45.0	0	0.00	0.0	6.4					
		Totals	3918	2430															

Analyze Measures

Implementation cost considerations


- Contractor or in-house labor
- Materials and equipment
- Contractor markups
- Engineering, training and M&V fees
- Updating documentation
- Project contingency

Analyze Measures

Energy and demand savings calculation methodology options

- Whole building energy modeling software
- Stipulated savings from utility programs
- Manufacturer's software
- Custom spreadsheets
- Other calculators

Allowed by Xcel

Analyze Measures

Energy and demand savings calculation methodology options

- Whole building energy modeling software
- Stipulated savings from utility programs
- Manufacturer's software
- Custom spreadsheets
- Other calculators
 - Xcel Energy RCx Tool⁴

Analyze Measures

Energy and demand savings general approach

- Collect baseline data
- Develop baseline energy use estimate
- Develop post-implementation energy use estimate
- Calculate savings
 - Baseline minus post-implementation
- Review calculations

Custom Spreadsheets

- 1. Collect baseline data
- Demonstrate the finding
- Basis for savings calculations
- Sources:
 - Spot measurements
 - Nameplate data
 - Drawings
 - Site observations
 - Functional performance test data
 - Trend data

Custom Spreadsheets

- 2. Develop baseline energy use estimates
- Document assumptions and inputs
- Filter bin data and trend data
- Show intermediate calculation steps
- Use equations, don't "paste values"
- Use appropriate calculation approach
 - Simple calculations
 - For consistent operational characteristics
 - Bin methods
 - 8,760-hour methods
 - Better than bin for demand estimates

Custom Spreadsheets

- 3. Develop post-imp energy use estimates
- Predict the measure's impact on the affected system(s)

Investigation

- Use engineering formulas
- 4. Calculate savings
- Baseline minus post-imp energy use
- Allow for future modification of the estimate based on actual post-imp data

Custom Spreadsheet Example

	Dry-bulb outside air temperature, °F	Load (kW)	Baseline operation bin hours (M-F 6a- 10p, Sa 7a-5p)	Baseline Energy (kWh)	Proposed operation bin hours	Proposed energy use (kWh)	Energy savings, (kWh)		
Line #	а	b	С	d	е	f	g		
Source		See regression on 'Load' worksheet	BinMaker for Minneapolis	b * c	Lockout at OATs<50°F	b*e	d - f		
	97.5	40.5	1	40	1	40	0		
	92.5	40.0	16	639	16	639	0		
	87.5	39.5	56	2,209	56	2,209	0		
	82.5	39.0	237	9,231	237	9,231	0		
	77.5	38.5	356	13,688	356	13,688	0		
	72.5	38.0	383	14,535	383	14,535	0		
	67.5	37.5	324	12,134	324	12,134	0		
	62.5	37.0	413	15,260	413	15,260	0		
	57.5	36.5	305	11,117	305	11,117	0		
	52.5	36.0	301	10,821	301	10,821	0		
	47.5	35.5	249	8,827	0	0	8,827		
	42.5	35.0	192	6,710	0	0	6,710		
	37.5	34.5	295	10,163	0	0	10,163		
	32.5	34.0	273	9,268	0	0	9,268		
	27.5	33.5	259	8,664	0	0	8,664		
	22.5	33.0	200	6,590	0	0	6,590		
	17.5	32.5	319	10,352	0	0	10,352		
	12.5	32.0	161	5,144	0	0	5,144		
	7.5	31.5	110	3,460	0	0	3,460		
	2.5	31.0	82	2,538	0	0	2,538		
	-2.5	30.5	48	1,462	0	0	1,462		
	-7.5	30.0	68	2,037	0	0	2,037		
	-12.5	29.5	26	766	0	0	766		
	-17.5	29.0	6	174	0	0	174		
			4,680	165,828		89,675	76,153		

