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1 Introduction 

1.1 Background 
Over the past few years, wind turbine research and design has become increasingly 
concerned with control system design.  This concern arises for several reasons:  turbines 
have become larger, control system hardware has become more powerful, controls are 
another way to drive down costs and increase performance, and turbine modeling tools 
have become more sophisticated. 
 
There are significant benefits to be gained from developing sophisticated control schemes 
for variable-pitch and/or variable-speed wind turbines.  These benefits generally fall into 
two categories:  improved energy capture and reduced loading.  While both of these 
benefits have potential to reduce the cost of wind energy, the latter has only seen limited 
application in commercial wind turbines [1]. 
 
One of the reasons for this is that the design of sophisticated control systems for complex 
structures requires models of equal sophistication and accuracy.  These models must be 
cast with physical and mathematical structures that integrate with control design methods 
and software.  While much progress has been made in recent years modeling wind 
turbine structural and aerodynamic response in the time domain, obtaining detailed and 
accurate system models for wind turbine control design has proven to be difficult for a 
variety of reasons. 
 
One of the primary difficulties is that the large, flexible blades, due to their rotation, 
cause problems in the development of the linear models required for control design.  
Another difficulty is incorporating the aeroelastic response of the structure into the 
system model used for control design. 
 

1.2 Project Scope and Objectives  
There are several approaches that have potential to solve this problem.  One approach 
currently being investigated is the development of a structural model that will allow for 
easy extraction of the system model required by the control system design tools [2,3].  
While this approach has technical merit, the development process is long and costly, and 
the end product is a complex simulation code that will need to be validated, maintained, 
and extended as wind turbine design concepts change.  Also, many of the capabilities of 
this type of new code will duplicate other codes that are currently available to wind 
turbine designers and researchers. 
 
Two general alternative approaches exist that leverage an existing commercial general-
purpose structural dynamics code to extract a linearized system model:  (1) use of a 
commercially available linearization add-on, or (2) use of system identification 
techniques to obtain a realization of the linearized system model.  The advantage to both 
of these approaches is that most of the complex software development has already been 
done so that the method development will likely be less expensive and more rapid.  Also, 
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the above methods will be inherently more flexible and able to accommodate different 
turbine design concepts since the commercially available code is extremely powerful and 
flexible. 
 
Wind turbines are often modeled in the ADAMS [4,5] general purpose structural 
dynamic analysis code, available from MSC Software of Santa Ana, California.  This 
code is commercially available, extremely flexible, and the necessary aerodynamic 
modules needed for wind turbine analysis have been developed and validated by the 
National Renewable Energy Laboratory [6,7].  While ADAMS is an extremely powerful 
tool for the structural dynamic analysis of wind turbines, researchers and designers have 
had difficulty using these models for developing controls algorithms. 
 
The focus of this effort is to develop methods that allow for control development based 
on the ADAMS models.  Based on the results of Phase I, documented in the Phase I 
report [8], the approach selected uses the add-on ADAMS linearization package in 
conjunction with custom subroutines for inclusion of rotational and aerodynamic effects.  
This approach was further developed and validated in Phase II.  Additionally, the 
resulting linear models have been used in example control design efforts. 
 

2 Approach 

2.1 Overview 
This project was broken down into two phases.  In Phase I, most of the work focused on a 
relatively simple model of a wind turbine where the major structural components (blades 
and tower) were modeled as rigid bodies.  Methods were developed and validated for the 
rotational and aerodynamic effects.  Figure 1 shows the basic approach used for 
validation.  This effort is documented in the Phase I report [8]. 
 
In Phase II, the selected techniques were applied to complex wind turbine models.  In 
addition to the aerodynamics, the models used discretizations of the major structural 
components into multiple parts with inertial properties (mass and inertia) connected by 
flexible elements.  These flexible connections resemble the beam elements used in finite 
element analysis.  The use of complex models revealed a number of subtleties and some 
flaws in the original formulation for inclusion of the rotational effects.  In Phase II, a 
significant effort was made to improve and validate the methodology. 
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Simple ADAMS Model
Running at a steady
state operating point

Linearization

Import linearized
model into Matlab

In Matlab, simulate response
to step changes in inputs

(pitch, generator torque, wind
speed)

Simulate response to step
changes in inputs (pitch,

generator torque, wind speed)

Control Design

Compare Response
(no control)

Integrate

Simulate response to step
change in disturbance input

(wind speed)

Review response of
controlled turbine

 
Figure 1.  Overview of Phase I approach 

 

2.2 ADAMS Modeling 

2.2.1 Structural Model 
A full complex model of a wind turbine in ADAMS consists of a large number of 
individual components.  In particular, the blades and tower are represented by a number 
of individual inertial parts connected with beam or field elements.  Each individual part 
has six displacement degrees of freedom, unless otherwise constrained.  The main shaft is  
represented by a single beam element overhung from the main bearing.  The model used 
primarily in the Phase II effort is shown in Figure 2 and described in  
Table 1 and  
Table 2. 
 
The model used in Phase II is adapted from the work by Malcolm and Hansen [9].  It is 
similar in basic architecture to the simple model the Phase I report [8].  However, the 
blades have a slimmer profile, run at a higher tip speed ratio and have structural 
properties that include a high degree of flap-twist coupling.  Also, the tower is softer. 
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Figure 2.  Schematic of the turbine model 

 

Table 1.  Complex Wind Turbine Model Description 

Item Value 
Rating, kW 1500 
Rotor diameter, m 70 
Design tip speed ratio 7.5 
Rated wind speed, m/s 11.5 
Rated rpm 21.2 
Hub height, m 84 
Nacelle Tilt/Blade Coning 0 

 
Table 2.  Complex Model Component Description 

Component Mass, kg 
Tower 434,171 
Bedplate 49,801 
Generator + HS shaft 1,562 
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LS shaft 1,562 
Hub, incl pitch bearings 11,513 
3 Blades, each 2,957 

2.2.2 Controls 
The basic control elements include the generator torque and blade pitch.  Internal to the 
ADAMS model, the generator is modeled with a torque versus rpm curve, and the blade 
pitch actuator is modeled with a proportional-integral-derivative (PID) control loop on 
the pitch command.  The torque speed curve is designed to provide variable-speed 
operation such that the tip speed ratio is held constant at the optimum design value, with 
torque limiting once rated power is reached.  This curve is shown in Figure 3. 
 
The pitch motor controller calculates a required blade pitch torque based on the pitch 
command and the measured pitch and pitch rates as shown in Table 3 and Figure 4.  The 
structure and the gains shown are intended to result in a first-order response with time 
constant tau.  It is assumed that the demanded pitch rate can be approximated by the pitch 
error divided by tau.  The blade inertia about the pitching axis is denoted as J. 
 
The pitch command can originate from the turbine controller, which can be either a PID 
or a state space controller.  The pitch of the three blades can either be coupled or 
independent. 
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Figure 3.  Generator torque speed curve 

Table 3.  Blade Pitch Actuator Control Gains 

Term Description Value 
Tau Pitch response time constant 0.2 sec 
K1 Integral gain 2J/tau3 
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K2 Proportional gain 4J/tau2 
K3 Proportional gain 2J/tau2 
K4 Derivative gain 3J/tau 
K5 Derivative gain J/tau 

Pitch
TorquePitch

Command

Blade Pitch
Measurement

Turbine Model
Pitch
Error

K5

+-

K4

K1/s

Pitch Rate
Measurement

1/tau

K3

K2

+-
++-

+

 
Figure 4.  Blade pitch actuator controller block diagram 

 

2.2.3 Aerodynamics 
The aerodynamic design is based on the NREL S818/S825/S826 series airfoils.  The 
basic aerodynamic and geometric properties are summarized in Table 4.  For this work 
ADAMS version 12.0 coupled with Aerodyn [10] version 12.35 has been used.  The 
Aerodyn routines have been run using the equilibrium wake model with dynamic stall 
turned off. 
 