46% reduction 139

More Typical Custom Spreadsheet

ns and Eo

		AH-0401		AH-0402		AH-0404		AH-0405		AH-0407		AH-0408				AH-0414		
	units	Base	ECM	Base	ECM	Base	ECM	Base	ECM	Base	ECM	Base	ECM	Base	ECM	Base	ECM	
Supply fan flow rate	cfm	17,097	17,097	22,521	22,521	40,280	40,280	7,900	7,900	26,060	26,060	9,560	9,560	12,920	12,920	13,920	13,920	From spot measurements. Units are constant volume.
Supply fan motor		30 (est.)	30 (est.)	30	30	30 (est.)	30 (est.)	30 (est.)	30 (est.)	30	30	30	30	25	25	25		From nameplate data
Minimum outside air damper position	%	10%	10%	30%	10%	18%	10%	18%	10%	18%	10%	12%	10%	33%	10%	33%		Baseline from functional testing. ECM from drawings.
Supply fan heat pick- up	٥F	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Engineering estimate
Damper leakage	%	10%	5%	30%	5%	18%	5%	18%	5%	18%	5%	12%	5%	33%	5%	33%	5%	Engineering estimate
Linear Regressions		Variable	Constant	Variable	Constant	Variable	Constant	Variable	Constant	Variable	Constant	Variable	Constant	Variable	Constant	Variable	Constant	
Baseline MAT f(OAT)	٥F	0.034	68.231															Curve fit from trend data
RAT f(OAT)	٥F			0.00	70.00	0.05	68.75	0.05	68.75	0.05	72.61	-0.14	77.83	0.00	70.25	0.00	70.25	Curve fit from trend data
SAT f(OAT)	٥F	0.02	56.09	0.04	51.79	0.03	53.43	0.00	52.37	0.00	56.98	0.00	61.65	0.00	55.00	0.00	55.00	Curve fit from trend data

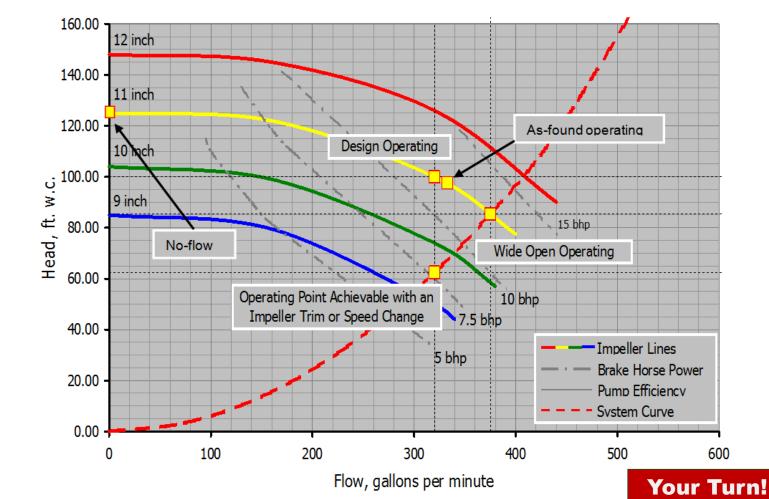
Economizer status = "n" if OA>RAT, "y" otherwise % OA = (MAT - RAT) / (OAT - RAT) Sensible Cooling = 1.08 * CFM * (MAT - SAT) CHW kWh = sensible cooling bad * Chiller efficiency * h Chiller Demond Savina = (Rase Cooling Load * Chiller eff Eq2 Eq3 Eq4 Eq5