Table 4.  Model Aerodynamic Section Properties 

Radius, m Chord, m Twist, deg Airfoil 
2.100 1.910 32.0 Cylinder 
4.393 1.959 20.8 S818 
7.543 2.063 9.6 S818 
9.836 2.040 8.9 S818 

12.069 1.918 7.2 S818 
14.363 1.793 5.2 S818 
16.505 1.679 3.1 S818 
18.797 1.556 1.9 S818 
21.242 1.424 1.5 S825 
23.534 1.300 1.0 S825 
25.466 1.196 0.6 S825 
27.759 1.072 0.4 S825 
30.413 0.928 0.3 S825 
32.707 0.803 0.1 S826 
34.426 0.710 0.0 S826 
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2.2.4 Coordinate Systems 
The coordinate systems used throughout are based on the standard in the wind industry.  
The global and individual blade fixed coordinate systems are shown in Figure 5. 
 

 
Figure 5.  Global (X,Y,Z) and blade (x,y,z) coordinate systems 

 
The theoretical development uses the Coleman multi-blade transformation [11,12,13,14] 
extensively.  This transformation converts the blade motions from the three independent 
blade fixed coordinate systems (x,y,z)1,2,3 into one fixed-frame coordinate system 
(x,y,z)0,S,C.  The fixed-frame system will be referred to as Coleman coordinates and 
consist of a symmetrical coordinate, 0; a sine (or yaw) coordinate, S; and a cosine (or tilt) 
coordinate, C.  While the three blade coordinate systems are used to describe the 
deflections of each blade individually as seen in the rotating frame of reference, the 
Coleman coordinates describe the deflections of the rotor as a whole as seen from the 
fixed frame. 
 
The symmetrical term is relatively easy to conceptualize.  In the x direction, it refers to 
collective displacement of the rotor in the upwind/downwind direction.  In the y 
direction, it refers to a rotation about the hub, and in the z direction it refers to a radial 
stretching or shrinking of all of the blades together.  The other directions are more 
difficult to conceptualize.  Figure 6 through Figure 8 depict the rotor displaced in each of 
the nine Coleman coordinates/directions.  These are shown as if the hub is fixed and the 
blade tips are displaced. 

X Y 

Z
x1 
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Figure 6.  Coleman X displacements  

a) symmetrical  b) sine  c) cosine 

 
Figure 7.  Coleman Y displacements  

a) symmetrical  b) sine  c) cosine 

 
Figure 8.  Coleman Z displacements  

a) symmetrical  b) sine  c) cosine 
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2.3 Linearization 

2.3.1 Background 
The wind turbine model described above is simulated in ADAMS with a set of mixed 
nonlinear differential and algebraic equations.  These are coupled with the aerodynamic 
forces from the Aerodyn subroutines which also exhibit nonlinear behavior.  In order to 
design a controller that can be coupled with the model and eventually used with a real 
turbine, the nonlinear behavior must be linearized around one or more operating points of 
the turbine. 
 
Typically, analytical models used for modern control system design are linear time 
invariant (LTI) state space models consisting of a set of first-order linear differential 
equations.  This LTI model describes the linear behavior of a dynamic physical system 
around an operating point.  The model includes a set of states, inputs to and outputs from 
the system. 
 
An LTI model is constructed with state variables in a vector x(t).  These variables are 
usually the positions and velocities of the masses in a spring-mass-damper type of 
system.  The most common state variables for a wind turbine are the displacements and 
velocities of points along the tower, blades, drive train, etc.  These variables are related in 
a linear dynamic system through a set of coupled first-order differential equations.  
External forces, both a control vector u and a disturbance vector ud, affect the system.  
For a wind turbine, the elements of the control vector can be individual pitch demands for 
each of the blades and the generator torque demand. 
 
These differential equations make up a state space description of a linear system and can 
be expressed in matrix notation as follows: 

)(uB)u(B)Ax()(x ddu tttt ++=�  
 
where A is a matrix containing the coefficients of the differential equations, and Bu and 
Bd are the control and disturbance input influence matrices respectively. 
 
A system that has sensors will produce measurements in a vector m that can be 
analytically described as a linear combination of the states. 

)Cx()m( tt =  
 
where C is the state to measurement operator.  Typical measurements would include 
blade pitch, rpm, power, and tower top acceleration or velocity.  More sophisticated 
systems are being investigated for wind turbines that include blade load sensors as well. 
 
For an operating wind turbine, a linearized model would include the structural dynamics 
as well as the coupling between structural motions and the aerodynamics.  A generic set 
of states, inputs, and outputs for the ADAMS wind turbine model are described in Table 
5 through Table 7.  Note that the inputs are classified as either control or disturbance.  
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This corresponds to the notation u and ud used above.  The outputs are also classified by 
purpose.  A real wind turbine only has the capability to “output” a selected number of 
signals.  These are indicated as “typical measurement” in Table 7.  For model checkout 
and control design purposes, the state space model created may also have as outputs a 
number of other variables.  These are required to be linear combinations of the states. 

Table 5.  Linearized Model States 

Rotor rpm 

Rotor Azimuth 

Generator rpm 

Generator Azimuth 
Tower Elements: x,y,z,rx,ry,rz Displacement and 

Velocity of each inertial part 

Blade Pitch Angle and Rate (3 blades) 

Pitch Actuator States 
Blade Elements: x,y,z,rx,ry,rz Displacement and 

Velocity of each inertial part on all 3 blades 
 

Table 6.  Linearized Model Inputs 

Description Classification 

Blade pitch demand (3 blades) Control 
Generator torque Control 

Wind speed Disturbance 
 

Table 7.  Linearized Model Outputs 

Description Purpose 

Rotor rpm Typical measurement, model checking, control design 
Blade pitch Typical measurement, model checking, control design 

Power output Typical measurement, model checking, control design 

Blade 1 out of plane displacement Model checking 

Blade 1 out of plane velocity Control design 

Blade 2 out of plane displacement Model checking 

Blade 2 out of plane velocity Control design 

Blade 3 out of plane displacement Model checking 

Blade 3 out of plane velocity Control design 

Tower fore-aft displacement Model checking 

Tower fore-aft velocity Typical measurement, control design 

Shaft torsional deflection Model checking 

Shaft torsional deflection velocity Control design 
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2.3.2 ADAMS Linear 
An add-on linearization option is available for the standard ADAMS software.  This 
option will provide the A, B, C, and D matrices for an LTI model around a specific 
operating point.  While the ADAMS linearization procedure is applicable to a broad class 
of physical models, the user’s manual cautions against linearizing models that have parts 
rotating about axes not passing through the center of mass.  The example given is of a 
structure with articulated outboard parts spinning around a central hub, essentially the 
definition of a wind turbine.  The problem is that when ADAMS freezes the model for 
linearization, it preserves instantaneous velocities, but does not preserve the presence of 
the rotational constraint.  The resulting linearized model does not properly contain the 
forces that arise due to rotation, namely the centrifugal and gyroscopic forces.  These 
rotational effects can be of considerable importance to wind turbine structural dynamic 
response. 
 
Another difficulty is associated with the aerodynamic subroutines.  ADAMS linear will 
include the effects of forces calculated in subroutines, but unless the functions are smooth 
and continuous, difficulties can arise.  The Aerodyn subroutines meet this criterion in a 
broad sense, adequate for the time step simulations.  However, when changes to the 
inputs become small (as they do during the linearization process) the results are not 
reliable. 

2.3.3 Aerodynamic Linearization 
The issue of the aerodynamic derivatives is relatively easy to address.  ADAMS provides 
a high degree of control over both the “operation” of the turbine model and the output of 
results.  This capability can be exercised to provide numerical results corresponding to 
the effects of perturbations on the aerodynamic forces at each blade element. 
 
Considerable effort was put into understanding the interaction between ADAMS and 
Aerodyn.  This included discussions with ADAMS technical support as well as 
experimentation with the simulations.  The ADAMS linearization process is essentially to 
evaluate the Jacobian matrix of the model at the current operating point.  For force 
subroutines such as Aerodyn, the partial derivatives of these forces with respect to all of 
the pertinent state variables are required.  To get these derivatives, ADAMS calls the 
subroutines and passes to them values for the state variables that have been slightly 
perturbed.  Variables are perturbed one state at a time, with the perturbations at the part 
center of mass in the global coordinate system.  All state variables in the subroutine from 
parts not currently being perturbed do not change their value. 
 
Detailed experimentation with and review of these calculations, has shown that the state 
variable perturbations sent to Aerodyn by ADAMS are very small.  For a force 
subroutine that contains a closed-form analytical expression, this will most likely result in 
force calculations and resulting partial derivatives that are well behaved.  Unfortunately 
the Aerodyn subroutines are complex, and since the equations are not in a closed form, 
convergence of an iterative solution is required.  They also rely on lookup tables for 
aerodynamic lift and drag calculations.  As a result, it appears that without the 
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considerable effort of reworking the Aerodyn subroutines, they are unsuitable for this 
task as currently realized. 
 
A solution to this problem has been conceived and implemented, however.  It is clear for 
which of the state variables and model inputs the partial derivatives of aerodynamic force 
must be calculated.  These are the velocities of the blade elements relative to ground, the 
overall rotation of the blade element about the pitch axis (rigid body pitch plus torsional 
flexing) and the wind inflow input.  A process has been developed to calculate the 
derivatives of the aerodynamic forces around a selected operating point with respect to 
these variables.  These derivatives are then used in an aerodynamic subroutine 
specifically written for the ADAMS linearization procedure. 
 
The following is a basic procedural outline of the process: 

• The model is set up in such a way as to obtain the highest quality results.  This 
includes turning off gravity to avoid once-per-rev oscillations, increasing the 
structural damping properties of the blades to minimize other oscillations, and 
putting the nacelle on a rigid tower to avoid the secondary effect of the tower 
tilting back in the flow field. 

• The base of the rigid tower is also mounted on a translational joint relative to 
ground.  This allows for control of the rotor velocity in the upwind/downwind 
direction.  Note that the aerodynamics calculations treat wind velocity and 
velocity due to motion of the blades differently. 

• The turbine is run at a steady-state condition and each of four variables is stepped 
slightly to either side of nominal, one at a time.  Table 8 shows these variables 
and a typical step size. 

• A time series of the forces and variables shown in Table 9 is saved for each blade 
element from all three blades. 

• The one variable that cannot be precisely controlled is the blade element torsional 
deflection because it varies as the aerodynamic forces cause overall blade 
deflections.  These forces and deflections change as each of the listed global 
variables is perturbed.  As a result, there is coupling in the results and the 
derivatives cannot be calculated individually. 

• A least-squares approach is used to solve this problem.  Specifically, the pseudo 
inverse function in Matlab is used on the set of equations obtained from the time 
series data for each blade element to solve for the partial derivatives: 
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where n is the number of time steps in the time series. 



RDF Project CW02  Final Report 

Global Energy Concepts, LLC 13 October 1, 2003 

• This is repeated for Fx and Fy in blade coordinates and the results for the three 
blades are averaged for each aerodynamic derivative at each blade element.  The 
matrix of results is saved to a file which can be read by the subroutine linked to 
the ADAMS linearization procedure. 

 

Table 8.  Perturbations for Aerodynamic Derivative Calculation 

Global Variable Perturbation 
Collective blade pitch angle ±0.5 degrees 
Wind speed ±0.5 m/s 
Rotor rpm ±0.5 rpm 
Tower upwind/downwind 
velocity ±0.5 m/s 

 

Table 9.  Aerodynamic Derivatives 

Blade Element Variable Normal Force, Fx Tangential Force, Fy 
Element torsional deflection 
plus pitch, � δFx/δφ δFy/δφ 

Wind speed, V δFx/δV δFy/δV 
Element tangential velocity vy δFx/δvy δFy/δvy 
Element normal velocity, vx δFx/δvx δFy/δvx 

 

2.3.4 Linearization of Rotational Effects 
The inclusion of the rotational effects is more problematic.  However, a methodology was 
developed that can produce an accurate linear time invariant model of an operating wind 
turbine at a stable operating point.  The crux of this methodology is the conversion of the 
equations of motion from state variables in the rotating frame to a set of state variables in 
the fixed frame.  This conversion removes the time varying terms from the equations of 
motion.  The rotationally induced forces are identified in these equations and used in a 
subroutine linked to ADAMS.  Figure 9 outlines the methodology that will be developed 
in detail in the following sections. 
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Develop equations of motion for a
blade part flexibly connected to a
rotating hub in blade coordinates

Convert these equations to the
fixed frame using the Coleman
transformation - assuming the rotor
azimuth angle varies in time

Convert above result back to blade
coordinates using the Coleman
transformation - assuming the rotor
azimuth angle is fixed

Extract equations for forces
dependent on rotation rate from
above EOM and code into
ADAMS subroutine

Sum terms from EOM and the aero
forces dependent on blade
velocities into state coefficient
matrix

Form the matrix of partial derivatives
relating the aerodynamic forces to the
blade velocities, pitch angle, and wind
speed

These equations show uncoupled
blade motions, however the state
coefficient matrix is time
dependent

These equations show coupling between the fixed frame displacements,
however the state coefficient matrix is no longer time dependent.
It is also noted that aerodynamic terms are present as coefficients of the
displacements as well as the velocities

This step preserves the coupling
between blade motions as well as the
aerodynamic terms that act on the
displacements

ADAMS model of wind turbine - static
solution with no applied forces and no
rotation

Linearize model of wind turbine -
blade state perturbations used to
calculate perturbed values of
aerodynamic and rotationally
induced forces

Select an operating point: wind
speed, RPM, pitch angle

 
Figure 9.  Outline of methodology for linearization of rotational effects 
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2.3.4.1 Equations of Motion 
The approach requires equations for the forces that act on a blade inertial element when 
its states are perturbed.  These forces can then be applied to the non-rotating turbine 
model during the linearization process through a custom force subroutine.  A static 
solution is first computed for the non-rotating model.  The ADAMS linear procedure then 
perturbs the model states to evaluate the Jacobian, and as part of this process the 
rotational and aerodynamic forces due to these perturbations are calculated and returned 
by the subroutine. 
 
The development of the theoretical basis for this subroutine hinges on the use of a multi-
blade transformation used for analysis of helicopter and wind turbine rotor dynamics 
[11,12,13,14], referred to as a Coleman transformation in this report.  This transformation 
between the translational displacements in blade fixed coordinates and a set of non-
rotating coordinates is expressed as follows for three identical points on each of the three 
blades.  Also included are the hub coordinates in a global frame of reference. 
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I is the identity matrix with a dimension of 3 and  

3/)1(2 −+Ω= iti πψ  

is the azimuth angle of blade i relative to blade 1 vertically upwards.  The blade and 
fixed-frame displacement vectors for blade #i to fixed coordinate #j are organized as: 
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The fixed-frame coordinates x0, xS, and xC, are a set of coordinates that represent the 
symmetric, sine (or yaw), and cosine (or tilt) components of the displacement in the non-
rotating frame of reference. 
 