Savings Summary

AHU	Annual kWh savings	Summer Peak Hours (M-F June-Sept 12pm-6pm)	Summer Mid- Peak Hours (M-F June- Sept 8am- 12pm, 6pm- 11pm)	Summer Off- Peak Hours	Winter Mid- Peak Hours (M-F Oct-May Bam-9pm)	Winter Off- Peak Hours	CPUC Demand Savings, kW
AH-0401	58,553	102	2,360	7,250	14,874	33,967	0.4
AH-0402	50,927	162	2,255	6,813	12,790	28,908	6.1
AH-0404	129,578	761	6,121	17,919	32,897	71,879	4.7
AH-0405	24,418	130	1,231	3,612	6,151	13,294	1.0
AH-0407	120,980	2,231	7,042	18,363	31,166	62,179	2.6
AH-0408	20,101	13	761	2,551	5,219	11,557	0.4
AH-0413	28,638	111	1,243	3,734	7,258	16,292	3.9
AH-0414	30,854	120	1,339	4,022	7,820	17,553	4.2
Total	464,050	3,630	22,351	64,265	118,174	255,630	23.3
	7.4%	% of base building) usage				

Calculations

AH-0401											Baseline ECM										1									
Dry-bulb outside air temperature, ºF	Operation bin hours (continuous operation)		Summer Mid- Peak Hours (M-F June-Sept 8am-12pm, 6pm- 11pm)	Summer Off- Peak Hours	Winter Mid- Peak Hours (M-F Oct-May Bam-9pm)	Winter Off- Peak Hours	Supply airflow, cfm	SAT, ºF	RAT, °F	Economizer operation?	MAT, °F	% OSA	Sensible cooling coil load, tons	Chilled water plant efficiency, kW/ton	Chilled water usage, kWh	Economizer operation?	MAT, ºF	% OSA	Sensible cooling coil load, tons	Chilled water plant efficiency, kW/ton	Chilled water usage, kWh	Chiller demand savings, kW	Summer Peak Chiller Energy Reduction (KWh)	Summer Mid- Peak Chiller Energy Reduction (kWh)	Summer Off- Peak Chiller Energy Reduction (KWh)	Winter Mid- Peak Chiller Energy Reduction (kWh)	Winter Off- Peak Chiller Energy Reduction (KWh)	Chiller savings, kWh	Dry-bulb outside air temperature, oF	Mean coincident dew point, °F
Equations Used:								regression	regression				eq4	regression	eq5	eq2	eq3	eq3	eq4	regression	eq5	eq6								
95	1	0	0	1	0	0	17,097	57.6	68.8	n	71.4	10%	23	0.53	12	n	71.4	10%	23	0.52	12	0.4	0	0	0	0	0	0	95	30.1
93	0	0	0	0	0	0	17,097	57.6	69.0	n	71.4	10%	23	0.53	0	n	71.4	10%	23	0.52	0	0.4	0	0	0	0	0	0	93	0.0
91	2	0	0	2	0	0	17,097	57.5	69.1	n	71.3	10%	23	0.53	24	n	71.3	10%	23	0.51	23	0.3	0	0	1	0	0	1	91	36.7
89	2	1	0	1	0	0	17,097	57.5	69.3	n	71.2	10%	23	0.53	24	n	71.2	10%	23	0.51	23	0.3	0	0	0	0	0	1	89	41.8
87	7	1	0	5	1	0	17,097	57.5	69.4	n	71.2	10%	23	0.52	83	n	71.2	10%	23	0.51	81	0.3	0	0	1	0	0	2	87	35.5
85	13	1	3	5	2	2	17,097	57.4	69.6	n	71.1	10%	23	0.52	153	n	71.1	10%	23	0.51	150	0.2	0	1	1	0	0	3	85	41.6
83	15	2	1	3	6	3	17,097	57.4	69.7	n	71.0	10%	22	0.52	175	n	71.0	10%	22	0.51	172	0.2	0	0	1	1	1	3	83	47.2
81	38	6	3	7	17	5	17,097	57.4	69.8	n	71.0	10%	22	0.52	439	n	71.0	10%	22	0.51	433	0.2	1	1	1	3	1	7	81	49.8