From Malcolm [13], the equations of motion for the three translational degrees of 
freedom of three identical inertial elements on the three blades plus the hub are as 
follows, ignoring the effects of element rotations: 
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where Xb is the Xi displacement vector, mb and mh are the masses of a single blade 
element and the hub, respectively, Ω  is the rotor rotation rate, and Faero is the applied 
aerodynamic loading.  The blades are connected individually to the hub through the block 
diagonal stiffness matrix Kb and the hub is attached to ground through stiffness matrix 
Kh.  C and S are block diagonal matrices with three blocks each of the form: 
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L is a matrix that transforms global coordinates into blade coordinates with three 
elements vertically stacked of the form: 
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It is this term in the equations of motion for the rotor that is time variant.  The following 
analysis will remove this time dependency by using the Coleman transform. 
 
2.3.4.2 Aerodynamic Forces 
It is known that the aerodynamic forces are dependent on the wind speed, the blade pitch, 
and the blade element velocities.  The applied force in Eq. (4) can be expressed as 
follows: 
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where D is the block diagonal matrix  
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and iφ  and Vi are the pitch and wind speed at blade i.  Note that Fz  and z� , the radial 
aerodynamic force and radial blade part velocity are both typically assumed to be zero. 

 
Substitute Eq. (7) and Eq. (8) into Eq. (4) and collecting terms of x� , y� , and z�  yields: 
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where U now only contains the pitch and wind speed of the three blades and D1 and D2 
are block diagonal. 
 
2.3.4.3 Conversion to Fixed Frame 
It is now necessary to convert Eq. (9) into the fixed frame in order to remove the time 
dependent term embodied in L.  Note that Eq. (9) is composed of three uncoupled blocks, 
one for each blade, plus the hub.  These equations can be transformed into the fixed-
frame Coleman coordinates via use of the relationships given in Hansen [14] for the 
derivatives and inverse of B, the transformation matrix of Eq. (2): 
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With X=BZ, taking derivatives using Eqs. (10 and 11) yields: 
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These can be substituted into Eq. (9) and rearranged to give: 
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where A is the coefficient matrix of Eq. (9) and Uc are the inputs transformed to Coleman 
coordinates with a B matrix of the appropriate dimension. 
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A calculation was carried out using a symbolic math package to put Eq. (13) into a 
standard form in the Coleman coordinates, Z.  The result is as follows: 
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and 

�
�
�
�

�

	










�

�

Ω−Ω−
ΩΩ−

Ω−

=

0000
02)/1(20
022)/1(0
0002)/1(

0
2

2

2

2 CDmI

ICDm

CDm

A
b

b

b

 (16) 

 
The significance of Eqs. (14-16) is that the time variant system with no blade coupling in 
the rotating frame has been converted to a time invariant system with coupling between 
the blades in the fixed frame.  Also of importance is that the aerodynamic derivatives 
embodied in D2 from Eq. (8) become coefficients of the displacement states as well as 
velocity states.  Finally, it is noted that the input matrix is the same in fixed frame as it 
was in blade coordinates.  These are the equations that give the proper dynamics for a 
rotating turbine viewed from the fixed frame.  The blade part forces are implied by the 
row in the matrix corresponding to the blade part accelerations with a multiplication by 
the mass. 
 
2.3.4.4 Conversion back to Blade Coordinates – fixed azimuth 
The forces implied in Eq. (14) could conceivably be applied in the Coleman form to the 
non-rotating model undergoing linearization.  However it is more straightforward to 
apply the forces in blade coordinates, as these are most easily passed in and out of the 
custom subroutine. 
 
The necessary assumption is that the equations of motion can be converted back to blade 
coordinates with the azimuth angle now a constant instead of a function of time.  This 
removes the need to chain rule the derivatives for the transformation so that 
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Substituting Eqs. (17) into Eq. (14) yields a set of equations for the blade motions in 
blade coordinates for a rotor that is instantaneously stationary: 
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where the hub terms have been removed.  For convenience, define: 
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This result preserves the coupling between the blade motions as well as the coupling of 
the aerodynamics to the displacements.  The forces due to rotation are the terms in A3 and 
A4 that contain the rotor speed, Ω , multiplied by the blade part mass.  They are extracted 
and expressed as follows: 
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and 
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The ADAMS linearization procedure views the rotor as stationary, as this is a necessary 
condition for the core procedure to give accurate results.  The custom subroutines apply 
forces to that stationary rotor is if it were actually rotating.  In particular, when ADAMS 
perturbs the states for the linearization calculation, the custom subroutine returns the 
forces that would arise from those perturbations as if the rotor were rotating. 
 

2.3.4.5 Pitch Actuator 
The independent blade pitch actuators are modeled with PID loops from pitch demand to 
pitching torque, one for each blade.  These PID loops are built in to the ADAMS model 
and get linearized as part of the overall plant.  When testing the method, a problem arose 
wherein the full ADAMS model response to a step in Coleman sine or cosine pitch angle 
demand showed some steady state coupling, particularly when the pitch actuator time 
constant was long. 
 
A Coleman sine or cosine demand in pitch looks like steady state in the fixed frame, 
however in the blade frame of reference this looks like a sinusoidally varying demand.  
Due to following error, the lag in response looks like steady state coupling between the 
sine and cosine components of the pitch angle.  The rotating turbine must continually 
pitch the blades at once per revolution to maintain a sine or cosine pitch angle in the fixed 
frame.  The following error of the actuator results in steady state coupling.  
 
The linearized model shows a response to these step changes in demand with no steady 
state coupling.  The linear model does not have the following error, as the blades are not 
rotating and the pitch actuator does not cycle at once per revolution. 
 
To address this issue, an approach similar to the operations in the above section is 
developed where the equations of motion are developed and transformed to the fixed 
frame in Coleman coordinates.  The closed loop equations of motion for the pitch of three 
rigid blades can be expressed as follows, referring to the description of the actuator in 
Figure 4 and Table 3: 
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 (24) 
where φ is a vector of the three blade pitch angles, the subscripts I and d denote the 
integral of the pitch error and the pitch demand respectively.  The 0 and I refer to three by 
three matrices of zeros and the identity matrix respectively.  J is the blade pitch inertia. 
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When this set of equations is transformed using the Coleman transformation matrix B to 
the fixed frame and then transformed back to blade coordinates with an assumption of an 
instantaneously non-rotating rotor, the result in blade coordinates is: 
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The additional terms in this coupled set of equations are noted to all be dependent on the 
rotor speed, Ω .  These additional terms are coded into the blade pitch actuator used in 
the ADAMS model of the stationary rotor. 
 
2.3.4.6 Implementation Issues 
Application of this methodology to a fully complex ADAMS model of a wind turbine 
highlighted a few issues that should be noted. 

• The procedure performs more reliably when symmetry is maintained in the rotor 
model.  This requires that the definition of the blade part locations be made with a 
high degree of accuracy. 

• For the rotational force calculations, many of the states required are essentially 
velocities of the blade part centers of mass.  It was found to be important to 
superimpose a marker in the fixed frame at the location of each blade part center 
of mass from which to calculate the velocity. 
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3 Validation and Results 

3.1 Response Calculations 
One attribute of a linearized model is that it should duplicate the behavior of the non-
linear model in the neighborhood of a selected operating point.  In order to validate the 
methodology developed in the previous section, the approach will be to compare the 
results from simulations using the linearized model to results from the simulation using 
the full non-linear ADAMS model.  The linearized model simulations are carried out in 
MATLAB using the step function.  The step function applies unit steps individually to 
each of the inputs to an LTI model and calculates the states and outputs for each. 
 