79	52	10	8	6	20	8	17,097	57.4	70.0	n	70.9	10%	22	0.51	596	n	70.9	10%	22	0.51	589	0.1	1	1	1	3	1	7	79	52.0
77	47	12	11	6	13	5	17,097	57.3	70.1	n	70.8	10%	22	0.51	535	n	70.8	10%	22	0.51	530	0.1	1	1	1	1	1	5	77	55.5
75	180	60	41	34	33	12	17,097	57.3	70.3	n	70.8	10%	22	0.51	2,031	n	70.8	10%	22	0.50	2,019	0.1	4	3	2	2	1	12	75	57.5
73	390	124	64	72	81	49	17,097	57.3	70.4	n	70.7	10%	22	0.50	4,365	n	70.7	10%	22	0.50	4,325	0.1	13	7	7	8	5	40	73	56.4
71	470	122	101	102	102	43	17,097	57.2	70.6	n	70.6	10%	22	0.50	5,220	n	70.6	10%	22	0.50	5,173	0.1	12	10	10	10	4	47	71	57.5
69	622	101	91	190	174	66	17,097	57.2	70.7	n	70.6	10%	22	0.50	6,857	n	70.6	10%	22	0.59	8,151	-2.1	-210	- 189	- 395	-362	-137	-1,294	69	57.1
67	856	53	146	263	224	170	17,097	57.2	70.9	n	70.5	10%	22	0.50	9,372	y	67.2	95%	17	0.55	8,023	1.6	84	230	414	353	268	1,349	67	55.9
65	912	22	154	326	216	194	17,097	57.1	71.0	n	70.4	10%	22	0.63	12,650	У	65.3	95%	14	0.53	6,841	6.4	140	981	2,076	1,376	1,236	5,809	65	56.1
63	986	6	102	275	300	303	17,097	57.1	71.2	n	70.4	10%	22	0.61	13,200	y	63.4	95%	11	0.51	5,602	7.7	46	786	2,119	2,312	2,335	7,598	63	54.4
61	919	1	46	223	297	352	17,097	57.1	71.3	n	70.3	10%	22	0.59	11,951	y	61.5	95%	8	0.49	3,795	8.9	9	408	1,979	2,636	3,124	8,156	61	51.8
59	484	0	6	66	153	259	17,097	57.0	71.5	n	70.2	10%	22	0.58	6,148	y	59.6	95%	6	0.55	1,462	9.7	0	58	639	1,481	2,507	4,685	59	50.9
57	846	0	6	28	228	584	17,097	57.0	71.6	n	70.2	10%	22	0.57	10,544	ý	57.7	95%	3	0.74	1,673	10.5	0	63	294	2,391	6,124	8,871	57	49.4
55	934	0	0	8	250	676	17,097	57.0	71.8	n	70.1	10%	22	0.57	11,462	y	56.0	94%	0	1.19	0	12.3	0	0	98	3,068	8,296	11,462	55	47.0
53	432	0	0	0	77	355	17,097	56.9	71.9	n	70.0	10%	22	0.56	5,234	y	55.9	84%	0	1.20	0	12.1	0	0	0	933	4,301	5,234	53	43.9
51	269	0	0	0	39	230	17,097	56.9	72.1	n	70.0	10%	22	0.55	3,224	y	55.9	77%	0	1.20	0	12.0	0	0	0	467	2,756	3,224	51	42.0
49	148	0	0	0	13	135	17,097	56.9	72.2	n	69.9	10%	22	0.55	1,756	у	55.9	70%	0	1.20	0	11.9	0	0	0	154	1,602	1,756	49	40.3
47	81	0	0	0	3	78	17,097	56.8	72.4	n	69.8	10%	22	0.55	952	y y	55.8	65%	0	1.20	0	11.8	0	0	0	35	917	952	47	35.6
45	30	0	0	0	0	30	17,097	56.8	72.5	n	69.7	10%	21	0.54	349	У	55.8	61%	0	1.20	0	11.6	0	0	0	0	349	349	45	33.3
43	19	0	0	0	0	19	17,097	56.8	72.6	n	69.7	10%	21	0.54	219	y y	55.8	57%	0	1.20	0	11.5	0	0	0	0	219	219	43	27.8
41	2	0	0	0	0	2	17,097	56.7	72.8	n	69.6	10%	21	0.53	23	ý	55.7	54%	0	1.20	0	11.4	0	0	0	0	23	23	41	24.1
39	3	0	0	0	0	3	17,097	56.7	72.9	n	69.5	10%	21	0.53	34	y y	55.7	51%	0	1.20	0	11.3	0	0	0	0	34	34	39	23.9
	8760	522	783	1623	2249	3583																	102	2.360	7.250	14.874	33.967	58,553		

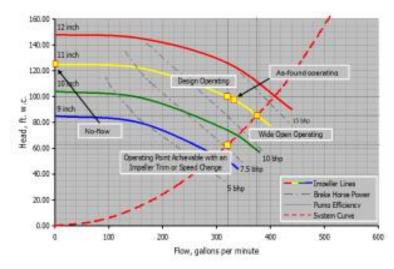

Custom Spreadsheets

Best practices

- Clearly label all assumptions
- Quickly test all assumptions
 - For those that have significant effect, be accurate (e.g., use spot measured values)
- Include supporting documentation
- Only use regressions that correlate well
- Account for interactions
 - Between systems
 - Between measures
- Vary equipment efficiencies with load

Savings Calculation Activity

What's the annual kWh savings related to adding a VFD?



Savings Calculation Activity

What's the annual kWh savings related to adding a VFD?

- As-found kW = (12 * .746) / (.9) = 10 kW
- Achievable kW = (7.5 * .746) / (.9 * .95) = 6.5 kW
- Savings = (10-6.5) * 4000 = 14,000 kWh

At \$0.10 / kWh, that's \$1,400 / year.

Reviewing Calculations

High level review (giggle / sniff test)

- % reduction in equipment usage
- % reduction in end-use usage
 - Could use CBECS data for baseline end-use estimates
- % reduction in whole building usage

Detailed review

- Adjust variables, observe effect on savings
- Start at the final savings number and work backwards
 - Review equations used
 - Review inputs

Planning

Investigation

Implementation

Hand-Off

Post-RCx

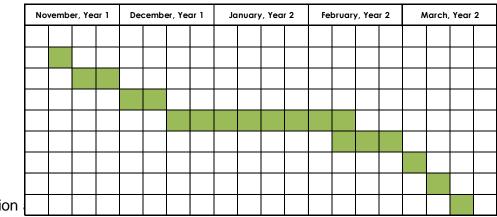
Implementation Phase Summary

- Select measures for implementation
- Prepare implementation plan
- Implement measures
- Verify successful measure implementation

Implementation Phase

- **Owner's considerations when selecting measures**
- Benefits
- Costs and available incentives
- Return on investment
- Work done in-house or by contractors?
- Timing (seasonal, budget, etc.)
- Drawbacks, risks

Implementation


Implementation Phase

Implementation plan topics

- Team roles and responsibilities
- Schedule
- Key coordination points
- Verification plan

Implementation Phase Schedule

Contractor Walkthrough Contractor Bids Due Purchase Orders Due Implementation Begins Measurement and Verification Training and Turnover Owner's Review and Approval Provide Approved Documentation

Implementation

Implementation Phase

Implementation approach options

- Turn-key installation
- Owner-led
- Owner-led with vendor assistance

Implementation

Implementation Phase

- **Verify implementation**
- Site observations
- Spot measurements
- Diagnostic monitoring
- Functional performance testing

Planning

Investigation

Implementation

Hand-Off

Post-RCx

Hand-Off Phase Summary

- Update documentation
- Develop persistence strategies
- Conduct training
- Develop Final Report

- **Update documentation**
- Drawings
- Controls sequences
- O&M manuals
- PM schedule
- CFR

Hand-Off Phase

Develop persistence strategies

- Track energy usage
- Track key system performance metrics
- Implement smart alarms in BAS
- Develop a re-commissioning plan
- Update PM program and service contracts
- Redefine responsibilities