The LTI model used for these examples uses inputs and outputs that are defined in terms 
of the Coleman coordinates, with the exception of the shaft torque and tower motion.  
The blade pitch demand inputs and the wind inputs are both expressed in Coleman 
coordinates for the rotational and downwind directions, respectively.  The blade pitch tip 
displacement outputs are also all in Coleman coordinates.  The full non-linear ADAMS 
model inputs and outputs have also been converted by applying the inverse of the 
transformation in Equation 2. 
 
The comparison for the blade pitch response is shown in Figure 10.  Note that the 
response to a collective pitch demand matches exactly and that there are no coupled 
motions in the sine and cosine directions.  The response to sine and cosine pitch demands 
produces a coupled response from the LTI model that matches the non-linear model fairly 
well.  The discrepancies are most likely due to effects that are not included in the linear 
model, such as the deflection of the blade operating in high wind speeds in the full model. 
 
The response of the turbine rotor speed and the tower motion to step changes in blade 
symmetric pitch, wind speed, and generator torque is shown in Figure 11.  These show 
quite good comparisons for the rpm.  The tower motion results are not as good; however, 
oscillations in the tower motion from the full model were present before the step change, 
making them difficult to compare. 
 
The response of blade tip deflections to step changes in the Coleman pitch demand inputs 
are shown in Figure 12 to Figure 14.  These include deflections in the x, y and blade 
torsional directions. 
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Figure 10.  Response of the blade pitch to a step change in:  a) symmetrical  b) 

sine  c) cosine pitch demand while operating in steady 24 m/s winds 
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Figure 11.  Response of rotor rpm and tower motion to a step change in:  

a) symmetrical pitch demand  b) wind speed  c) generator torque while operating 
in steady 24 m/s winds  
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Figure 12.  Response of the blade tip Coleman x direction deflection to a step 
change in:  a) symmetrical  b) sine  c) cosine pitch demand while operating in 

steady 24 m/s winds 
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Figure 13.  Response of the blade tip Coleman y direction deflection to a step 
change in:  a) symmetrical  b) sine  c) cosine pitch demand while operating in 

steady 24 m/s winds 
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Figure 14.  Response of the blade tip Coleman torsional deflection to a step 

change in:  a) symmetrical  b) sine  c) cosine pitch demand while operating in 
steady 24 m/s winds 
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3.2 Modal Analysis 
Modal analysis of an operating wind turbine has always been challenging because of the 
relationship between the rotor and the supporting structure.  The modal analysis is highly 
dependent on the rotor rotation rate as was demonstrated in Section 2.  Malcolm [13] has 
developed an approach that was the initial basis for this work.  This work, while 
primarily interested in control design tools, has extended the methodology for modal 
analysis to include the aerodynamic effects.  In the future, it may also be possible to 
extend the methodology to include the effect of sensor dynamics and control algorithms 
in the open or closed loop.   
 
One benefit of this methodology is that Campbell diagrams can be readily produced.  
Figure 15 shows a Campbell diagram for the example 1.5 MW turbine.  Table 10 gives 
the associated descriptions and frequencies for the modes.  These results show the 
expected divergence of the asymmetrical modes as the rpm increases.  This divergence 
produces a frequency difference between matched modes equal to twice the rotor rotation 
frequency.  The slight increase in frequency of the flap collective modes due to 
centrifugal stiffening is also shown. 
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Figure 15.  Campbell diagram for the example 1.5 MW turbine 

 
 



RDF Project CW02  Final Report 

Global Energy Concepts, LLC 29 October 1, 2003 

Table 10.  Modal Frequencies for Example 1.5 MW Turbine 

Mode # Description Frequency, Hz 
at 0 rpm 

Frequency, Hz 
at 30 rpm 

1 1st Tower fore-aft 0.24 0.24 
2 1st Tower lateral 0.24 0.24 
3 1st Flap tilt 1.05 0.80 
4 2nd Tower lateral 1.10 1.11 
5 2nd Tower fore-aft 1.13 1.12 
6 1st Flap collective 1.20 1.40 
7 1st Flap yaw 1.25 1.80 
8 1st Edge tilt 1.81 1.35 
9 1st Edge yaw 1.83 2.34 

10 2nd Drive train torsion/edge 
collective* 2.70 2.74 

11 2nd Flap yaw 2.81 2.69 
12 2nd flap tilt 3.47 3.73 
13 2nd Flap collective 3.54 3.76 

 *  The 1st drive train mode is the rigid body rotation of the rotor and drive train 
 
 
The results in Figure 15 and Table 10 were calculated using the rotational force 
subroutine described in the previous section.  The aerodynamic forces, however, were 
turned off, and the pitch angle was held at the fine pitch set point.  With the aerodynamic 
force effects included and the pitch angle varied appropriately, a similar review of the 
modal response can be made as a function of operating point wind speed.  Eigensolutions 
were calculated for steady operating points from 6 to 28 m/s in 2 m/s increments.  A 
Campbell diagram versus wind speed is shown in Figure 16.  This shows the effects of 
aerodynamic damping in high winds where many of the modal frequencies are reduced. 
 
Plots of the loci of system poles versus wind speed are shown in Figure 17 and Figure 18.  
The poles generally move from right to left with increasing wind speed.  The numbered 
labels in these figures correspond to Table 10.  Figure 19 shows the pole loci for the rigid 
body rotor and drive train rotation.  Again the poles move from right to left with 
increasing wind speed. 
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Figure 16.  Wind speed Campbell diagram for the example 1.5 MW turbine 
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Figure 17.  System pole loci for the example 1.5 MW turbine 
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Figure 18.  System pole loci for the example 1.5 MW turbine 

 

-3

-2

-1

0

1

2

3

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Real

Im
ag

in
ar

y,
 H

z

 
Figure 19.  Pole loci for the rotor and drive train rigid body rotation 
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3.3 Controls 

3.3.1 Model Reduction 
Once an LTI is available, it can be imported into Matlab for control design.  The first 
issue that arose using a linear model of a complex turbine ADAMS model is that there 
are on the order of 300 displacement degrees of freedom.  This is far too many to do a 
practical control design.  There are a variety of approaches to reducing the model order 
down to a manageable level without losing important information. 
 
One of the most straightforward of these methods is to convert the LTI model into modal 
form and pick out the most important modes for use in a reduced order model.  The work 
presented in the above section was critical to carrying out this reduction.  Table 11 shows 
the modes kept for a model linearized around an operating point at 24 m/s.  With these 
modes included, the fidelity of the rpm, tower motion, and blade flapping motion 
response to symmetric pitch and wind input remains intact. 
 

Table 11.  Modes Included for a Reduced Order Model 

Mode # Description Frequency, Hz Real part of 
Eigenvalue 

 Drive train rigid body 0.00 -0.84 
 Collective pitch actuation 0.00 -5.00 

1 1st Tower fore-aft 0.24 -0.07 
6 1st Flap collective 0.87 -9.28 

10 Drive train torsion 2.52 -1.64 
 

3.3.2 State Feedback and Kalman Filtering 
The control design example to follow makes use of standard state space control design 
methodologies.  State feedback gains are calculated using the linear quadratic regulator 
(LQR) method [15].  The methodology was applied to the example problem using a 
disturbance accommodating control (DAC) technique.  In this technique, the wind speed 
input is made a state variable, albeit an uncontrollable one, by augmenting the state 
matrix with the appropriate column from the disturbance input distribution matrix.  The 
state matrix is modified to provide a slowly decaying wind speed response to a step input 
of disturbance.  While this state cannot be controlled, it can be estimated and gains 
applied to this estimated wind speed. 
 
In addition, the equations were modified to allow pitch rate demand input instead of pitch 
position demand.  This required an augmentation of the state matrix similar to the wind 
speed state augmentation, although the new pitch demand state remains a pure integrator.  
The ADAMS model was also modified to include an integration following the demand 
input for the pitch actuator.  The new LTI model is now formed as: 
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The LQR method calculates a gain matrix, K that is essentially a transformation from the 
state vector to the control vector as follows: 
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Now the difficulty arises that not all of the states appear in the measurement.  In fact, 
none of them do since the LTI model is in modal form not physical state variables.  This 
difficulty is overcome by use of a Kalman filter [15], a methodology that makes estimates 
of the states based on the control inputs and the measurements.  The Kalman filter is 
itself an LTI model of the form: 
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Where the X̂  is the estimate of the augmented state vector corresponding to the states of 
Eq. 24.  The LQR result and the Kalman filter can be combined into a unified controller 
with inputs from the measurement and output of the control.  Figure 20 shows a block 
diagram for the example wind turbine state space controller. 

3.3.3 Example Results 
Using these methods, some basic control designs were developed in Matlab.  Subroutines 
were also developed for linking with ADAMS that incorporated these control algorithms.  
The design of the controller emphasized speed control, but also included weighting for 
the tower and drive train modes.  Figure 21 shows the plant and closed loop poles for a 
control design at an operating point wind speed of 24 m/s. 
 
A turbulent simulation was run in ADAMS with this control and the results are shown in 
Figure 22 to Figure 26. 
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Figure 20.  State space control flow diagram 
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Figure 21.  Plant and closed loop poles of the LTI model at 24 m/s 
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Figure 22.  Turbine rpm in 24 m/s turbulence 
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Figure 23.  Collective blade pitch in 24 m/s turbulence 
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Figure 24.  Drive train torques in 24 m/s turbulence 
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Figure 25.  Electrical power in 24 m/s turbulence 
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Figure 26.  Wind sped estimate versus actual hub height wind speed. 

 

4 Conclusions 
This project has successfully developed a tool that linearizes ADAMS models of wind 
turbines.  These linearizations can be used for modal analysis and control design.  In 
particular, the linearized models accurately contain the effects of aerodynamic and 
rotational effects. 
 
The ADAMS modeling environment is used fairly widely by wind turbine design and 
research engineers.  It is particularly useful because of its broad flexibility and capability 
of modeling a wide range of configurations.  With this linearization tool, and the 
powerful flexibility of the ADAMS modeling environment, control designs can be 
analyzed that encompass significant real world effects, including filters, digital controls 
with time lag, and actuator and sensor dynamics.  Configuration changes to plant model, 
measurements, and control can be implemented fairly rapidly. 
 
This tool will allow the further development and refinement of wind turbine controls.  
Future work in this area could include studies that analyze the impact of sensor response 
and placement, aerodynamic tailoring for control, and a wide variety of control methods. 
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Appendix A 
Generalized Force Subroutine Code 

 
! ***************************************************** 
! 
  SUBROUTINE GFOSUB( ID, ATIME, PAR, NPAR, DFLAG, IFLAG, ElemAeroF) 
! 
!  Called by ADAMS to get element aerodynamic and rotational 
!  forces.for linearization 
!                              
! ***************************************************** 
 
Parameter         Nelem=15, Nws=12 
 
IMPLICIT          NONE 
 
INTEGER           ID, igrnd, ipitch, iblade, jelem, iwind, nctrl 
INTEGER           NPAR,n,nn, nnn, nw, i, j 
INTEGER           Mode, nstate, nvals, ivec(3), ns, nvec, ihub, nvar 
INTEGER           iaero, ibld1, ibld2, ibld3 
 
DOUBLE PRECISION  ATIME, WIND_INT, omega 
DOUBLE PRECISION  PAR( NPAR ) 
DOUBLE PRECISION  ElemAeroF(6), bld_prop(4), temp(3) 
DOUBLE PRECISION  ELPITCH, ELEMVREL2G(3), ElemDrel2G(3,3) 
DOUBLE PRECISION  WIND_sym, WIND_sin, WIND_cos, Wind  
DOUBLE PRECISION  Bld_dsp(9), Bld_vel(9), Bld_rot(9), Bld_rvl(9) 
Double Precision  FD(9,9), FV(9,9), F(9), Fsave(3,3,Nelem) 
 
REAL              pi, PITNOW, DFN, DFT 
REAL              savp(7,3,Nelem)          ! 7 states by 3 blades by Nelem blade parts 
REAL              Dvar(10)                 ! delta values of states 
REAL              aero_deriv(4,2,Nelem,Nws) 
REAL              bld_mass 
 
LOGICAL           DFLAG, errflg, IFLAG, FIRST 
 
SAVE              aero_deriv, savp, nw, first, omega, FD, FV, Fsave 
 
!  aero derivatives for Normal and Tangential Force vs blade pitch  
!  and normal and tangential velocity 
!  all w.r.t. the plane of rotation approximated by the hub coordinates 
!  break out normal velocity into body motion and wind as induction 
!  factor is applied differently 
 
!  Aero_deriv(2 forces (Fn and Ft), 4 variables (pitch, wind, Vnb, Vt), 
!  Nelem blade elements, Nws Wind speeds) 
 
!  Convert passed parameters to meaningful terms. 
 
!  USER passes ( Blade#, Section#, Control variable ID, Marker )  or 
!              ( IBlade, JElem,    Nctrl,               IAERO  ) 
!     IBlade = Blade ID number (1 to NB)            
!     JElem  = Blade element ID number (1 to NELM)  
!     NCTRL  = switch for aero (0) to rotating effects (2) 
! 
!     IAERO  = Aero or CG Marker ID number  
 
IBlade   = IDNINT( PAR(1) ) 
JElem    = IDNINT( PAR(2) )    
NCTRL    = IDNINT( PAR(3) ) 
IAERO    = IDNINT( PAR(4) ) 
 
call getmod (Mode)   ! get mode of ADAMS, 6 is static solution, 7 is linearization 
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if (iflag .and. iblade .eq. 1 .and. jelem .eq. 1) then 
    OPEN(UNIT = 42, FILE = 'aero_deriv.dat', STATUS = 'UNKNOWN') 
    do nnn = 1,Nws 
    do nn = 1,Nelem 
       read(42,*) (aero_deriv(n,1,nn,nnn), n = 1,4)   & 
                  ,(aero_deriv(n,2,nn,nnn), n = 1,4) 
    enddo 
    enddo 
    close(42) 
    first = .true. 
    pi = 4.0*atan(1.0) 
 
! Build matrices for force computations 
 
    FD = 0.0 
    FV = 0.0 
 
    FD(1,1) = (2./3.) 
    FD(2,2) = (5./3.) 
    FD(3,3) = (5./3.) 
    FD(4:6,4:6) = FD(1:3,1:3) 
    FD(7:9,7:9) = FD(1:3,1:3) 
 
    FD(1,4) = -(1./3.) 
    FD(2,5) = -(5./6.) 
    FD(3,6) = -(5./6.) 
    FD(2,6) = -(1./2.)*sqrt(3.0) 
    FD(3,5) =  (1./2.)*sqrt(3.0) 
    FD(4:6,7:9) = FD(1:3,4:6) 
    FD(7:9,1:3) = FD(1:3,4:6) 
 
    FD(1,7) = -(1./3.) 
    FD(2,8) = -(5./6.) 
    FD(3,9) = -(5./6.) 
    FD(2,9) =  (1./2.)*sqrt(3.0) 
    FD(3,8) = -(1./2.)*sqrt(3.0) 
    FD(4:6,1:3) = FD(1:3,7:9) 
    FD(7:9,4:6) = FD(1:3,7:9) 
 
    FV(2,3) =  2.0 
    FV(3,2) = -2.0 
    FV(4:6,4:6) = FV(1:3,1:3) 
    FV(7:9,7:9) = FV(1:3,1:3) 
 