Hand-Off Phase

Persistence strategies do not need to be complicated

Finding	Measure	Ongoing Maintenance of Measure
Economizer control has been disabled for all four AHs.	Re-enable economizer control for all air handlers.	Check economizer operation once a month, as part of regular PMs. Economizer control should be enabled.
Both HHW pumps run 24/7 during the winter.	Shut off one of the two heating water pumps. Add HW pump enable points to the BAS.	Once a week as part of regular PMs, check to see that pumps are not operating in hand. They should be operating in 'auto', according to the sequence of operations. One pump at OATs> 52°F, two pumps at OATs<52°F.
Roof architectural lighting on 24/7	Connect rooftop lighting to BAS, implement schedule.	Once a month as part of regular PMs, check to see that rooftop lights are off during the day.

Activity

Develop possible persistence strategies for:

HWST setpoint reset strategy

- Baseline: Constant 180°F HWST setpoint.
- Measure: Reset HWST setpoint based on OAT. 180°F at OATs<40°F, 120°F at OATs>70°F, linear in between.
- Lighting scheduling
 - Baseline: Lights are on continuously.
 - Measure: Lights are scheduled on at 6 am, off at 8 pm from central lighting control system.

Develop Systems Manual

 Document for use by operating staff in day-to-day operations of building

Development process:

- Determine format
- Develop table of contents
- Compile documentation

Hand-Off Phase

Systems Manual table of contents

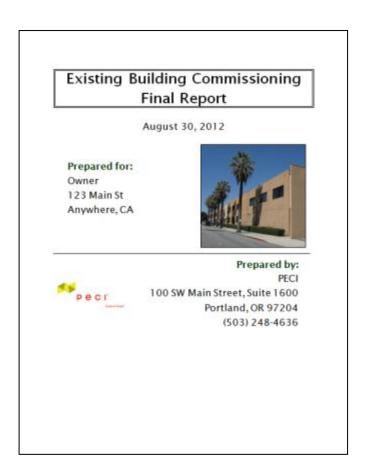
- I. Building Overview
 - A. Building Description
 - B. HVAC and lighting systems
 - C. Building Automation System
- II. Current Facility Requirements (CFR)
- III. Mechanical Equipment Inventory
- IV. Operating Instructions
 - A. HVAC
 - B. Lighting
 - C. Building automation system
- V. Troubleshooting Instructions
- VI. Ongoing Optimization Guidance
- VII. Equipment Manufacturers
- VIII. Control As-Builts & Sequences of Operations
 - A. Control Drawings
 - B. Sequences of Operation
 - C. Product literature

Hand-Off Phase

- **Conduct training**
- Informal
- Formal

Topics to discuss:

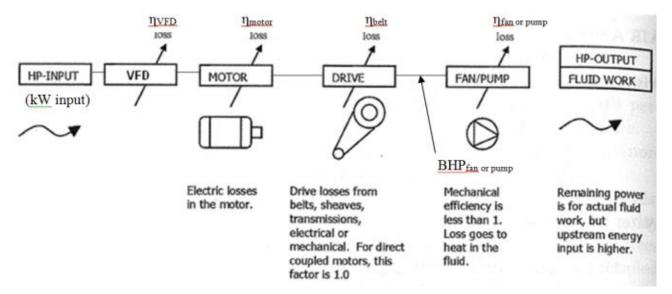
- Details of implemented FIMs
- Persistence strategies
- Updated documentation
- Hands-on training can be most effective.