    FV(1,4) = -(2./3.)*sqrt(3.0) 
    FV(2,5) =  (1./3.)*sqrt(3.0) 
    FV(3,6) =  (1./3.)*sqrt(3.0) 
    FV(2,6) = -1.0 
    FV(3,5) =  1.0 
    FV(4:6,7:9) = FV(1:3,4:6) 
    FV(7:9,1:3) = FV(1:3,4:6) 
 
    FV(1,7) =  (2./3.)*sqrt(3.0) 
    FV(2,8) = -(1./3.)*sqrt(3.0) 
    FV(3,9) = -(1./3.)*sqrt(3.0) 
    FV(2,9) = -1.0 
    FV(3,8) =  1.0 
    FV(4:6,1:3) = FV(1:3,7:9) 
    FV(7:9,4:6) = FV(1:3,7:9) 
  
endif 
 
if (first) then 
! get the array index to the wind speed for use with aero_deriv 
       CALL INFFNC ( 'VARVAL',  9001, 1,  WIND_INT,  ERRFLG ) 
    nw = idnint(wind_int) 
! get the rotor rotation rate 
       CALL INFFNC ( 'VARVAL',  9002, 1,  omega,  ERRFLG ) 
    first = .false. 
endif 
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if (nctrl .eq. 2) then   !  forces due to rotation 
 
    if (.not. iflag) then 
       call gtaray (iaero-10, bld_prop, nvals, errflg) 
       bld_mass = bld_prop(1)             ! mass of current blade element 
    endif 
 
! translational displacements and velocities for all 3 blades  
! in global/ground coordinates 
 
    if (iblade .eq. 1) then 
        ibld1 = iaero 
        ibld2 = iaero + 10000 
        ibld3 = iaero + 20000 
    elseif( iblade .eq. 2) then 
        ibld1 = iaero - 10000 
        ibld2 = iaero 
        ibld3 = iaero + 10000 
    else 
        ibld1 = iaero - 20000 
        ibld2 = iaero - 10000 
        ibld3 = iaero 
    endif 
 
    IVEC(1) = ibld1 
    IVEC(2) = 4100+jelem 
    IVEC(3) = 10 
    NVEC    = 3 
    CALL sysary('TDISP',IVEC, NVEC, Bld_dsp(1), NVALS, ERRFLG) 
    IVEC(2) = 4115 + jelem 
    CALL sysary('TVEL', IVEC, NVEC, Bld_vel(1), NVALS, ERRFLG) 
 
    IVEC(1) = ibld2 
    IVEC(2) = 4200 + jelem 
    IVEC(3) = 10 
    CALL sysary('TDISP',IVEC, NVEC, Bld_dsp(4), NVALS, ERRFLG) 
    IVEC(2) = 4215 + jelem 
    CALL sysary('TVEL', IVEC, NVEC, Bld_vel(4), NVALS, ERRFLG) 
 
    IVEC(1) = ibld3 
    IVEC(2) = 4300 + jelem 
    IVEC(3) = 10 
    CALL sysary('TDISP',IVEC, NVEC, Bld_dsp(7), NVALS, ERRFLG) 
    IVEC(2) = 4315 + jelem 
    CALL sysary('TVEL', IVEC, NVEC, Bld_vel(7), NVALS, ERRFLG) 
 
    F = omega*(omega*matmul(FD,Bld_dsp) + matmul(FV,Bld_vel)) 
 
! put forces into array for return to ADAMS, also convert to kN 
 
    ElemaeroF(1) = 0.001*bld_mass*F(1+(iblade-1)*3)   
    ElemaeroF(2) = 0.001*bld_mass*F(2+(iblade-1)*3) 
    ElemaeroF(3) = 0.001*bld_mass*F(3+(iblade-1)*3) 
    ElemaeroF(4) = 0.0 
    ElemaeroF(5) = 0.0 
    ElemaeroF(6) = 0.0 
 
! suppress forces associated with perturbations in static mode 
    if (mode .eq. 6 .and. dflag) then    
        ElemaeroF(1) = Fsave(1,iblade,jelem) 
        ElemaeroF(2) = Fsave(2,iblade,jelem) 
        ElemaeroF(3) = Fsave(3,iblade,jelem) 
    else 
        Fsave(1,iblade,jelem) = ElemaeroF(1) 
        Fsave(2,iblade,jelem) = ElemaeroF(2) 
        Fsave(3,iblade,jelem) = ElemaeroF(3) 
    endif 
     
 
 



RDF Project CW02  Final Report 

Global Energy Concepts, LLC A-4 October 1, 2003 

Else  ! for nctrl = 0:  aero calcs 
 
   IGRND = 10 
   IHUB = 4010 
   IPITCH = 4191 
 
!  blade element total rotation, incl rigid body pitch and elastic twist 
 
   IVEC(1) = IAERO 
   IVEC(2) = IPITCH + 100 * ( IBLADE -1 )  ! Hub Ref Marker on hub side of pitch bearing 
   NVEC    = 2 
   CALL SYSFNC ( 'AX',  IVEC, NVEC,  ELPITCH,  ERRFLG ) 
   Pitnow = SNGL ( ELPITCH ) 
 
!  blade element translational velocity at aero marker 
!  realative to ground, but in blade coordinates 
 
   IVEC(1) = IAERO 
   IVEC(2) = IGRND 
   IVEC(3) = IHUB + Iblade 
   NVEC    = 3 
   CALL sysary('TVEL', IVEC, NVEC, ElemVrel2G, NVALS, ERRFLG) 
 
!  blade element translational displacement for all blades 
   do n = 1,3 
      IVEC(1) = IAERO + 10000*(n - iblade) 
      IVEC(2) = IGRND 
      IVEC(3) = IHUB + n 
      NVEC    = 3 
      CALL sysary('TDISP', IVEC, NVEC, ElemDrel2G(:,n), NVALS, ERRFLG) 
   enddo 
 
! get the wind perturbations based on variables used in pinput list 
   iwind = 9120 
   CALL SYSFNC ( 'VARVAL',  iwind, 1,  WIND_sym,  ERRFLG )   
   iwind = 9220 
   CALL SYSFNC ( 'VARVAL',  iwind, 1,  WIND_sin,  ERRFLG )   
   iwind = 9320 
   CALL SYSFNC ( 'VARVAL',  iwind, 1,  WIND_cos,  ERRFLG )    
 
! Note that choice of element # in denom below is where Coleman wind field is defined 
! e.g. 10 in denom implies 2/3rds out blade for 15 element blade    
 
   if (iblade .eq. 1) wind = wind_sym + wind_cos*float(jelem)/10. 
   if (iblade .eq. 2) wind = wind_sym + (0.866*wind_sin - 0.5*wind_cos)*float(jelem)/10. 
   if (iblade .eq. 3) wind = wind_sym + (-0.866*wind_sin - 0.5*wind_cos)*float(jelem)/10. 
 
   if (dflag .and. mode .eq. 7) then 
 
      DFN = 0.0 
      DFT = 0.0 
 
      Dvar(1) = pitnow - savp(7,iblade,jelem) 
      Dvar(2) = Wind 
      Dvar(3) = elemVrel2g(1) - savp(1,iblade,jelem) 
      Dvar(4) = elemVrel2g(2) - savp(2,iblade,jelem) 
      Dvar(5) = elemDrel2g(1,1) - savp(4,1,jelem) 
      Dvar(6) = elemDrel2g(2,1) - savp(5,1,jelem) 
      Dvar(7) = elemDrel2g(1,2) - savp(4,2,jelem) 
      Dvar(8) = elemDrel2g(2,2) - savp(5,2,jelem) 
      Dvar(9) = elemDrel2g(1,3) - savp(4,3,jelem) 
      Dvar(10) = elemDrel2g(2,3) - savp(5,3,jelem) 
 
      do nvar = 1,4 
         DFN = DFN + Dvar(nvar)*aero_deriv(nvar,1,jelem,nw) 
         DFT = DFT + Dvar(nvar)*aero_deriv(nvar,2,jelem,nw) 
      enddo 
 
 
!  aerodynamic forces with coupling effects as appropriate for blade # 
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       if (iblade .eq. 1) then 
 
         DFN = DFN - (1./3.)*sqrt(3.)*omega*                   & 
                           (-Dvar(7)*aero_deriv(3,1,jelem,nw)   & 
                            -Dvar(8)*aero_deriv(4,1,jelem,nw)   & 
                            +Dvar(9)*aero_deriv(3,1,jelem,nw)   & 
                            +Dvar(10)*aero_deriv(4,1,jelem,nw)) 
         DFT = DFT - (1./3.)*sqrt(3.)*omega*               & 
                           (-Dvar(7)*aero_deriv(3,2,jelem,nw)   & 
                            -Dvar(8)*aero_deriv(4,2,jelem,nw)   & 
                            +Dvar(9)*aero_deriv(3,2,jelem,nw)   & 
                            +Dvar(10)*aero_deriv(4,2,jelem,nw)) 
 
       elseif (iblade .eq. 2) then 
 
         DFN = DFN - (1./3.)*sqrt(3.)*omega*               & 
                           (+Dvar(5)*aero_deriv(3,1,jelem,nw)   & 
                            +Dvar(6)*aero_deriv(4,1,jelem,nw)   & 
                            -Dvar(9)*aero_deriv(3,1,jelem,nw)   & 
                            -Dvar(10)*aero_deriv(4,1,jelem,nw)) 
         DFT = DFT - (1./3.)*sqrt(3.)*omega*               & 
                           (+Dvar(5)*aero_deriv(3,2,jelem,nw)   & 
                            +Dvar(6)*aero_deriv(4,2,jelem,nw)   & 
                            -Dvar(9)*aero_deriv(3,2,jelem,nw)   & 
                            -Dvar(10)*aero_deriv(4,2,jelem,nw)) 
 
       elseif (iblade .eq. 3) then 
 
         DFN = DFN - (1./3.)*sqrt(3.)*omega*               & 
                           (-Dvar(5)*aero_deriv(3,1,jelem,nw)   & 
                            -Dvar(6)*aero_deriv(4,1,jelem,nw)   & 
                            +Dvar(7)*aero_deriv(3,1,jelem,nw)   & 
                            +Dvar(8)*aero_deriv(4,1,jelem,nw)) 
         DFT = DFT - (1./3.)*sqrt(3.)*omega*               & 
                           (-Dvar(5)*aero_deriv(3,2,jelem,nw)   & 
                            -Dvar(6)*aero_deriv(4,2,jelem,nw)   & 
                            +Dvar(7)*aero_deriv(3,2,jelem,nw)   & 
                            +Dvar(8)*aero_deriv(4,2,jelem,nw)) 
       endif 
 
      ElemAeroF(1) = DFN 
      ElemAeroF(2) = DFT 
      ElemAeroF(3) = 0.0D0 
      ElemAeroF(4) = 0.0D0 
      ElemAeroF(5) = 0.0D0 
      ElemAeroF(6) = 0.0D0 
 
   else 
      ElemAeroF(1) = 0.0D0 
      ElemAeroF(2) = 0.0D0 
      ElemAeroF(3) = 0.0D0 
      ElemAeroF(4) = 0.0D0 
      ElemAeroF(5) = 0.0D0 
      ElemAeroF(6) = 0.0D0 
 
      savp(1,iblade,jelem) = elemVrel2g(1) 
      savp(2,iblade,jelem) = elemVrel2g(2) 
      savp(3,iblade,jelem) = elemVrel2g(3) 
      savp(7,iblade,jelem) = pitnow 
 
      do n = 1,3   ! loop on 3 blades 
          savp(4,n,jelem) = elemDrel2g(1,n) 
          savp(5,n,jelem) = elemDrel2g(2,n) 
          savp(6,n,jelem) = elemDrel2g(3,n) 
      enddo 
 
   endif   ! dflag loop 
 
endif  ! nctrl loop 
 
RETURN 
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Appendix B 
ADAMS Model Elements 

 
The following describes the elements of the ADAMS model required for implementation 
of the procedures in this report via the subroutine of Appendix A. 
 
Aerodynamic Derivatives 

The subroutine reads in a 4x2x15x12 matrix that is stored in a file in an 8 x Nelem*Nws 
matrix as follows: 
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where x and y are in global coordinates, N = the number of blade elements (iterated first), 
and M = the number of wind speed operating points. 
 
Markers 

The subroutine requires the following markers: 
 
Marker #s Part #s Purpose Location & Orientation 
i1111 to 
i2511 
i = 1,3 

i1100 to 
i2500 
i = 1,3 

Blade element aerodynamic force 
markers 

At blade element center of 
aerodynamic pressure, x 
axis out blade 

4i91 i=1,3 4i00 i=1,3 Reference markers on hub for pitch 
measurement 

On hub with x axes out 
respective blades 

401i i=1,3 4000 Define coordinate system for 
measurement of blade element 
velocities and displacements.  Also 
coordinate system for application of 
blade aero forces. 

On hub in standard blade 
coordinate system per 
blade 

i1110 to 
i2510 
i = 1,3 

i1100 to 
i2500 
i = 1,3 

Blade element markers at center of 
gravity 

Not actually CM marker, but 
same location with standard 
blade coordinate orientation 

4i01 to 4i15 ground For displacement perturbation 
measurement in rotational force 
calculation 

At hub center in blade 
coordinate systems 

4i16 to 4i30 ground For velocity perturbation 
measurement in rotational force 
calculation 

Superimposed on blade cg 
in blade coordinate systems 
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Variables 

The subroutine requires the following variables: 
 
Variable Purpose 
9001 Wind speed index for aero_deriv 

matrix 
9002 Rotor rotation rate in rad/sec 
9003 Operating point pitch angle in rad 
9120 Coleman symmetric wind disturbance 
9220 Coleman sine wind disturbance 
9320 Coleman cosine wind disturbance 
Array i1100 
to i2500 

Contains blade element mass 

 
Typically, the model is set up with the following input and output variables for the linear 
model. 
 
Variable Description Purpose 
11000 Blade collective pitch demand Control Input 
21000 Blade sine pitch demand Control Input 
31000 Blade cosine pitch demand Control Input 
3000 Generator torque demand Control Input 
9120 Mean wind Disturbance Input 
9220 Sine wind (horizontal shear) Disturbance Input 
9320 Cosine wind (vertical shear) Disturbance Input 
   
3001 RPM Measurement 
3010 Power Measurement 
2007 Tower fore-aft velocity Measurement 
10001 Blade root flapwise collective moment Measurement 
20001 Blade root flapwise sine moment Measurement 
30001 Blade root flapwise cosine moment Measurement 
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Parameters: 

The following parameters are defined in the model. 
 
Variable Purpose 
101 Blade pitching inertia, J, in kg·m2 for 

pitch actuator gain calculation 
102 Blade pitch actuator time constant, 

tau, in seconds for pitch actuator gain 
calculation 

113 Blade pitch actuator integral gain, K1 
114 Blade pitch actuator proportional gain, 

K2 
115 Blade pitch actuator kroportional gain, 

K3 
116 Blade pitch actuator derivative gain, 

K4 
117 Blade pitch actuator derivative gain, 

K5 
 
 