Document the training

- Systems Manual
- Handouts
- Consider recording video

Final Report purpose:

- Record of EBCx activities
- Resource for current and future operators



Final Report table of contents

- I. Executive Summary
- II. Current Facility Requirements
- III. Master List of Findings
- IV. Implemented Facility Improvement Measures
- IV. Final Savings Estimates and Implementation Costs
- V. Diagnostic Monitoring Plan and Results
- VI. Functional Test Forms and Results
- VI. Updated Building Documentation
- VII. Recommendations for Maintaining New Improvements
- VIII. Training Summary and Training Materials

Develop In-House Resources

- Planning phase walk-through checklist
- Measurement and monitoring tools
- Findings identified on past projects, by system type
- Findings to look for on future projects
- Common engineering formulas and conversions

Develop In-House Resources

For custom spreadsheet savings calculations:

- Spreadsheets developed for past projects
- Template spreadsheets for use on future projects
- Development checklist
- Review checklist

Network directory with useful:

- Studies, guides, handbooks, articles, presentations
- Photos and screenshots from past projects
- Functional performance test forms
- Software tools
- Screenshots

PECI Training Program 104 Online Lessons

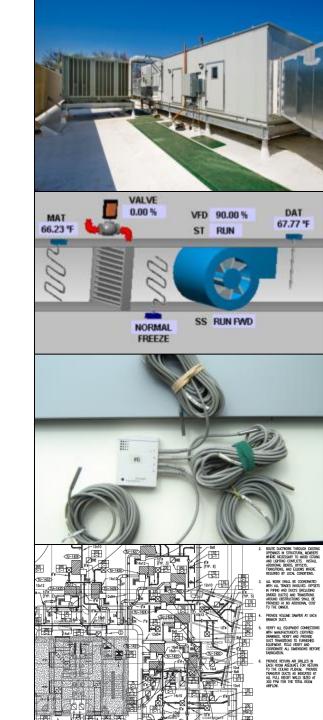
Commissioning Authority Training

- Fundamentals of Commissioning
- Commissioning Systems & Equipment
- Systems Performance & Analysis

http://learn.peci.org/

Commissioning Authority Training + Fundamentals of Commissioning – Commissioning Systems & Equipment

- + Facility Envelope Components
- + Facility Operating Requirements
- + Facility Energy Considerations
- + Intro to MEP Systems and Equipment
- + MEP- AHU
- + Cooling Equipment
- + Combustion and Boilers
- + Chilled Water Systems
- + Hot Water & Steam Heating
- + Domestic Hot Water Systems
- Electrical Systems and Equipment
 - Electrical Drawings and Documents
- Electrical Distribution Systems 1
- Electrical Distribution Systems 2
- Lighting Systems
- Lighting Controls
- Renewable Energy Systems
- + Control Systems Fundamentals
- + Control Systems
- + Systems Performance & Analysis



PECI Training Program One Week Lab

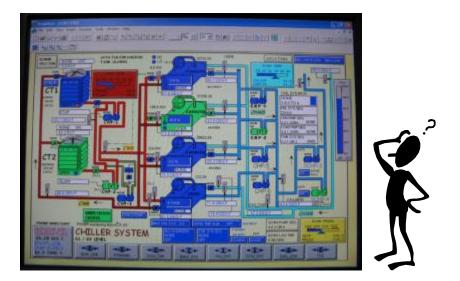
10 real-world exercises, including:

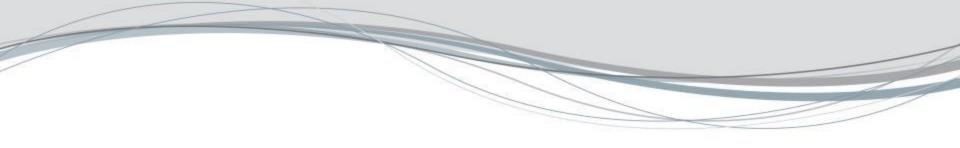
- Energy use analysis
- Design review
- BAS trend data analysis
- BAS sensor location and calibration verification
- Functional performance test development and observation
- Pump performance analysis
- Cx Progress Report development

http://learn.peci.org/

Questions / Discussion

Thank you!


Dave Moser, P.E.


Senior Engineer

dmoser@peci.org

503-961-6103

RESPONSIBLE BY NATURE®